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Efficient segmentation 
of active and inactive 
plaques in FLAIR‑images 
using DeepLabV3Plus SE 
with efficientnetb0 backbone 
in multiple sclerosis
Mahsa Naeeni Davarani 1, Ali Arian Darestani 1, Virginia Guillen Cañas 2, Hossein Azimi 3, 
Sanaz Heydari Havadaragh 4, Hasan Hashemi 5 & Mohammd Hossein Harirchian 6*

This research paper introduces an efficient approach for the segmentation of active and inactive 
plaques within Fluid-attenuated inversion recovery (FLAIR) images, employing a convolutional neural 
network (CNN) model known as DeepLabV3Plus SE with the EfficientNetB0 backbone in Multiple 
sclerosis (MS), and demonstrates its superior performance compared to other CNN architectures. 
The study encompasses various critical components, including dataset pre-processing techniques, 
the utilization of the Squeeze and Excitation Network (SE-Block), and the atrous spatial separable 
pyramid Block to enhance segmentation capabilities. Detailed descriptions of pre-processing 
procedures, such as removing the cranial bone segment, image resizing, and normalization, are 
provided. This study analyzed a cross-sectional cohort of 100 MS patients with active brain plaques, 
examining 5000 MRI slices. After filtering, 1500 slices were utilized for labeling and deep learning. 
The training process adopts the dice coefficient as the loss function and utilizes Adam optimization. 
The study evaluated the model’s performance using multiple metrics, including intersection over 
union (IOU), Dice Score, Precision, Recall, and F1-Score, and offers a comparative analysis with other 
CNN architectures. Results demonstrate the superior segmentation ability of the proposed model, as 
evidenced by an IOU of 69.87, Dice Score of 76.24, Precision of 88.89, Recall of 73.52, and F1-Score of 
80.47 for the DeepLabV3+SE_EfficientNetB0 model. This research contributes to the advancement of 
plaque segmentation in FLAIR images and offers a compelling approach with substantial potential for 
medical image analysis and diagnosis.

Various neurological disorders such as Multiple Sclerosis (MS), a complex autoimmune condition, are related 
to chronic inflammatory processes that result in demyelination of the nervous system1. For diagnostic and 
therapeutic management of MS, the number and volume of lesions cannot be measured using any other means2. 
Magnetic resonance imaging (MRI) is essential to characterise and quantify lesions3. Fluid-attenuated inversion 
recovery (FLAIR) and T1-weighted (T1-w) MRI techniques are currently used to diagnose MS4. Because MS 
lesions vary in location, size and shape, as well as anatomical variation between patients, MRI images of MS 
lesions can be extremely difficult to identify5. This highlights the need for more advanced diagnostic tools, such 
as deep learning, to accurately diagnose MS lesions.
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Not every lesion seen on MRI is active6. Patients should be identified for treatment when enhancing lesions 
are considered active7. For this reason, Gadolinium (Gd)-based contrast agents (GBCAs) are routinely admin-
istered to MS patients during an MRI scan, as part of patient management8. There is a correlation between the 
presence of Gd-enhancing lesions and the occurrence of clinical relapses in MS9 which suggests that the number 
or volume of lesions may be an important measure of treatment efficacy10.

In the context of MS, MRIs have been shown to help predict future lesion activity, defined as the presence 
of new or enlarged T2-lesions in future images, using a Bag-of-Lesions brain representation, and to identify 
potential treatment responders based on carefully designed image features11. There has also been some success in 
predicting the conversion to Clinically Definite MS (CDMS) using support vector machines (SVM) on radiomic 
lesion features11 and using a CNN on lesion masks12. Injection of GBCAs is essential for the management of MS8. 
Repeated injections raise concerns regarding the patients’ health13.

MS patients’ Gadolinium lesions often increase, which is an indicator of disease activity14. The presence of 
contrast agent (CA) uptake indicates an early stage of inflammation and a disruption of the blood–brain barrier 
(BBB) in the body, allowing us to detect diseases that are in their early stages using Gd-enhanced T1w MRI15.

To enhance the contrast between tissues during MRI, GBCAs are used. The atomic structure of this type of 
substance is determined by whether it is ionic or non-ionic, or by its molecular structure. GBCAs are considered 
less prone to immediate hypersensitivity (IHS) reactions than iodinated contrast media (ICM)16.

Despite the high efficacy along with potential side effects, other alternatives for GBCAs should be considered. 
In the studies conducted by CA, Gadolinium was consistently shown to be retained in the bones after GBCA 
administration17–20. Gadolinium chelated in the form of gadopentetate, gadoterate, or gadodiamide has dem-
onstrated some early evidence of bone retention in mice and rats21. Gadolinium is believed to retain more in 
bone than other tissues because it functions as a deep container or reservoir for the chemical22. The compound 
is gradually released due to osteoblast integration into the bone matrix over time23,24.

