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Deep learning application 
of vertebral compression fracture 
detection using mask R‑CNN
Seungyoon Paik 1, Jiwon Park 2, Jae Young Hong 2 & Sung Won Han 1*

Vertebral compression fractures (VCFs) of the thoracolumbar spine are commonly caused by 
osteoporosis or result from traumatic events. Early diagnosis of vertebral compression fractures can 
prevent further damage to patients. When assessing these fractures, plain radiographs are used as 
the primary diagnostic modality. In this study, we developed a deep learning based fracture detection 
model that could be used as a tool for primary care in the orthopedic department. We constructed a 
VCF dataset using 487 lateral radiographs, which included 598 fractures in the L1-T11 vertebra. For 
detecting VCFs, Mask R-CNN model was trained and optimized, and was compared to three other 
popular models on instance segmentation, Cascade Mask R-CNN, YOLOACT, and YOLOv5. With 
Mask R-CNN we achieved highest mean average precision score of 0.58, and were able to locate each 
fracture pixel-wise. In addition, the model showed high overall sensitivity, specificity, and accuracy, 
indicating that it detected fractures accurately and without misdiagnosis. Our model can be a 
potential tool for detecting VCFs from a simple radiograph and assisting doctors in making appropriate 
decisions in initial diagnosis.

Vertebral compression fractures (VCFs) are breaks or cracks in the vertebrae, which can cause the spine to 
weaken or collapse. VCFs affect approximately 1 to 1.5 million people annually in the United States1. Although 
some VCFs are caused by trauma or tumors, they are more common in the elderly and women with osteoporo-
sis. Most VCFs occur in the thoracic and lumbar vertebrae, or at the thoracolumbar junction. In the diagnosis 
of VCFs, plain radiographs are the initial diagnostic modality. When neurological disorder is suspected, other 
more complex modalities such as computed tomography (CT), magnetic resonance imaging (MRI) are ordered. 
Identifying fractures in bone images is a time-consuming and labor-intensive process, that requires manual 
inspection by a highly trained radiologist or an orthopedic2. Inexperience of the clinician or fatigue caused by 
excessive workloads of physicians can lead to an inaccurate diagnosis, which can be fatal to patients.

Deep learning (DL) algorithms, particularly convolutional neural networks (CNN), have become a power-
ful method in medical imaging diagnosis3,4. Because they are designed to learn spatial hierarchies of features 
through convolution layers, they are widely used in computer vision tasks such as image classification, object 
detection, and segmentation. Many studies dealt with identifying bone fractures of various areas of the body 
using medical images5–7. Recently, there have been numerous studies on the use of CNN-based algorithms to 
assist spinal disease diagnosis including vertebral fractures. Some studies proposed segmentation models for the 
vertebrae8–11. These studies utilized detection and segmentation models, and they approached VCF diagnosis as 
a two-step process of segmenting every vertebra and the evaluating each of them. Other studies applied CNN-
based models for classification of radiograph for diagnostic purposes12–15.

However, there have been very few studies dealing with the detection of vertebral fractures on X-rays due 
to several reasons. It is difficult to acquire a sufficient amount of radiographs of the spine for a specific fracture 
compared to other fractures of the body, because radiographs are not used for a final diagnosis. Moreover, the 
labeling process for each fracture on the radiograph is very labor-intensive and challenging, because even experts 
should match each radiograph with CT or MRI results to find the ground truth. Existing studies regarding the 
diagnosis of vertebral fractures with DL algorithms are mostly focused on the classification of the medical image 
or the segmentation of each vertebra. It can be observed that most of the existing works have focused on the 
classification of each medical image, or considered a two-step process of evaluating fractures after segmenting 
every spine. In this study, (1) we constructed a high-quality dataset of VCFs of L1-T11 vertebra on lateral spinal 
X-rays, which were annotated based on the MRI results; (2) subsequently, we proposed a pipeline of training 
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and optimizing a highly accurate Mask R-CNN model to directly locate and classify the fracture and compared 
it with other popular CNN-based models; (3) and finally, we showed the feasibility of developing a generalized 
deep learning based diagnosis tool and widened the possibility of real-world use of the model to assist doctors 
in detection VCFs.

