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Efficient segmentation

of active and inactive
plagues in FLAIR-images
using DeepLabV3Plus SE
with efficientnetb0 backbone
in multiple sclerosis

Mahsa Naeeni Davarani?, Ali Arian Darestani?, Virginia Guillen Cafias?, Hossein Azimi3,
Sanaz Heydari Havadaragh“, Hasan Hashemi® & Mohammd Hossein Harirchian®*

This research paper introduces an efficient approach for the segmentation of active and inactive
plaques within Fluid-attenuated inversion recovery (FLAIR) images, employing a convolutional neural
network (CNN) model known as DeepLabV3Plus SE with the EfficientNetB0 backbone in Multiple
sclerosis (MS), and demonstrates its superior performance compared to other CNN architectures.

The study encompasses various critical components, including dataset pre-processing techniques,
the utilization of the Squeeze and Excitation Network (SE-Block), and the atrous spatial separable
pyramid Block to enhance segmentation capabilities. Detailed descriptions of pre-processing
procedures, such as removing the cranial bone segment, image resizing, and normalization, are
provided. This study analyzed a cross-sectional cohort of 100 MS patients with active brain plaques,
examining 5000 MRl slices. After filtering, 1500 slices were utilized for labeling and deep learning.
The training process adopts the dice coefficient as the loss function and utilizes Adam optimization.
The study evaluated the model’s performance using multiple metrics, including intersection over
union (IOU), Dice Score, Precision, Recall, and F1-Score, and offers a comparative analysis with other
CNN architectures. Results demonstrate the superior segmentation ability of the proposed model, as
evidenced by an IOU of 69.87, Dice Score of 76.24, Precision of 88.89, Recall of 73.52, and F1-Score of
80.47 for the DeepLabV3+SE_EfficientNetB0 model. This research contributes to the advancement of
plaque segmentation in FLAIR images and offers a compelling approach with substantial potential for
medical image analysis and diagnosis.

Various neurological disorders such as Multiple Sclerosis (MS), a complex autoimmune condition, are related
to chronic inflammatory processes that result in demyelination of the nervous system’. For diagnostic and
therapeutic management of MS, the number and volume of lesions cannot be measured using any other means?.
Magnetic resonance imaging (MRI) is essential to characterise and quantify lesions®. Fluid-attenuated inversion
recovery (FLAIR) and T1-weighted (T1-w) MRI techniques are currently used to diagnose MS*. Because MS
lesions vary in location, size and shape, as well as anatomical variation between patients, MRI images of MS
lesions can be extremely difficult to identify®. This highlights the need for more advanced diagnostic tools, such
as deep learning, to accurately diagnose MS lesions.
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Not every lesion seen on MRI is active®. Patients should be identified for treatment when enhancing lesions
are considered active’. For this reason, Gadolinium (Gd)-based contrast agents (GBCAs) are routinely admin-
istered to MS patients during an MRI scan, as part of patient management?®. There is a correlation between the
presence of Gd-enhancing lesions and the occurrence of clinical relapses in MS® which suggests that the number
or volume of lesions may be an important measure of treatment efficacy®.

In the context of MS, MRIs have been shown to help predict future lesion activity, defined as the presence
of new or enlarged T2-lesions in future images, using a Bag-of-Lesions brain representation, and to identify
potential treatment responders based on carefully designed image features'!. There has also been some success in
predicting the conversion to Clinically Definite MS (CDMS) using support vector machines (SVM) on radiomic
lesion features'! and using a CNN on lesion masks'?. Injection of GBCAs is essential for the management of MS®.
Repeated injections raise concerns regarding the patients’ health'’.

MS patients’ Gadolinium lesions often increase, which is an indicator of disease activity'*. The presence of
contrast agent (CA) uptake indicates an early stage of inflammation and a disruption of the blood-brain barrier
(BBB) in the body, allowing us to detect diseases that are in their early stages using Gd-enhanced T1w MRI*.

To enhance the contrast between tissues during MRI, GBCAs are used. The atomic structure of this type of
substance is determined by whether it is ionic or non-ionic, or by its molecular structure. GBCAs are considered
less prone to immediate hypersensitivity (IHS) reactions than iodinated contrast media (ICM)'¢.

Despite the high efficacy along with potential side effects, other alternatives for GBCAs should be considered.
In the studies conducted by CA, Gadolinium was consistently shown to be retained in the bones after GBCA
administration'”"?°. Gadolinium chelated in the form of gadopentetate, gadoterate, or gadodiamide has dem-
onstrated some early evidence of bone retention in mice and rats?!. Gadolinium is believed to retain more in
bone than other tissues because it functions as a deep container or reservoir for the chemical?’. The compound
is gradually released due to osteoblast integration into the bone matrix over time***,

Histological examination reveals that rats given 80 human equivalent doses of gadodiamide developed ulcera-
tions and fibrosis, collagen deposition, a decrease in extracellular space, dermal thickening, and an increase in
cellularity®.

Investigating the potential of deep learning in predicting amplified lesions without injection of GBCA of MS
lesions from MRI images is essential for the clinical evaluation and treatment planning of MS*. In this study,
we do not focus on the interpretation of images, but rather on the extraction of intrinsic information from the
MRI dataset. We investigate the potential of deep learning in predicting the activity of MS lesions without the
use of GBCA.

Over the past decade, extensive research has been conducted in the field of cognitive rehabilitation through
computer programming and specialized software tailored for individuals diagnosed with MS?. These studies,
aimed at enhancing the quality of life for this group of individuals, have garnered significant attention®. The
aim of this paper to propose an efficient approach for the segmentation of active and inactive plaques in FLAIR
images without the need for GBCA injection, using a deep learning model based on DeepLabV3Plus SE with the
EfficientNetB0 backbone. We evaluated the performance of our model on a dataset of MS patients and compared
it with other state-of-the-art methods.

Contributions

® Proposal of a novel and efficient methodology specifically designed for segmenting both active and inactive
plaques in FLAIR images.

e Elimination of the need for GBCA injections, reducing patient discomfort and potential side effects associ-
ated with contrast agents.

e Utilization of a sophisticated deep learning architecture based on DeepLabV3Plus SE, augmented with the
EfficientNetBO0 backbone, to optimize computational efficiency and scalability while leveraging the advantages
of semantic segmentation.

e Comparative analyses with several state-of-the-art segmentation methods to benchmark the performance
of the proposed approach and demonstrate its superiority in terms of both accuracy and efficiency.

e Significant contribution to the field of medical image analysis by providing a robust and efficient solution for
plaque segmentation in FLAIR images, facilitating more accurate diagnosis and monitoring of neurological
disorders such as multiple sclerosis.

