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Several computational methods have been developed to identify neutralizing antibodies (NAbs)
covering four dengue virus serotypes (DENV-1 to DENV-4); however, limitations of the dataset and the
resulting performance remain. Here, we developed a new computational framework to predict potent
and stable NAbs against DENV-1 to DENV-4 using only antibody (CDR-H3) and epitope sequences

as input. Specifically, our proposed computational framework employed sequence-based ML and
molecular dynamic simulation (MD) methods to achieve more accurate identification. First, we built
anovel dataset (n=1108) by compiling the interactions of CDR-H3 and epitope sequences with the
half maximum inhibitory concentration (IC50) values, which represent neutralizing activities. Second,
we achieved an accurately predictive ML model that showed high AUC values of 0.879 and 0.885 by
tenfold cross-validation and independent tests, respectively. Finally, our computational framework
could be applied to filter approximately 2.5 million unseen antibodies into two final candidates that
showed strong and stable binding to all four serotypes. In addition, the most potent and stable
candidate (1B3B9_V21) was evaluated for its development potential as a therapeutic agent by
molecular docking and MD simulations. This study provides an antibody computational approach to
facilitate the high-throughput identification of NAbs and accelerate the development of therapeutic
antibodies.

Dengue virus (DENV), which has four antigenically distinct serotypes (DENV-1 to DENV-4), has worldwide
spread and causes 400 million infections/year, with 100 million cases of mild to severe dengue disease (dengue
fever, dengue haemorrhagic fever, or dengue shock syndrome) and 20,000 deaths'. To date, there is neither a
fully effective, licenced dengue vaccine nor an approved therapeutic agent due to the phenomenon of antibody-
dependent enhancement (ADE), which is a pathological immune response to subsequent infection with a dif-
ferent serotype, leading to severe disease’. ADE occurs when non-neutralizing or sub-neutralizing levels of
antibodies from a previous dengue infection or vaccination bind to a different serotype of dengue virus during a
subsequent infection. Recent updates show that various approved dengue vaccines demonstrate differing efficacy
rates across each serotype, typically ranging from approximately 60% and 80% in clinical trials involving both
immune and non-immune participants to dengue®. To mitigate the risk of ADE, dengue vaccine or therapeutic
candidates must induce strong and balanced immune responses against all four dengue serotypes.
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DENV particles are composed of seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5)
and three structural proteins (E, C, prM/M). Dengue envelope (E) protein is the principal target for potent
broadly neutralizing antibodies (NAbs), containing neutralizing epitopes on EDII (envelope domain II with
fusion loop), EDI-EDII (interdomain), EDIII (envelope domain III), and EDE (envelope dimer epitope)*~”.
The overall structure of the E protein is conserved across all four DENV serotypes, exhibiting 60-70% amino
acid sequence identity®. Developing cross-reactive neutralizing therapeutic antibodies or vaccines against all
serotypes requires navigating the structural variability of the E protein and identifying conserved epitopes that
induce protective immunity without enhancing infection. The fusion loop, a conserved region situated within
EDII, plays a vital role in the viral fusion process with host cells and may potentially trigger ADE®. Variations in
the sequence and structure of the EDII among serotypes impact antibody binding, neutralization efficacy, and
ADE, thereby impacting the design of both therapeutics and vaccines. Addressing these challenges emphasizes
the critical importance of gaining a thorough understanding of the structure of DENV and the interactions
between antibodies and antigens. This understanding is crucial for refining strategies aimed at developing vac-
cines and therapeutics.

Over the past three decades, there have been many attempts to develop NAbs against E proteins of all four
serotypes, known as cross-neutralizing antibodies, with half maximum inhibitory concentration (IC50) values
(or neutralizing activities) less than 10 pug/mL to reduce the effects of ADE as promising therapeutic agents for
dengue infection®!?. Recent studies on therapeutic antibodies have established a threshold of IC50< 10 pug/mL to
distinguish between neutralizing (IC50 <10 ug/mL) and nonneutralizing (IC50 > 10 pg/mL) activities'>'2. One
of our antibody candidates, 1B3B9, targets the fusion loop and effectively neutralizes all four dengue serotypes.
However, it exhibits varying levels of neutralizing activity (ranging from 0.125 to 3 ug/ml) against different
serotypes, which could potentially lead to ADE®!3. To tackle this challenge, we aim to mutate this antibody and
apply a computational framework to enhance its effectiveness.

The design of antibodies for the treatment of various diseases, such as DENV infectious diseases, requires
two structural parts: fragment antigen-binding (Fab) and constant fragment crystallizable (Fc) regions'®. The Fab
region contains the hypervariable regions or complementary determining regions (CDRs) CDR-H1, CDR-H2,
and CDR-H3 on each heavy chain and CDR-L1, CDR-L2, and CDR-L3 on each light chain. CDR-H3 is the most
hypervariable region responsible for binding and neutralizing activities that should be considered for antibody-
specified epitope prediction’®. Antibody design and prediction (screening) is the most important step to limit
laborious, time-consuming, and expensive laboratory work in the process of therapeutic antibody discovery
and development. Recently, the integration of experimental (in vitro and in vivo) and computational (in silico)
methods has assisted and enriched the effective generation of therapeutic antibodies due to the advancement of
experimental studies, sequence data, structural data, and computational approaches, especially machine learning
(ML) and molecular dynamics (MD) simulation techniques'®.

