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Cross‑sectional analysis 
of socioeconomic drivers of PM2.5 
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economies
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Within the intricate interplay of socio-economic, natural and anthropogenic factors, haze pollution 
stands as a stark emblem of environmental degradation, particularly in the South Asian Association 
for Regional Cooperation (SAARC) region. Despite significant efforts to mitigate greenhouse gas 
emissions, several SAARC nations consistently rank among the world’s most polluted. Addressing this 
critical research gap, this study employs robust econometric methodologies to elucidate the dynamics 
of haze pollution across SAARC countries from 1998 to 2020. These methodologies include the Pooled 
Mean Group (PMG) and Augmented Mean Group (AMG) estimator, Panel two-stage least squares 
(TSLS), Feasible Generalized Least Squares (FGLS) and Dumitrescu–Hurlin (D–H) causality test. The 
analysis reveals a statistically significant cointegrating relationship between PM2.5 and economic 
indicators, with economic development and consumption expenditure exhibiting positive associations 
and rainfall demonstrating a mitigating effect. Furthermore, a bidirectional causality is established 
between temperature and economic growth, both influencing PM2.5 concentrations. These findings 
emphasize the crucial role of evidence-based policy strategies in curbing air pollution. Based on 
these insights, recommendations focus on prioritizing green economic paradigms, intensifying forest 
conservation efforts, fostering the adoption of eco-friendly energy technologies in manufacturing and 
proactively implementing climate-sensitive policies. By embracing these recommendations, SAARC 
nations can formulate comprehensive and sustainable approaches to combat air pollution, paving the 
way for a healthier atmospheric environment for their citizens.
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The SAARC region has experienced substantial environmental degradation, specifically with regard to air quality, 
due to the interplay of accelerated economic expansion, urbanization and human endeavors. In recent times, 
these factors have played a significant role in the increase of air pollution, with haze pollution becoming a 
significant source of concern. There has been a notable surge in public consciousness concerning the matter 
of haze pollution, the primary pollutant attributed to haze pollution1,2. The prevalence of haze pollution is not 
just an environmental concern; it presents a substantial risk to public health, economic prosperity, and regional 
stability. Haze pollution is mainly caused by the presence of PM2.5, which refers to particulate matter that has 
a diameter of less than 2.5 mm. This fine particulate matter has the ability to linger in the atmosphere for long 
periods of time, exacerbating the detrimental impacts of haze pollution. It is crucial to emphasize the significance 
of tackling this matter. Exposure to PM2.5 has significant implications for human health, affecting respiratory 
systems and potentially resulting in long-term illnesses. The decline in public perception of air quality has had a 
significant impact on the overall quality of life and has the potential to hinder economic activities such as tourism. 
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In addition, the ecological consequences of haze pollution go beyond regional boundaries, impacting ecosystems 
and biodiversity on a global scale. Addressing haze pollution in the SAARC region is crucial for protecting the 
health of its citizens, promoting sustainable economic growth, and fostering regional environmental cooperation.

SAARC comprises more than 25% of the global population. Furthermore, this area significantly contrib-
utes to the global economy, accounting for around 4% of the total global gross domestic product. Moreover, it 
constitutes 2% of global product exports and consumes over 25% of the world’s energy. The SAARC region is 
also accountable for the urbanization of approximately 15% of the world’s population2,3. It is evident from the 
differential growth rates of these factors that the regional GDP is highly energy intensive, which is concerning 
in terms of the potential for emissions in the region4. Considering the intense economic development of the 
region, SAARC Energy Centre5 predicted that the annual GDP of the region, industries, total consumption of 
goods and associated energy demand would increase by eight percent and seven percent by 2030 because of the 
area’s intense economic development2. The region is currently experiencing significant economic development 
and is approaching a rapid industrialization process. This has led to an increase in economic growth, consumer 
spending and energy consumption to meet the demands of emerging industries, urban populations and invest-
ments. Consequently, there has been a decline in green and forested areas within the region2. According to 
Brauer6, a significant proportion of member nations (62%) are included in the top twenty most polluted countries 
globally due to haze pollution in this region. Hence, it is crucial to mitigate haze pollution in this region since 
several variables contribute to the degradation of air quality. Comprehending these elements makes it possible 
to formulate evidence-based strategies for addressing this issue.

Yang et al.7 reported the source of PM pollutants are all kinds of vehicles, dirt and dust from civil con-
struction, broken-off roads, exposed lands, wind corrosion and burning of biomass in the brick fields and city 
incinerators during the dry season. PM2.5 pollutants are also produced by a variety of sources and components 
that scholars have extensively studied. Events in the social and economic sphere can influence these sources. 
A broad categorization may be established between the determinants influencing the accumulation of PM2.5 
and those influencing its dispersion. The aggregation, transmission and dispersion of PM2.5 are influenced 
by several environmental elements, including terrain, wind speed, temperature and precipitation. Conversely, 
societal concerns are linked to the development of haze pollution1,8. Although PM2.5 is emitted by numerous 
sources, urbanization and land use are unquestionably among the most significant anthropogenic polluters2,9. 
Deserts contribute significantly to PM2.5 concentrations due to their substantial production of sand and dust10. 
In contrast, forests have the capacity to absorb and filter PM2.5 contaminants11.

Air pollution, specifically PM2.5, is a complex problem that has multiple causes. This study explores the 
relationship between PM2.5 and various factors, including GDP, consumer expenditure, forest area, annual 
temperature and precipitation. These factors are considered as potential drivers of PM2.5 levels. It is of utmost 
importance to analyze these connections as numerous studies2,12–14 have established a correlation between eco-
nomic growth, as measured by GDP and heightened energy consumption and industrial activity. These activities 
can be major contributors to PM2.5 emissions, especially in regions undergoing rapid economic growth. Con-
sumer expenditure patterns also have an impact. Studies indicate that higher expenditures on goods that have a 
significant amount of energy embedded in them, such as manufactured products, have the potential to contribute 
to the pollution of fine particulate matter (PM2.5) at various stages of their production and transportation15–17. 
Forest cover plays a crucial role in purifying the air by acting as a natural filter for air pollutants. Numerous 
studies18–20 have consistently shown a strong connection between deforestation and increased levels of PM2.5. 
Ultimately, climate variables such as annual temperature and precipitation have the potential to impact atmos-
pheric conditions that can in turn affect the dispersion of PM2.52,21,1. Gaining a deep understanding of these 
intricate interactions is essential in order to pinpoint the key factors that contribute to PM2.5 pollution. This 
knowledge will help guide the development of specific policy interventions aimed at achieving cleaner air. In 
order to effectively analyze strategies designed to mitigate pollution, it is vital to possess a thorough comprehen-
sion of the socio-economic variables linked to PM2.5 pollution22. Numerous studies have been undertaken to 
perform qualitative analyses on the economic aspects that contribute to haze pollution and explore viable strate-
gies for its mitigation23. Furthermore, previous research has been dedicated to examining the characteristics that 
contribute to the presence of PM2.5 pollution and evaluating several strategies for its reduction2,24. The inclusion 
of environmental factors in development plans and strategies is of utmost importance for governments and 
growth economists, as evidenced by extensive academic study undertaken by Musa et al.2 and Ahmed et al.25.

Our objective is to assess the collective impact of many possible influencing variables on haze pollution in the 
region. Before addressing the sternness of SAARC’s haze pollution problem, some questions need to be addressed 
to clarify our study objectives. (1) Do economic growth activities contribute to the air quality locally and if so, 
how? (2) What anthropogenic and social activity resulted in the degradation or improvement of air quality? 
(3) Does the natural environment impact the air quality in this particular region? This study aims to answer 
these questions and identify the factors that degrade air quality and interact with one another in a significant 
way in order to improve air quality. Before attaining the objective of decreasing the PM2.5 concentration, it is 
essential to examine the economic, anthropogenic and environmental factors that affect PM2.526. Prior studies 
have predominantly concentrated on individual elements such as natural, socioeconomic and anthropogenic 
factors2. Moreover, studies have generally overlooked the impact of both natural and anthropogenic variables 
on haze. The research has primarily concentrated on economic and social variables, with minimal attention 
given to environmental aspects26. PM2.5 is influenced by natural, social and anthropogenic variables and the 
utilization of these aspects has been proven to be successful2. Numerous facets of our research we believe has 
the potential to make substantial and significant contributions to the existing body of literature. First, due to the 
absence of comprehensive and enduring PM2.5 pollution data, particularly in developing nations where moni-
toring networks are mostly absent, attaining a thorough comprehension of the intricate interplay among many 
components remains unattainable. The feasibility of utilizing remote sensing techniques for the extraction and 
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calculation of long-term PM2.5 data has been determined as a viable approach for resolving the aforementioned 
issue. Consequently, a panel data set spanning an extended period was constructed using the PM2.5 geographical 
information obtained from satellite observations. Second, to the best of our knowledge, the majority of study has 
primarily examined the impact of individual components, such as those of a natural, anthropogenic, or economic 
nature, rather than considering their collective and synergistic effects. Very few studies have been undertaken 
to investigate the effects of various variables on air pollution, namely PM2.5 pollution, within the SAARC area. 
Third, limited studies have been conducted about the correlation between consumer spending and forest acreage 
with air pollution in the SAARC region, despite the significant social and human implications associated with 
these issues. The final phase of this study involves the assessment of economic and human activities in relation to 
the phenomenon of haze pollution. Thus, this study utilized panel data spanning from 1998 to 2020 to investigate 
the influence of factors like economic growth, consumer expenditure, forest area, temperature and total rainfall 
on PM2.5 pollution within the SAARC region.