Histological examination reveals that rats given 80 human equivalent doses of gadodiamide developed ulcera-
tions and fibrosis, collagen deposition, a decrease in extracellular space, dermal thickening, and an increase in 
cellularity25.

Investigating the potential of deep learning in predicting amplified lesions without injection of GBCA of MS 
lesions from MRI images is essential for the clinical evaluation and treatment planning of MS26. In this study, 
we do not focus on the interpretation of images, but rather on the extraction of intrinsic information from the 
MRI dataset. We investigate the potential of deep learning in predicting the activity of MS lesions without the 
use of GBCA.

Over the past decade, extensive research has been conducted in the field of cognitive rehabilitation through 
computer programming and specialized software tailored for individuals diagnosed with MS27. These studies, 
aimed at enhancing the quality of life for this group of individuals, have garnered significant attention28. The 
aim of this paper to propose an efficient approach for the segmentation of active and inactive plaques in FLAIR 
images without the need for GBCA injection, using a deep learning model based on DeepLabV3Plus SE with the 
EfficientNetB0 backbone. We evaluated the performance of our model on a dataset of MS patients and compared 
it with other state-of-the-art methods.

Contributions

•	 Proposal of a novel and efficient methodology specifically designed for segmenting both active and inactive 
plaques in FLAIR images.

•	 Elimination of the need for GBCA injections, reducing patient discomfort and potential side effects associ-
ated with contrast agents.

•	 Utilization of a sophisticated deep learning architecture based on DeepLabV3Plus SE, augmented with the 
EfficientNetB0 backbone, to optimize computational efficiency and scalability while leveraging the advantages 
of semantic segmentation.

•	 Comparative analyses with several state-of-the-art segmentation methods to benchmark the performance 
of the proposed approach and demonstrate its superiority in terms of both accuracy and efficiency.

•	 Significant contribution to the field of medical image analysis by providing a robust and efficient solution for 
plaque segmentation in FLAIR images, facilitating more accurate diagnosis and monitoring of neurological 
disorders such as multiple sclerosis.

Related work
Multiple influential research works have made substantial contributions to the field of automated lesion detection 
and segmentation through the application of convolutional neural networks (CNNs) and innovative architectural 
designs. These studies include one that explores using a CNN-based approach to detect ischemic stroke lesions 
in FLAIR MRI scans, enhancing accuracy by utilizing a pre-trained UNet model to pinpoint the areas affected 
and improve segmentation precision within axial-plane images29,30. Moreover, another study introduces a deep 
learning method for the automatic identification of ischemic stroke lesions in brain MRI FLAIR images. This 
employs CNN-driven segmentation and classification, providing a consistent framework for disease detection31. 
Additional research work focuses on a CNN segmentation approach aimed at extracting MS lesions from 2D 
brain MRI slices, significantly refining MS detection through the utilization of the Visual Geometry Group 
(VGG) U-Net architecture32.

In a related domain, a study introduces an encoder-decoder neural network used for segmenting retinal 
lesions in fundus images33. Furthermore, another research work introduces the Attention Residual U-Net model, 
which integrates various sophisticated features within the U-Net architecture to achieve highly accurate skin 
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lesion segmentation34. Lastly, another study delves into polyp detection in colonoscopy and endoscopy images, 
employing a Deep Convolutional Neural Network-based (DCNN-based) methodology using the U-Net archi-
tecture to facilitate the automated detection of polyps in medical imaging35.

In their paper, Gamal et al.36 introduce a novel deep learning architecture called global attention network 
(GAU) U-Net specifically tailored for MS segmentation in MRI scans. The proposed GAU U-Net model draws 
inspiration from the widely recognized U-Net architecture, known for its effectiveness in semantic segmenta-
tion tasks, particularly in medical imaging. The GAU U-Net extends the traditional 3D U-Net by integrating a 
new attention mechanism inspired by the Global Attention Upsample unit. Through comprehensive evaluation, 
the authors demonstrate notable improvements in segmentation accuracy, as indicated by the Dice coefficient, 
compared to both the baseline 3D U-Net and U-Net with attention. Specifically, the Dice coefficient increases 
from 64 to 72% when transitioning from 3D U-Net to GAU U-Net, and from 69% to approximately 72% when 
comparing with U-Net with attention. Remarkably, these enhancements are achieved while reducing the number 
of model parameters significantly, with GAU U-Net utilizing 28 million parameters compared to 100 million 
parameters in U-Net with attention. This underscores the efficacy of the proposed GAU U-Net architecture for 
MS lesion segmentation, offering both improved performance and computational efficiency.

