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Deep learning application
of vertebral compression fracture
detection using mask R-CNN

Seungyoon Paik?, Jiwon Park?, Jae Young Hong? & Sung Won Han**

Vertebral compression fractures (VCFs) of the thoracolumbar spine are commonly caused by
osteoporosis or result from traumatic events. Early diagnosis of vertebral compression fractures can
prevent further damage to patients. When assessing these fractures, plain radiographs are used as
the primary diagnostic modality. In this study, we developed a deep learning based fracture detection
model that could be used as a tool for primary care in the orthopedic department. We constructed a
VCF dataset using 487 lateral radiographs, which included 598 fractures in the L1-T11 vertebra. For
detecting VCFs, Mask R-CNN model was trained and optimized, and was compared to three other
popular models on instance segmentation, Cascade Mask R-CNN, YOLOACT, and YOLOv5. With

Mask R-CNN we achieved highest mean average precision score of 0.58, and were able to locate each
fracture pixel-wise. In addition, the model showed high overall sensitivity, specificity, and accuracy,
indicating that it detected fractures accurately and without misdiagnosis. Our model can be a
potential tool for detecting VCFs from a simple radiograph and assisting doctors in making appropriate
decisions in initial diagnosis.

Vertebral compression fractures (VCFs) are breaks or cracks in the vertebrae, which can cause the spine to
weaken or collapse. VCFs affect approximately 1 to 1.5 million people annually in the United States'. Although
some VCFs are caused by trauma or tumors, they are more common in the elderly and women with osteoporo-
sis. Most VCFs occur in the thoracic and lumbar vertebrae, or at the thoracolumbar junction. In the diagnosis
of VCFs, plain radiographs are the initial diagnostic modality. When neurological disorder is suspected, other
more complex modalities such as computed tomography (CT), magnetic resonance imaging (MRI) are ordered.
Identifying fractures in bone images is a time-consuming and labor-intensive process, that requires manual
inspection by a highly trained radiologist or an orthopedic?. Inexperience of the clinician or fatigue caused by
excessive workloads of physicians can lead to an inaccurate diagnosis, which can be fatal to patients.

Deep learning (DL) algorithms, particularly convolutional neural networks (CNN), have become a power-
ful method in medical imaging diagnosis®*. Because they are designed to learn spatial hierarchies of features
through convolution layers, they are widely used in computer vision tasks such as image classification, object
detection, and segmentation. Many studies dealt with identifying bone fractures of various areas of the body
using medical images>”’. Recently, there have been numerous studies on the use of CNN-based algorithms to
assist spinal disease diagnosis including vertebral fractures. Some studies proposed segmentation models for the
vertebrae®!1. These studies utilized detection and segmentation models, and they approached VCF diagnosis as
a two-step process of segmenting every vertebra and the evaluating each of them. Other studies applied CNN-
based models for classification of radiograph for diagnostic purposes'?~'°.

However, there have been very few studies dealing with the detection of vertebral fractures on X-rays due
to several reasons. It is difficult to acquire a sufficient amount of radiographs of the spine for a specific fracture
compared to other fractures of the body, because radiographs are not used for a final diagnosis. Moreover, the
labeling process for each fracture on the radiograph is very labor-intensive and challenging, because even experts
should match each radiograph with CT or MRI results to find the ground truth. Existing studies regarding the
diagnosis of vertebral fractures with DL algorithms are mostly focused on the classification of the medical image
or the segmentation of each vertebra. It can be observed that most of the existing works have focused on the
classification of each medical image, or considered a two-step process of evaluating fractures after segmenting
every spine. In this study, (1) we constructed a high-quality dataset of VCFs of L1-T11 vertebra on lateral spinal
X-rays, which were annotated based on the MRI results; (2) subsequently, we proposed a pipeline of training
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and optimizing a highly accurate Mask R-CNN model to directly locate and classify the fracture and compared
it with other popular CNN-based models; (3) and finally, we showed the feasibility of developing a generalized
deep learning based diagnosis tool and widened the possibility of real-world use of the model to assist doctors
in detection VCFs.