Theoretical basis and literature review
The issue of severe haze pollution has garnered significant public interest, with PM2.5 being identified as the 
primary pollutant responsible for this environmental concern. Numerous researchers have extensively examined 
the origins and factors that contribute to the production of PM2.5 pollutants. Several studies have identified 
economic development, energy consumption, construction and urbanization as significant contributors to air 
pollution13,27. Additionally, the use of energy, energy mix and technology also play a role in its impact9. Contrary 
to the assertions made by environmentalists, it is widely acknowledged that energy serves as the major con-
tributor to the emissions of both industrialized and non-industrialized sectors25. A causal analysis of economic 
growth and environmental deterioration is conducted by Samour et al.28 and Muhammad et al.29 since economic 
growth and associated social activity are highly dependent on efficient energy use30. The current investigation has 
revealed a favorable association between economic development and the accompanying social activities, as well 
as the consequent increase in energy consumption and emissions of greenhouse gases. While human activities 
contribute to the increase in PM2.5 levels, it is evident that the severity of this issue varies in densely popu-
lated areas due to natural factors31. Several studies have been conducted to investigate the causal link between 
economic development, energy consumption and environmental degradation in the member countries of the 
South Asian Association for Regional Cooperation (SAARC). Musa et al.2 and Akhmat et al.32 have presented 
empirical findings that substantiate the proposition that energy use significantly contributes to the exacerbation 
of pollutant emissions. Many scholars argue that there is a negative relationship between economic growth and 
environmental pollution, which aligns with the theory of the reversed U-shaped EKC theory.

The per capita consumption expenditures serve as an indicator of the consumption patterns and behaviors 
of individuals residing in a certain area. Cities with higher consumption levels have elevated concentrations 
of PM2.5 due to the presence of a greater number of homes, autos, urbanization and household appliances8. 
Consequently, a substantial amount of pollution is present in the Earth’s atmosphere. A positive association 
exists between air pollution and domestic consumption, as shown in both advanced countries and emerging 
nations, where the latter is seeing a rise in domestic consumption13. When examining the environmental effect of 
household appliances used in everyday life, per capita consumption expenditures provide a more comprehensive 
perspective compared to GDP per capita. In the context of environmental impact assessment, GDP per capita 
serves as a metric to gauge the influence of household appliances on the environment. In their study, Ozyilmaz 
et al.33 discuss the impact of public expenditures and their sub-components on environmental pollution in G-7 
countries. The study suggests that public spending has a positive impact on reducing environmental pollution. 
When examining the outcomes of different aspects of public spending, it becomes evident that certain areas such 
as housing and community amenities, social protection, health expenditure, economic affairs and recreation, 
culture & religion expenditures contribute to environmental pollution in a detrimental way.

Various control variables typically have a significant impact on environmental pollution. A study by Ji et al.34 
has provided evidence to support the notion that the absorption of particulate matter by plants serves as a very 
effective mechanism for air purification, resulting in a substantial reduction in atmospheric particulate matter 
levels. The study conducted by Begum et al.35 utilized time series data to illustrate a clear inverse relationship 
between forest area and CO2 emissions. In their recent study, Mandal et al.36 examined the relationship between 
soil organic carbon pool, litter carbon and forest carbon storage. The findings of their research indicate a con-
cerning decrease in India’s forest area and its impact on pollution levels. The increase in forest coverage leads to 
a proportional improvement in the ability to adsorb particulate particles. The study conducted by Ramon et al.18 
provides evidence that trees act as a natural defense against PM. The study found that implementing low-cost 
nature-based solutions (NbS) can effectively reduce air pollution and have a positive impact on human health 
and well-being. It recommends that municipal policies and programs, particularly in areas with high human 
density and poorly managed green spaces, should include these solutions. Multiple studies have demonstrated 
the substantial impact of natural variables on haze pollution37. These variables encompass several aspects, such 
as average temperature, rainfall and others9. According to Zhang and Cao38, the average temperature exerts an 
impact on the chemical processes involved in the production of pollutants, such as PM2.5, by means of catalytic 
activity. The phenomenon of clotting, rainfall and aerosols has been seen to facilitate the removal of pollutants 
from the atmosphere39,40.

It is crucial to have a thorough understanding of the socioeconomic factors driving PM2.5 pollution when 
formulating pollution reduction policies22. A group of researchers conducted a qualitative examination of the 
economic factors behind haze pollution and explored strategies for mitigating it23. Meanwhile, another group 
focused on quantifying the various factors that contribute to haze pollution, including urbanization, technologi-
cal advancement, energy and environmental legislation, energy consumption and other strategies for mitigating 
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PM2.524,27. In a comprehensive study conducted by Li et al.41, the factors driving PM2.5 emissions were thor-
oughly examined. The findings of the study revealed that economic development, industrialization and urbaniza-
tion were significant contributors to the long-term increase in PM2.5 pollution. Additionally, Xu et al.42 found 
that various factors such as economic growth, energy intensity, urbanization, coal consumption, personal vehicles 
and population mass have an impact on PM2.5 pollution. Extensive research on these matters has led growth 
economists and governments to incorporate environmental factors into the development policy-making process2.

In summary, to the best of our knowledge, only a small number of studies have utilized long-term PM2.5 
remote sensing data for econometric analysis. Nevertheless, numerous studies have focused on analyzing the 
sources of PM2.5 pollution. This emphasis is primarily due to the absence of a comprehensive and long-term 
spatial dataset on PM2.5, as addressed by Wang et al.43. A significant amount of research has been conducted on 
economic, anthropogenic and social variables. However, there has been relatively little focus on the combined 
impact of natural factors24. If research solely focuses on the influencing factors from economic and social per-
spectives, the empirical results are bound to be inaccurate. Our study aimed to investigate the impact of various 
factors, both natural and human-induced, on haze pollution that has not been adequately addressed in previous 
research. Nevertheless, there is already a significant body of research on the impact of these factors on haze pol-
lution. However, it would be beneficial to investigate whether the effects differ when studying them collectively 
and in specific regions such as SAARC. The research on the impact of economic, anthropogenic and natural fac-
tors on haze pollution has always been a primary focus and the scope of this research is continuously expanding. 
Our aim is to conduct a comprehensive study on the effects of economic growth, consumer expenditure, total 
rainfall and average temperature on haze pollution in the SAARC region. We will analyze panel data from 1998 
to 2020 to determine the extent of their influence.

Methodology and the model
This section discusses the study area, data sources and how PM2.5 interacts with other pollutants in the atmos-
phere and how those interactions affect haze pollution in particular. Furthermore, based on previously identi-
fied gaps, these interactions in this study were quantified using a comprehensive and leading set of econometric 
analysis techniques. This article delineates six pivotal stages in the estimating process. To begin with, In order to 
assess the presence of heterogeneity, it is essential to perform the CD test as suggested by Pesaran44, followed by 
the slope homogeneity test developed by Pesaran and Yamagata45. The next phase entails evaluating the station-
arity of each variable. In order to determine the presence of stationarity, a combination of first-generation and 
second-generation panel unit root tests were employed. The PANIC test, which was established by Bai and Ng46 
and the CIPS test, suggested by Pesaran47, are two widely acknowledged and reliable second-generation unit root 
tests. In the fourth stage, the cointegration tests for panel data proposed by Pedroni48, Kao49 and Westerlund50 
were employed to investigate the presence of cointegrating relationships among the selected variables and assess 
their correlation. Additionally, we have conducted an empirical analysis using the Pooled Mean Group (PMG) 
and the panel Augmented Mean Group (AMG) estimators to analyze the dynamic long-run and short-run 
associations between variables. The research employed the Panel Two-Stage Least Squares (TSLS) and Feasible 
Generalized Least Squares (FGLS) estimators to assess the reliability of the results and estimate the coefficients 
and magnitude of the enduring relationships between the independent and dependent variables. The Dumitrescu 
and Hurlin51 non-causality test has been employed to investigate the causative relationship between variables. 
Figure 1 presents a visual representation of the model requirements.

Theoretical framework and model specification
This study aims to create a model that considers the influence of socio-economic disparities, natural phenom-
ena and human activity on environmental degradation, specifically focusing on haze pollution. Based on the 
characteristics of the dependent and independent variables, it seems that the widely used EKC model is the 
most suitable choice for the given data. In line with the research conducted by Musa et al.2 and Sikder et al.52, 
an investigation was carried out on the relations between haze pollution (PM2.5), per capita GDP based on PPP 
(GDP), consumption expenditure (COEXP), forest area (FA), average annual temperature (TEMP) and total 
annual rainfall (PREC) in six SAARC countries. The study focused on examining these relationships using a 
hypothetical EKC model and it is modeled as follows:

where PM2.5 is the primary explanatory variable. The independent variables are GDP, COEXP, FA, TEMP and 
PREC. In a linear combination with matching parameters and panel data format, the variables were expressed 
as follows:

where β1,β2,β3 and β4 are the slope parameters of the explanatory variables and αi and µit are the constant and 
error terms respectively. Study area and time are symbolized by i and t  respectively.

In order to reduce scattering, multi-collinearity and heteroscedasticity, the author transformed all variables 
into natural logarithms and it is well known that the regression afterward produces more consistent and accurate 
results than ordinary linear regression2,53.