Related work
Multiple influential research works have made substantial contributions to the field of automated lesion detection
and segmentation through the application of convolutional neural networks (CNNs) and innovative architectural
designs. These studies include one that explores using a CNN-based approach to detect ischemic stroke lesions
in FLAIR MRI scans, enhancing accuracy by utilizing a pre-trained UNet model to pinpoint the areas affected
and improve segmentation precision within axial-plane images***. Moreover, another study introduces a deep
learning method for the automatic identification of ischemic stroke lesions in brain MRI FLAIR images. This
employs CNN-driven segmentation and classification, providing a consistent framework for disease detection®'.
Additional research work focuses on a CNN segmentation approach aimed at extracting MS lesions from 2D
brain MRI slices, significantly refining MS detection through the utilization of the Visual Geometry Group
(VGG) U-Net architecture®?.

In a related domain, a study introduces an encoder-decoder neural network used for segmenting retinal
lesions in fundus images®. Furthermore, another research work introduces the Attention Residual U-Net model,
which integrates various sophisticated features within the U-Net architecture to achieve highly accurate skin
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lesion segmentation®*. Lastly, another study delves into polyp detection in colonoscopy and endoscopy images,
employing a Deep Convolutional Neural Network-based (DCNN-based) methodology using the U-Net archi-
tecture to facilitate the automated detection of polyps in medical imaging™.

In their paper, Gamal et al.*® introduce a novel deep learning architecture called global attention network
(GAU) U-Net specifically tailored for MS segmentation in MRI scans. The proposed GAU U-Net model draws
inspiration from the widely recognized U-Net architecture, known for its effectiveness in semantic segmenta-
tion tasks, particularly in medical imaging. The GAU U-Net extends the traditional 3D U-Net by integrating a
new attention mechanism inspired by the Global Attention Upsample unit. Through comprehensive evaluation,
the authors demonstrate notable improvements in segmentation accuracy, as indicated by the Dice coefficient,
compared to both the baseline 3D U-Net and U-Net with attention. Specifically, the Dice coefficient increases
from 64 to 72% when transitioning from 3D U-Net to GAU U-Net, and from 69% to approximately 72% when
comparing with U-Net with attention. Remarkably, these enhancements are achieved while reducing the number
of model parameters significantly, with GAU U-Net utilizing 28 million parameters compared to 100 million
parameters in U-Net with attention. This underscores the efficacy of the proposed GAU U-Net architecture for
MS lesion segmentation, offering both improved performance and computational efficiency.

Rondinella et al.*” present a framework leveraging an augmented U-Net architecture with a convolutional
long short-term memory (LSTM) layer and attention mechanism to enhance the segmentation of MS lesions
in magnetic resonance images. While previous methods rely on standard architectures like U-Net, this novel
approach incorporates temporal-aware features and attention mechanisms, yielding significant performance
improvements. Quantitative and qualitative evaluations demonstrate superior results compared to state-of-the-art
approaches, achieving an overall Dice score of 89%. Moreover, the framework exhibits robustness and generali-
zation capabilities, validated on previously unseen samples from an ongoing dataset, underscoring its potential
for automated MS lesion analysis.

Sarica et al.*® present a novel dense residual U-Net model enhanced with attention gate (AG), efficient channel
attention (ECA), and Atrous Spatial Pyramid Pooling (ASPP) modules for precise segmentation of MS lesions
from 3D MRI sequences. The proposed architecture incorporates dense connections and residual blocks within
the U-Net framework, optimizing feature extraction and propagation. AGs are strategically integrated to capture
salient features through skip connections, while ECA modules are employed to enhance feature representation.
Additionally, ASPP is integrated to extract multi-scale contextual information crucial for accurate segmentation.
Leveraging FLAIR, T1-weighted (T1-w), and T2-weighted (T2-w) MRI sequences jointly, the model achieves
superior performance on the ISBI2015 and MSSEG2016 datasets, surpassing expert annotations and state-of-the-
art methods. With an ISBI score of 92.75, mean Dice score of 66.88%, mean positive predictive value (PPV) of
86.50%, and mean lesion-wise true positive rate (LTPR) of 60.64% on ISBI2015, and mean Dice score of 67.27%,
mean PPV of 65.19%, and mean sensitivity of 74.40% on MSSEG2016, the proposed model demonstrates remark-
able efficacy in MS lesion segmentation, particularly outperforming other methods on the ISBI2015 testing set.

Automated segmentation of MS lesions from MR imaging sequences is challenging due to their diverse shapes
and scattered distributions. Despite advancements in deep learning, existing methods struggle with capturing
scattered lesions and delineating global contours accurately. To address these issues, Chen et al.** proposed DAG-
Net, a deep attention and graphical neural network that integrates spatial correlations and global context. Their
approach utilizes a novel local attention coherence mechanism for dynamic graph construction and a spatial-
channel attention module for enhancing feature representation. Experimental results on benchmark datasets
demonstrate DAG-Net’s effectiveness in segmenting variant and scattered MS lesions, highlighting its potential
for improving automated MS lesion segmentation.

Joshi and Sharma*® present a novel hybrid network that combines a convolutional neural network (CNN)
autoencoder with graph convolution networks (GCN) for MS lesion segmentation. This approach leverages
3D medical resonance image (MRI) voxels as nodes in a graph dataset, with the CNN autoencoder extracting
imaging grid information and GCN learning features in the graph connectivity space. Trained and validated on
datasets from MS patients, the hybrid network demonstrates improved segmentation performance, achieving
a dice similarity coefficient score of 85.5% for three neighbors in the graph data. This research showcases the
potential of integrating CNN and GCN for advancing automated MS lesion segmentation techniques.

Bouzidi et al.*! present a novel approach for MS lesion detection using magnetic resonance imaging (MRI).
They treat tumor segmentation as a classification problem and employ the Ant Colony Optimization algorithm
(ACO) combined with BrainSeg3D tools. Their study evaluates this approach on a longitudinal database of 20
MS patients, comparing results with ground truth annotations and other methods like Dissimilarity Map (DM)
creation. This research contributes to improving MS lesion detection methods, crucial for effective disease
management.

Together, these studies collectively underscore the advancement and practical application of sophisticated
neural network architectures in automated lesion detection and segmentation, significantly propelling progress
in medical imaging and disease diagnostics.