Rondinella et al.37 present a framework leveraging an augmented U-Net architecture with a convolutional 
long short-term memory (LSTM) layer and attention mechanism to enhance the segmentation of MS lesions 
in magnetic resonance images. While previous methods rely on standard architectures like U-Net, this novel 
approach incorporates temporal-aware features and attention mechanisms, yielding significant performance 
improvements. Quantitative and qualitative evaluations demonstrate superior results compared to state-of-the-art 
approaches, achieving an overall Dice score of 89%. Moreover, the framework exhibits robustness and generali-
zation capabilities, validated on previously unseen samples from an ongoing dataset, underscoring its potential 
for automated MS lesion analysis.

Sarica et al.38 present a novel dense residual U-Net model enhanced with attention gate (AG), efficient channel 
attention (ECA), and Atrous Spatial Pyramid Pooling (ASPP) modules for precise segmentation of MS lesions 
from 3D MRI sequences. The proposed architecture incorporates dense connections and residual blocks within 
the U-Net framework, optimizing feature extraction and propagation. AGs are strategically integrated to capture 
salient features through skip connections, while ECA modules are employed to enhance feature representation. 
Additionally, ASPP is integrated to extract multi-scale contextual information crucial for accurate segmentation. 
Leveraging FLAIR, T1-weighted (T1-w), and T2-weighted (T2-w) MRI sequences jointly, the model achieves 
superior performance on the ISBI2015 and MSSEG2016 datasets, surpassing expert annotations and state-of-the-
art methods. With an ISBI score of 92.75, mean Dice score of 66.88%, mean positive predictive value (PPV) of 
86.50%, and mean lesion-wise true positive rate (LTPR) of 60.64% on ISBI2015, and mean Dice score of 67.27%, 
mean PPV of 65.19%, and mean sensitivity of 74.40% on MSSEG2016, the proposed model demonstrates remark-
able efficacy in MS lesion segmentation, particularly outperforming other methods on the ISBI2015 testing set.

Automated segmentation of MS lesions from MR imaging sequences is challenging due to their diverse shapes 
and scattered distributions. Despite advancements in deep learning, existing methods struggle with capturing 
scattered lesions and delineating global contours accurately. To address these issues, Chen et al.39 proposed DAG-
Net, a deep attention and graphical neural network that integrates spatial correlations and global context. Their 
approach utilizes a novel local attention coherence mechanism for dynamic graph construction and a spatial-
channel attention module for enhancing feature representation. Experimental results on benchmark datasets 
demonstrate DAG-Net’s effectiveness in segmenting variant and scattered MS lesions, highlighting its potential 
for improving automated MS lesion segmentation.

Joshi and Sharma40 present a novel hybrid network that combines a convolutional neural network (CNN) 
autoencoder with graph convolution networks (GCN) for MS lesion segmentation. This approach leverages 
3D medical resonance image (MRI) voxels as nodes in a graph dataset, with the CNN autoencoder extracting 
imaging grid information and GCN learning features in the graph connectivity space. Trained and validated on 
datasets from MS patients, the hybrid network demonstrates improved segmentation performance, achieving 
a dice similarity coefficient score of 85.5% for three neighbors in the graph data. This research showcases the 
potential of integrating CNN and GCN for advancing automated MS lesion segmentation techniques.

Bouzidi et al.41 present a novel approach for MS lesion detection using magnetic resonance imaging (MRI). 
They treat tumor segmentation as a classification problem and employ the Ant Colony Optimization algorithm 
(ACO) combined with BrainSeg3D tools. Their study evaluates this approach on a longitudinal database of 20 
MS patients, comparing results with ground truth annotations and other methods like Dissimilarity Map (DM) 
creation. This research contributes to improving MS lesion detection methods, crucial for effective disease 
management.

Together, these studies collectively underscore the advancement and practical application of sophisticated 
neural network architectures in automated lesion detection and segmentation, significantly propelling progress 
in medical imaging and disease diagnostics.

The diagnostic process in the aforementioned researches is notably sensitive and challenging due to the large 
size and heightened vulnerability of lesions in the nervous system in the studied diseases, along with the relatively 
limited dispersion of these lesions within the brain. In fact, in patients with MS, lesions appear extremely small 
and scattered in MRI images, significantly complicating their identification42. Nonetheless, our research, employ-
ing advanced methodologies, has managed to identify lesions in MS patients with the highest precision and 
efficiency even under such challenging circumstances. This achievement underscores the enhanced potency and 
impact of our utilized methodology in intricate and demanding conditions like those presented in cases of MS.
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Materials and methods
The main goal of this study was to use a CNN model for segmenting active and inactive plaques in FLAIR images. 
In the following, we explain the different pre-processing methods used to improve the dataset before the main 
processing, and then the best model for this problem is introduced. Finally, the model EfficienNetB0, which is 
used as the backbone of this study, will be introduced.

Furthermore, meticulous and accurate labeling was a paramount focus in this study, ensuring that no altera-
tions or changes were introduced to the images during the labeling process. This deliberate approach was adopted 
to mitigate the risk of labeling errors and enhance the precision of the results.