Using Eq. 2, the logarithmic specification can be expressed in the following manner:

(1)PM2.5it = f (GDPit ,COEXPit , FAit ,TEMPit , PRECit),

(2)PM2.5it = αi + β1GDPit + β2COEXPit + β3FAit + β4TEMPit + β5PRECit + µit ,

(3)LnPM2.5it = αi + β1LnGDPit + β2LnCOEXPit + β3LnFAit + β4LnTEMPit + β5LnPRECit + µit ,
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where i  denotes the country (i = 1, 2, …, 6), t  the time (1998–2020) and µit the error term. The coefficients 
β1, β2, β3, β4 , β5 denote the impacts of the explanatory variables on the responding variable. After log transforma-
tion, the variable’s coefficients became elastic.

Study area
Since it was founded in 1985, the South Asian Association for Regional Cooperation (SAARC) has worked 
to promote economic, scientific, social and cultural growth in South Asia. Bangladesh, Bhutan, India, Nepal, 
Pakistan, the Maldives, Afghanistan and Sri Lanka are all part of the group. Afghanistan joined in 2007, making 
it the most latest country to join the group. The SAARC region was the main topic of this study. The goal was to 
look at how economic growth, consumer spending, forest area, weather and rainfall might all affect PM2.5 levels. 
Figure 2 shows data at the country level for a number of factors that help our research in the area. Afghanistan 
and the Maldives were left out of the study because there wasn’t enough data on them. Panel statistics with real-
world information were collected at the country level in the SAARC area from 1998 to 2020.

Data source and variable selection
Based upon the scattering properties and simulation of aerosol vertical profile54–56, this study used a single 
country-level panel data set or haze pollution proxied by particulate matter 2.5 concentrations and denoted as 
(PM2.5) (V4.GL.03) for the SAARC region from 1998 to 2020, with a spatial resolution of 10 km57. The PM2.5 
concentration data were calculated using NASA’s AOD, MODIS and MISR2. ACA—Atmospheric Composition 
Analysis Group has made a version of this data set available online at the group’s website (https://​sites.​wustl.​edu/​
acag/​datas​ets/​surfa​ce-​pm2-5/). The analysis uses a subset of available data, which covers country-level data for the 
SAARC region (see Fig. 2). Economic growth was measured as the change in GDP (purchaser’s prices) denoted 
as GDP, consumer expenditure as final consumption expenditure (constant 2010 US$) denoted as (COEXP) 
and forest area as the total forest area (sq. km) denoted as (FA). To measure consumers’ expenditure, we used 
final consumption expenditure (constant 2010 US$) and to indicate the country’s green area we used the total 
available forest area (sq. km). We created the panel data for economic growth based on the data extracted from 
the macrotrends database found at: https://​www.​macro​trends.​net/58. The World Development Indicators (WDI) 
(http://​data.​world​bank.​org) data set provided the data for consumer expenditure and forest areas3. Climate data 
such as temperature (TEMP) and precipitation (PREC) were extracted from the WorldClim database (https://​
www.​world​clima​te.​org/​data/​month​lywth.​html, where TEMP and PREC are measured in degrees Celsius (°C) 
and millimeters (mm)59.

In the context of our research, we have formulated and implemented a system aimed at influencing the deter-
minants of PM2.5 pollution. This system draws upon a comprehensive body of previous studies and incorporates 
easily accessible and publicly available information. The present study, as depicted in Table 1, investigated a range 
of influential variables.

It explains the variables, the symbol used to illustrate each variable, the unit for each, and the description and 
the source of the data for each variable.

Figure 1.   The methodological framework of the study. The figure graphically explains the empirical framework.

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://www.macrotrends.net/
http://data.worldbank.org
https://www.worldclimate.org/data/monthlywth.html
https://www.worldclimate.org/data/monthlywth.html
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The response variable of this study is particulate matter and, designated by PM2.5. Meanwhile, the explana-
tory variables, such as economic growth, consumption expenditure, forest area, annual temperature and annual 

Figure 2.   SAARC Region’s PM2.5 concentrations, from 1998 to 2020: A Spatio-temporal distribution. This 
figure shows the PM2.5 concentration over time and in different regions. The different colors represent the 
average value of the PM2.5 concentrations of each country, and the color layer was created by ArcGIS10.8. 
(http://​deskt​op.​arcgis.​com/​en/).

http://desktop.arcgis.com/en/
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precipitation, are designated GDP, COEXP, FA, TEMP and PREC, respectively.

Econometric methods
The issue of cross-sectional dependence (CD) and heterogeneity problems may arise in the context of econo-
metric study using country-level panel data53,60. Hence, it is important to do a comprehensive evaluation of the 
considerations before selecting a suitable analytical methodology to alleviate the occurrence of these challenges. 
The inclusion of confounding variables CD and heterogeneity in a research might introduce bias and compromise 
the reliability of the findings44,60,61. Consequently, it is advisable to employ “second-generation” econometric 
approaches where applicable.

Cross‑sectional dependence test
Previous studies have shown evidence of the presence of cross-sectional dependency (CD) in cases when nations 
are connected by shared economic and social networks, spatial impacts, or other unobserved variables62. The 
presence of shared shocks has led to the inclusion of CD in the error terms of panel data models2,60. Failure to 
handle this issue can lead to biased and inconsistent results53,60. The study incorporates few variants of CD tests, 
namely: (i) the LM test developed by Breusch and Pagan63; (ii) the scaled LM test proposed by Pesaran44; (iii) 
the bias-corrected scaled LM test introduced by Baltagi et al.64; and (iv) the CD test developed by Pesaran44.

Slope homogeneity test
After determining the CD, it is imperative to evaluate the dataset’s homogeneity. To guarantee the dependability 
of the estimation results, it is critical to confront the concern of cross-sectional heterogeneity, as highlighted by 
Breitung61. The study employed the Pesaran and Yamagata45 test to assess the uniformity of slope coefficients. 
The test in question was chosen by Musah et al.65 due to its ability to manage residual cross-sectional depend-
ency effectively and yield reliable and coherent outcomes. The authors, Pesaran and Yamagata45 utilized panel 
data to expand upon the approach developed by Swamy66 and confirmed the homogeneity of slopes. This is 
demonstrated in the following manner:

where β̂  denotes the coefficients of the pooled OLS for each discrete i from 1 to N and β̃WFE depicts the weighted 
fixed effect (WFE) of the slope coefficient’s pooled estimator. Additionally, Mτ depicts the identity matrix and 
the estimation is the σ̃ 2

i  . The � is the standardized dispersion statistic and �adj is the biased-adjusted version. 
They are defined by:

where E(zit) = k and var(zit) = 2k(T−k−1)
T+1 .

Panel unit root test
In panel data analysis, determining the stationarity of variables is crucial for reliable estimations. Panel unit root 
tests offer a tool for this task, but relying solely on first-generation tests can be treacherous. These tests assume 
independence across cross-sectional units, an assumption that often crumbles in real-world data. Following 
Odhiambo60, Tugcu67 and Jahanger et al.30 the twin problem of homogeneity and cross-sectional dependence is 
reduced in the second-generation panel unit root. They explicitly account for cross-sectional dependence, ensur-
ing robust and accurate assessments of stationarity. This study, recognizing the lurking presence of dependence 
in its data, wisely wields both first- and second-generation tests. This two-pronged approach ensures that the sta-
tionarity conclusions drawn are firmly grounded in fact, not shaky assumptions. The second-generation PANIC 

(4)S̃ =
N−1∑

i=1

(
β̂i − β̃WFE

)′X ′
iMτXi

σ̃ 2
i

(
β̂i − β̃WFE

)
,

(5)� =
√
N

(
N−1S̃ − k√

2k

)
,

(6)�adj =
√
N

(
N−1S̃ − E(zit)√

var(zit)

)
,

Table 1.   Influencing factor system and the summary of the study’s variables.

Variables Symbol Unit Description Data source

Particulate matter PM2.5 µg/m3 Indicating the air quality ACA​

Economic growth GDP Billion dollar GDP/capita based on purchaser’s prices Macrotrends

Consumption expenditure COEXP USD $ Final consumption expenditure (constant 2010 US$) WDI

Forest area FA Sq.km Forest area WDI

Temperature TEMP °C Average annual temperature WorldClim

Rainfall PREC mm/inch Total annual precipitation WorldClim
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and CIPS tests developed by Bai and Ng46 and Pesaran47, respectively, with their ability to handle various sources 
of non-stationarity, are particularly valuable additions to the testing arsenal. In the presence of cross-sectional 
dependence, these tests are the sturdy tools needed to build reliable econometric models. By embracing this 
methodological rigor, researchers can navigate the complexities of panel data with confidence and draw accurate 
conclusions about their variables’ stationarity. The equation model for PANIC test is written as.

The date Xit(i = 1, ......,N; t = 1, ....,T) are assumed to be generated by;

where C(L) =
∑∞

j=0 CjL
j and DiL =

∑∞
j=0 DijL

j The idiosyncratic error eit is I (1) if pi = 1 and is stationary if [
pi
]
< 1 . We allow r0 stationary factors and r1 common trends, with r = r0 + r1 . Stated differently, the rank of C(1) 

is r1 . The objective is to determine r1 and test if pi = 1 when neither Ft , nor eit is observed and will be estimated 
by the method of principal components.

On the other hand, CIPS test is based on the Dickey-Fuller (CADF) test. The equation allows one to difine 
the CADF that is provided below:

where,yt−1 and �yi,t−1 are averages for lagged and first differences of each cross-section series. The constant term 
is denoted by (i = 1, . . . , t, i), the trend by (t) , the time lag by (yi, tj) and the error by ∈it.