ML and MD can be used to detect and predict important patterns of epitopes on antigens, paratopes on
antibodies, or paratope—-epitope interactions and enable us to develop novel therapeutic antibodies quickly to
combat emerging and reemerging diseases'>'¢. Most of the computational algorithms for antibody screening
that showed high accuracy involved the use of complex methods and structural data'”'®. Simple, sequence-based
ML methods that can be used to screen for antibodies with desired properties have been reported for only some
diseases, such as cancers'*?’, HIV infection*"??, and SARS-CoV-2 infection®. Previous prediction approaches
for dengue NADbs have used only ML-based**** or MD-based?® methods, which have different advantages in
high-throughput prediction for antibody screening or highly efficient prediction for antibody developability,
respectively?*?”. None of the previous approaches used the dengue antibody dataset containing full-length CDR-
H3 sequences and epitope sequences together with the in vitro IC50 values. Additionally, there is no complete in
silico screening approach for cross-neutralizing antibodies against the four DENV serotypes?»%,

In this study, we developed an computational framework, incorporating a sequence-based ML method and
a simple MD method, to accurately identify potent and stable neutralizing antibodies against all four dengue
serotypes. The development process in our framework consists of four major steps: (1) dataset preparation, (2)
feature extraction and ML analysis, (3) ML screening, and (4) MD screening. The major contributions from this
process can be summarized as follows. First, we comprehensively generated a novel sequence-based dataset with
IC50 activities from available experimental results over the last three decades. Second, we developed a compu-
tational framework, which is the first integrative approach (ML and MD methods) to identify potent and stable
antibodies against DENV-1 to DENV-4. We compared and demonstrated the performance of three different
encoding schemes in conjunction with ten ML algorithms to select the best performing model and capture the
crucial information on NAbs. We then applied this computational framework to screen several million unseen
antibodies into two final NAb candidates. Finally, we identified the most potent and stable 1B3B9_V21 antibody
as a promising therapeutic agent against dengue infection by molecular docking and MD analysis.

Results

Computational framework overview and dataset analysis

We designed a novel in silico prediction framework integrating sequence-based ML and simple MD methods to
screen high-throughput antibody variants for potent and stable NAb candidates against four serotypes of DENV.
The computational framework overview consists of four steps: dataset preparation, feature extraction and ML
analysis, ML screening, and MD screening (Fig. 1). In the dataset preparation, we collected CDR-H3 sequences,
epitope sequences, and experimental IC50 values from well-defined PubMed and Google patent databases dur-
ing 1992-2022 (n=100 publications; Supplemental Table 1). Missing and redundant data were not included in
our dataset. All sequences were paired to form a total of 1108 antibody-antigen interactions and further labelled

Scientific Reports |

(2024) 14:17165 | https://doi.org/10.1038/s41598-024-67487-8 nature portfolio



www.nature.com/scientificreports/

c
9
-
e
[
Q.
2
Q
-
o
w
]
-
o
(=]

4
d
=
®
c
®
-
2
©
-
®

£
2
©
g
%
v
0
3
©
&

ubMe Original dataset (n = 1,108)
(n=90) p 0,59 =g A
 E— ori3 1 epitope Ic50 - (v J{ o
Google patent Neutralizing :
~ missing and H
N/ .
dund g B
cor-H3 M Epitope Non_n'ecli?a"zing oy .
Python scrit ﬂ ﬂ :
e L L L L L | $
2 X A 4 || Performances |
Neutralizing v
Sequence Atom Fingerprint /!
’
’ Cross-validation test Independent test
Tt St / oA " A
Feature extraction /! * Sn * Sn
L--- [P ——— [ p——— ---n 7 *« Sp *« Sp
I T I ’ Non-nemnlul! o MCC o MCC
+ AUC « AUC
] ] [ MLanalysis ) l
10 machine learning models > and |
J (XGB,SVM, RF, PLS, MLP, LR, LN, ET, DT, and INN) " | comparisons | The best performing method = Fingerprint + XGB

AR R AR R AR R R nn s

Chak [ 1
A ;

» ) i"@ {Q(' L a—— 28 NAb candidates
‘E SN 1* screening by ML e
v }[‘}/ >3 /' —_—
2 J(,‘m/ — ‘ > ,’ Ab name CDR-H3 sequences
g ) [ Fingerprint H XGB model ] ’
b }. ” 18389 V1 TTLFGRVADWPEDY
E - I’ Non-neutralizing

Unseen antibodies .

18389 V28
(~2.5 million Abs) - bttt
y
Homology modeling 2" screening by MD 5 - 2 stable NAb candidates
) < o 4
£ ° ° 0 4 § N, ¥ - ”
b o i ) —> ?" Ve, -> % Q '
> ¢
g P - . l Ay : ¢ l
30 40 S0 60
SWISS-MODEL S entsand il 18389_v2 | 18389 v21

Figure 1. Overview of the computational framework. We generated a dataset of CDR-H3 epitope IC50 values
from the PubMed and Google patent databases (n =100 publications). The computational framework includes
4 steps: (1) dataset preparation (n=1,108 interactions), (2) feature extraction (n=3 methods: sequence-based,
atom-based, fingerprint-based feature descriptors) and ML analysis (n =10 models: XGB, SVM, RF, PLS, MLP,
LR, LN, ET, DT, and INN), (3) ML screening (XGB model), which provided 28 potential NAb candidates, and
(4) MD screening, which provided 2 stable NAb candidates (1B3B9_V2 and 1B3B9_V21).

according to IC50 values as the neutralizing class (positive dataset; IC50< 10 pg/mL; n=554) and the nonneu-

tralizing class (negative dataset; IC50 > 10 ug/mL; n=>554) (Table 1).