The diagnostic process in the aforementioned researches is notably sensitive and challenging due to the large
size and heightened vulnerability of lesions in the nervous system in the studied diseases, along with the relatively
limited dispersion of these lesions within the brain. In fact, in patients with MS, lesions appear extremely small
and scattered in MRI images, significantly complicating their identification*’. Nonetheless, our research, employ-
ing advanced methodologies, has managed to identify lesions in MS patients with the highest precision and
efficiency even under such challenging circumstances. This achievement underscores the enhanced potency and
impact of our utilized methodology in intricate and demanding conditions like those presented in cases of MS.
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Materials and methods

The main goal of this study was to use a CNN model for segmenting active and inactive plaques in FLAIR images.
In the following, we explain the different pre-processing methods used to improve the dataset before the main
processing, and then the best model for this problem is introduced. Finally, the model EfficienNetB0, which is
used as the backbone of this study, will be introduced.

Furthermore, meticulous and accurate labeling was a paramount focus in this study, ensuring that no altera-
tions or changes were introduced to the images during the labeling process. This deliberate approach was adopted
to mitigate the risk of labeling errors and enhance the precision of the results.

The utilization of five Nvidia 3090 graphics cards proved to be of great significance in this investigation. These
graphics cards, renowned for their high processing power, provided the computational capability required for
complex and extensive data analysis. This computational prowess greatly contributed to the research’s efficiency
and overall success.

Additionally, the emphasis on precise and unaltered labeling within this research holds substantial impor-
tance. In image processing and deep learning studies, labeling accuracy is a critical aspect. The decision to refrain
from making any modifications to the images during the labeling process was made to minimize the potential
impact of errors in labeling, ultimately leading to more accurate research outcomes.

Dataset

This research focused on analyzing a cross-sectional cohort of 100 patients diagnosed with MS who exhibited
active plaques in their brains. In this study, a total of 5000 MRI slices were investigated. This comprised approxi-
mately 25 FLAIR slices and 25 T1 slices with gadolinium injection, totaling 50 slices (including T2 FLAIR and T1
with gadolinium) for each patient. After filtering the images based on the presence of active or inactive plaques,
1500 slices were used in the labeling and deep learning process.

The proposed model was exclusively fed with flair images of patients, where their corresponding labels
depicted a black background. Active and inactive plaques were distinguished with white (pixel value 255) and
gray (pixel value 127) colors, respectively.As a result, T1 images were omitted from the network’s input. How-
ever, their labels were still employed in training the model for active plaque detection, aligning with the model’s
specifications and needs.

The labeling process in this article was performed using the PixIr Suite program, Pixlr was founded in 2008
and built on Macromedia Flash. Prior to the labeling process, lesions in all three axial, sagittal, and coronal
dimensions were confirmed by a radiologist. The labels were applied to the lesions in a manner that enables their
selection and enhancement using the advanced tools of this software. It is worth mentioning that a pen was not
used in the labeling process to minimize errors. Active plaques were compared with reference images, while
inactive plaques were also assessed for comparison.

Pre-processing

To improve the data, dataset pre-processing was done. It was employed to improve the data’s compatibility
with subsequent steps. Removal of the cranial bone segment of the skull, resizing, and normalization were the
pre-processing steps carried out in this study. In the following sections, a thorough explanation of various pre-
processing steps is provided.

Removal of the cranial bone segment

In the preprocessing stage, to eliminate the surrounding cranial bone segment of the skull from our images,

could after applying the 3 x 3 median filter, use a combination of the Gabor filter and morphological operation.
The Gabor filter used in this section is obtained from the following formula®*:

72 2 2 ,
g(x.y:2,0,9,0,y) =eXp<—x;y2y>COS(2ﬂj+‘P)> (1)

where
x/ = xcost) + ysinf, y/ = —xsinf + ycosb,

and \ is the wavelength of the sinusoidal component whose value is equal to 57, also 0 represents the orientation
of the normal to the parallel stripes of the Gabor function and is considered to be equal to 1T, ¥ represents the
phase offset of the sinusoidal function and is set to be -0.5. ¢ is the standard deviation of the Gaussian envelope
whose value is 1, and finally y is the spatial aspect ratio and specifies the elasticity support of the Gabor func-
tion, which is equal to 1.

After applying the Gabor filter by these parameters and morphological operators to the image, thus separat-
ing the brain parenchyma tissue from the rest of the image, and our images were ready for training the target
network. Figure 1 shows all these steps for three images in general.

Resizing

Changing all of the images in the dataset to a specific size is referred to as resizing. We needed to resize the
dataset because the neural network only receives images that are the same size. The image is 256 * 256 * 1 in size
after the resizing step.
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Figure 1. Steps to prepare images for model training. (a-c) the original flair image of the brain, (d-f) Creating
a mask related to brain parenchyma tissue, and (g-i) the removal of the cranial bone segment of the skull from
flair images.
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Figure 2. Structure of Squeeze-and-Excitation Net (SENet). The red arrow represents the squeeze stage, the
blue arrow represents the scale stage, and the green arrow represents the excitation stage.

Normalization
To convert all of the image’s pixel values between 0 and 1, a process known as normalization was used. Each pixel
value is divided by 255 to accomplish this.

Proposed method

Squeeze and excitation network (SE-Block)

The SE block, shown in Fig. 2, focuses on important feature maps and suppresses less important feature maps*.
This improves the models ability to identify the target object in the input image, potentially resulting in better
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segmentation results. The SE block is added after using three convolutional excitations with two activations,

Relu, and a sigmoid activation function.

EfficientNetBO
The convolutional neural network design and scaling method known as EfficientNetB0 uniformly scales all

depth, width, and resolution measurements using a composite factor*®. The EfficientNet scaling method uses a
current set of scaling constants to continuously expand the width, depth, and resolution of the network, unlike
traditional scaling methods that scale these components arbitrarily. The basic EfficientNetB0 system is based on
MobileNetV2’s inverse bottleneck residual block in a collection of squeeze blocks and excitation blocks*. The

EfficientNetB0 Architecture, shown in Fig. 3.

Atrous spatial pyramid pooling (ASPP) block
The ASPP method is designed to capture multi-scale context information between encoder and decoder and is

especially used for semantic segmentation*”4%,
However, instead of using basic convolution (typically rate = 1) and max pooling or average pooling in block-
ing of Deeplabv3plusSE, we used ASPP modules with different rates"®'!® depth and point convolution (basic

convolution) instead, reducing computational complexity. The formula for the ASPP module is:

[i] = Zx[i + r, k]wlk], (2)

k

Here, the steps required to sample the input feature map are denoted by the associated rate, r. x and w are the
input signal and filter, respectively. When r =1, the basic standard convolution becomes a special instance of the
separable Atrous convolution. It is clear that Atrous convolution allows the kernel of deep CNN to have a wider
field of view. The ASPP block is shown in Fig. 4. Supports small fields of view for accurate Region of Interest
(ROI) localization and context absorption without increasing parameters or calculations due to the introduction

of zeros between filter values.
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Figure 3. Architecture of EfficientNet-B0.
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Figure 4. Structure of the ASPP module used in DeeplabV3+SE. This module consists of two stages, including
(a) Atrous convolution and (b) Image Pooling, and produces the final output using a convolution layer after

concatenating the feature maps.
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Figure 4 shows that ASPP blocks with sets containing dilation and convolution kernel sizes are used at the
entrance of the network. ASPP was implemented on the input of the network on the high-level image features
of the sixth layer of EfficientNetBO (our selected pre-trained model for this study) to capture the multi-scale
characteristics of different plaque sizes. Details of the ASPP blocks used include four expansion factors®!>18
with kernel sizes**3, and Concatenation included (1 x 1 normal convolution).