A cross-section is used to analyze the results of the CADF test for the whole panel; the section-wise CIPS test 
might be carried out, as outlined in the following sentence:

where CADFi represents “cross-sectional augmented dickey fuller test” and N is the number of observations. 
The covariate-augmented Dickey–Fuller (CADF) test is useful for determining whether or not a series has a unit 
root that employs a null hypothesis.

Panel cointegration test
A cointegration relationship between the variables under consideration must be evaluated once the integration 
order of the variables is confirmed2,12. As a result of cross-sectional dependency, standard cointegration tests, 
such as Johansen and Kao, might be less accurate, hence leading to inaccurate conclusions. A number of com-
monly used cointegration tests have been utilized in the study, such as the Pedroni cointegration test48 and the 
Kao Residual cointegration test49. On the other hand we also employed the innovative Durbin Hausman group 
mean cointegration test proposed by Westerlund50 to tackle the previously described CD issue. This test holds 
two notable advantages: firstly, it avoids heavy reliance on prior knowledge regarding the order of integration and 
relaxes the cross-sectional dependency assumption, allowing for differentiation of explanatory variables based on 
their stability ranks. Secondly, the Group-mean tests ( Gτ and Gα ) scrutinize the cointegration of all units within 
a group, while the Panel tests ( Pτ and Pα ) assess the cointegration of the entire panel68. Consequently, the error 
correction specification for the Westerlund cointegration test50 is provided as follows:

here ∈i represents the coefficient’s rate of restitution towards equilibrium.
Here, The four formulations presented by Westerlund50, which incorporate group-mean statistics and panel 

statistics, are shown by Eqs. (13) to (16).

(7)Xit = ci + βit + �
′
iFt + eit ,

(8)(I − L)Ft = C(L)ut ,

(9)(1− piL)eit = Di(l)εit ,

(10)�yit = αi + πiyi,t−1 + ϕiyt−1 +
P∑

l=0

∅il�yt−1 +
P∑

l=1

γil�yi,t−1 + t + �
′
iFt+ ∈it ,

(11)CIPS = 1

N

N∑

i=1

CADFi ,

(12)�Yi,t = δ′idt+ ∈i

(
Yi,t−1 − β ′

iXi,t−1

)
+

p∑

j=1

ϕijYi,t−j +
p∑

j=0

ϕijXi,t−j + ui,t ,

(13)Gτ = 1

N

N∑

i=1

∈i

Se
(
∈̂i

) ,

(14)Gα = 1

N

N∑

i=1

T ∈i

∈′
i (1)

,

(15)Pτ = ∈̂i

Se
(
∈̂i

) ,



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16357  | https://doi.org/10.1038/s41598-024-67199-z

www.nature.com/scientificreports/

The statistical calculations in the analysis employ the least-squares estimation method for determining the 
values of variables ∈i and T . Moreover, the utilization of the Gτ and Gα statistics is applied to evaluate the exist-
ence of cointegration in at least one cross-sectional unit, while the Pτ and Pα statistics demonstrate the presence 
of cointegration across the complete panel.

Empirical model estimation
According to the research conducted by Le and Ozturk53 and O’Connell69, the existence of cross-sectional 
dependency (CD) has the potential to invalidate stationarity tests and their corresponding outcomes. The Ordi-
nary Least Squares (OLS) and other renowned econometric approaches have been found to demonstrate bias 
with the presence of collinearity and heteroscedasticity53,70. Furthermore, traditional estimators exhibit a lack 
of conclusiveness when investigating independent variables as potential factors contributing to cross-sectional 
dependency. The Pooled Mean Group (PMG) estimation is considered more favorable than the single cointegra-
tion technique for a variety of convincing reasons when determining the presence of long- and short-run equilib-
rium in the provided time series data71,72. Sikder et al.52 have demonstrated that the PMG approach yields more 
reliable and efficient results while simultaneously providing both dynamic long- and short-term coefficients52,73. 
As previously mentioned, the existence of CD, SH and long-term relationships among the variables of interest 
led to the adoption of the second-generation estimation technique as well. The Augmented Mean Group (AMG) 
model is a sophisticated econometric technique commonly employed for panel data analysis. The AMG model 
considers the impact of lagged variables to capture the temporal dynamics of individual effects. These models 
offer a comprehensive set of tools for examining economic phenomena in panel datasets, enabling a detailed 
examination of individual and collective impacts over time74. We have chosen the AMG approach for conducting 
empirical analysis due to the presence of CS dependence and mixed order of integration in the data. The selected 
techniques address the issues of CD and heterogeneity, ensuring consistent estimates74,75. As a consequence of the 
aforementioned benefits, we decided to use the PMG and AMG estimator to examine the dynamic associations 
between the dependent and independent variables.

Based on the PMG framework, we can formulate long-run and short-run models as depicted in Eqs. (17) 
and (18) below:

The cross-sectional unit, time frame and optimal lags in Eq. (17), are depicted by i  , t  and j respectively. 
ϒit indicates the exogenous variables, �LnGDP , �LnCOEXP , �LnFA , �LnTEMP and �LnPREC , which are 
representing economic growth, consumption expenditure, forest area, total temperature and annual rainfall, 
respectively. Moreover, optimal lag orders are depicted by p and q while εit indicated the error terms.

Equation (18) below illustrates the short-run model estimation of the variable studied:

The ECT (Error Correction Term) analyzes the selected variables in Eq. (16) over the long term. This analy-
sis establishes the rate at which the long-run equilibrium recovers from short-run disturbances. Following a 
shock,ECTt−i indicates the direction in which the long-run equilibrium will be converged, as indicated by φij . 
Furthermore, the ectt−1 coefficients has to be statistically significant and negative52,76.

The augmented mean group (AMG) approach takes into account cross-sectional dependency by incorporating 
dynamic effects. Eberhardt and Teal77 introduced the AMG approach as an alternative to a two-step method45. 
First, it utilizes ordinary least squares (OLS) in difference form to combine unobserved time dummies as follows 
in Eqs. (19) and (20):

where yit presents dependent variable, βi presents explanatory variables, � indicates differenced and βo presents 
intercept. βi , σt and ∅t indicates the slope of cross-sections, unobserved common effects and heterogenous fac-
tors. Parameters for AMG model for every cross-section are averaged as:

Scientists use two-stage least squares (TSLS) with instrumental variables when regular linear regression meth-
ods like OLS aren’t suitable. This is especially helpful when independent variables are correlated with the error 
term78,79. TSLS coefficients are generally unbiased in large samples, unlike OLS coefficients. Modern software 
calculates TSLS coefficients directly. The utilization of the Two-Stage Least Squares (2SLS) method might present 
difficulties due to the necessity of specifying a set of instruments that are known a priori to be uncorrelated with 
the error term. In linear simultaneous equation models, exogenous variables (unaffected by the model) can serve 

(16)Pα = T∈̂.

(17)�LnPM2.5it = α1 +
p∑

k=1

βijLnPM2.5it−j +
q∑

k=0

δijϒit−j + εit .

(18)�LnPM2.5it = θi +
p∑

k=1

Mij�LnPM2.5it−j +
q∑

k=0

Zij�ϒit−j + φijECTt−i + εit .

(19)�yit = βo + βi�Xit + βiσt +
∑

i=2

T∅tDt + εit ,

(20)AMG = 1

N

N∑

i=1

β i .
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as instruments. A variable (X and Z) can be both explanatory and an instrument if it’s not correlated with the 
error term. The estimation of the coefficients of the linear model is given below:

When it is possible to find a correlation between the error term and the endogenous variable indicated by 
Xji as has been previously mentioned in a number of academic publications. The ordinary least squares (OLS) 
estimate of the equation in question would exhibit bias and inconsistency under the given circumstances. The 
steps involved in estimating β utilizing a two-stage least squares technique are as follows:

1.	 Save the predicted values X̂j after regressing each Xj on Z . Then we will have X̂j = Xj if Xj is included in Z.
2.	 Analyze the regression model using OLS estimation to determine β.

Generalized least squares (GLS) addresses heteroscedasticity, cross-sectional dependence and serial correla-
tions in panel regression models by incorporating them into the estimation process. It’s a comprehensive solu-
tion for these issues. FGLS, a statistically effective estimator for systems with both serial and contemporaneous 
correlations, was introduced by Parks80. Bai et al.81 proposed a new method for estimating the error covariance 
matrix in high-dimensional settings, building upon FGLS to reduce biases from cross-sectional and serial correla-
tion. Their approach is effective even without cluster information. Consider a stochastic sample of n observations 
from a data-generating process;

where Y  and µ are vectors of outcomes and errors, X is an n by p matrix of strictly exogenous regressors and β is 
a p-vector of parameters. The diagonal matrix W = E

[
uu′|X

]
 has i th diagonal element wii , which is an unknown 

function of Xi Xi alone: wii = var(µi|Xi).
The FGLS estimator;

of Eq. (23) uses an estimate �̂ of � with entries �̂ii . We take the common approach of setting �̂ii = exp
(
ĝ(Xi)

)
 

for a function ĝ estimated using the log of squared residuals log
(
û2i
)
 from initial OLS estimation of (23).