Materials and methods
Data source and preprocessing
The dataset used in this study was obtained as lateral thoracolumbar radiographs of patients from Ansan Hos-
pital, the University of Korea. The collected dataset contained 487 radiographs with fractures, and 141 normal 
radiographs. Only X-rays confirmed as compression fractures based on MRI results were collected and labeled. 
The X-ray was de-identified before being used, so that each patient’s personal information was removed according 
to the ethical guidelines. Overall, 598 segmentation masks of marked fractures were extracted from 487 lateral 
thoracolumbar X-rays and used to train and test each model.

A total of six MRI-based class labels were defined and locations were marked during data preprocessing : L1 
, L2 , L3 , L4 , T11, T12 fractures. Two orthopedic experts labelled the location and the type of vertebra, using an 
open source labeling software ‘labelme’, version 5.0.2 (https://github.com/labelmeai/labelme)16. Each polygon 
mask included fracture information on fractures in the six classes (L1-T11), and coordinates of identified frac-
tures at each point of the polygon. Figure 1 shows an example of labeled data used in training. Multiple VCFs 
were identified in approximately 20% of the patients, and were also labeled as separate polygons.

Study settings
In this study, approximately 70% (346 radiographs) of the dataset were used to train the neural network, and 
approximately 15% each were allocated to validation (71 radiographs) and test data (70 radiographs). Train, 
validation, test data were split in a stratified manner to consider classwise distribution. Radiographs with no 
fractures were used only in the test phase. We used stochastic gradient descent considering momentum as the 
optimization method. The learning rate was set to decrease with a weight decay of 0.0001 and a momentum 
of 0.9. We used transfer learning17 to enhance model performance. Each model was trained starting from the 
pretrained weights of the COCO instance segmentation dataset18. Augmentation of horizontal flip and random 
rotation of 10 degrees were applied. The summary of our VCF dataset is listed in Table 1.

Mask R‑CNN
Mask R-CNN is an instance segmentation model based on the Faster R-CNN model19. Mask R-CNN20 introduced 
the segmentation branch, which is composed of four convolutions, one deconvolution, and one convolution to 
process instance segmentation. Moreover, ROI Align was introduced to fix the information loss of ROI pooling 
due to the misalignment of feature maps and ROIs (Region of Interest), and significantly improved the segmenta-
tion accuracy. The backbone of Mask R-CNN is ResNet21 and Feature Pyramid Networks (FPN)22. The backbone 
used residual learning to precisely extract object features, and a feature pyramid to fuse multi-scale features to 
construct high-quality feature maps. Subsequently, ROIs were extracted from the feature maps using region 
proposal networks (region proposal networks). The ROIs were then aligned and pooled by ROI Align. After 
the pooling layer, the model predicted segmentation masks using fully convolution networks. The structure of 

Figure 1.   Example of labeled data. Each fracture is labeled with a polygon on the thoracolumbar radiograph 
based on the MRI results. Each polygon mask contains the x and y coordinates of the polygon mask surrounding 
it. Each bounding box consists of upper left x, y coordinates, width, and height. The entire labeling process was 
conducted by two trained orthopedic experts.
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Mask R-CNN is shown in Fig. 2. Mask R-CNN has several applications in instance segmentation. Mask R-CNN 
incorporated the structure of previous RCNN models and improved them to make a faster, more accurate, and 
more effective instance segmentation model.

Backbone network
The backbone network was used to extract features from the input radiograph. We implemented ResNet101 
with FPN as the backbone network to extract reliable feature maps. In the bottom-up pathway, ResNet extracts 
low-level features such as corners and edges of the object, while deeper layers extract high-level features such as 
texture and color. Then in the top-down pathway, FPN was used to concatenate feature maps of different scales 
to better represent objects. The feature maps were used in the RPN and ROI Align to generate candidate region 
proposals for detection. The structure of the backbone network is shown in Fig. 3.