The utilization of five Nvidia 3090 graphics cards proved to be of great significance in this investigation. These 
graphics cards, renowned for their high processing power, provided the computational capability required for 
complex and extensive data analysis. This computational prowess greatly contributed to the research’s efficiency 
and overall success.

Additionally, the emphasis on precise and unaltered labeling within this research holds substantial impor-
tance. In image processing and deep learning studies, labeling accuracy is a critical aspect. The decision to refrain 
from making any modifications to the images during the labeling process was made to minimize the potential 
impact of errors in labeling, ultimately leading to more accurate research outcomes.

Dataset
This research focused on analyzing a cross-sectional cohort of 100 patients diagnosed with MS who exhibited 
active plaques in their brains. In this study, a total of 5000 MRI slices were investigated. This comprised approxi-
mately 25 FLAIR slices and 25 T1 slices with gadolinium injection, totaling 50 slices (including T2 FLAIR and T1 
with gadolinium) for each patient. After filtering the images based on the presence of active or inactive plaques, 
1500 slices were used in the labeling and deep learning process.

The proposed model was exclusively fed with flair images of patients, where their corresponding labels 
depicted a black background. Active and inactive plaques were distinguished with white (pixel value 255) and 
gray (pixel value 127) colors, respectively.As a result, T1 images were omitted from the network’s input. How-
ever, their labels were still employed in training the model for active plaque detection, aligning with the model’s 
specifications and needs.

The labeling process in this article was performed using the Pixlr Suite program, Pixlr was founded in 2008 
and built on Macromedia Flash. Prior to the labeling process, lesions in all three axial, sagittal, and coronal 
dimensions were confirmed by a radiologist. The labels were applied to the lesions in a manner that enables their 
selection and enhancement using the advanced tools of this software. It is worth mentioning that a pen was not 
used in the labeling process to minimize errors. Active plaques were compared with reference images, while 
inactive plaques were also assessed for comparison.

Pre‑processing
To improve the data, dataset pre-processing was done. It was employed to improve the data’s compatibility 
with subsequent steps. Removal of the cranial bone segment of the skull, resizing, and normalization were the 
pre-processing steps carried out in this study. In the following sections, a thorough explanation of various pre-
processing steps is provided.

Removal of the cranial bone segment
In the preprocessing stage, to eliminate the surrounding cranial bone segment of the skull from our images, 
could after applying the 3 × 3 median filter, use a combination of the Gabor filter and morphological operation.

The Gabor filter used in this section is obtained from the following formula43:

where

and λ is the wavelength of the sinusoidal component whose value is equal to 5π
4  , also θ represents the orientation 

of the normal to the parallel stripes of the Gabor function and is considered to be equal to 1π
4  , Ψ represents the 

phase offset of the sinusoidal function and is set to be -0.5. σ is the standard deviation of the Gaussian envelope 
whose value is 1, and finally γ is the spatial aspect ratio and specifies the elasticity support of the Gabor func-
tion, which is equal to 1.

After applying the Gabor filter by these parameters and morphological operators to the image, thus separat-
ing the brain parenchyma tissue from the rest of the image, and our images were ready for training the target 
network. Figure 1 shows all these steps for three images in general.

Resizing
Changing all of the images in the dataset to a specific size is referred to as resizing. We needed to resize the 
dataset because the neural network only receives images that are the same size. The image is 256 * 256 * 1 in size 
after the resizing step.

(1)g
(

x, y; �, θ ,� , σ , γ
)

= exp

(

−
x
′2 + γ 2y

′2

2σ 2

)

cos
(

2π
x′
�
+�

)

,

x′ = xcosθ + ysinθ , y′ = −xsinθ + ycosθ ,



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16304  | https://doi.org/10.1038/s41598-024-67130-6

www.nature.com/scientificreports/

Normalization
To convert all of the image’s pixel values between 0 and 1, a process known as normalization was used. Each pixel 
value is divided by 255 to accomplish this.

Proposed method
Squeeze and excitation network (SE‑Block)
The SE block, shown in Fig. 2, focuses on important feature maps and suppresses less important feature maps44. 
This improves the model’s ability to identify the target object in the input image, potentially resulting in better 

Figure 1.   Steps to prepare images for model training. (a–c) the original flair image of the brain, (d–f) Creating 
a mask related to brain parenchyma tissue, and (g–i) the removal of the cranial bone segment of the skull from 
flair images.

Figure 2.   Structure of Squeeze-and-Excitation Net (SENet). The red arrow represents the squeeze stage, the 
blue arrow represents the scale stage, and the green arrow represents the excitation stage.
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segmentation results. The SE block is added after using three convolutional excitations with two activations, 
Relu, and a sigmoid activation function.