Causality test for panel data
In this investigation, the Dumitrescu and Hurlin causality test, a widely employed panel variant of the Granger 
causality test Granger82, was utilized. This test is founded on the non-causality hypothesis put out by Dumitrescu 
and Hurlin51. Granger’s non-causality approach recognizes the significance of considering heterogeneity in panel 
data, as highlighted by Ji and Yang83 and Jahanger et al.30. This test is a versatile D–H test that can be applied to a 
wide range of data, including diverse and imbalanced datasets, similar to the TN or T > N. To evaluate the causal 
relationships between the variables, the study utilized the D–H test. In contrast to the H1 hypothesis, the H0 
hypothesis of this assessment argues that there is no causal relationship between the parameters. However, the 
evaluation presents an opposing H1 hypothesis, suggesting that there is a causal connection based on findings 
from at least one cross-sectional study. Equation (25) is a valuable tool that utilizes the D-H diagram. The D-H 
causality test is expressed in Eq. (25), where Y represents the dependent variable and X represents the independ-
ent variable. It can be written as follows:

Here, the autoregressive parameters are represented by zi(j) , where as k stands for the lag length. Specifically, 
the slope coefficients are i and i , the slope-intercept is i and the error term is t .

Empirical results and discussion
Results of descriptive statistics and correlation analysis
The tabulated descriptive statistics and correlation analysis in Table 2 reveal that the mean values of LnCOEXP, 
LnFA and LnPREC exceed those of the other variables. Concurrently, the cumulative data portrays a positive 
trend, supported by LnPM2.5, LnGDP, LnCOEXP, LnFA, LnPREC and LnTEMP.

The table illustrates the result of descriptive statistics and the correlation between variables where data is 
comprehensively explanatory.

All variable distributions exhibit leptokurtic characteristics, indicated by a positive Kurtosis. The normality 
of these distributions was assessed through the Jarque–Bera test, which confirmed their adherence to a normal 
distribution. Furthermore, the variables displayed significant correlations, as demonstrated in Table 1, with all 
panels showing robust associations with PM2.5 pollution.

(21)Yi = β0 + β1X1i + · · · + βpXpi + εi .

(22)Yi = β0 + β1X̂1i + · · · + βpX̂pi + εi .

(23)Y = Xβ + µ,

(24)β̂FGLS = [X ′�̂−1X]−1X ′�̂−1Y ,

(25)yit = ϕi +
P∑

k=1

γ k
i yi,t−k +

P∑

k=1

x
j
ikTi,t−k + ωi,t .
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Results cross‑sectional dependence tests
Numerous tests were utilized to assess cross-sectional dependence, such as the Pesaran CD test, the Breusch-
Pagan LM test, the Pesaran scaled LM test and the Bias-corrected scaled LM test. Prior research has employed 
and demonstrated these tests in the different studies2,45. The findings of the examinations, which are presented in 
Table 3, unequivocally reject the null hypothesis that no cross-sectional dependence exists among the countries 
comprising the panel. 1%, 5% and 10% significance levels provide additional support for this rejection. Therefore, 
the results of this research indicate that the countries under investigation demonstrate cross-sectional interde-
pendence, underscoring the possibility that an issue or disruption in one nation could spread and affect others.

Results of panel slope homogeneity test
Le and Ozturk53 highlight the need of examining the diversity of slope coefficients using the Pesaran and 
Yamagata45 test. The data exhibits slope variability, as seen in Table 4. The null hypothesis of slope homogeneity 
is significantly rejected at both the 1% and 5% levels, indicating considerable variability in parameters between 
nations.

Table 2.   The descriptive statistics and correlation coefficients of variables.

Statistics LnPM2.5 LnGDP LnCOEXP LnFA LnPREC LnTEMP

Descriptive statistics

 Mean 3.62 3.88 24.51 10.85 5.50 2.38

 Median 3.74 4.20 24.84 10.37 5.52 2.08

 Maximum 4.38 7.96 28.32 13.49 6.39 3.25

 Minimum 2.67  − 1.02 19.97 9.84 4.14 1.80

 Std. Dev. 0.44 2.27 2.21 1.23 0.62 0.56

 Skewness  − 0.49  − 0.29  − 0.40 1.41  − 0.37 0.66

 Kurtosis 2.15 2.45 2.52 3.50 2.09 1.52

 Jarque–Bera 9.64 3.70 4.95 47.46 7.95 22.59

 Probability 0.0080 0.1570 0.0839 0.0000 0.0187 1.5225

 Normality The series is distributed normally

Correlation analysis

 LnPM2.5 1

 LnGDP 0.60 1

 LnCOEXP 0.57 0.99 1

 LnFA 0.34 0.58 0.60 1

 LnPREC  − 0.32 0.24 0.24 0.31 1

 LnTEMP  − 0.16 0.15 0.15  − 0.45 0.54 1

Table 3.   Cross-sectional dependence results of the variable studied. ***, ** and * indicate the statistical 
significance of 1%, 5% and 10% respectively. All variables are significant at 1%, 5% and 10% level, denoted by 
***, ** and *

Series

Cross-sectional dependence results

Breusch–Pagan LM Pesaran scaled LM Bias-corrected scaled LM Pesaran CD

LnPM2.5 160.7248*** (0.0000) 26.60559*** (0.0000) 26.46923*** (0.0000) 12.24260*** (0.0000)

LnGDP 329.5897*** (0.0000) 57.43596*** (0.0000) 57.29960*** (0.0000) 18.15187*** (0.0000)

LnCOEXP 337.7183*** (0.0000) 58.92002*** (0.0000) 58.78366*** (0.0000) 18.37676* (0.0000)

LnFA 304.1627** (0.0000) 52.79364** (0.0000) 52.65727*** (0.0000)  − 3.645848* (0.0003)

LnPREC 47.50281** (0.0000) 5.934175*** (0.0000) 5.797811*** (0.0000) 3.828086** (0.0001)

LnTEMP 97.85076*** (0.0000) 15.12641*** (0.0000) 14.99005*** (0.0000) 7.570104*** (0.0000)

Table 4.   Results of the slope heterogeneity test. ***, ** and * indicate the statistical significance of 1%, 5% and 
10% respectively.

Statistics Value Probability

Delta ( �̃) 2.143 0.032**

Adj. ( �̃adj)  − 2.203 0.010***
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Results of panel unit root test
The assessment of stationarity has significant importance in ascertaining the integration characteristics of 
the variables2. In order to assess the existence of cross-sectional dependency and heterogeneity in slopes, we 
employed the first and second-generation unit root tests, as presented in Tables 4 and 5. These tests were applied 
to ascertain the suitable integration order of the variables for further econometric analyses. Table 5 presents 
the results of the Levin Lin Chu t-statistics, the IPS W-statistics, the Fisher ADF Chi-square and the Fisher 
PP Chi-square unit root tests. In addition, the analysis of the integration of variables’ sequencing involved the 
utilization of second-generation unit root tests, namely PANIC developed by Bai and Ng46 and CIPS developed 
by Pesaran47. The tests in question are highly acknowledged for their capacity to successfully tackle residual 
cross-sectional dependency.

The outcomes of the preliminary unit root tests, as presented in Table 5, suggest that the variables demonstrate 
first-order integration, commonly referred to as I(1). The findings of the unit root testing conducted on the 
second-generation data, as displayed in Table 6, offer additional substantiation for the conclusions derived from 
the first tests conducted on the first-generation data. The findings of the Bai and Ng’s PANIC test are presented 
in Table 6. The results suggest that, except for LnPREC, which displays stationarity at the level with both a con-
stant and a trend, the other five variables show stationarity at the first difference, indicated as I (1), either with a 
constant or with a trend. Based on the empirical results obtained from the Pesaran’s CIPS test, it is evident that 
all variables exhibit stationarity at the first difference when a constant term is incorporated. Hence, irrespective 
of whether first-generation or second-generation unit root tests are employed, it can be conclusively established 
that all variables attain stationarity by initial differentiating.

Table 5.   Result of the first-generation panel unit root tests. ***, ** and * indicate the statistical significance of 
1%, 5% and 10% respectively.

Variables

LLC t- statistics IPS W- statistics Fisher ADF Chi-square Fisher PP Chi-square

Level 1st diff. Level 1st diff Level 1st diff. Level 1st diff.

LnPM2.5

 Intercept  − 3.16923***  − 12.4995***  − 2.28773**  − 11.6101*** 24.2489** 110.679*** 25.1522** 210.432***

 Trend  − 2.88433***  − 8.90333***  − 2.51376***  − 9.78607*** 24.9036** 85.2774*** 24.0390** 443.865***

LnGDP

 Intercept  − 0.86102  − 5.16713*** 0.98737  − 4.15321*** 14.0331 40.2673*** 8.27277 43.9665***

 Trend 1.05962  − 4.54236*** 3.69778  − 2.89579** 4.42235 28.6548*** 7.78101 40.5816***

LnCOEXP

 Intercept  − 0.43602  − 1.52891* 3.03555  − 5.44393*** 1.77968 51.8032*** 1.62552 124.697***

 Trend  − 1.68562** 0.26800  − 3.31189***  − 3.50696*** 35.1946*** 34.8415*** 27.0848*** 102.870***

LnFA

 Intercept  − 1.03509  − 6.44272*** 1.35251  − 6.22732*** 5.79152 57.6627*** 12.3976 58.4613***

 Trend  − 0.13529  − 3.38380*** 0.69755  − 4.12020*** 7.35033 36.4409*** 9.84137 40.7081***

LnPREC

 Intercept  − 9.05127***  − 8.59535***  − 7.52378***  − 12.9819*** 70.7320*** 126.302*** 72.9885*** 796.234***

 Trend  − 7.52068***  − 6.08025***  − 7.16378***  − 11.3895*** 62.1761*** 99.7363*** 196.503*** 867.235***

LnTemp

 Intercept  − 6.63637***  − 13.7248***  − 5.57900***  − 12.9832*** 51.6274*** 128.313*** 51.8093*** 679.006***

 Trend  − 7.07326***  − 11.4948***  − 5.48650***  − 11.4181*** 49.3866*** 101.023*** 49.8957*** 609.863***

Table 6.   Results of the second-generation unit root tests. ***, ** and * indicate the statistical significance of 
1%, 5% and 10% respectively.