Region proposal network and ROI align
The RPN generates ROIs using the feature map inputs from the backbone network. A 3 x 3 convolutional layer 
was used to scan the image using a sliding window to generate anchors for different scaled bounding boxes. 
Binary classification was performed to determine whether each anchor contained the object or represented a 
background. The structure of the RPN is shown in Fig. 3. The bounding box regression generated samples and 
calculated the intersection over union (IoU) value. If the sample had IoU higher than 0.7, it was defined as a 
positive sample, otherwise a negative sample. Non-maximum suppression (NMS) was applied to keep regions 
with the highest confidence score. The feature maps from the backbone network and ROIs from RPN were passed 
to ROI Align for pooling. ROI Align was performed next stage to obtain fixed size feature vectors and feature 
maps. ROI Align is a method proposed to avoid misalignment issues identified in the ROI pooling layer, which 
rounds the locations of the ROIs on the feature map. A bilinear interpolation operation was performed on the 
sample points in each grid cell before pooling.

Table 1.   Summary of VCF dataset.

VCF findings Total Train Valid Test # of fractures

T11 18 10 4 4 30

T12 111 79 16 16 152

L1 138 100 19 19 188

L2 76 57 10 9 113

L3 43 31 6 6 73

L4 18 10 4 4 41

Multi fractures 83 59 12 12 –

No fracture 141 – – 141 0

Sum 628 346 71 241 598

Figure 2.   Mask R-CNN model architecture.
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Mask prediction
The feature vector output from the previous stage was used to calculate the class probabilities of each ROIs 
for classification, and to train bounding box regressors to refine the location and size of the bounding box to 
accurately include each object. The mask branch predicted binary masks for each ROI classwise using fully 
convolutional network (FCN). 

Evaluation metrics
True and False positives were defined by the value of the IoU. IoU was calculated by dividing the overlap between 
the predicted area and the ground truth area by the union of these. If the IoU of the predicted and actual regions 
exceeded a certain threshold, the detector’s prediction was determined to be correct, and it was defined as True 
Positive (TP). On the contrary, if the IoU value was less than the threshold, the result was defined as False Posi-
tive (FP). When the detector failed to predict any fracture, it was defined as False Negative (FN). Specificity was 
calculated using the dataset containing no fractures. We defined True Negative (TN) when the detector did not 
predict any fractures from normal radiographs, and false detection as False Positive (FP). We calculated sensitiv-
ity, specificity, accuracy, and F1-score with the defined confusion matrix.Sensitivity is calculated with Eq. (1), 
specificity with Eq. (2), accuracy with Eq. (3), and F1-score with Eq. (4)

The cumulative value was determined by listing the detected regions in order of confidence score. As the 
regions were listed, we calculated a precision-recall curve with the accumulated values and computed the AP 
from the area below. Mean average precision (mAP) was calculated as the average AP score of each class and 
evaluated as an overall evaluation metric among each DL models. AP scores were computed with Eq. (5).

(1)Sensitivity =
TP

TP + FN

(2)Specificity =
TN

FP + TN

(3)Accuracy =
TP + TN

TP + FP + TN + FN

(4)F1− score = 2 ∗
Precision× Recall

Precision+ Recall

(5)AP =
1

6

∑

confidence

Precision(Recall)

Figure 3.   Backbone network and region proposal network. (a) Backbone network is shown. Feature maps 
from ResNet are upsampled and resized with 1 x 1 convolution to be concatenated with different scaled feature 
maps. (b) The region proposal network generates candidate regions for objects by sliding-window, referred to as 
anchor box on feature maps. Each anchor box performs both classification and bounding box adjustments.
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Ethical approval and consent to participants
This study was conducted according to the Helsinki declaration. This study was approved by the Institutional 
Review Boards of Korea University Ansan Hospital, and was conducted in accordance with the approved study 
protocol (IRB No. 2022AS0198). Due to the retrospective nature of this study, informed consent was waived by 
Korea University Ansan Hospital Institutional Review Board and Ethical Committee.