Materials and methods

Data source and preprocessing

The dataset used in this study was obtained as lateral thoracolumbar radiographs of patients from Ansan Hos-
pital, the University of Korea. The collected dataset contained 487 radiographs with fractures, and 141 normal
radiographs. Only X-rays confirmed as compression fractures based on MRI results were collected and labeled.
The X-ray was de-identified before being used, so that each patient’s personal information was removed according
to the ethical guidelines. Overall, 598 segmentation masks of marked fractures were extracted from 487 lateral
thoracolumbar X-rays and used to train and test each model.

A total of six MRI-based class labels were defined and locations were marked during data preprocessing : L1
,L2,13,1L4,TI11, T12 fractures. Two orthopedic experts labelled the location and the type of vertebra, using an
open source labeling software ‘labelme, version 5.0.2 (https://github.com/labelmeai/labelme)'®. Each polygon
mask included fracture information on fractures in the six classes (L1-T11), and coordinates of identified frac-
tures at each point of the polygon. Figure 1 shows an example of labeled data used in training. Multiple VCFs
were identified in approximately 20% of the patients, and were also labeled as separate polygons.

Study settings

In this study, approximately 70% (346 radiographs) of the dataset were used to train the neural network, and
approximately 15% each were allocated to validation (71 radiographs) and test data (70 radiographs). Train,
validation, test data were split in a stratified manner to consider classwise distribution. Radiographs with no
fractures were used only in the test phase. We used stochastic gradient descent considering momentum as the
optimization method. The learning rate was set to decrease with a weight decay of 0.0001 and a momentum
of 0.9. We used transfer learning!” to enhance model performance. Each model was trained starting from the
pretrained weights of the COCO instance segmentation dataset'®. Augmentation of horizontal flip and random
rotation of 10 degrees were applied. The summary of our VCF dataset is listed in Table 1.

Mask R-CNN

Mask R-CNN is an instance segmentation model based on the Faster R-CNN model". Mask R-CNN? introduced
the segmentation branch, which is composed of four convolutions, one deconvolution, and one convolution to
process instance segmentation. Moreover, ROI Align was introduced to fix the information loss of ROI pooling
due to the misalignment of feature maps and ROIs (Region of Interest), and significantly improved the segmenta-
tion accuracy. The backbone of Mask R-CNN is ResNet?! and Feature Pyramid Networks (FPN)?2. The backbone
used residual learning to precisely extract object features, and a feature pyramid to fuse multi-scale features to
construct high-quality feature maps. Subsequently, ROIs were extracted from the feature maps using region
proposal networks (region proposal networks). The ROIs were then aligned and pooled by ROI Align. After
the pooling layer, the model predicted segmentation masks using fully convolution networks. The structure of

<Example of Labeled Data>

X-ray image

Labeled Mask Annotation Information

Label Bounding Box Mask Coordinates
(x,y, h, w) ((x1,y1), (x2,y2), ... ,)

T12 | (610.8,799.1,51.8,40.1) | ((610.8,796.0),(615.1,859.2),..., (642.7,809.1))

L1 (610.2, 625.4, 53.0, 40.2) | ((604.3,625.4),(617.6,641.16),...,(683.4,643.8)

Figure 1. Example of labeled data. Each fracture is labeled with a polygon on the thoracolumbar radiograph
based on the MRI results. Each polygon mask contains the x and y coordinates of the polygon mask surrounding
it. Each bounding box consists of upper left x, y coordinates, width, and height. The entire labeling process was
conducted by two trained orthopedic experts.
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VCEF findings Total | Train | Valid | Test | # of fractures
T11 18 10 4 4 30

T12 111 79 16 16 152

L1 138 100 19 19 188

L2 76 57 10 9 113

L3 43 31 6 6 73

L4 18 10 4 4 41

Multi fractures | 83 59 12 12 -

No fracture 141 - - 141 |0

Sum 628 346 71 241 598

Table 1. Summary of VCF dataset.

Mask R-CNN is shown in Fig. 2. Mask R-CNN has several applications in instance segmentation. Mask R-CNN
incorporated the structure of previous RCNN models and improved them to make a faster, more accurate, and
more effective instance segmentation model.