Variables

Bai and Ng (PANIC) Pesaran’s CIPS

Level 1st diff. Level 1st diff.

Constant Trend Constant Trend Constant Trend Constant Trend

LnPM2.5  − 0.5218  − 1.81151**  − 1.77661*  − 1.23349  − 2.26238*  − 2.76935*  − 5.62226***  − 5.61366***

LnGDP  − 0.18784 0.65989 2.59557*** 4.55044***  − 2.46846**  − 2.68410  − 3.33366***  − 3.01742**

LnCOEXP  − 0.08327  − 1.51129 3.78674***  − 0.86414  − 2.79787***  − 2.51024  − 2.89314***  − 2.58629

LnFA 2.59482***  − 0.41366  − 2.44704**  − 2.36222**  − 2.84730***  − 4.34489***  − 5.37697***  − 4.80644***

LnPREC 7.39105*** 9.37742*** 0.37701 1.18911  − 3.46115***  − 3.21770***  − 5.69754***  − 5.15974***

LnTEMP 5.06102*** 0.20967 6.61595*** 9.17195***  − 2.67818***  − 4.25902***  − 6.81446***  − 6.25701***
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Results of panel cointegration test
Further investigation into the cointegration relationship between the carefully selected variables is imperative, 
building upon the research presented in the literature2. The primary objective of our research is to ascertain the 
potential existence of a long-term equilibrium phenomenon. To accomplish our aim, we have employed the 
dependable cointegration tests that Westerlund50, Pedroni48 and Kao49 have suggested. The efficacy of these tests 
in detecting enduring relationships between variables has been thoroughly verified, with consideration given 
to the well-documented presence of cross-sectional dependence, slope heterogeneity and order of integration.

The results shown in Table 7 demonstrate a persistent and consistent relationship between the variables. 
According to the results obtained from the Westerlund test, a statistically significant and negative long-term 
association has been observed between the variables of interest, as indicated by the Gt and Pt tests. The Redundant 
Fixed Effect—Likelihood Ratio Test results indicate that the Ordinary Least Squares (OLS) fixed effect model 
exhibits statistical significance at the 1% level.

Estimations of models
PMG and AMG estimation for the dynamic long‑run and short‑run relationships
In light of the panel’s dependence and heterogeneity, it was desirable to use regression estimators capable of 
accounting for the issues mentioned earlier throughout the elasticity estimation phase. This PMG estimators 
was considered suitable for robust regression in our research based on the work of Refs.65,84–88. It was used to 
test the magnitude and direction of various factors affecting PM2.5 concentrations in this region. Since there 
is the existence of CD and SH, we also have employed the second-generation panel data model in this study 
to estimate long run and short run dynamics, drawing from various relevant sources74,75. Thus, the AMG a 
second-generation panel data model used in this study since it takes into account cross-sectional dependency by 
incorporating dynamic effects. As PMG result shown in Table 8, all variables, except for forest area and average 
temperature, exhibit statistical significance at the 1% significance level. PM2.5 pollution is positively impacted by 
economic growth and forest area over the long term. Alternatively, final consumption expenditure, total rainfall 
and average temperature have a negative impact. It is statistically estimated that a 1% increase in LnGDP and 
LnFA would result in an increase in PM2.5 pollution by 0.48% (− 0.00047%) and 0.12% (− 2.49%) over the long 
run (short-run), respectively. In contrast, a 1% increase in LnCOEXP, LnPREC and LnTEMP results in a − 0.55% 
(− 0.50%), − 0.63% (− 0.015%) and − 0.19% (− 0.36%) decrease in PM2.5 pollution over the long-run (short-run). 
At a 1% error correction level, the error correction term (ECT) was significantly negative (− 0.55).

On the other hand, the AMG result shows that all variables are negatively associated with haze pollution 
in the long run and the only significant relationship among them is between annual rainfall and haze at a 10% 

Table 7.   Results of panel cointegration test. ***, ** and * indicate the statistical significance of 1%, 5% and 10% 
respectively.

Statistics Probability

Pedroni48 test for cointegration

 Panel cointegration or within-dimension statistics

  Modified variance ratio  − 3.1723*** 0.0008

  Modified Phillips–Perron t 1.8550** 0.0318

  Phillips–Perron t  − 1.3084* 0.0954

  Augmented Dickey–Fuller t  − 1.2601 0.1038

 Group-mean or between-dimension statistics

  Modified Phillips–Perron t 2.6259** 0.0043

  Phillips–Perron t  − 1.3115* 0.0949

  Augmented Dickey–Fuller t  − 1.6230* 0.0523

Kao49 test for cointegration

 Modified Dickey–Fuller  − 2.7643** 0.0029

 Dickey–Fuller  − 3.0929*** 0.0010

 Augmented Dickey–Fuller  − 1.5128 0.0652

 Unadjusted modified Dickey–Fuller  − 7.4424*** 0.0000

 Unadjusted Dickey–Fuller  − 4.6646*** 0.0000

Statistics Value Z-value Robust p-value

Westerlund50 test for cointegration

 Gt  − 2.844**  − 0.509 0.050

 Ga − 6.626 2.481 0.250

 Pt  − 7.010**  − 1.107 0.030

 Pa  − 7.066 1.249 0.120

Statistics Probability

Redundant fixed effect—likelihood ratio test

 66.2211*** 0.0000
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level. In the short run, we can see similar negative associations between all variables and haze, but this time, 
the significant relationship between consumer expenditure and haze is at a 10% level. It clearly shows that con-
sumer expenditure reduces haze pollution. Statistically, a 1% increase in LnGDP, LnCOEXP, LnFA, LnPREC 
and LnTEMP would result in a decrease in haze pollution by 0.076%, 0.039%, − 2.407%, 0.173% and − 0.765 in 
the long run and (− 0.177%), (− 0.636%), (− 0.743%), (− 0.116%), (− 0.177%) in the short run. At a 1% error cor-
rection level, the error correction term (ECT) was significantly negative (− 0.974).

Robustness checks
Using the approaches of Bai et al.81, Yan et al.89 and Angrist and Pischke79 the TSLS estimations and the FGLS 
estimations were used to verify the robustness of the dynamic long-term PMG results (see Table 9). The study 
confirms that the PMG and AMG techniques are suitable for assessing the relationship between economic growth, 
forest area, average temperature, final consumption expenditure, total rainfall and PM2.5 pollution in SAARC 
countries. The panel estimates obtained by the Two-Stage Least Squares (TSLS) and Feasible Generalized Least 
Squares (FGLS) methods reveal a persistent positive relationship between economic growth, forest area and 
average temperature over time. Additionally, a statistically significant negative association is shown between 
final consumer expenditure and total rainfall with respect to PM2.5 pollution levels.

Results of panel causality tests
After assessing the robustness and long- and short-term relationships of the coefficients in the previous section, 
authors goal in this section of the study is to look into the causative directions among the variables. Using the 
D–H panel causality test, which was introduced by Dumitrescu and Hurlin51, to ensure robustness instead of 
the traditional Granger82 causality test because it has been shown to be a more accurate and efficient method52. 
Due to its ability to differentiate between two forms of heterogeneity inside regression models and homogeneity 
within random associations90, the approach has been utilized by several academics in recent years52,91. Table 10 
and Fig. 3 show the Dumitrescu and Hurlin panel causality test results and the graphical representation and 
confirms the strong causal relationships; eight of them are unidirectional and one is bidirectional. The causality 
analysis demonstrates that there is evidence of feedback effects in the correlations between PM2.5 concentration 
and other parameters.

Table 8.   The results of dynamic long-run and short-run relationships (PMG and AMG). ***, ** and * indicate 
the statistical significance of 1%, 5% and 10% respectively.

Variables

PMG AMG

Coefficient p-value Coefficient p-value

Long-run estimation

 LnGDP 0.488*** 0.000  − 0.076 0.523

 LnCOEXP  − 0.550*** 0.000  − 0.039 0.777

 LnFA 0.120 0.763  − 2.407 0.150

 LnPREC  − 0.627*** 0.0001  − 0.173* 0.050

 LnTEMP  − 0.188 0.636  − 0.765 0.466

Short-run estimation

 COINTEQ01  − 0.551*** 0.000  − 0.974*** 0.000

 D(LnGDP)  − 0.000469 0.996  − 0.177 0.291

 D(LnCOEXP)  − 0.496 0.248  − 0.636* 0.054

 D(LnFA)  − 2.486 0.635  − 0.743 0.472

 D(LnPREC)  − 0.016 0.781  − 0.116 0.214

 D(LnTEMP)  − 0.356 0.423  − 0.177 0.291

C 9.819*** 0.000 0.023 0.306

Table 9.   Results of the panel TSLS and FGLS robustness approach. ***, ** and * indicate the statistical 
significance of 1%, 5% and 10% respectively.