Overall, we found that the antibody-antigen interactions in the neutralizing (N) and nonneutralizing (NN)
classes had binding residues on EDII (N =32.13%, NN =30.51%), EDIII (N =25.27%, NN=37.36%), EDE
(N=21.84%, NN =15.52%), interdomain (N =19.13%, NN =14.62%), and EDI (N =1.62%, NN =1.99%) (Fig. 2A).
We randomly divided our balanced dataset into a training dataset (80%, n=443) and an independent dataset
(20%, n=111) (Table 1). To visualize the diversity of our training data, we separately analysed the sequence-
extracted input of CDR-H3 and epitope sequences in the t-distributed stochastic neighbour embedding (t-SNE)
plot and labelled them with epitope domains. We found that CDR-H3 sequences are diverse, as illustrated in
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Benchmark dataset
Dataset (n=1108) Positive (neutralizing) | Negative (nonneutralizing)
Training set 443 443
Independent test set | 111 111
Total 554 554

Table 1. Details of the benchmark dataset used for ML analysis.
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Figure 2. Visualization of the input dataset. We visualized the input dataset before feature extraction and ML
analysis as follows: (A) Numbers of neutralizing (n=554) and nonneutralizing (n=>554) interactions based on
target epitope domains are shown in a bar plot. EDI is envelope domain I. EDII is envelope domain II. EDIII

is envelope domain III. EDI-EDII is interdomain. EDE is the envelope dimer epitope domain. (B) Diversity of
CDR-H3 antibody sequences based on target domains including EDI, EDII, EDIII, interdomain, and EDE by
t-SNE (n=306; perplexity =30, learning rate =100), (C) Diversity of epitope sequences based on target domains
including EDI, EDII, EDII], interdomain, and EDE by t-SNE (n = 609; perplexity =30, learning rate=100), and
(D) Distribution of IC50 values of each antibody-antigen interaction by scatter plot (n=1,108; cut-off value for
neutralizing class <10 pg/ml).
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Fig. 2B. In contrast, the epitope sequences in all domains are well clustered in several areas (Fig. 2C). We also
evaluated the IC50 labels of all input interactions and found that the IC50 cut-off value representing a high
neutralizing antibody level (IC50 <10 pg/ml) can be used to explicitly divide our dataset into neutralizing and
nonneutralizing classes (Fig. 2D).

Analysis and selection of the best ML-performing method

In this section, we describe a comparative experiment on a variant ML model developed by using three encoding
methods and ten ML models. In the ML analysis, we performed tenfold cross-validation and independent tests
on our dataset to demonstrate the prediction performance of all ML models (Supplemental Tables 6-8). To com-
pare the ML performance for NAb prediction, we demonstrated the top five performing models with the highest
AUC scores of each experiment in terms of five different matrices by tenfold cross-validation and independent
tests (Table 2). We found that the AUCs of the top five ML models using the fingerprint-based encoding method
were higher than those of other encoding methods (Table 2). Finally, we selected the best predictive approach of
the XGB algorithm and fingerprint-based encoding method for the first-round screening of potential antibody
candidates. This ML model yielded an ACC of 0.802, Sn of 0.788, Sp of 0.817, MCC of 0.604, and AUC of 0.885,
as indicated by an independent test (Table 2). To confirm the interpretability of the XGB model, we illustrated
the performance of this model and the other top five ML models of each method in ROC curves with AUC values
of 0.554-0.885 by the independent test (Fig. 3A-C). The XGB model has an AUC of 0.885, which represents the
strong ability of the XGB model to classify neutralizing or nonneutralizing antibodies (Fig. 3C). Furthermore,
we determined the top 30 fingerprint features connecting with the corresponding amino acids, which are often
found in the neutralizing class, via the F score plot to demonstrate the accuracy of those features (Fig. 4). The
important features correlated with some amino acids (not all or nearly all amino acids) were considered unique
features that might play a major role in the neutralization mechanism of dengue antibodies, including alcohol
(amino acids S, T, and Y) and aromaticity (amino acids F, Y, and W) features (Fig. 4). However, there are some
features (labelled as could not be determined; ND) that have not been reported to be related to amino acids and
binding properties in antibody interactions.

Generation and screening of new antibody variants
We first generated new antibody variants (unseen antibodies) by applying single, double, and triple mutations
to all amino acids of the CDR-H3 sequence (TTLSGYSADWPEDY) of the 1B3B9 neutralizing human mono-
clonal antibody, resulting in 2,529,794 CDR-H3 variants. These CDR-H3 variants were paired with the most
cross-reactive epitopes of dengue virus (FL epitope residues; CCDRWCFCCK) as antibody-antigen sequences
for feature extraction by the fingerprint-based method into the numerical input for the first ML screening of
cross-neutralizing antibodies (potential candidates). To precisely predict the potential antibodies, we used the
selected XGB model with a confidence score of 0.9900 for screening all antibody variants, and this ML screener
filtered approximately 2.5 million variants to obtain 28 potential candidates. All 28 ML-screened candidates
contain triple-point mutations, and the major residues are S100, Y102, S103, A104, and D105 (Supplemental
Table 10). The minor mutation residues of these candidates are W106, E108, D109, and Y110, whereas there is
no mutation at T97, T98, L99, G101, or P107, as shown in Supplemental Table 10.