Deeplabv3Plus SE network structure
The overall structure of the Deeplabv3Plus SE network is shown in Fig. 5. Deeplabv3Plus SE extends Deeplabv3
with a simple but effective decoder module to refine segmentation results, especially along object boundaries®.
It consists of two parts: an encoder and a decoder. Encoders are mainly used to extract features and reduce the
dimensionality of feature maps. The decoder is mainly used to recover edge information and feature map resolu-
tion to obtain the final semantic segmentation result”. To increase the receptive field and maintain the resolution
of the feature map, the convolution operations in the last few convolutional layers of the encoder are replaced
with Hall convolutions. The Atrous Spatial Pyramid Pooling (ASPP) module, introduced in DeeplabV3+SE, uses
dilated convolutions at different rates to obtain multiscale semantic context information. By using these new
structures, DeeplabV3+SE provides accurate semantic segmentation results across different data sets*.

The code use in this research is accessible via the following link: https://github.com/hosseinazimi0213120/
DeepLab-V3Plus-SE-EfficientNetB0.

Train model
After separating the parenchyma tissue of the brain from images, we utilize the DeeplabV3+SE architecture,
which combines its convolution layers with the squeeze and excitation network in this research. Since the per-
formance of a segmentation model is directly related to the selected loss function, we used the dice coefficient
as the loss function. Adam’s optimization was also utilized as a model optimizer. Each convolutional layer has
128 filters. Finally, the activation function was considered as a Relu activation function. In the input of the
model, we used the 6th layer of EfficientNetB0 to select the high-level features of the image, and the third layer
of EfficientNetBO to select the low-level features of the image. It is worth mentioning that in transfer learning
methods, models previously trained on other datasets are used to extract features. In these models, they feed the
raw data to one of the pre-trained models and take the output of the convolution layers as the extracted features.
In this research, we used the pre-trained EfficientNetB0 model and used the output of the sixth convolution
layer of this architecture to extract high-level features of raw images and the output of the third convolution layer
to extract low-level features. Finally, we entered the image containing the extracted features as the input of the
Deeplabv3Plus SE network into the model.

Input Image

Base Model
EfficientNetBO

. Squeeze & Average
- Up Sampling Ecitation - Pooling Conv 1x1 Conv 3x3

Figure 5. The image illustrates DeepLabv3’s components: the encoder, a pre-trained convolutional neural
network like EfficientNetBO, extracts features from input images, while the decoder refines these features to
generate a segmentation map showing the likelihood of each pixel belonging to specific classes. In the context
of fingerprint recognition, these classes might represent features like ridges and valleys. The encoder uses
atrous convolution to capture multi-scale information while preserving resolution, while the decoder uses
upsampling, concatenation and convolution to refine and generate the segmentation map. The structure of the
DeeplabV3+SE (proposed method), DCNN stands for deep convolutional neural network and Atrous Conv
stands for atrous convolution.
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Ethical approval

This research adheres to all ethical considerations relevant to the content of this article. The study was conducted
in compliance with established ethical standards, and all necessary approvals and permissions were obtained from
the appropriate ethical review boards. In accordance with ethical guidelines, informed consent was obtained from
all participants involved in the study. The confidentiality and anonymity of participants have been rigorously
protected throughout the research process.

Furthermore, the research design and procedures were ethically reviewed to ensure that they met the highest
standards of integrity and transparency. Any potential conflicts of interest were appropriately disclosed, and steps
were taken to mitigate and manage them.

This article discusses the ethical implications of the research, addressing key considerations such as the treat-
ment of human or animal subjects, data confidentiality, and potential biases. The methodology employed in this
study aligns with ethical principles, and any deviations from standard ethical practices are explicitly justified.

In summary, this research article upholds a commitment to ethical conduct in all aspects of the study, and
the following sections elaborate on specific ethical considerations within the context of the presented research.

Code of ethics obtained from Tehran University of Medical Sciences:

IR.TUMS.NI.REC.1401.038

+We have sought approval for the study from the ethics committee of Tehran University of Medical Sciences
(Imam Khomeini Hospital) in Tehran.

Results

The results of the study prove highly beneficial for MS patients, marking a substantial advancement in medical
imaging methodologies. The dataset utilized in this study comprises a considerable number of active and inac-
tive plaques in each image slice. This contrasts with some other datasets used in different studies, which lack
such diversity, resulting in a scarcity of analyzable samples for better model training. Furthermore, the plaques
within these images are of notably small volume and area, sometimes encompassing less than ten pixels, leading
to more errors in our model’s identification of these smaller plaques due to the high precision required in the
pre-processing and labeling stages.

Moreover, the discussion thoroughly evaluates the outcomes obtained from various neural network architec-
tures, including DeepLabV3+_resnet50, DeepLabV3+_resnet101, DeepLabV3+_DenseNet121, DeepLabV3+_
VGG16, Deeplabv3+_PSPNetSE_SegModel, and our proposed method, DeepLabV3+SE_EfficientNetB0. The
comparison based on the Dice Score exhibited the superior performance of DeepLabV3+SE_EfficientNetBO,
scoring the highest among the evaluated architectures with a Dice Score of 76.24.

To evaluate the proposed model, we first consider 20% of images as validation data, then we use six dif-
ferent criteria to demonstrate the performance of finding the best architecture for our study, and finally show
the performance of selected backbones for our network. Calculating the IOU index: The Intersection over the
union index is the overlap area between the predicted segmentation and the ground truth divided by the joint
area between the predicted segmentation and the ground truth. The formula for calculating the Jaccard index is:

Inter sec tion Over Union index = (overlapping region)/ (joining region).

Calculating DSC (Dice Score): Dice Score provides a measure of similarity between the predicted and actual
segmentation masks. Its value varies between 0 and 1. 0 means no overlap, and 1 means complete overlap. The
Dice Score is calculated using the following formula:

Dice Score = (2 * overlap area) /total area.