Variables Panel TSLS Panel FGLS

LnGDP 0.505166*** (0.056) 0.3155619*** (0.050)

LnCOEXP  − 0.568513*** (0.064)  − 0.2208492*** (0.056)

LnFA 0.593810*** (0.065) 0.096266** (0.043)

LnPREC  − 1.115529*** (0.092)  − 0.03758907*** (0.059)

LnTEMP 1.140958*** (0.132) 0.1295727 (0.087)

C 12.56698*** (1.201) 8.515427*** (1.054)
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Our findings suggest a uni-directional causal relationship moving from LnGDP, LnCOEXP to LnPM2.5, 
LnGDP to LnCOEXP, LnFA to LnGDP, LnPREC to LnGDP, LnCOEXP to LnFA, LnTEMP to LnFA and LnTEMP 
to LnPREC in the SAARC countries. This suggests that there is a relationship between economic development and 
consumption expenditure, both of which have an impact on PM2.5 pollution. Additionally, economic growth is 
found to influence consumption expenditure. Moreover, the presence of forest area and annual rainfall in a given 
region significantly affects economic growth. Furthermore, average temperature plays a role in determining the 
total rainfall in all emerging economies. Moreover, a reciprocal causal relationship exists between the logarithm 
of temperature (LnTEMP) and the logarithm of gross domestic product (LnGDP). The yearly temperature has 
a crucial role in the progression of economic growth. Similarly, the yearly temperature of nations belonging 
to the South Asian Association for Regional Cooperation (SAARC) is significantly influenced by economic 
development, particularly in instances when there is a notable increase in gross domestic product (GDP). The 
interrelation of the variables implies that addressing pollution requires the adoption of cross-sectional efforts.

There are a number of regional studies that are consistent with these findings, including studies on the SAARC​
2, MENA countries92, BRICS52, Central Asia72, South East Asia93, East Asia94, Beijing–Tianjin–Hebei region8, 
sub-Saharan African60 Gulf Cooperation Council countries95 and other Asian economies96. According to our 
findings, economic growth patterns should be transformed in order to balance the emission reduction policy 
through more eco-friendly economic activities and the use of green technologies in economic development. 
The region is experiencing strong economic expansion, which has led to a progressive acceleration in final con-
sumer expenditure, temperature, industrialization, energy usage and urbanization. However, this growth has also 
resulted in a decrease in forest area and rainfall. The per capita consumption expenditures of residents serve as an 
indicator of their consumption situations. Previous research have indicated that cities with higher consumption 
levels tend to exhibit elevated PM2.5 concentrations. This can be attributed to the presence of a greater number 
of houses, autos, industries and domestic appliances inside these urban areas8,97. Studies by Dasgupta et al.98 
and Wu et al.8 indicate that increasing income levels can result in an increase in consumption expenditure level, 
which may lead to increased industrialization and urbanization, which may adversely affect the environment, 
particularly in the primary stages of economic growth trajectory in developing countries.

Table 10.   Dumitrescu and Hurlin panel causality results. ***, ** and * indicate the statistical significance of 
1%, 5% and 10% respectively.

Null hypothesis W-Stat. Zbar-Stat. P-value Result

LnGDP ⇒ LnPM2.5 4.2325 1.8068 0.0708* Uni-directional

LnPM2.5 ⇒ LnGDP 3.8883 1.4873 0.1369 No causality

LnCOEXP ⇒ LnPM2.5 4.6381 2.1832 0.0290** Unidirectional

LnPM2.5 ⇒ LnCOEXP 2.5702 0.2640 0.7917 No causality

LnFA ⇒ LnPM2.5 3.4951 1.1224 0.2617 No causality

LnPM2.5 ⇒ LnFA 1.3055  − 0.9096 0.3630 No causality

LnPREC ⇒ LnPM2.5 2.9587 0.6246 0.5322 No causality

LnPM2.5 ⇒ LnPREC 2.9536 0.6198 0.5353 No causality

LnTEMP ⇒ LnPM2.5 3.8879 1.4869 0.1370 No causality

LnPM2.5 ⇒ LnTEMP 2.2875 0.0017 0.9986 No causality

LnCOEXP ⇒ LnGDP 3.1274 0.7812 0.4347 No causality

LnGDP ⇒ LnCOEXP 4.7630 2.2991 0.0215** Uni-directional

LnFA ⇒ LnGDP 5.2699 2.7695 0.0056*** Uni-directional

LnGDP ⇒ LnFA 1.5212  − 0.7094 0.4780 No causality

LnPREC ⇒ LnGDP 4.6084 2.1556 0.0311** Uni-directional

LnGDP ⇒ LnPREC 2.4035 0.1093 0.9129 No causality

LnTEMP ⇒ LnGDP 6.2294 3.6601 0.0003*** Bidirectional

LnGDP ⇒ LnTEMP 4.0702 1.6561 0.0977* Bidirectional

LnFA ⇒ LnCOEXP 8.2013 5.4902 4.E−08 No causality

LnCOEXP ⇒ LnFA 4.2692 1.8408 0.0656* Uni-directional

LnPREC ⇒ LnCOEXP 0.8758  − 1.3084 0.2840 No causality

LnCOEXP ⇒ LnPREC 3.2146 0.8620 0.3886 No causality

LnTEMP ⇒ LnCOEXP 1.1312  − 1.0714 0.2840 No causality

LnCOEXP ⇒ LnTEMP 2.46878 0.1699 0.8651 No causality

LnPREC ⇒ LnFA 2.8489 0.5227 0.6012 No causality

LnFA ⇒ LnPREC 3.2243 0.8711 0.3837 No causality

LnTEMP ⇒ LnFA 0.3665  − 1.7811 0.0749* Uni-directional

LnFA ⇒ LnTEMP 1.9939  − 0.2708 0.7865 No causality

LnTEMP ⇒ LnPREC 4.3619 1.9268 0.0540* Uni-directional

LnPREC ⇒ LnTEMP 3.02117 0.6825 0.4949 No causality
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The acceleration of economic growth in emerging nations has been attributed to several factors, including 
income, consumption spending, industrialization and urbanization2. Therefore, a rise in personal income results 
in a corresponding rise in consumer expenditure, whereas higher rates of urbanization are associated with an 
escalation in PM2.5 pollution levels. The ongoing pursuit of income development and employment opportunities 
in developing economies has led to a rise in final consumer spending. However, this has also brought about a 
dual impact of economic expansion and industrialization, which tends to overshadow the positive externalities 
linked to environmental degradation. The outcome of this particular circumstance entails a rise in energy con-
sumption, subsequently resulting in heightened degrees of environmental degradation at both the national and 
regional scales. Furthermore, the escalation of family earnings has an impact on consumer demand, resulting in 
a consequential expansion of the manufacturing sector that propels industrial development. Consequently, this 
phenomenon engenders elevated levels of pollution. To avoid such a scenario and reduce anticipated emission 
levels, Adeneye et al.99 and Sikder et al.52 suggested adopting renewable energy alternatives in a greater amount. 
Mahmood et al.100, in their latest study conducted on Saudi Arabia, has substantiated the pressing necessity for 
implementing more stringent urban and industrial-environmental rules in order to curb the escalating levels 
of pollution. There is a direct relationship between the amount of forest cover, its ecosystem101 and the city’s 
ecological environment. Ji et al.34 found that the process of plant absorption has the potential to substantially 
decrease atmospheric particulate matter, leading to a notable enhancement in air quality through the consider-
able reduction of particle matter. The adsorption capacity of particulate matter is positively correlated with an 
increase in forest cover. Lin et al.102 conducted a study in an urban setting characterized by expansive forested 
regions and saw a notable decrease in PM2.5 concentrations. Furthermore, the researchers identified a consider-
able spillover impact in this context. Additionally, they concluded that the expansion of urban forests contributes 
to the reduction of PM2.5 levels at local, regional and national levels. Several studies in natural science have 
demonstrated that green barriers and urban vegetation can reduce pollution concentrations on the street103 while 
having a modest effect on particle deposition on the regional scale104.

Moreover, upon scrutinizing the short-run and long-run elasticities presented in Table 7, it is evident from 
PMG estimation that all variables, except LnFA, exhibit long-term significance in relation to PM2.5 pollution. 
Nevertheless, none of the variables exhibit a statistically significant correlation with PM2.5 pollution in the short 
term. Therefore, in contrast to other long-term factors such as electricity generation, transportation system 
operation and industry expansion, a substantial proportion of PM2.5 emissions from this area can be attributed 
to economic growth. Furthermore, there exists a correlation between PM2.5 levels, economic development and 
consumption expenditure that is not statistically significant. On the other hand, the AMG estimator depicts 
the negative correlation between haze and other variables in the long and short run. This means, in both cases, 
the emerging economies in the SAARC region will be able to help reduce pollution. The absence of substantial 
results could potentially be ascribed to the impact of various factors during the short-term estimation period, 
including increasing income levels, diminishing forest area, decreased total precipitation and elevated average 
temperatures. This observation suggests that the aforementioned variables do not have a substantial short-term 
impact on PM2.5 pollution in the emerging economies of this region. There would be many factors that could 
have caused this to happen. Usage of green technology in industrial production, more green areas, modern high-
tech technology usage and the early adoption of environmental conservation laws and policy implementation.

Figure 3.   Causal directions between the dependent variable PM2.5 and the independent variables GDP, 
COEXP, FA, PREC and TEMP. This graphical representation of the causal relations explains the bi-directional 
and uni-directional causal effect between dependent and independent variables. The (↔) signifies two-way or 
bi-directional causality and the (→) represents one-way or uni-directional causality between variables.
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Nevertheless, its significance escalates with the progression of economic and industrial development. A sig-
nificant coefficient for the lagged error correction term (ECT), α[CointEq (− 1)] for PMG and AMG, signifies 
the existence of a long-lasting relationship between the dependent and independent variables. Therefore, the 
annual rate of 0.55% and 0.97% for PMG and AMG governs the fluctuations in PM2.5 concentration levels that 
deviate from short-term to long-term equilibrium, as indicated by the ECT-1 coefficient of − 0.551 and − 0.974.