To empower the screening framework and increase antibody developability, we screened these 28 ML-
screened candidates with an MD simulation tool to test the stability of each antibody molecule. We designed a
simple MD by performing homology modelling of these candidates, introducing the mutated CDR-H3 sequences

Tenfold cross-validation Independent test
Feature set Top performance model ACC Sn Sp McCC AUC ACC Sn Sp MCC AUC
PLS 0.515 0.766 0.291 0.069 0.525 0.554 0.839 0.231 0.088 0.585
MLP 0.528 0.832 0.236 0.085 0.524 0.514 0.186 0.885 0.099 0.567
Sequence-based descriptor ET 0.526 0.837 0.227 0.078 0.531 0.536 0.805 0.231 0.044 0.557
XGB 0.524 0.832 0.227 0.073 0.526 0.536 0.805 0.231 0.044 0.557
DT 0.524 0.832 0.227 0.073 0.525 0.536 0.805 0.231 0.044 0.557
ET 0.738 0.751 0.729 0.478 0.808 0.725 0.712 0.740 0.451 0.812
RF 0.737 0.737 0.740 0.474 0.805 0.725 0.670 0.740 0.451 0.812
Atom-based descriptor XGB 0.757 0.748 0.766 0.511 0.824 0.703 0.610 0.760 0.410 0.807
MLP 0.669 0.635 0.703 0.335 0.728 0.680 0.602 0.856 0.372 0.805
SVM 0.678 0.653 0.711 0.362 0.718 0.721 0.661 0.789 0.469 0.802
XGB 0.815 0.791 0.842 0.630 0.879 0.802 0.788 0.817 0.604 0.885
MLP 0.752 0.731 0.769 0.502 0.815 0.775 0.746 0.808 0.553 0.858
Fingerprint-based descriptor SVM 0.809 0.788 0.831 0.618 0.868 0.779 0.754 0.808 0.561 0.852
LR 0.758 0.741 0.775 0.514 0.825 0.748 0.695 0.808 0.503 0.837
RF 0.791 0.769 0.814 0.583 0.854 0.757 0.729 0.789 0.516 0.833

Table 2. Top five ML algorithms based on three different feature encoding methods. ACC; Accuracy, Sn;
Sensitivity, Sp; Specificity, MCC; Matthew’s correlation coefficient, AUC; Area under the ROC curve.
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Figure 3. Performances of the top five ML models in the three encoding methods. We illustrated the
performances of the top five ML models in three encoding methods by ROC curves with the AUC values.
(A) ML analysis using sequence-based features. (B) ML analysis using atom-based features. (C) ML analysis
using fingerprint-based features. We found that the XGB model and fingerprint encoding method are the most
suitable approaches for classifying neutralizing and nonneutralizing antibody classes.
into the 1B3B9 antibody template, and sent it to the SWISS-MODEL server. We determined the quality of each
modelled structure with Ramachandran favoured and QMEAN scores before performing MD simulations. All
constructed 3D structures showed QMEAN scores less than 1, reflecting the native-like structure (Supplemental
Table 10). Then, we used MD to screen a stable conformation of each 3D structure and showed MD-screened can-
didates in a scatter plot with the average RMSD (a standard measure of structural distance between coordinates
or structure changes; Y axis) and average end-to-end distance (a distance between the first and the last carbon
atom in a protein or structure length; X axis) values, which are the representative parameters for molecular
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Figure 4. Top 30 important features with corresponding amino acids. We analysed our dataset and found the
top 30 important features and corresponding amino acids of the neutralizing class from XGB model analysis.
(All AA; all amino acids, ND; could not be determined, A; alanine, V; valine, L; leucine, I; isoleucine, M;
methionine, T; threonine, G; glycine, Y; tyrosine, S; serine, C; cysteine, F; phenylalanine, W; tryptophan, N;
asparagine, Q; glutamine, K; lysine, R; arginine, H; histidine, P; proline).

stability in Fig. 5A. From this MD plot, 1B3B9 (green circle), 1B3B9_V2 (red star), and 1B3B9_V21 (yellow star)
had average values (X, Y) of (39.22 +£4.33,2.94+0.32), (38.08 + 4.88, 2.89 £ 0.46), and (38.77 +3.44, 2.65 £ 0.36),
respectively (Fig. 5A,B). The RMSD plot of all structures is provided in Supplemental Fig. 1. We accordingly
concluded that 1B3B9_V2 and 1B3B9_V21 have lower RMSD and end-to-end distance values than the 1B3B9
template and other candidates, which implies that the two candidates have more stable structural conformations
and higher developability as synthetic antibodies. In this finding, we proposed the best 1B3B9_V21 antibody,
which has the lowest average RMSD, representing a more stable configuration, for further characterization as a
potent and stable candidate targeting the four envelope proteins of DENV-1 to DENV-4.

In silico characterization of the best 1B3B9_V21 NAb candidate

We investigated the ability of the best predicted antibody candidate (1B3B9_V21) compared to the real-world
antibody template (1B3B9) in terms of binding interactions and binding energies (affinities and stabilities) using
molecular docking and MD simulations, respectively. We used complexed four envelope proteins of DENV-1 to
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Figure 5. ML and MD screening for antibody candidates. We generated approximately 2.5 million CDR-H3
variants from human neutralizing 1B3B9 antibody (template) by random mutation with single, double, and
triple points for further screening by ML and MD methods. (A) Distribution of ML-screened NAb candidates
by scatter plot of the average end-to-end distance (A) and average RMSD (A) calculated by Amber 16. The
1B3B9 (template) antibody is indicated by a green circle. The final screened 1B3B9_V2 and 1B3B9_V21 NAbs
are shown as red and yellow stars. (B) ML, structure modelling quality, and MD analysis of the antibody
template (1B3B9) and outstanding candidates (1B3B9_V2 and 1B3B9_V21). Red letters represent mutated
amino acid residues of outstanding antibody candidates compared with the antibody template.