EfficientNetB0
The convolutional neural network design and scaling method known as EfficientNetB0 uniformly scales all 
depth, width, and resolution measurements using a composite factor45. The EfficientNet scaling method uses a 
current set of scaling constants to continuously expand the width, depth, and resolution of the network, unlike 
traditional scaling methods that scale these components arbitrarily. The basic EfficientNetB0 system is based on 
MobileNetV2’s inverse bottleneck residual block in a collection of squeeze blocks and excitation blocks46. The 
EfficientNetB0 Architecture, shown in Fig. 3.

Atrous spatial pyramid pooling (ASPP) block
The ASPP method is designed to capture multi-scale context information between encoder and decoder and is 
especially used for semantic segmentation47,48.

However, instead of using basic convolution (typically rate = 1) and max pooling or average pooling in block-
ing of Deeplabv3plusSE, we used ASPP modules with different rates1,6,12,18 depth and point convolution (basic 
convolution) instead, reducing computational complexity. The formula for the ASPP module is:

Here, the steps required to sample the input feature map are denoted by the associated rate, r. x and w are the 
input signal and filter, respectively. When r = 1, the basic standard convolution becomes a special instance of the 
separable Atrous convolution. It is clear that Atrous convolution allows the kernel of deep CNN to have a wider 
field of view. The ASPP block is shown in Fig. 4. Supports small fields of view for accurate Region of Interest 
(ROI) localization and context absorption without increasing parameters or calculations due to the introduction 
of zeros between filter values.

(2)[i] =
∑

k

x[i + r, k]w[k],

Figure 3.   Architecture of EfficientNet-B0.

Figure 4.   Structure of the ASPP module used in DeeplabV3+SE. This module consists of two stages, including 
(a) Atrous convolution and (b) Image Pooling, and produces the final output using a convolution layer after 
concatenating the feature maps.
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Figure 4 shows that ASPP blocks with sets containing dilation and convolution kernel sizes are used at the 
entrance of the network. ASPP was implemented on the input of the network on the high-level image features 
of the sixth layer of EfficientNetB0 (our selected pre-trained model for this study) to capture the multi-scale 
characteristics of different plaque sizes. Details of the ASPP blocks used include four expansion factors1,6,12,18 
with kernel sizes1,3,3,3, and Concatenation included (1 × 1 normal convolution).

Deeplabv3Plus SE network structure
The overall structure of the Deeplabv3Plus SE network is shown in Fig. 5. Deeplabv3Plus SE extends Deeplabv3 
with a simple but effective decoder module to refine segmentation results, especially along object boundaries49. 
It consists of two parts: an encoder and a decoder. Encoders are mainly used to extract features and reduce the 
dimensionality of feature maps. The decoder is mainly used to recover edge information and feature map resolu-
tion to obtain the final semantic segmentation result47. To increase the receptive field and maintain the resolution 
of the feature map, the convolution operations in the last few convolutional layers of the encoder are replaced 
with Hall convolutions. The Atrous Spatial Pyramid Pooling (ASPP) module, introduced in DeeplabV3+SE, uses 
dilated convolutions at different rates to obtain multiscale semantic context information. By using these new 
structures, DeeplabV3+SE provides accurate semantic segmentation results across different data sets48.

The code use in this research is accessible via the following link: https://​github.​com/​hosse​inazi​mi021​3120/​
DeepL​ab-​V3Plus-​SE-​Effic​ientN​etB0.

Train model
After separating the parenchyma tissue of the brain from images, we utilize the DeeplabV3+SE architecture, 
which combines its convolution layers with the squeeze and excitation network in this research. Since the per-
formance of a segmentation model is directly related to the selected loss function, we used the dice coefficient 
as the loss function. Adam’s optimization was also utilized as a model optimizer. Each convolutional layer has 
128 filters. Finally, the activation function was considered as a Relu activation function. In the input of the 
model, we used the 6th layer of EfficientNetB0 to select the high-level features of the image, and the third layer 
of EfficientNetB0 to select the low-level features of the image. It is worth mentioning that in transfer learning 
methods, models previously trained on other datasets are used to extract features. In these models, they feed the 
raw data to one of the pre-trained models and take the output of the convolution layers as the extracted features.

In this research, we used the pre-trained EfficientNetB0 model and used the output of the sixth convolution 
layer of this architecture to extract high-level features of raw images and the output of the third convolution layer 
to extract low-level features. Finally, we entered the image containing the extracted features as the input of the 
Deeplabv3Plus SE network into the model.