Calculating precision and recall and F1 score: Precision and recall measurements are used together to indicate
the quality of the segmentation. If the precision and recall values of one segmentation result are both higher
than the second, this indicates a higher quality segmentation. The F1 score is the harmonic mean between the
precision and recall scores. To calculate these three criteria, proceed as follows.

Precision = (TP)/(TP + FP)
Recall = (TP)/(TP + FN)

F1 score = 2 * (precision « recall) / (precision + recall)

Calculation of the Matthews Correlation Coefficient (MCC): MCC is a more reliable statistical relationship
that scores highly only when the prediction performed well in all four categories of the confusion matrix (true
positives, false negatives, true negatives, and false positives) , compared to the size of positive and negative ele-
ments in the dataset. The MCC is calculated using the following formula®:

_ TP x TN — FP x FN
~ /(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC

In this study, in general, 25 neural networks from different articles were studied and implemented on this
dataset, and the output of all networks can be found in the Supplementary file number 1 (sorted by dice score).
Table 1 shows only the results of the top 6 models. In Table 1, we compared the performance of six architec-
tures DeepLabV3+_resnet50, DeepLabV3+_resnet101, DeepLabV3+_DenseNet121, DeepLabV3+_VGG16,
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Metrics
Data CNN architecture 10U Dice Score | Precision | Recall | F1-Score | MCC
DeepLabV3+_resnet50 0.6739 | 0.7233 0.8564 0.6879 | 0.7629 0.6438
DeepLabV3+_resnet101 0.6745 | 0.7291 0.8519 0.6912 | 0.7631 0.6681
validation DeepLabV3+_DenseNet121 0.6629 | 0.7172 0.8409 0.68 0.7519 0.6824
DeepLabV3+_VGG16 0.6840 | 0.7383 0.8710 0.7161 | 0.7859 0.6905
DeeplabV3+_PSPNetSE_SegModel | 0.6935 | 0.7595 0.8812 0.7238 | 0.7947 0.7144
DeepLabV3+SE_EfficientNetB0 0.6987 | 0.7624 0.8889 0.7352 | 0.8047 0.717

Table 1. CNN Architecture and Metrics in this study.

DeeplabV3+_PSPNetSE_SegModel and DeepLabV3+SE_EfficientNetBO (our proposed method). Table 2 pro-
vides insights into the performance of all models examined in this study.

According to Table 1, we used the network introduced in this study for our work, because it shows the good
performance evaluation criteria of that network for the segmentation of active and inactive plaques. The results
of the networks used are shown in Fig. 6.

Furthermore, the comprehensive assessment of the DeepLabV3+SE_EfficientNetBO model’s outcomes in
segmenting active and inactive plaques within FLAIR images revealed its exceptional proficiency. The metrics
10U, Dice Score, precision, recall, F1-Score, and MCC highlighted the model’s exceptional ability in identify-
ing and categorizing these plaques, outperforming other neural network architectures. In Fig. 7, we can see the
performance of the proposed method for some test samples.

The current article has excelled in pioneering a novel methodology in the domain of MS patients. It has
exhibited the most promising predictions and outcomes. The DeepLabV3+model, extensively utilized in various
other studies and research articles, has found applications in diverse areas, ranging from automatic brain tumor
segmentation® to Random Region Matting for High-Resolution PolSAR Image Semantic Segmentation®. None-
theless, its implementation in this particular study targeting MS patients has shown unparalleled performance
and the most favorable predictions, signifying a groundbreaking advancement in the field.

Discussion

The novel approach aimed to eliminate Gadolinium injection by introducing advanced analytical tools in artificial
intelligence and innovative algorithms, addressing the limitations of traditional diagnostic techniques associated
with side effects. This innovative approach not only enhances diagnostic accuracy but also potentially mitigates
the health risks linked to conventional contrast agents.

Conclusion

In conclusion, the integration of this model in future research within medical imaging is highly recommended.
The potential applications of this technology in various medical and biomedical studies offer promising avenues
for the development of improved disease diagnostic solutions. These solutions could play a pivotal role in the
diagnosis and treatment of diseases. This innovative approach not only enhances diagnostic accuracy but also
potentially reduces the health risks associated with traditional contrast agents, signifying a significant advance-
ment in the field of medical imaging.