DENV-4 (PDB: 4CCT, 5A1Z, 3J6T, 4CBF) with 1B3B9 and 1B3B9_V21 in both docking and MD experiments. In
a molecular docking study at a resolution of 4.5 A, 1B3B9_V21 straddled FL epitopes from the top of EDII with
interactions involving both the heavy chain and light chains (Fig. 6A). The binding motifs of 1B3B9_V21 were
located at the fusion loop (W101, N103, G104, C105, G106, L107 and F108 residues) on the E protein of DENV-2
(Fig. 6A) with 447 atom-to-atom contacts (Fig. 6B). Structural analysis showed that 1B3B9 and 1B3B9_V21
bound to different regions of FL epitopes within RO9—F108 (Supplemental Tables 11 and 12). 1B3B9_V21
revealed higher numbers of atom-to-atom contacts with DENV-2 E, DENV-3 E, and DENV-4 E proteins than
1B3B9, except DENV-1 E protein (Supplemental Tables 11 and 12). We therefore sought to determine whether
1B3B9_V21 could bind to DENV-1 to DENV-4 with strong affinity. Next, we tested the binding affinities and sta-
bilities of 1B3B9 and 1B3B9_V21 with DENV-1 to DENV-4 by using MD simulations. We found that 1B3B9_V21
in complex with DENV-1, DENV-2 and DENV-3 showed lower AGy,,4 energies with lower average RMSD values
(except for the DENV-3 system) than 1B3B9, whereas the AGy,;,q of 1B3B9_V21 in complex with DENV-4 was
similar to that of 1B3B9 (Fig. 6C and Supplemental Fig. 2). These results were in good agreement with H-bond
and contact analyses showing that 1B3B9_V21 in complex with DENV-1, DENV-2 and DENV-3 exhibited higher
H-bond formations and number of contact atoms compared to 1B3B9_V21 in complex with DENV-4 (Supple-
mental Figs. 3 and 4). The RMSD plots of all antibody-antigen complexes are available in Supplemental Fig. 2.
All data from in silico characterization indicated that 1B3B9_V21, which is the best NAb candidate from our
computational framework, exhibits cross-neutralizing and stable binding with DENV-1 to DENV-4. Moreover,
1B3B9_V21 also provided binding interactions for these cross-reactive FL epitopes to other flaviviruses such
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H chain L chain Total
DENV-2E contacts contacts contacts
W101 W106 (101) K56 (8)3, 151
> H57 (4),
1B3B9_V21 358 (34):
Fab W59 (2),
T60 (2)
N103 T60 (7), 55
H61 (19),
AB2 (29)
G104 S58 (4), 6
T60 (1),
H61 (1)
C105 P104 (2) S58 (18), 30
W59 (10)
G106 G102 (10), 77
P104 (11), S58 (38),
W106 (5), W59 (7)
E108 (6)
L107 G102 (19), 63
P103 (5),
P104 (39)
F108 P104 (65) 65
Total 263 184 447

2 Number represent the number of atom-to-atom contacts

MD simulation
Antibody CDR-H3 Binding affinity Binding stability
sequence (AG ;g (kcal/mol)) (RMSD (A))

DV-i = DV-2  DV-3 DV-4 DV-1 DV-2 DV-3 DV-4

1B3B9 2052 | -5059 @ -27.23 @ -22.06 1531 @ 1168 @ 11.40 @ 13.40

(Template) | o oAPWPEDY! 618 | +6.18 | +£540 @ +£7.12 @ +1.03 046 | +040  +0.42

(1,\?:89'\/21 rayeronpeoy 4980 | 7440 | 8265 | -22.83 | 1274 | 1048 | 11.07 | 11.66

W. +5.33 +4.69 +6.85 +4.89 + 0.49 +0.39 +0.31 +0.44
candidate)

Figure 6. Molecular docking and MD analysis of the most potent and stable neutralizing antibody candidate
(1B3B9_V21) against DENV-1 to DENV-4. We obtained the best NAb candidate, 1B3B9_V21, with potent and
stable neutralizing activities against all four serotypes. We performed homology modelling, molecular docking,
and MD simulations. (A) Structure of 1B3B9_V21 Fab bound to the fusion loop epitope on the EDII domain
of DENV-2 (PDB ID: 5A1Z). (B) Residues participating in interactions between DENV-2 E and 1B3B9_V21
Fab are shown in the table with the number of atom-to-atom contacts analysed by the contact command of
AMBERI16. The distance cut-off is 4.5 A. (C) Binding energies of 1B3B9_V21 with DENV-1 to DENV-4 (PDB
ID: 4CCT, 5A1Z, 3J6T, 4CBF) were determined in terms of binding affinities (AGy;,g; kcal/mol) and binding
stabilities (RMSD; A). Red letters represent mutated amino acid residues of the new antibody candidate
compared with the antibody template.
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as Zika virus and Japanese encephalitis virus (Supplemental Fig. 5). Binding site was also occupied between FL
and 1B3B9_V21 heavy chain especially CDR-H3 mutated amino acid sequence (Supplemental Table 13). We
suggest that our computational framework has potential for use in the efficient design and screening of potent
and stable dengue therapeutic antibodies.