Backbone network

The backbone network was used to extract features from the input radiograph. We implemented ResNet101
with FPN as the backbone network to extract reliable feature maps. In the bottom-up pathway, ResNet extracts
low-level features such as corners and edges of the object, while deeper layers extract high-level features such as
texture and color. Then in the top-down pathway, FPN was used to concatenate feature maps of different scales
to better represent objects. The feature maps were used in the RPN and ROI Align to generate candidate region
proposals for detection. The structure of the backbone network is shown in Fig. 3.

Region proposal network and ROI align

The RPN generates ROIs using the feature map inputs from the backbone network. A 3 x 3 convolutional layer
was used to scan the image using a sliding window to generate anchors for different scaled bounding boxes.
Binary classification was performed to determine whether each anchor contained the object or represented a
background. The structure of the RPN is shown in Fig. 3. The bounding box regression generated samples and
calculated the intersection over union (IoU) value. If the sample had IoU higher than 0.7, it was defined as a
positive sample, otherwise a negative sample. Non-maximum suppression (NMS) was applied to keep regions
with the highest confidence score. The feature maps from the backbone network and ROIs from RPN were passed
to ROI Align for pooling. ROI Align was performed next stage to obtain fixed size feature vectors and feature
maps. ROI Align is a method proposed to avoid misalignment issues identified in the ROI pooling layer, which
rounds the locations of the ROIs on the feature map. A bilinear interpolation operation was performed on the
sample points in each grid cell before pooling.

Region Proposal

Network
A
p
Fully Connected
Layers \
Box
g — |
—
Backbone Feature
Maps
Fully
Convolutional
Network
Lateral Spine Radiograph ROl align Output Mask

Figure 2. Mask R-CNN model architecture.
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Figure 3. Backbone network and region proposal network. (a) Backbone network is shown. Feature maps
from ResNet are upsampled and resized with 1 x 1 convolution to be concatenated with different scaled feature
maps. (b) The region proposal network generates candidate regions for objects by sliding-window, referred to as
anchor box on feature maps. Each anchor box performs both classification and bounding box adjustments.

Mask prediction

The feature vector output from the previous stage was used to calculate the class probabilities of each ROIs
for classification, and to train bounding box regressors to refine the location and size of the bounding box to
accurately include each object. The mask branch predicted binary masks for each ROI classwise using fully
convolutional network (FCN).

Evaluation metrics

True and False positives were defined by the value of the IoU. IoU was calculated by dividing the overlap between
the predicted area and the ground truth area by the union of these. If the IoU of the predicted and actual regions
exceeded a certain threshold, the detector’s prediction was determined to be correct, and it was defined as True
Positive (TP). On the contrary, if the IoU value was less than the threshold, the result was defined as False Posi-
tive (FP). When the detector failed to predict any fracture, it was defined as False Negative (FN). Specificity was
calculated using the dataset containing no fractures. We defined True Negative (TN) when the detector did not
predict any fractures from normal radiographs, and false detection as False Positive (FP). We calculated sensitiv-
ity, specificity, accuracy, and F1-score with the defined confusion matrix.Sensitivity is calculated with Eq. (1),
specificity with Eq. (2), accuracy with Eq. (3), and F1-score with Eq. (4)

The cumulative value was determined by listing the detected regions in order of confidence score. As the
regions were listed, we calculated a precision-recall curve with the accumulated values and computed the AP
from the area below. Mean average precision (mAP) was calculated as the average AP score of each class and
evaluated as an overall evaluation metric among each DL models. AP scores were computed with Eq. (5).

Sensitivity = TP 1
ensitivity = TP+ N (1)
Specificit il 2
ecificity = ———
Pecley = Fp yIN @
TP+ TN
Accuracy = (3)

TP + FP + TN + FN

Precision x Recall
Fl—score=2% ————————— (4)
Precision + Recall

1 .
AP = 6 Z Precision(Recall) (5)
confidence
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Ethical approval and consent to participants

This study was conducted according to the Helsinki declaration. This study was approved by the Institutional
Review Boards of Korea University Ansan Hospital, and was conducted in accordance with the approved study
protocol (IRB No. 2022AS0198). Due to the retrospective nature of this study, informed consent was waived by
Korea University Ansan Hospital Institutional Review Board and Ethical Committee.