Results
We compared the outcomes of Mask R-CNN models with Cascade Mask R-CNN23, YOLOACT​24, and YOLOv525 
models in terms of diagnostic accuracy and detection performance. The diagnostic performance of models were 
compared in Table 2. Mask R-CNN model and YOLOv5-m showed the highest sensitivity of 79.8% and 78.7%, 
among the four models. Models with high sensitivity did not miss identifying patients with fractures. The Mask 
R-CNN model and the Cascade Mask R-CNN model had the highest specificity of 89.4% and 90.0%, respectively. 
However, considering that the Cascade R-CNN model had the lowest sensitivity, this model had a strong tendency 
to predict that there was no fracture. This indicates that the Mask R-CNN model was able to learn features of each 
vertebra without fracture through negative samples, which were determined as background from RPN. Mask 
R-CNN and YOLOv5-m model showed higher F1-score of 82.6 and 83.5 than other models, which meant they 
more likely classified X-ray images that contained fractures. The Mask R-CNN showed the highest accuracy of 
85.7% and provided the best diagnosis among all models.

The detection performance of models were compared in Table 3. The AP score was computed when the IoU 
threshold was set to 0.5, and mAP was calculated as the classwise average AP scores. The Mask R-CNN model 
and the YOLOv5-x model showed the highest mAP of 0.58 compared to others. However, there were differ-
ences in detection performance by category, as there was a class imbalance in the collected dataset. For T12, 
L1, and L2 fractures, of which more than 100 fractures were collected, all models except Cascade Mask R-CNN 
achieved a mAP higher than 0.7 and showed great detection performance. In contrast, AP scores for T11 and 
L4 fractures were low for every model, for which a relatively small amount of data was collected. Mask R-CNN 
model achieved AP score of 0.78, 0.80, and 0.79 for each fractures. The YOLOv5 model with a higher number of 
model parameters and size showed a higher AP score, as the YOLOv5-x and YOLOv5-l models showed better 
performance than the YOLOv5-s and YOLOv5-m models.

Model prediction is shown in Fig. 4. Compared with the ground truth, all the models predicted fractures close 
to the actual area. Compared to other models, the Mask R-CNN model did not miss any fractures and performed 
better. Multiple fractures were detected as well. YOLOACT and YOLOv5 models predicted more fracture area 
as multiple fractures even when only one fracture existed.

Discussion
Many people are diagnosed with VCFs every day. The plain radiograph of the spinal region is the initial diagnostic 
method because they are quick and require low-cost compared with other diagnostic modalities2. Research on 
applying DL algorithms to the field of medical image diagnostics is actively being studied and showing good 
performance4. These works can lead to assisting medical experts by reducing the time required in diagnosis and 
increase accuracy, ultimately improving patient care. However, there is not much research on detecting VCFs 
by applying DL algorithms for several reasons. Despite the advantages radiograph have in diagnosis of VCFs, 
it is difficult to construct a large dataset of radiographs of VCFs, because radiographs are not used for a final 

Table 2.   Comparison of detection performances.

Model TP FP TN FN Sensitivity (%) Specificity (%) Accuracy (%) F1-score

Mask R-CNN 71 15 126 18 79.8 89.4 85.7 82.6

Cascade R-CNN 59 14 127 30 66.3 90.0 80.8 70.7

YOLOACT​ 60 32 109 29 67.4 77.3 73.4 70.6

YOLOv5-l 64 31 110 25 71.9 78.0 75.7 79.5

YOLOv5-m 70 26 115 19 78.7 81.6 80.4 83.5

Table 3.   Comparison of segmentation AP.

Models/fractures L1 L2 L3 L4 T11 T12 Overall mAP

Mask R-CNN 0.80 0.79 0.66 0.32 0.10 0.78 0.58

Cascade mask R-CNN 0.63 0.58 0.33 0.24 0.07 0.52 0.40

YOLOACT​ 0.70 0.66 0.67 0.30 0.22 0.67 0.54

YOLOv5-s 0.72 0.78 0.72 0.24 0.09 0.68 0.54

YOLOv5-m 0.73 0.77 0.67 0.25 0.02 0.68 0.52

YOLOv5-l 0.78 0.82 0.69 0.13 0.07 0.75 0.54

YOLOv5-x 0.78 0.83 0.78 0.54 0.12 0.72 0.58



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16308  | https://doi.org/10.1038/s41598-024-67017-6

www.nature.com/scientificreports/

diagnosis. Also, labeling ground truth on each radiograph is very hard and labor-intensive because MRI findings 
must be referenced. Thus, previous studies have classified vertebral radiographs or performed segmentation of 
each vertebra and classified each bone by a two-step process.