Discussion

Antibody treatment is a promising strategy to combat severe dengue. An ideal antibody therapeutic should
sufficiently neutralize all four DENV serotypes to reduce ADE effects, which is the major problem for dengue
treatment®'°. A simple, rapid, and efficient antibody design and screening method, especially an in silico method,
is the first crucial step to accelerate antibody discovery and the development of dengue therapeutic antibodies.

In this study, we propose a well-characterized dataset and in silico approach to predict potent and stable
neutralizing antibodies against DENV-1 to DENV-4 to decrease ADE effects by screening for antibodies with
strong and stable binding, thus providing an outstanding 1B3B9_V21 antibody candidate for further antibody
engineering and optimization. We newly generated a CDR-H3-epitope-IC50 dataset from well-defined and
real experimental results of 100 publications from 1992 to 2022. IC50 values obtained from different laboratory
methods are unlikely to significantly impact algorithms, as each assay can accurately reflect the actual activi-
ties being measured”. We found that our dataset has a balance of neutralizing (positive) and nonneutralizing
(negative) categories with highly diverse properties of CDR-H3 sequences and lower variation among epitope
sequences, similar to the results of a previous study?’. Our computational framework is designed to combine
sequence-based ML screening and simple MD screening to identify the most potent and stable candidates in the
most practical workflow. The combination of the XGB model and fingerprint-based method achieved excellent
ML performance (AUC=0.885 by independent test) in the prediction of cross-neutralizing antibodies against
four DENV serotypes. We chose the AUC metric to evaluate the model’s performance and selection for classify-
ing neutralizing and non-neutralizing antibodies because of its comprehensive evaluation across all potential
classification thresholds and various operational scenarios, as demonstrated in previous study?. Interestingly, the
ML screener was used to screen approximately 2.5 million unseen antibodies to obtain 28 NAb candidates. The
MD screener was used to screen 28 potential antibodies to find 2 stable NAb candidates, which may indicate the
developability of these screened candidates as synthetic antibodies. Compared to existing approaches'”'®%, our
framework uses a sequence-based ML model (no need for antibody and antigen structural data) and a simple
MD protocol (requiring only an antibody structure with 15 ns MD production) that is easily applied in real-
world experiments. In addition, our ML-based framework might be usable for antibody screening against other
flaviviruses according to the cross-reactive epitopes that we used in this study, which are conserved among DENV,
Zika, Japanese encephalitis, yellow fever, West Nile, and tick-borne encephalitis viruses**’. Our approach has five
key features. (1) It has two successive steps: general ML and simple MD methods. (2) It reduces the limitations of
needing the full antibody sequence (instead requiring only the CDR-H3 sequence) and full antigen sequence. (3)
It decreases time-consuming tasks by running all processes within 2 weeks. (4) It enables cost-effective screening
to reduce laboratory work. (5) It is applicable to screening other flaviviruses because of the use of cross-reactive
epitopes as shown in Supplemental Table 13.

Regarding the details of ML analysis, we considered the fingerprint-based method to be suitable for the
prediction of antibody-antigen interactions because it can extract information from biophysical and biochemi-
cal properties without relying on the sequence or 3D structure. This approach facilitates the identification of
unknown therapeutic candidates on a large scale for subsequent experimental validation®. We identified that the
important features of 28 NAb candidates belong to the substructure count fingerprint (FP4C), which lists the top
30 fingerprints alongside their respective descriptions in Supplemental Table 9. Three of the top 30 fingerprints
belong to the general class of alcohols (FP4C14: secondary alcohol, FP4C13: primary alcohol, and FP4C12:
alcohol), which are found in the side chains of certain amino acids such as serine and threonine. These hydroxyl
groups can act as both hydrogen bond donors and acceptors, influencing hydrogen bonding networks, binding
affinity, and the neutralizing activity of antibodies*’. Two of the 30 most important features were FP4C274 (aro-
matic ring) and FP4C184 (heteroaromatic ring), which are present in the side chains of certain amino acids like
phenylalanine, tryptophan, and histidine. Aromaticity plays a significant role in cooperative interactions involv-
ing hydrophobicity, charge, and hydrogen bonding properties, making it well-suited for creating binding sites for
epitopes, irrespective of the presence of polar and nonpolar surface residues®. For the FP4C307 (chiral center)
fingerprint, it is recognized as a pivotal feature that significantly improves the predictive performance of machine
learning models in drug discovery tasks, particularly in predicting KRAS G12C inhibitors and other biological
activities’. Regarding FP4C84 (carboxylic acid) and FP4C88 (carboxylic acid derivative), which are found in
the side chains of amino acids like aspartic acid and glutamic acid, they participate in hydrogen bonding, ionic
interactions, and salt bridges critical for protein structure and protein-protein interactions®. FP4C302 (rotatable
bond), with an average F-score of 40, represents single bonds that allow free rotation, contributing to molecular
flexibility. This structural characteristic is crucial for determining overall molecular flexibility. Interestingly, all
compounds in the dataset possessed rotatable bonds, particularly abundant in active compounds, suggesting their
importance for biological activity*®. FP4C295 (C-O-N-S bond) refers to the presence of a carbon-oxygen-sulfur
bond in molecular structures. This feature can influence protein-protein binding by participating in hydrogen
bonding interactions with amino acid residues on the protein surface, enhancing binding affinity and specificity*’.
Additionally, other significant FP4Cs include miscellaneous descriptors such as FP4C1-3 and FP4C300. FP4Cl
(primary carbon), FP4C2 (secondary carbon), and FP4C3 (tertiary carbon) carbons indicate that carbon atoms
with two or three neighbouring carbons in drug molecules may enhance metabolic stability by limiting access to
metabolic pathways®. Based on feature importance (Supplemental Table 9) and amino acid analysis (Fig. 4), we
suggest that the essential characteristics of our identified neutralizing antibodies encompass alcohols (present
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in amino acids S, T, and Y) and aromaticity (linked to amino acids F, Y, and W). These features are essential for
the binding mechanism and maintaining the correct secondary structure at the antibody-antigen binding sites®.