Results

We compared the outcomes of Mask R-CNN models with Cascade Mask R-CNN*, YOLOACT?, and YOLOv5%
models in terms of diagnostic accuracy and detection performance. The diagnostic performance of models were
compared in Table 2. Mask R-CNN model and YOLOv5-m showed the highest sensitivity of 79.8% and 78.7%,
among the four models. Models with high sensitivity did not miss identifying patients with fractures. The Mask
R-CNN model and the Cascade Mask R-CNN model had the highest specificity of 89.4% and 90.0%, respectively.
However, considering that the Cascade R-CNN model had the lowest sensitivity, this model had a strong tendency
to predict that there was no fracture. This indicates that the Mask R-CNN model was able to learn features of each
vertebra without fracture through negative samples, which were determined as background from RPN. Mask
R-CNN and YOLOvV5-m model showed higher F1-score of 82.6 and 83.5 than other models, which meant they
more likely classified X-ray images that contained fractures. The Mask R-CNN showed the highest accuracy of
85.7% and provided the best diagnosis among all models.

The detection performance of models were compared in Table 3. The AP score was computed when the IoU
threshold was set to 0.5, and mAP was calculated as the classwise average AP scores. The Mask R-CNN model
and the YOLOv5-x model showed the highest mAP of 0.58 compared to others. However, there were differ-
ences in detection performance by category, as there was a class imbalance in the collected dataset. For T12,
L1, and L2 fractures, of which more than 100 fractures were collected, all models except Cascade Mask R-CNN
achieved a mAP higher than 0.7 and showed great detection performance. In contrast, AP scores for T11 and
L4 fractures were low for every model, for which a relatively small amount of data was collected. Mask R-CNN
model achieved AP score of 0.78, 0.80, and 0.79 for each fractures. The YOLOv5 model with a higher number of
model parameters and size showed a higher AP score, as the YOLOv5-x and YOLOv5-1 models showed better
performance than the YOLOvV5-s and YOLOv5-m models.

Model prediction is shown in Fig. 4. Compared with the ground truth, all the models predicted fractures close
to the actual area. Compared to other models, the Mask R-CNN model did not miss any fractures and performed
better. Multiple fractures were detected as well. YOLOACT and YOLOv5 models predicted more fracture area
as multiple fractures even when only one fracture existed.

Discussion

Many people are diagnosed with VCFs every day. The plain radiograph of the spinal region is the initial diagnostic
method because they are quick and require low-cost compared with other diagnostic modalities®. Research on
applying DL algorithms to the field of medical image diagnostics is actively being studied and showing good
performance?. These works can lead to assisting medical experts by reducing the time required in diagnosis and
increase accuracy, ultimately improving patient care. However, there is not much research on detecting VCFs
by applying DL algorithms for several reasons. Despite the advantages radiograph have in diagnosis of VCFs,
it is difficult to construct a large dataset of radiographs of VCFs, because radiographs are not used for a final

Model TP |FP | TN |FN | Sensitivity (%) | Specificity (%) | Accuracy (%) | Fl-score
Mask R-CNN 71 15 126 |18 79.8 89.4 85.7 82.6
Cascade R-CNN 59 14 127 |30 66.3 90.0 80.8 70.7
YOLOACT 60 |32 109 |29 67.4 77.3 73.4 70.6
YOLOV5-1 64 |31 110 |25 71.9 78.0 75.7 79.5
YOLOvV5-m 70 |26 |115 |19 78.7 81.6 80.4 83.5

Table 2. Comparison of detection performances.