From this perspective, this study shows interesting results. We created a VCF dataset labeled based on the MRI 
findings and trained segmentation deep learning models to diagnose and segment each fracture area. In terms 
of diagnose, Mask R-CNN and YOLOv5-m model achieved sensitivity of nearly 80%, and F1-score of over 80% 
(Table 2). For classes which were easier to collect such as L1, L2, T12 most segmentation models achieved an 

Figure 4.   Examples of prediction results of each model. From left to right, actual spine lateral radiograph, 
ground-truth (expert-labeled fracture masks), and prediction from each model are shown.
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AP score of over 0.7, indicating that they were able to accurately locate fracture regions pixel-wise (Table 3). The 
results showed that these models were able to successfully distinguish VCFs of patients, highlighting the poten-
tial to assist physicians in real-life (Fig. 4). However, there were some limitations in our study. First, the overall 
performance of the models was not sufficiently high. The most explainable reason for this is the small amount of 
data on certain classes such as T11, L3, L4 fractures. Also, we only targeted fractures of the thoracolumbar area 
from L1 to T12, which makes partial diagnose of VCFs. Nevertheless, our study showed and proposed a pipeline 
for directly locating and classifying fracture by utilizing deep learning segmentation model, Mask R-CNN. In 
the future, we plan to collect more lateral radiographs and train a model that targets all areas of vertebral body.

The aim of the study was to develop a model that could efficiently detect vertebral compression fractures of the 
thoracolumbar region in lateral radiographs. We constructed an MRI-based labeled VCF dataset. Subsequently, 
we trained and optimized DL based instance segmentation model Mask R-CNN. We compared detection and 
diagnosis performance results with those of other popular segmentation models, and showed that Mask R-CNN 
was the most appropriate model for detecting VCFs. Deep learning based VCF detection model can reduce 
time and cost spent on inspection of radiographs manually. If this model is used to assist doctors with the initial 
diagnosis of VCFs, faster diagnosis is possible and patients’ treatment periods can be shortened.

 Data availability
Researchers may send reasonable requests for access to the datasets used in this study to the corresponding 
author.

Received: 28 November 2023; Accepted: 8 July 2024

References
	 1.	 Alexandru, D. & So, W. Evaluation and management of vertebral compression fractures. Perm. J. 16, 46 (2012).
	 2.	 Joshi, D. & Singh, T. P. A survey of fracture detection techniques in bone x-ray images. Artif. Intell. Rev. 53, 4475–4517 (2020).
	 3.	 Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017).
	 4.	 Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).
	 5.	 Wang, Y.-N. et al. A deep-learning model for diagnosing fresh vertebral fractures on magnetic resonance images. World Neurosurg. 

183, e818–e824 (2024).
	 6.	 Hardalaç, F. et al. Fracture detection in wrist x-ray images using deep learning-based object detection models. Sensors 22, 1285 

(2022).
	 7.	 Uysal, F., Hardalaç, F., Peker, O., Tolunay, T. & Tokgöz, N. Classification of shoulder x-ray images with deep learning ensemble 

models. Appl. Sci. 11, 2723 (2021).
	 8.	 Cheng, L.-W. et al. Automated detection of vertebral fractures from x-ray images: A novel machine learning model and survey of 

the field. Neurocomputing 566, 126946 (2023).
	 9.	 Konya, S. et al. Convolutional neural network-based automated segmentation and labeling of the lumbar spine x-ray. J. Cranio-

vertebr. Junct. Spine 12, 136 (2021).
	10.	 Kim, K. C., Cho, H. C., Jang, T. J., Choi, J. M. & Seo, J. K. Automatic detection and segmentation of lumbar vertebrae from x-ray 

images for compression fracture evaluation. Comput. Methods Progr. Biomed. 200, 105833 (2021).
	11.	 Seo, J. W. et al. A deep learning algorithm for automated measurement of vertebral body compression from x-ray images. Sci. Rep. 