Figure 5.   The image illustrates DeepLabv3’s components: the encoder, a pre-trained convolutional neural 
network like EfficientNetBO, extracts features from input images, while the decoder refines these features to 
generate a segmentation map showing the likelihood of each pixel belonging to specific classes. In the context 
of fingerprint recognition, these classes might represent features like ridges and valleys. The encoder uses 
atrous convolution to capture multi-scale information while preserving resolution, while the decoder uses 
upsampling, concatenation and convolution to refine and generate the segmentation map. The structure of the 
DeeplabV3+SE (proposed method), DCNN stands for deep convolutional neural network and Atrous Conv 
stands for atrous convolution.

https://github.com/hosseinazimi0213120/DeepLab-V3Plus-SE-EfficientNetB0
https://github.com/hosseinazimi0213120/DeepLab-V3Plus-SE-EfficientNetB0
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Results
The results of the study prove highly beneficial for MS patients, marking a substantial advancement in medical 
imaging methodologies. The dataset utilized in this study comprises a considerable number of active and inac-
tive plaques in each image slice. This contrasts with some other datasets used in different studies, which lack 
such diversity, resulting in a scarcity of analyzable samples for better model training. Furthermore, the plaques 
within these images are of notably small volume and area, sometimes encompassing less than ten pixels, leading 
to more errors in our model’s identification of these smaller plaques due to the high precision required in the 
pre-processing and labeling stages.

Moreover, the discussion thoroughly evaluates the outcomes obtained from various neural network architec-
tures, including DeepLabV3+_resnet50, DeepLabV3+_resnet101, DeepLabV3+_DenseNet121, DeepLabV3+_
VGG16, Deeplabv3+_PSPNetSE_SegModel, and our proposed method, DeepLabV3+SE_EfficientNetB0. The 
comparison based on the Dice Score exhibited the superior performance of DeepLabV3+SE_EfficientNetB0, 
scoring the highest among the evaluated architectures with a Dice Score of 76.24.

To evaluate the proposed model, we first consider 20% of images as validation data, then we use six dif-
ferent criteria to demonstrate the performance of finding the best architecture for our study, and finally show 
the performance of selected backbones for our network. Calculating the IOU index: The Intersection over the 
union index is the overlap area between the predicted segmentation and the ground truth divided by the joint 
area between the predicted segmentation and the ground truth. The formula for calculating the Jaccard index is:

Calculating DSC (Dice Score): Dice Score provides a measure of similarity between the predicted and actual 
segmentation masks. Its value varies between 0 and 1. 0 means no overlap, and 1 means complete overlap. The 
Dice Score is calculated using the following formula:

Calculating precision and recall and F1 score: Precision and recall measurements are used together to indicate 
the quality of the segmentation. If the precision and recall values of one segmentation result are both higher 
than the second, this indicates a higher quality segmentation. The F1 score is the harmonic mean between the 
precision and recall scores. To calculate these three criteria, proceed as follows.

Calculation of the Matthews Correlation Coefficient (MCC): MCC is a more reliable statistical relationship 
that scores highly only when the prediction performed well in all four categories of the confusion matrix (true 
positives, false negatives, true negatives, and false positives) , compared to the size of positive and negative ele-
ments in the dataset. The MCC is calculated using the following formula50:

In this study, in general, 25 neural networks from different articles were studied and implemented on this 
dataset, and the output of all networks can be found in the Supplementary file number 1 (sorted by dice score). 
Table 1 shows only the results of the top 6 models. In Table 1, we compared the performance of six architec-
tures DeepLabV3+_resnet50, DeepLabV3+_resnet101, DeepLabV3+_DenseNet121, DeepLabV3+_VGG16, 

Inter sec tion Over Union index =
(

overlapping region
)

/
(

joining region
)

.

Dice Score =
(

2 ∗ overlap area
)

/total area.

Pr ecision = (TP)/(TP+ FP)

Recall = (TP)/(TP+ FN)

F1 score = 2 ∗
(

precision ∗ recall
)

/
(

precision+ recall
)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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DeeplabV3+_PSPNetSE_SegModel and DeepLabV3+SE_EfficientNetB0 (our proposed method). Table 2 pro-
vides insights into the performance of all models examined in this study.

According to Table 1, we used the network introduced in this study for our work, because it shows the good 
performance evaluation criteria of that network for the segmentation of active and inactive plaques. The results 
of the networks used are shown in Fig. 6.

Furthermore, the comprehensive assessment of the DeepLabV3+SE_EfficientNetB0 model’s outcomes in 
segmenting active and inactive plaques within FLAIR images revealed its exceptional proficiency. The metrics 
IOU, Dice Score, precision, recall, F1-Score, and MCC highlighted the model’s exceptional ability in identify-
ing and categorizing these plaques, outperforming other neural network architectures. In Fig. 7, we can see the 
performance of the proposed method for some test samples.

The current article has excelled in pioneering a novel methodology in the domain of MS patients. It has 
exhibited the most promising predictions and outcomes. The DeepLabV3+model, extensively utilized in various 
other studies and research articles, has found applications in diverse areas, ranging from automatic brain tumor 
segmentation51 to Random Region Matting for High-Resolution PolSAR Image Semantic Segmentation52. None-
theless, its implementation in this particular study targeting MS patients has shown unparalleled performance 
and the most favorable predictions, signifying a groundbreaking advancement in the field.