Models/fractures L1 L2 L3 L4 T11 | T12 | Overall mAP
Mask R-CNN 0.80 |[0.79 |0.66 |0.32 |0.10 |0.78 |0.58
Cascade mask R-CNN 0.63 058 |0.33 |0.24 |0.07 |0.52 |0.40
YOLOACT 0.70 |0.66 |0.67 |0.30 |0.22 |0.67 |0.54
YOLOV5-s 072 1078 |0.72 |0.24 |0.09 |0.68 |0.54
YOLOvV5-m 0.73 10.77 |0.67 |0.25 |0.02 |0.68 |0.52
YOLOv5-1 0.78 1082 |0.69 |0.13 |0.07 |0.75 |0.54
YOLOvV5-x 0.78 1083 |0.78 |0.54 [0.12 |0.72 |0.58

Table 3. Comparison of segmentation AP.
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Figure 4. Examples of prediction results of each model. From left to right, actual spine lateral radiograph,
ground-truth (expert-labeled fracture masks), and prediction from each model are shown.

diagnosis. Also, labeling ground truth on each radiograph is very hard and labor-intensive because MRI findings
must be referenced. Thus, previous studies have classified vertebral radiographs or performed segmentation of
each vertebra and classified each bone by a two-step process.

From this perspective, this study shows interesting results. We created a VCF dataset labeled based on the MRI
findings and trained segmentation deep learning models to diagnose and segment each fracture area. In terms
of diagnose, Mask R-CNN and YOLOv5-m model achieved sensitivity of nearly 80%, and F1-score of over 80%
(Table 2). For classes which were easier to collect such as L1, L2, T12 most segmentation models achieved an
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AP score of over 0.7, indicating that they were able to accurately locate fracture regions pixel-wise (Table 3). The
results showed that these models were able to successfully distinguish VCFs of patients, highlighting the poten-
tial to assist physicians in real-life (Fig. 4). However, there were some limitations in our study. First, the overall
performance of the models was not sufficiently high. The most explainable reason for this is the small amount of
data on certain classes such as T11, L3, L4 fractures. Also, we only targeted fractures of the thoracolumbar area
from L1 to T12, which makes partial diagnose of VCFs. Nevertheless, our study showed and proposed a pipeline
for directly locating and classifying fracture by utilizing deep learning segmentation model, Mask R-CNN. In
the future, we plan to collect more lateral radiographs and train a model that targets all areas of vertebral body.

The aim of the study was to develop a model that could efficiently detect vertebral compression fractures of the
thoracolumbar region in lateral radiographs. We constructed an MRI-based labeled VCF dataset. Subsequently,
we trained and optimized DL based instance segmentation model Mask R-CNN. We compared detection and
diagnosis performance results with those of other popular segmentation models, and showed that Mask R-CNN
was the most appropriate model for detecting VCFs. Deep learning based VCF detection model can reduce
time and cost spent on inspection of radiographs manually. If this model is used to assist doctors with the initial
diagnosis of VCFs, faster diagnosis is possible and patients’ treatment periods can be shortened.

Data availability
Researchers may send reasonable requests for access to the datasets used in this study to the corresponding
author.