11, 13732 (2021).
	12.	 Yeh, L.-R. et al. A deep learning-based method for the diagnosis of vertebral fractures on spine MRI: Retrospective training and 

validation of resnet. Eur. Spine J. 31, 2022–2030 (2022).
	13.	 Hong, N. et al. Deep-learning-based detection of vertebral fracture and osteoporosis using lateral spine x-ray radiography. J. Bone 

Miner. Res.https://​doi.​org/​10.​1002/​jbmr.​4814 (2023).
	14.	 Chen, W. et al. A deep-learning model for identifying fresh vertebral compression fractures on digital radiography. Eur. Radiol. 

32, 1–10 (2022).
	15.	 Murata, K. et al. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Sci. Rep. 10, 20031 (2020).
	16.	 Russell, B. C., Torralba, A., Murphy, K. P. & Freeman, W. T. Labelme: A database and web-based tool for image annotation. Int. J. 

Comput. Vis. 77, 157–173 (2008).
	17.	 Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2009).
	18.	 Lin, T. et al. Microsoft COCO: common objects in context. CoRR https://arXiv.org/abs/1405.0312 (2014).
	19.	 Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural 

Inf. Process. Syst. 28, 1–14 (2015).
	20.	 He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. In Proc. of the IEEE International Conference on Computer Vision, 

2961–2969 (2017).
	21.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. of the IEEE Conference on Computer 

Vision and Pattern Recognition, 770–778 (2016).
	22.	 Lin, T.-Y. et al. Feature pyramid networks for object detection. In Proc. of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2117–2125 (2017).
	23.	 Cai, Z. & Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proc. of the IEEE Conference on Computer 

Vision and Pattern Recognition, 6154–6162 (2018).
	24.	 Bolya, D., Zhou, C., Xiao, F. & Lee, Y.J. Yolact: Real-time instance segmentation. In Proc. of the IEEE/CVF International Conference 

on Computer Vision, 9157–9166 (2019).
	25.	 Jocher, G. Ultralytics yolov5, https://​doi.​org/​10.​5281/​zenodo.​39085​59 (2020).

Author contributions
S.Y.P and J.W.P. equally contributed to this manuscript as co-first authors. J.Y.H., S.Y.P., and S.W.H. conceptual-
ized the study. J.W.P. and J.Y.H. curated datasets. Investigations were performed by S.Y.P. and J.W.P. The meth-
odology was devised and reviewed by S.Y.P. and S.W.H. Project administration and resource management were 
by H.J.Y., and S.W.H. The software was managed by S.Y.P. Supervision and validation were performed by J.Y.H. 
and S.W.H. Visualization and original draft writing were done by S.Y.P. Manuscript review was done by J.Y.H., 
J.W.P., and S.W.H. All authors have read and approved the manuscript.

https://doi.org/10.1002/jbmr.4814
https://doi.org/10.5281/zenodo.3908559


8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16308  | https://doi.org/10.1038/s41598-024-67017-6

www.nature.com/scientificreports/

Funding
This study was conducted with academic support from the Korea Medical Institute (2022) and the National 
Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2017R1C1B1004010 
and NRF-2021R1F1A1045396). This research was supported by Brain Korea 21 FOUR funded by the Ministry 
of Education of Korea and National Research Foundation of Korea. This research was also supported by Korea 
University Grant (K2403371). The corresponding author is responsible for submitting a competing interests 
statement on behalf of all authors of the paper. This statement must be included in the submitted article file.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.W.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning application of vertebral compression fracture detection using mask R-CNN
	Materials and methods
	Data source and preprocessing
	Study settings
	Mask R-CNN
	Backbone network
	Region proposal network and ROI align
	Mask prediction

	Evaluation metrics
	Ethical approval and consent to participants

	Results
	Discussion
	References