It is reccommended for future research to examine potential correlations within their datasets, which may
include sagittal and coronal cuts, and consider incorporating additional cuts for plaque segmentation. The con-
straints encountered in this research are outlined as follows: The network performance deteriorates significantly
when dealing with images containing very small plaques, rendering it practically incapable of detection. In images
where plaque structures resemble doughnut shapes (i.e., with empty centers), our model exhibits low accuracy
and tends to identify the inner portion as part of the plaque, leading to errors. (However, this occurrence is quite
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References Purpose Datasets Methods Limitations Results
Registration Based Data
. . 53 . . o .
1 Ava Assz?dl Abolvardi et al. Augmentation for Multiple | Longitudinal MS lesion 3D-UNET/V-NET Not reported Dice score=0.61.4
(Australia) Sclerosis Lesion Segmenta- | dataset
tion
Datasetl: The ISBI2015 o
dataset includes 181 (axial é}:;lrlgttoa;(’;g:j ttel;(eture Datasetl: Dice score=0.64,
MOSTAFA SALEM et al.* Multiple Sclerosis Lesion and sagittal) and 217 inside tKe lesions and the Sensitivity = 0.57, preci-
2 . . Synthesis in MRI Using an | (coronal) slices. Dataset2: A CNN Model X sion=0.79. Dataset2: Dice
(Spain) Y! 8 requirement of ground-
P Encoder-Decoder U-NET | (15 healthy and 65 patients q ground score=0.70, Sensitiv-
A . truth masks for obtaining S el
MS (Vall d'Hebron hospital, he lesi del ity =0.69, precision =0.73
Barcelona the lesion mode
1.0bserved that the
proposed pipeline is slightly
Multi-branch convolutional Datasetl: The ISBI2015 slow in segmenting a 3D Dataset1: Dice score=0.61
. dataset includes 181 (axial 2D end-to-end convolu- image since segmenting P e
. 55 neural network for multiple . . oS PPV =0.89, VD=0.45 and
3 Shahab Aslani et al.”* (Italy) sclerosis lesion segmenta. and sagittal) and 217 tional network based on the | whole-brain slices takes Dataset?: Dice score = 0.66
tion g (coronal) slices. Dataset2: residual network (ResNet) | alonger time compared PPV =0 éO VD=0 3; e
NRU dataset to other CNNbased TUeR
approaches. 2. Computa-
tional complexity
A SELF-ADAPTIVE NET-
SRS T E | The ISBI2015 dataset
4 Yushan Feng et al (USA) | SEGMENTATION FROM 1nclude 183 (axial and | Optlml;efd 3D U—I\}Ilet with Not reported chde_score= 0.68£ac,
MULTL-CONTRAST MRI s?gnta ) and 217 (coronal) | Non-uniform Patches card=0.53, PPV =0.78
WITH VARIOUS IMAG- | <%
ING SEQUENCES
If two lesions are very close
Automatic and Robust ?}feovfélagggi’l Sg;ﬁitri;nie: ISBI Dataset: Dice
5 Rehan Afzal et al.”’ (Aus- Segmentation of Multiple Two datasets ISBI and A CNN Model unagle lt)o ceom fnt recisely. | S€OT€= 0.67, Precision=0.90
tralia) Sclerosis Lesions with Con- | MICCAI gment p Y- | and MICCAI Dataset: Dice
N Also, when lesions are near _
volutional Neural Networks L score=0.72
the cortex of the brain it was
difficult to segment them
The MICCAI 2016 MSSEG
A multimodal 2D Convolu- | Lesion Segmentation . .
Florian Raab et al.”® (Ger- tional Neural Network for Challenge dataset and the A 2D convolutional neural ISBI Dataset: Dice
[ N " ) N network, based on the Not reported score=0.77 and MICCAI
many) Multiple Sclerosis Lesion ISBI 2015 Longitudinal MS . _
. . . U-Net Dataset: Dice score=0.69
Detection Lesion Segmentation Chal-
lenge dataset
Limitations: 1. when
Ljubljana White Matter ?Eighboﬁ iélcreases memory
Hybrid Topology of Graph | MS Dataset(LWMMS): 3D 'orlgrap . atla to process
C luti "1 Autoen- MRI of 30 MS patients and in learning also increases
. . onvolution and Autoen o patients an . ] : . _ .
Abhilasha Joshi and S S Graph convolutional net- which took more compila- | Dice score=0.76, Preci-
7 Sh 40 . coder Deep Network For Ljubljana longitudinal MS — .
arma’’ (India) Multivle Sclerosis Lesion Dataset(LLMS): Another work (GCN) tion time and space. 2. sion=0.87, Loss=0.23
S eS¢ 3 increasing the number of
egmentation arrangement of MRI data of tohb
20 MS patients neighbor corporate over-
write information for graph
learning
o The images were acquired . .
2 a A.m COI(?HY Optimization ona 1.5 T PhilipsMRI Semi-automated outliers .It is necessary to test this
Dalenda Bouzidi et al. with BrainSeg3D Protocol . s . interface on larger databases | .
8 i ; . . machine at the University segmentation tools of Dice score=0.76
(Tunisia) for Multiple Sclerosis Lesion ; R . to clear the strengths and
. Medical Centre Ljubljana BrainSeg3D software AU
Detection (UMCL) limitations
DeepLesionBrain: Towards
Reda Abdellah Kamraoui a broader deep-learning ISBI dataset and MIC- Dice score=0.64,
9 59 eneralization for multiple | CAI2016 MS Challenge DeepLesionBrain Not reported PPV =0.88, Hybrid
et al.> (France) 8 P 8 P P 24
: sclerosis lesion segmenta- Dataset score=0.74
tion
. . Proposed DAG-Net is built
gielgeﬁtrznﬁ:tazr;ﬁ giaphl- The ISBI2015 dataset in an encoder-decoder
10 Zhanlan Chen et al.** Multiple Sclerosis Lesion includes 181 (axial and architecture, which is Not reported Dice score=0.65,
(Australia) Se mEntation From MR sagittal) and 217 (coronal) mainly comprised of the p PPV =0.88, VD=0.39
Imga ine Sequences slices LAC mechanism and SCGA
8ing Seq module
Multiple sclerosis seementa- Open-MS dataset contains; | Combination of Global
11 Gamal et al.*® (Egypt) tion P g 30 patients (23 males and 7 | Attention Up sample (GAU) | Not reported Dice Coeflicient=0.72
females) and Unet
Boosting multiple sclerosis Eﬁ:i?;i?ﬁ(jﬁ:ﬁz;d Combining Unet, Squeeze- | Limited number of samples Dice score=0.84,
12 Rondinella et al.”” (Italy) lesion segmentation through . i > . P 10U =0.74, Sensitivity = 0.84
. . sagittal) and 217 (coronal) and-attention and LSTM available o
attention mechanism dices and Specificity=0.99
The ISBI2015 dataset
. includes 181 (axial and . . .
A e el Ut | ) nd 217 crona) | Ut i comb-
13 Sarica et al.*® (Turkey) ple s . slices and The MSSEG2016 X Not reported score=0.92, PPV =0.86 and
segmentation from multi- d . dof U-Net with AG, ECA, and VD=0.38
sequence 3D MR images ataset Is composed o ASPP) o
3D MR images of 53 MS
patients

Table 2. Provides a comparison between our study and previous research efforts. This allows us to evaluate the
performance of our model in relation to existing methods.
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Overal Performance Metrics on Validation Data
IoU —— DeepLabV3+ ResNet50
—— DeepLabV3+ ResNet101
—— DeepLabV3+ DenseNet121
DeepLabV3+ VGG16
Deeplabv3+ PSPNetSE SegModel
—— DeeplLabV3+ SE_EfficientNetBO

MCC Dice Score

F1-Score Precision

Recall

Figure 6. This radar plot shows the performance of six of the best models used in this study for our metrics.

rare.) Detection becomes somewhat challenging for our model in images where plaques extend to the outer
boundaries of brain tissue or adhere closely to the contours of adjacent butterfly-shaped structures. Nevertheless,
it should be noted that errors are not pervasive in such cases.

Scientific Reports |  (2024) 14:16304 | https://doi.org/10.1038/s41598-024-67130-6 nature portfolio



www.nature.com/scientificreports/

Figure 7. Original images (left column), ground truth associated with test samples (middle column), and
images predicted by the proposed model (right column).

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to patient privacy
concerns but are available from the corresponding author upon reasonable request.

Received: 5 December 2023; Accepted: 8 July 2024
Published online: 15 July 2024

References

1.
2.

3.

10.

11.

12.

Lassmann, H. Multiple sclerosis pathology. Cold Spring Harbor Perspect. Med. 8(3), 2028936 (2018).

Smith, K. J. & McDonald, W. The pathophysiology of multiple sclerosis: The mechanisms underlying the production of symptoms
and the natural history of the disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354(1390), 1649-1673 (1999).

Rovira, A., Auger, C. & Alonso, ]. Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther. Adv. Neurol.
Disord. 6(5), 298-310 (2013).

. Haacke, E. M. et al. A comparison of magnetic resonance imaging methods to assess multiple sclerosis lesions: Implications for

patient characterization and clinical trial design. Diagnostics. 12(1), 77 (2021).