Discussion
The novel approach aimed to eliminate Gadolinium injection by introducing advanced analytical tools in artificial 
intelligence and innovative algorithms, addressing the limitations of traditional diagnostic techniques associated 
with side effects. This innovative approach not only enhances diagnostic accuracy but also potentially mitigates 
the health risks linked to conventional contrast agents.

Conclusion
In conclusion, the integration of this model in future research within medical imaging is highly recommended. 
The potential applications of this technology in various medical and biomedical studies offer promising avenues 
for the development of improved disease diagnostic solutions. These solutions could play a pivotal role in the 
diagnosis and treatment of diseases. This innovative approach not only enhances diagnostic accuracy but also 
potentially reduces the health risks associated with traditional contrast agents, signifying a significant advance-
ment in the field of medical imaging.

It is recommended for future research to examine potential correlations within their datasets, which may 
include sagittal and coronal cuts, and consider incorporating additional cuts for plaque segmentation. The con-
straints encountered in this research are outlined as follows: The network performance deteriorates significantly 
when dealing with images containing very small plaques, rendering it practically incapable of detection. In images 
where plaque structures resemble doughnut shapes (i.e., with empty centers), our model exhibits low accuracy 
and tends to identify the inner portion as part of the plaque, leading to errors. (However, this occurrence is quite 

Table 1.   CNN Architecture and Metrics in this study.

Data CNN architecture

Metrics

IOU Dice Score Precision Recall F1-Score MCC

validation

DeepLabV3+_resnet50 0.6739 0.7233 0.8564 0.6879 0.7629 0.6438

DeepLabV3+_resnet101 0.6745 0.7291 0.8519 0.6912 0.7631 0.6681

DeepLabV3+_DenseNet121 0.6629 0.7172 0.8409 0.68 0.7519 0.6824

DeepLabV3+_VGG16 0.6840 0.7383 0.8710 0.7161 0.7859 0.6905

DeeplabV3+_PSPNetSE_SegModel 0.6935 0.7595 0.8812 0.7238 0.7947 0.7144

DeepLabV3+SE_EfficientNetB0 0.6987 0.7624 0.8889 0.7352 0.8047 0.717
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Table 2.   Provides a comparison between our study and previous research efforts. This allows us to evaluate the 
performance of our model in relation to existing methods.

References Purpose Datasets Methods Limitations Results

1 Ava Assadi Abolvardi et al.53 
(Australia)

Registration Based Data 
Augmentation for Multiple 
Sclerosis Lesion Segmenta-
tion

Longitudinal MS lesion 
dataset 3D-UNET/V-NET Not reported Dice score = 0.61.4

2 MOSTAFA SALEM et al.54 
(Spain)

Multiple Sclerosis Lesion 
Synthesis in MRI Using an 
Encoder-Decoder U-NET

Dataset1: The ISBI2015 
dataset includes 181 (axial 
and sagittal) and 217 
(coronal) slices. Dataset2: 
(15 healthy and 65 patients 
MS (Vall d’Hebron hospital, 
Barcelona

A CNN Model

Ability to control the 
intensity and the texture 
inside the lesions and the 
requirement of ground-
truth masks for obtaining 
the lesion model

Dataset1: Dice score = 0.64, 
Sensitivity = 0.57, preci-
sion = 0.79. Dataset2: Dice 
score = 0.70, Sensitiv-
ity = 0.69, precision = 0.73

3 Shahab Aslani et al.55 (Italy)
Multi-branch convolutional 
neural network for multiple 
sclerosis lesion segmenta-
tion

Dataset1: The ISBI2015 
dataset includes 181 (axial 
and sagittal) and 217 
(coronal) slices. Dataset2: 
NRU dataset

2D end-to-end convolu-
tional network based on the 
residual network (ResNet)

1.Observed that the 
proposed pipeline is slightly 
slow in segmenting a 3D 
image since segmenting 
whole-brain slices takes 
a longer time compared 
to other CNNbased 
approaches. 2. Computa-
tional complexity

Dataset1: Dice score = 0.61, 
PPV = 0.89, VD = 0.45 and 
Dataset2: Dice score = 0.66, 
PPV = 0.80, VD = 0.33

4 Yushan Feng et al.56 (USA)

A SELF-ADAPTIVE NET-
WORK FOR MULTIPLE 
SCLEROSIS LESION 
SEGMENTATION FROM 
MULTI-CONTRAST MRI 
WITH VARIOUS IMAG-
ING SEQUENCES

The ISBI2015 dataset 
includes 181 (axial and 
sagittal) and 217 (coronal) 
slices

Optimized 3D U-Net with 
Non-uniform Patches Not reported Dice score = 0.68,Jac-

card = 0.53, PPV = 0.78

5 Rehan Afzal et al.57 (Aus-
tralia)

Automatic and Robust 
Segmentation of Multiple 
Sclerosis Lesions with Con-
volutional Neural Networks