Received: 28 November 2023; Accepted: 8 July 2024
Published online: 15 July 2024

References
. Alexandru, D. & So, W. Evaluation and management of vertebral compression fractures. Perm. J. 16, 46 (2012).
. Joshi, D. & Singh, T. P. A survey of fracture detection techniques in bone x-ray images. Artif. Intell. Rev. 53, 4475-4517 (2020).
. Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221-248 (2017).
. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60-88 (2017).
. Wang, Y.-N. et al. A deep-learning model for diagnosing fresh vertebral fractures on magnetic resonance images. World Neurosurg.
183, e818-e824 (2024).
. Hardalag, F et al. Fracture detection in wrist x-ray images using deep learning-based object detection models. Sensors 22, 1285
(2022).
7. Uysal, F, Hardalag, F, Peker, O., Tolunay, T. & Tokgoz, N. Classification of shoulder x-ray images with deep learning ensemble
models. Appl. Sci. 11, 2723 (2021).
8. Cheng, L.-W. et al. Automated detection of vertebral fractures from x-ray images: A novel machine learning model and survey of
the field. Neurocomputing 566, 126946 (2023).
9. Konya, S. et al. Convolutional neural network-based automated segmentation and labeling of the lumbar spine x-ray. J. Cranio-
vertebr. Junct. Spine 12, 136 (2021).
10. Kim, K. C,, Cho, H. C,, Jang, T. J., Choi, J. M. & Seo, J. K. Automatic detection and segmentation of lumbar vertebrae from x-ray
images for compression fracture evaluation. Comput. Methods Progr. Biomed. 200, 105833 (2021).
11. Seo,]. W. et al. A deep learning algorithm for automated measurement of vertebral body compression from x-ray images. Sci. Rep.
11, 13732 (2021).
12. Yeh, L.-R. et al. A deep learning-based method for the diagnosis of vertebral fractures on spine MRI: Retrospective training and
validation of resnet. Eur. Spine J. 31, 2022-2030 (2022).
13. Hong, N. et al. Deep-learning-based detection of vertebral fracture and osteoporosis using lateral spine x-ray radiography. J. Bone
Miner. Res.https://doi.org/10.1002/jbmr.4814 (2023).
14. Chen, W. et al. A deep-learning model for identifying fresh vertebral compression fractures on digital radiography. Eur. Radiol.
32, 1-10 (2022).
15. Murata, K. et al. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Sci. Rep. 10, 20031 (2020).
16. Russell, B. C., Torralba, A., Murphy, K. P. & Freeman, W. T. Labelme: A database and web-based tool for image annotation. Int. J.
Comput. Vis. 77, 157-173 (2008).
17. Pan, S.J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345-1359 (2009).
18. Lin, T. et al. Microsoft COCO: common objects in context. CoRR https://arXiv.org/abs/1405.0312 (2014).
19. Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 28, 1-14 (2015).
20. He, K., Gkioxari, G., Dolldr, P. & Girshick, R. Mask r-cnn. In Proc. of the IEEE International Conference on Computer Vision,
2961-2969 (2017).
21. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 770-778 (2016).
22. Lin, T.-Y. et al. Feature pyramid networks for object detection. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, 2117-2125 (2017).
23. Cai, Z. & Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 6154-6162 (2018).
24. Bolya, D., Zhou, C., Xiao, F. & Lee, Y.J. Yolact: Real-time instance segmentation. In Proc. of the IEEE/CVF International Conference
on Computer Vision, 9157-9166 (2019).
25. Jocher, G. Ultralytics yolov5, https://doi.org/10.5281/zenodo.3908559 (2020).

G W N =

[=2}

Author contributions

S.Y.P and J.W.P. equally contributed to this manuscript as co-first authors. J.Y.H., S.Y.P, and S.W.H. conceptual-
ized the study. J.W.P. and J.Y.H. curated datasets. Investigations were performed by S.Y.P. and J.W.P. The meth-
odology was devised and reviewed by S.Y.P. and S.W.H. Project administration and resource management were
by H.J.Y,, and S.W.H. The software was managed by S.Y.P. Supervision and validation were performed by J.Y.H.
and S.W.H. Visualization and original draft writing were done by S.Y.P. Manuscript review was done by J.Y.H.,
JW.P, and S.W.H. All authors have read and approved the manuscript.

Scientific Reports |

(2024) 14:16308 | https://doi.org/10.1038/s41598-024-67017-6 nature portfolio


https://doi.org/10.1002/jbmr.4814
https://doi.org/10.5281/zenodo.3908559

www.nature.com/scientificreports/

Fundin

This studg was conducted with academic support from the Korea Medical Institute (2022) and the National
Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2017R1C1B1004010
and NRF-2021R1F1A1045396). This research was supported by Brain Korea 21 FOUR funded by the Ministry
of Education of Korea and National Research Foundation of Korea. This research was also supported by Korea
University Grant (K2403371). The corresponding author is responsible for submitting a competing interests
statement on behalf of all authors of the paper. This statement must be included in the submitted article file.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.W.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports |

(2024) 14:16308 | https://doi.org/10.1038/s41598-024-67017-6 nature portfolio


www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning application of vertebral compression fracture detection using mask R-CNN
	Materials and methods
	Data source and preprocessing
	Study settings
	Mask R-CNN
	Backbone network
	Region proposal network and ROI align
	Mask prediction

	Evaluation metrics
	Ethical approval and consent to participants

	Results
	Discussion
	References