. Glanz, B. L. et al. The association between cognitive impairment and quality of life in patients with early multiple sclerosis. J. Neurol.

Sci. 290(1-2), 75-79 (2010).

. Zhao, G.]. MRI lesion activity in relapsing-remitting patients with multiple sclerosis (University of British Columbia, 1996).
. Lublin, E D. et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology. 83(3), 278-286 (2014).
. Johnston, G. et al. Limited utility of gadolinium contrast administration in routine multiple sclerosis surveillance. J. Neuroimaging.

31(1), 103-107 (2021).

. Kappos, L. et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability

or impairment in multiple sclerosis: A meta-analysis. The Lancet. 353(9157), 964-969 (1999).

Barkhof, E. et al. Predicting gadolinium enhancement status in MS patients eligible for randomized clinical trials. Neurology. 65(9),
1447-1454 (2005).

Doyle, A., Precup, D., Arnold, D. L., & Arbel, T. (eds.) Predicting future disease activity and treatment responders for multi-
ple sclerosis patients using a bag-of-lesions brain representation. In International Conference on Medical Image Computing and
Computer-Assisted Intervention (Springer, 2017).

Yoo, Y. et al. Deep learning of brain lesion patterns for predicting future disease activity in patients with early symptoms of multiple
sclerosis 86-94 (Springer, 2016).

Scientific Reports |

(2024) 14:16304 | https://doi.org/10.1038/s41598-024-67130-6 nature portfolio



www.nature.com/scientificreports/

13. Asadollahzade, E., Ghadiri, F, Ebadi, Z. & Moghadasi, A. N. The benefits and side effects of gadolinium-based contrast agents in
multiple sclerosis patients. SciELO Brasil 68, 979-981 (2022).

14. Gaj, S., Ontaneda, D. & Nakamura, K. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep
learning from clinical MRI. PloS one. 16(9), 0255939 (2021).

15. Thompson, E. et al. et al. (eds) Magnetic resonance imaging, proton magnetic resonance spectroscopy and cerebrospinal fluid abnor-
malities in multiple sclerosis (Cerebrospinal Fluid Analysis in Multiple Sclerosis; Springer, Milano, 1996).

16. Jeong, H. et al. Signal Change of iodinated contrast agents in MR imaging. J. Inst. Electron. Inf. Eng. 53(12), 131-138 (2016).

17. Davies, J. et al. Repeat and single dose administration of gadodiamide to rats to investigate concentration and location of gado-
linium and the cell ultrastructure. Sci. Rep. 11(1), 1-12 (2021).

18. Murata, N. et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and
bone tissue: Preliminary results from 9 patients with normal renal function. Investig. Radiol. 51(7), 447-453 (2016).

19. Lohrke, J. et al. Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of
linear and macrocyclic gadolinium-based contrast agents. Investig. Radiol. 52(6), 324 (2017).

20. Boyken, J. et al. Impact of treatment with chelating agents depends on the stability of administered GBCAs: A comparative study
in rats. Investig. Radiol. 54(2), 76 (2019).

21. Wéng, Y.-X.J. et al. Total gadolinium tissue deposition and skin structural findings following the administration of structurally
different gadolinium chelates in healthy and ovariectomized female rats. Quant. Imaging Med. Surg. 5(4), 534 (2015).

22. White, G. W,, Gibby, W. A. & Tweedle, M. F. Comparison of Gd (DTPA-BMA)(Omniscan) versus Gd (HP-DO3A)(ProHance)
relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Investig. Radiol. 41(3),
272-278 (2006).

23. Abraham, ], Thakral, C., Skov, L., Rossen, K. & Marckmann, P. Dermal inorganic gadolinium concentrations: Evidence for in vivo
transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br. J. Dermatol. 158(2), 273-280 (2008).

24. Darrah, T. H. et al. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics. 1(6), 479-488
(2009).

25. Sieber, M. A. et al. Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to
release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur. Radiol. 18(10), 2164-2173 (2008).

26. AlJannat, S., Hoque, T., Supti, N. A., & Alam, M.A. (eds) Detection of multiple sclerosis using deep learning. In 2021 Asian confer-
ence on innovation in technology (ASIANCON) (IEEE, 2021).

27. Naeeni Davarani, M. et al. RehaCom rehabilitation training improves a wide-range of cognitive functions in multiple sclerosis
patients. Appl. Neuropsychol. Adult. 29(2), 262-272 (2022).

28. Darestani, A. A., Davarani, M. N., Hassani-Abharian, P., Zarrindast, M.-R. & Nasehi, M. The therapeutic effect of treatment with
RehaCom software on verbal performance in patients with multiple sclerosis. J. Clin. Neurosci. 72, 93-97 (2020).

29 Al Attar, F, Kadry, S., Manic, K. S. & Meqdad, M. N. Automatic detection of ischemic-stroke-lesion with CNN segmentation: A
study. J. Phys. Conf. Ser. 2318(1), 012049. https://doi.org/10.1088/1742-6596/2318/1/012049 (2022).

30. Daoudi, R., Mouelhi, A., & Sayadi, M., (eds) Automatic ischemic stroke lesions segmentation in multimodality MRI using mask
region-based convolutional neural network. In 2020 4th International Conference on Advanced Systems and Emergent Technologies
(IC_ASET) (IEEE, 2020).

31. Rajinikanth, V., Aslam, S. M. & Kadry, S. Deep learning framework to detect ischemic stroke lesion in brain MRI slices of Flair/
DW/T1 modalities. Symmetry. 13(11), 2080 (2021).

32 Krishnamoorthy, S., Zhang, Y., Kadry, S. & Yu, W. Framework to segment and evaluate multiple sclerosis lesion in MRI slices using
VGG-UNet. Comput. Intell. Neurosci. 2022, 1-10 (2022).

33 Kumar, B. N, Mahesh, T., Geetha, G. & Guluwadi, S. Redefining retinal lesion segmentation: A quantum leap with DL-UNet
enhanced auto encoder-decoder for fundus image analysis. IEEE Access. 11, 70853-70864 (2023).

34. Rehman, A., Butt, M. A. & Zaman, M. Attention res-unet: Attention residual UNet with focal tversky loss for skin lesion segmenta-
tion. Int. J. Decis. Support Syst. Technol. (IJDSST). 15(1), 1-17 (2023).

35. Rao, B. D, Bhavana, T,, Babu, T. M., & Chouhan, L. N. (eds) DCNN Model for automatic detection of polyps using UNet. In 2023
International Conference on Computer Communication and Informatics (ICCCI) (IEEE 2023).