Furthermore, we observed that the mutated residues of outstanding candidates are mostly located in the
central area of the CDR-H3 region (S100, Y102, S103, A104, D105, W106, E108, D109, and Y110), which are
crucial sites for antibody engineering and improvement, as supported by previous studies**!. After characteri-
zation by in silico methods, 1B3B9_V21 revealed binding motifs at the most cross-reactive fusion loop region
on the EDII protein of DENV-1 to DENV-4 (W101, G102, G104, G106, and L107 residues). These binding sites
have been reported in many studies of cross-neutralizing antibodies against all four DENV?*#2, In molecular
dynamics, 1B3B9_V21 showed high binding affinities (less than -22.83 +4.89 kcal/mol) and stabilities (less than
11.83+1.960 A) with DENV-1 to DENV-4. Most of the binding energies of 1B3B9_V21 are lower than those of
the real 1B3B9 antibody. Therefore, we suggest 1B3B9_V21 as a potent and stable NAb candidate for development
as a therapeutic agent. To accomplish the application of the NAb candidates, in vitro tests of the neutralizing and
ADE activities of these predicted antibodies are still required.

In conclusion, we have presented the first ML-based framework that employed a sequence-based ML method
and a simple MD method for the accurate and rapid identification of NAbs against DENV-1 to DENV-4. We also
provided an updated dengue antibody dataset including unique information on CDR-H3 sequences, epitope
sequences, and IC50 values. We used three different feature-encoding methods and ten ML algorithms to com-
pare and exhibit the best performing model. Our ML model can be used for large-scale identification of NAbs.
The MD method can be used to select stable NAbs for more accurate identification. Our outstanding 1B3B9_V21
candidate showed high potential for development as a therapeutic antibody, and this NAb candidate is warranted
for further in vitro analysis. Our proposed computational framework might support novel opportunities to dis-
cover, design, and engineer therapeutic antibodies against four dengue viruses and other flaviviruses.

Methods

Computational framework design

We built a dataset, model, and computational framework for screening cross-neutralizing antibodies against
DENV. The computational framework contains four steps (Fig. 1): (1) dataset preparation of CDR-H3-epitope-
IC50 pairing data, (2) feature extraction and ML analysis for the best performing model, (3) generation of
CDR-H3 antibody variants and ML screening for potential antibody candidates, and (4) MD screening for stable
antibody candidates.

Dataset preparation

The dataset of anti-DENV CDR-H3 sequences was prepared from published data that satisfied three criteria:
(1) including complete CDR-H3 amino acid sequences specific to DENV and published in PubMed or Google
patent databases, (2) including epitopes on the E protein in EDII (fusion loop), EDI-EDII (interdomain), EDIII,
or EDE, and (3) including neutralizing activities against DENV in ug/ml, as characterized by a focus reduction
neutralization test (FRNT) or plaque reduction neutralization test (PRNT) or enzyme-linked immunosorbent
assay (ELISA). The CDR-H3 sequences were annotated using the IMGT numbering scheme through the Anti-
body Region-Specific Alignment (AbRSA) web service. The neutralization (NT) activities derived from FRNT
and PRNT represent actual experimental NT values, while antibodies that do not bind in the ELISA assay were
categorized as non-neutralizing because they fail to bind to the antigen. All data (Supplemental Table 1) were
carefully preprocessed to handle missing data and remove redundant data. The compilation of interactions
between CDR-H3 and epitope sequences followed the principles outlined by Magar et al.>. Our dataset was
derived from experimental results that included the sequences of CDR-H3 and epitopes, along with correspond-
ing in vitro IC50 values against any of the four serotypes of dengue virus. In this dataset, we collected CDR-H3
sequences along with their epitopes and neutralizing activities (IC50; pg/ml) and further divided them into a
positive (neutralizing) dataset (IC50 <10 pg/ml) and a negative (nonneutralizing) dataset (IC50> 10 pg/ml).
Each positive and negative dataset was randomly divided into a training dataset (80%) and an independent
dataset (20%) (Table 1).