The findings of the D–H panel causality test in this study provide evidence supporting the presence of a 
comparable causal association among the various indicators in both Central Asia and Southeast Asian nations. 
These findings align with several recent studies conducted by Arshad et al.90, Shafique et al.105 and Hashmi 
et al.106. Furthermore, Saud et al.107 and Saidi and Hammami108 have identified a causal association between 
environmental deterioration and GDP growth in countries participating in the Belt and Road Initiative (BRI). 
In addition, according to Chandran and Tang109, Afridi et al.110 and Islam111, here exists a reciprocal relationship 
between per capita income and environmental degradation in Indonesia, Thailand, MENA and SAARC nations. 
The findings of our research align with the conclusions drawn by Chandran and Tang109, herein they observed a 
unidirectional causal relationship between GDP development and environmental deterioration in Malaysia. The 
results described in the present study, however, are in contrast to those reported in previous investigations. The 
studies conducted by Asumadu-Sarkodie and Owusu112 provided evidence supporting the existence of causal 
relationships between PM2.5 concentration and energy consumption. Furthermore, these studies also indicate 
that industrialization is causally linked to both PM2.5 concentration and energy consumption, while economic 
growth is associated with PM2.5 concentration. According to Sahoo and Sethi113, posit that there exists a unidi-
rectional causal link between industrial expansion and energy consumption. Consequently, this study presents 
a distinct set of results that suggest the absence of a bidirectional or unidirectional causal association between 
forest area, total rainfall and average temperature within SAARC countries, in contrast to the findings reported 
by Musa et al.2 and Hashmi et al.106.

In brief, the results of the PMG analysis validate the existence of a statistically significant and positive cor-
relation and the AMG depicts a negative correlation between economic growth and the concentration of PM2.5 
in the SAARC region. Our findings on the impact of economic growth (LnGDP) on PM2.5 concentration are 
consistent with existing research by Musa et al.2 and Sultana et al.114, they also report a positive and a negative 
correlation between this factors. This suggests that economic development in SAARC countries is accompanied 
by increased air pollution and which is also well marched with revered U-shaped EKC theory. On the contrary, 
in both estimations, there is a significant negative correlation between annual precipitation and PM 2.5 con-
centration and both consumer spending and annual expenditures persist over an extended period of time. The 
negative correlation between rainfall (LnPREC) and PM2.5 observed in our study aligns with findings by Musa 
et al.2 who demonstrate the cleansing effect of precipitation on air pollution. It is critical to observe, nevertheless, 
that economic expansion has a dual impact. One aspect to consider is its contribution to the increase in PM2.5 
concentrations. Nonetheless, it generates increased income levels, which in turn stimulates industrialization, 
urbanization, consumer spending and energy usage. As a result, this procedure ultimately contributes to the 
degradation of the environment confirmed by Dasgupta et al.98 and Wu et al.8. Furthermore, we have effectively 
established a causal relationship in both directions between temperature and economic growth, which in turn 
results in a unidirectional causal relationship with PM2.5 concentration. Moreover, a unidirectional causal rela-
tionship between economic growth, consumer expenditure and PM2.5 concentration has been identified. Like-
wise, temperature and consumer spending influence forest area, which subsequently effects economic expansion. 
Furthermore, annual precipitation has an impact on economic expansion, which in turn effects the concentration 
of PM2.5. Drawing from the results obtained from our research, it is advisable that emerging economies, such as 
those that are part of the South Asian Association for Regional Cooperation (SAARC), contemplate incorporating 
cutting-edge technologies and scientific progress into their strategies to alleviate pollution in the long run. The 
study’s substantial findings may offer significant insights into socio-economic aspects and dynamic strategies for 
pollution reduction when developing regional policy initiatives. While economic expansion, affluence, industri-
alization and urbanization are significant factors influencing economic success, it is inevitable that they will have 
environmental consequences. These mixed results can be utilized by policymakers to gain insights and provide 
a framework for future study on potential combinations of factors that may impede or impact the effectiveness 
of PM2.5 pollution reduction measures and economic policies in SAARC countries.

Conclusion
Environmental deterioration is caused by a combination of human activity and natural processes. The country’s 
swift advancement has led to a substantial need for energy resources, concomitant with noteworthy shifts in 
human behavior. The objective of this study was to examine the primary elements that contribute to the occur-
rence of haze pollution. This research utilized various econometric methodologies, such as the cross-sectional 
dependence (CD) test, slope heterogeneity test, unit root test, first and second-generation tests for long-term 
cointegrating relationships, panel two-stage least squares (TSLS) and Feasible Generalized Least Squares (FGLS) 
test for robustness and Dumitrescu Hurlin (D-H) panel causality testing. The region is expected to see a rise in 
PM2.5 pollution due to a combination of factors including rapid economic expansion, heightened consumption 
expenditures, alterations in forest area, less rainfall and elevated temperatures. Furthermore, the research suggests 
that the presence of PM2.5 pollution may have the capacity to impact the other factors being examined through 
a feedback process. The results of the long-term cointegration study indicate, (a) a statistically significant asso-
ciation between haze and the parameters under investigation. (b) The degradation of the environment is mostly 
driven by the increase of economic activities and the size of forested regions. (c) It is found that an elevation 
in precipitation levels and average temperature will have a significant mitigating effect on haze pollution. The 
findings of the causality test suggest that (d) the manipulation of PM2.5 concentrations will have a detrimental 
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impact on a minimum of two, if not all, of the variables. The findings of the study indicate that (e) the concur-
rent occurrence of expanding economic expansion and diminishing forest coverage would result in a subsequent 
escalation of PM2.5 concentrations. It is important to thoroughly analyze prospective future scenarios, since 
they possess the ability to diverge from the present ones under examination.

Similar to other advanced and developed nations, SAARC countries will unavoidably be required to undergo 
an economic revolution. Modifications in economic conditions have the potential to alter the causal linkages 
that exist between PM2.5 pollution and several other factors. It is recommended that the mitigation of PM2.5 
pollution be accomplished by implementing strategies such as regional precipitation augmentation, stability of 
temperature fluctuations and directing consumer expenditures towards ecologically sustainable products. This 
study recognises the expected economic expansion in South Asian countries (SAARC) and the possibility of this 
changing the connection between PM2.5 pollution and other environmental factors. Nevertheless, addressing 
air pollution requires more than just slowing economic growth. Instead, it is important to shift our attention 
towards a sustainable development model that places equal importance on environmental well-being and eco-
nomic progress. Governments and leaders in SAAC countries must accord utmost priority to the execution of 
comprehensive policies that are grounded in existing connections, in order to foresee future trends successfully. 
When formulating pollution mitigation strategies, policymakers should take into account the effects of PM2.5 
and other pertinent variables. Stakeholders may endeavor to do the below measures with the aim of formulating 
an all-encompassing policy. (1) Fostering green energy and consumer choices: giving priority to green energy 
sources and implementing policies that promote consumer spending on eco-friendly products. This promotes 
a shift away from fossil fuels and encourages a more sustainable approach to consumption. (2) Environmental 
awareness and education: creating and executing public awareness campaigns and educational initiatives to 
empower individuals to make informed decisions that benefit the environment. Having a well-educated public 
can make a significant impact on reducing pollution. Promote and implement environmental awareness and 
practices in various economic sectors, empowering individuals to become environmentally conscious citizens. 
(3) Temperature stabilization: implementing energy frameworks and policies that encourage the expansion of 
vegetation and forestry as effective measures. Implementing this solution can effectively reduce temperature 
fluctuations, thereby minimizing the potential impact on PM2.5 levels. Through the implementation of these 
thorough policies that consider the interplay between economic and environmental factors, SAARC countries 
can successfully attain sustainable development while addressing the issue of PM2.5 air pollution. To establish 
the sustainable development framework, stakeholders must separate themselves from generating more PM2.5 
pollutant.

It is important to acknowledge, yet, that the research possesses many constraints. The study employs the 
country as the geographical unit, which constitutes a somewhat expansive scale of spatial analysis. The degree of 
haze pollution exhibits variability among cities and nations throughout SAARC, leading to significant degrees of 
variation within the area. A diverse range of tests was employed to account for the heterogeneity of the panel and 
mitigate the issue of cross-sectional reliance. Nevertheless, there are a number of obstacles that must be addressed 
in order to get comprehensive and enduring data on PM2.5 concentrations, socio-economic and anthropogenic 
factor at the city level. Therefore, the findings of this study will provide a foundation for future investigations, 
contingent upon the accessibility of data such as PM2.5 measurements obtained from a proximate monitoring 
facility and other relevant factors. Future study should investigate the potential geographical associations between 
PM2.5 pollution and other pertinent variables, such as the expansion of heavy industry, the density of traffic, the 
number of exports and the levels of dust pollution.

Data availability
The [monthly average temperature, total monthly rainfall] data that support the findings of this study are avail-
able at [WorldClim database], [https://​www.​world​clim.​org/​data/​month​lywth.​html]; The [yearly average PM2.5 
concentration] data that support the findings of this study are availed from [Atmospheric Composition Analysis 
Group (ACA)], [https://​sites.​wustl.​edu/​acag/​datas​ets/​surfa​ce-​pm2-5/]; The other variable [economic growth] 
data are available at [World Development Indicators], [https://​www.​macro​trends.​net/]; The other variable [con-
sumption expenditure and forest area] data are available at [World Development Indicators], [http://​data.​world​
bank.​org].
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