Two datasets ISBI and 
MICCAI A CNN Model

If two lesions are very close 
or overlapping, sometimes 
the proposed algorithm is 
unable to segment precisely. 
Also, when lesions are near 
the cortex of the brain it was 
difficult to segment them

ISBI Dataset: Dice 
score = 0.67, Precision = 0.90 
and MICCAI Dataset: Dice 
score = 0.72

6 Florian Raab et al.58 (Ger-
many)

A multimodal 2D Convolu-
tional Neural Network for 
Multiple Sclerosis Lesion 
Detection

The MICCAI 2016 MSSEG 
Lesion Segmentation 
Challenge dataset and the 
ISBI 2015 Longitudinal MS 
Lesion Segmentation Chal-
lenge dataset

A 2D convolutional neural 
network, based on the 
U-Net

Not reported
ISBI Dataset: Dice 
score = 0.77 and MICCAI 
Dataset: Dice score = 0.69

7 Abhilasha Joshi and 
Sharma40 (India)

Hybrid Topology of Graph 
Convolution and Autoen-
coder Deep Network For 
Multiple Sclerosis Lesion 
Segmentation

Ljubljana White Matter 
MS Dataset(LWMMS): 3D 
MRI of 30 MS patients and 
Ljubljana longitudinal MS 
Dataset(LLMS): Another 
arrangement of MRI data of 
20 MS patients

Graph convolutional net-
work (GCN)

Limitations: 1. when 
neighbor increases memory 
for graph data to process 
in learning also increases 
which took more compila-
tion time and space. 2. 
increasing the number of 
neighbor corporate over-
write information for graph 
learning

Dice score = 0.76, Preci-
sion = 0.87, Loss = 0.23

8 Dalenda Bouzidi et al.41 
(Tunisia)

Ant Colony Optimization 
with BrainSeg3D Protocol 
for Multiple Sclerosis Lesion 
Detection

The images were acquired 
on a 1.5 T PhilipsMRI 
machine at the University 
Medical Centre Ljubljana 
(UMCL)

Semi-automated outliers 
segmentation tools of 
BrainSeg3D software

It is necessary to test this 
interface on larger databases 
to clear the strengths and 
limitations

Dice score = 0.76

9 Reda Abdellah Kamraoui 
et al.59 (France)

DeepLesionBrain: Towards 
a broader deep-learning 
generalization for multiple 
sclerosis lesion segmenta-
tion

ISBI dataset and MIC-
CAI2016 MS Challenge 
Dataset

DeepLesionBrain Not reported
Dice score = 0.64, 
PPV = 0.88, Hybrid 
score = 0.74

10 Zhanlan Chen et al.39 
(Australia)

Deep Attention and Graphi-
cal Neural Network for 
Multiple Sclerosis Lesion 
Segmentation From MR 
Imaging Sequences

The ISBI2015 dataset 
includes 181 (axial and 
sagittal) and 217 (coronal) 
slices

Proposed DAG-Net is built 
in an encoder-decoder 
architecture, which is 
mainly comprised of the 
LAC mechanism and SCGA 
module

Not reported Dice score = 0.65, 
PPV = 0.88, VD = 0.39

11 Gamal et al.36 (Egypt) Multiple sclerosis segmenta-
tion

Open-MS dataset contains; 
30 patients (23 males and 7 
females)

Combination of Global 
Attention Up sample (GAU) 
and Unet

Not reported Dice Coefficient = 0.72

12 Rondinella et al.37 (Italy)
Boosting multiple sclerosis 
lesion segmentation through 
attention mechanism

The ISBI2015 dataset 
includes 181 (axial and 
sagittal) and 217 (coronal) 
slices

Combining Unet, Squeeze-
and-attention and LSTM

Limited number of samples 
available

Dice score = 0.84, 
IOU = 0.74, Sensitivity = 0.84 
and Specificity = 0.99

13 Sarica et al.38 (Turkey)
A dense residual U-net for 
multiple sclerosis lesions 
segmentation from multi-
sequence 3D MR images

The ISBI2015 dataset 
includes 181 (axial and 
sagittal) and 217 (coronal) 
slices and The MSSEG2016 
dataset is composed of 
3D MR images of 53 MS 
patients

Unet modification (combi-
nation of Dense Residual 
U-Net with AG, ECA, and 
ASPP)

Not reported
Dice score = 0.66, ISBI 
score = 0.92, PPV = 0.86 and 
VD = 0.38
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rare.) Detection becomes somewhat challenging for our model in images where plaques extend to the outer 
boundaries of brain tissue or adhere closely to the contours of adjacent butterfly-shaped structures. Nevertheless, 
it should be noted that errors are not pervasive in such cases.

Figure 6.   This radar plot shows the performance of six of the best models used in this study for our metrics.
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to patient privacy 
concerns but are available from the corresponding author upon reasonable request.
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