Feature extraction and machine learning analysis

To evaluate the contribution of variant ML methods at the different levels of each antibody-antigen interaction,
we performed a comparative analysis on different feature extraction schemes and ML methods. In the case of
the feature extraction schemes, we applied three types of feature descriptors addressing multiple aspects, includ-
ing 12 sequence-based, 7 atom-based, and 12 fingerprint-based feature descriptors (Supplemental Tables 2-4)
following the previous studies**-*>. The CDR-H3 and epitope sequences were concatenated and encoded into
a single embedding of an antibody-antigen complex using our in-house Python-based code. Data normaliza-
tion was performed to transform the input features into the same scale using Min-Max Scaler. Afterwards, the
scaled training set was employed to train ten different ML algorithms: extreme gradient boosting (XGB), sup-
port vector machine (SVM), random forest (RF), partial least squares regression (PLS), multilayer perceptron
(MLP), logistic regression (LR), linear support vector classification (LN), extra tree (ET), decision tree (DT),
and k-nearest neighbours (KNN) classifiers. The algorithm selection was guided by considerations of accuracy,
computational resources, and interpretability to derive the optimal predictive model for the dataset. Simpler
models such as PLS, LR, LN, and DT provide easier interpretability, whereas more complex models like XGB,
SVM, RE, MLP, ET, and KNN offer greater effectiveness in capturing intricate patterns within high-dimensional
data spaces and deliver superior predictive capabilities**. All models are designed specifically for binary clas-
sification. Hyperparameter searching was performed as described in Supplemental Table 5. Herein, we evalu-
ated and compared the performance of the developed ML methods based on tenfold cross-validation (CV) and
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independent tests. We demonstrated ML performances based on five metrics: accuracy (ACC), sensitivity (Sn),
specificity (Sp), Matthew’s correlation coeflicient (MCC), and area under the ROC curve (AUC), as previously
described***¢. The ML algorithm with the greatest AUC for predicting NAbs was selected to screen a panel of
unseen antibodies in the ML screening step. Model comparison, analysis and evaluation were performed using
Python script 3.8 (all codes; available at GitHub).

In silico antibody library

An insilico antibody library of 2,529,794 variants was generated by making single, double, and triple mutations
on all amino acids in the CDR-H3 region of the 1B3B9 neutralizing human monoclonal antibody (antibody
template)® using Python script 3.8. All antibody variants were screened and ranked by the best ML algorithm
and simple MD simulation in further steps to discover new potent and stable NAb candidates.

ML and MD screening methods

In the first ML screening step, all antibody variants were filtered by the best performing ML algorithm with a
confidence score cut-off of 0.990 to screen for potent neutralizing antibody candidates against four serotypes of
DENV. Then, we constructed the 3D structure of the 1B3B9 Fab antibody template and ML-screened antibody
variants using the SWISS-MODEL server*” (PDB 3t2n.1). Homology assessments and structural comparisons
were performed using the SWISS-ExPASy server in terms of Ramachandran plots and QMEAN scores*® to
validate the model quality of all 3D structures before screening by MD simulation.

In the second MD screening step, to determine the Fab structural stability as previously described (18),
we performed MD simulations of all Fab antibody variants in a solvated environment using Amber 16. Each
system was simulated under the periodic boundary condition with isothermal-isobaric (NPT) ensemble. The
temperature and pressure were controlled by using Langevin thermostat* with collision frequency of 2.0 and
Berendsen barostat®’. Topologies of each Fab were generated according to the ff14SB forcefield®'. The Fab mol-
ecule was cantered in a cubic simulation box, extending 1 nm from the molecule surface. Then, the system box
was solved by TIP3B model water atoms®?, and a net positive charge was neutralized with chloride ions. Energy
minimization was carried out using 1500 steps of steepest descent (SD) followed by 1500 steps of conjugated
gradient (CG) methods with constrained solvent molecules. Then, the whole system was fully minimized using
the same procedure. The minimized system was subjected to two rounds of equilibration at 310 K and 1 atm.
First, the molecular system was equilibrated in the NVT ensemble for 100 picoseconds and a 2-femtosecond time
step. Second, the equilibration was applied in a round of NPT simulation for 100 picoseconds to ensures that the
simulated system is at physiological temperature and pressure. Then, the system was carried out in NPT and no
constraints for 500 picoseconds. Finally, a 15 ns unrestrained NPT simulation at 310 K and 1 atm was carried
out under identical simulation parameters. We collected the MD results and demonstrated the stabilities of all
variants in the scatter plot of average end-to-end distance values at the X axis and averaged the root-mean-square
displacement (RMSD) values at the Y axis to select the outstanding NAb candidates.

Characterization by molecular docking and MD simulation

The antibody template (1B3B9) and the best screened NAb candidate were further characterized for their bind-
ing sites, binding affinities, and binding stabilities with DENV-1 to DENV-4 (utilizing PDB IDs: 4CCT, 5A17Z,
3J6T, 4CBE, which correspond to the strains used in previous in vitro studies)® using molecular docking and
MD simulation. First, antibody-antigen docking was performed by using the ZDOCK server™ using the default
parameters and the target residues. The best posture of each docked complex was selected according to the
lowest-energy ZRANK score. Then, MD simulations of each antibody-antigen complex were executed at 310 K
and 1 atm for 100 ns using Amber 16. The MD procedure was the same as in the MD screening method above.
The MD trajectories were saved every 10 ps.

The binding affinity of the antibody-antigen complex was calculated as binding free energy (AGy;,g; keal/
mol) based on the MM/PB(GB)SA approach from the last 20 ns of the MD production using the CPPTRAJ>*
and MMPBSA .py>® modules of AMBER16. The binding stability of each complex was evaluated in terms of
RMSD according to the number of antigen-antibody hydrogen bonds and the number of atomic contacts using
the CPPTRA]J modules of AMBER16. The H-bond interactions were calculated using two criteria: (1) distance
between the hydrogen donor (HD) and hydrogen acceptor (HA) of <3.5 A and (2) HD-H.---HA angle of > 150°.
'The number of atom contacts was counted as the number of atoms within 4.5 A of each complex.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary
information files. The dataset, feature descriptions, ML performances, RMSD plots of MD simulations, data of
ML-screened antibodies, and numbers of atom-to-atom contacts are provided in the supplementary information.
All codes in this study are available online at https://github.com/PiyatidaNatsrita/In-silico-dengue-virus-antib
ody-prediction-2022.git.
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