36. Gamal, R., Barka, H. & Hadhoud, M. GAU U-Net for multiple sclerosis segmentation. Alex. Eng. J. 73, 625-634 (2023).

37. Rondinella, A. et al. Boosting multiple sclerosis lesion segmentation through attention mechanism. Comput. Biol. Med. 161, 107021
(2023).

38. Sarica, B., Seker, D. Z. & Bayram, B. A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D
MR images. Int. ]. Med. Inf. 170, 104965 (2023).

39. Chen, Z., Wang, X., Huang, ], Lu, ]. & Zheng, J. Deep attention and graphical neural network for multiple sclerosis lesion segmen-
tation from MR imaging sequences. IEEE J. Biomed. Health Inf. 26(3), 1196-1207 (2021).

40. Joshi, A., Sharma, K., editors. Hybrid topology of graph convolution and autoencoder deep network for multiple sclerosis lesion
segmentation. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (IEEE, 2021).

41. Bouzidi, D., Ghozzi, E, & Fakhfakh, A. (eds) Ant Colony Optimization with BrainSeg3D Protocol for Multiple Sclerosis Lesion
Detection. In International Conference on Smart Homes and Health Telematics (Springer, 2022).

42. Battaglini, M. et al. Automated identification of brain new lesions in multiple sclerosis using subtraction images. J. Magn. Reson.
Imaging. 39(6), 1543-1549 (2014).

43. Fogel, I. & Sagi, D. Gabor filters as texture discriminator. Biol. Cybernet. 61(2), 103-113 (1989).

44. Hu, J,, Shen, L., & Sun, G. (eds) Squeeze-and-excitation networks. In Proc. of the IEEE conference on computer vision and pattern
recognition (2018).

45. Tan, M., & Le, Q. (eds) Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on
machine learning (PMLR, 2019).

46. Hoang, V.-T., & Jo, K.-H. (eds) Practical analysis on architecture of EfficientNet. In 2021 14th International Conference on Human
System Interaction (HSI) (IEEE, 2021).

47. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F, & Adam, H. (eds) Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proc. of the European conference on computer vision (ECCV) (2018).

48. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834-848 (2017).

49. Wang, Y., Wang, C., Wu, H. & Chen, P. An improved Deeplabv3+ semantic segmentation algorithm with multiple loss constraints.
Plos one. 17(1), €0261582 (2022).

50. Anbalagan, T., Nath, M. K., Vijayalakshmi, D. & Anbalagan, A. Analysis of various techniques for ECG signal in healthcare, past,
present, and future. Biomed. Eng. Adv. 6, 100089 (2023).

51. Ahuja, S., Panigrahi, B., & Gandhi, T. K. (eds) Fully automatic brain tumor segmentation using DeepLabv3+ with variable loss
functions. In 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN) (IEEE, 2021).

52. Ni, J., Zhang, F, Ma, E, Yin, Q. & Xiang, D. Random region matting for the high-resolution polsar image semantic segmentation.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 3040-3051 (2021).

53. Abolvardi, A. A., Hamey, L., & Ho-Shon, K. (eds) Registration based data augmentation for multiple sclerosis lesion segmentation.
In 2019 Digital Image Computing: Techniques and Applications (DICTA) (IEEE, 2019).

Scientific Reports |  (2024) 14:16304 | https://doi.org/10.1038/s41598-024-67130-6 nature portfolio


https://doi.org/10.1088/1742-6596/2318/1/012049

www.nature.com/scientificreports/

54. Salem, M. et al. Multiple sclerosis lesion synthesis in MRI using an encoder-decoder U-NET. IEEE Access. 7, 25171-25184 (2019).

55. Aslani, S. et al. Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Neurolmage. 196, 1-15
(2019).

56. Feng, Y., Pan, H., Meyer, C., & Feng, X. (eds) A self-adaptive network for multiple sclerosis lesion segmentation from multi-contrast
MRI with various imaging sequences. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019); (IEEE, 2019).

57 Afzal, H. et al. Automatic and robust segmentation of multiple sclerosis lesions with convolutional neural networks. Comput.
Mater. Continua. 66(1), 977-991 (2021).

58. Raab, E, Wein, S., Greenlee, M., Malloni, W., & Lang, E. A multimodal 2d convolutional neural network for multiple sclerosis
lesion detection. Authorea Preprints. (2023).

59. Kamraoui, R. A. et al. DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation.
Med. Image Anal. 76, 102312 (2022).

Author contributions

M.N.D: Programming, coding, labeling MRI images, writing the introduction, abstract, related works section,
and reviewing relevant articles.A.A.D: Reviewing the imaging process, coding, labeling MRI images, writing the
discussion, conclusion section, and examining related research.V.G.C: Designing tables and images, reviewing
the manuscript text, and investigating similar research studies.H.A: Programming, coding, data analysis, and
writing the methodology section of the paper.S.H.H: Reviewing patient files with MS and selecting relevant
patients for our research.H.H: Examining plaques’ lesions on MRI images of MS patients, preparing them for
labeling as a radiologist. M.H.H: Diagnosing and examining MS patients, reviewing the imaging process, labeling
patients, and addressing potential issues in the research process.

Fundin

This reseagrch has not received any funding from any company, institution, or university. It is entirely self-funded
by the authors, and no external financial support has been utilized at any stage of the research process. The
absence of external funding ensures the independence and impartiality of the study. All necessary resources,
including materials, equipment, and personnel, have been provided by the authors, and the research has been
conducted with a commitment to transparency and integrity.

Competing interests

We declare that there are no competing interests associated with this research. No financial, personal, or profes-
sional relationships exist that could influence the objectivity or integrity of the reported findings. This includes
but is not limited to, any affiliations with organizations or entities that may have a direct or indirect interest in
the subject matter discussed in this manuscript. We affirm that there are no conflicts of interest that might affect
the impartiality of the study or the interpretation of its results.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/541598-024-67130-6.

Correspondence and requests for materials should be addressed to M.H.H.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

= License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports |

(2024) 14:16304 | https://doi.org/10.1038/s41598-024-67130-6 nature portfolio


https://doi.org/10.1038/s41598-024-67130-6
https://doi.org/10.1038/s41598-024-67130-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Efficient segmentation of active and inactive plaques in FLAIR-images using DeepLabV3Plus SE with efficientnetb0 backbone in multiple sclerosis
	Contributions
	Related work
	Materials and methods
	Dataset
	Pre-processing
	Removal of the cranial bone segment
	Resizing
	Normalization

	Proposed method
	Squeeze and excitation network (SE-Block)
	EfficientNetB0
	Atrous spatial pyramid pooling (ASPP) block
	Deeplabv3Plus SE network structure

	Train model
	Ethical approval

	Results
	Discussion
	Conclusion
	References


