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Optimal allocation of distributed 
energy resources to cater 
the stochastic E‑vehicle loading 
and natural disruption in low 
voltage distribution grid
Devender Kumar Saini 1*, Monika Yadav 1* & Nitai Pal 2

The everyday extreme uncertainties become the new normal for our world. Critical infrastructures like 
electrical power grid and transportation systems are in dire need of adaptability to dynamic changes. 
Moreover, stringent policies and strategies towards zero carbon emission require the heavy influx 
of renewable energy sources (RES) and adoption of electric transportation systems. In addition, the 
world has seen an increased frequency of extreme natural disasters. These events adversely impact 
the electrical grid, specifically the less hardened distribution grid. Hence, a resilient electrical network 
is the demand of the future to fulfill critical loads and charging of emergency electrical vehicles (EV). 
Therefore, this paper proposes a two-dimensional methodology in planning and operational phase for 
a resilient electric distribution grid. Initially stochastic modelling of EV load has been performed duly 
considering the geographical feature and commute pattern to form probability distribution functions. 
Thenceforth, the impact assessment of extreme natural events like earthquakes using damage state 
classification has been done to model the impact on distribution grid. The efficacy of the proposed 
methodology has been tested by simulating an urban Indian distribution grid with mapped EV on 
DigSILENT PowerFactory integrated with supervised learning tools on Python. Subsequently 24-h 
load profile before event and after event have been compared to analyze the impact.

Keywords  Electrical distribution grid, Resiliency, Renewable energy sources, Natural disaster, Electric 
vehicle load

List of symbols

Indices and sets
⊓	� Load failure probability estimator
σ	� Standard deviation
ɸ	� Load failure frequency estimator
µ	� Mean value

Abbreviations
COP	� Conference of the parties
DG	� Distributed generations
ES	� Energy storage
EPNS	� Expected power not served
EV	� Electric vehicle
LOLF	� Loss of load frequency
LOLP	� Loss of load probability
LVRT	� Low voltage ride through
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MG	� Micro grid
Pcharger	� Power rating of the charger
PDFAr	� Probability distribution function of arrival time
PDFDr	� Probability distribution function of departure time
PGA	� Peak ground acceleration
PSO	� Particle swarm optimization
RES	� Renewable energy sources
SHO	� Spotted hyena optimizer
SLD	� Single line diagram
SOC	� State of charge
Tcharing	� Charging time

Contemporarily a green planet is the foremost policy for most countries like G7, G10, G15 etc. Besides, the 
Paris agreement of COP21 has been accepted by 192 countries so far. This necessitates the maximum reliance on 
renewable energy sources (RES) and adoptions of electric vehicles (EVs) by developed and developing countries. 
However, the integration of RES with controlling devices substantiate the entire grid system to follow the grid 
codes provided by operators of the state/country1. In addition, the dynamically changing definition of smart grid, 
comprises EVs, energy storage (ES), formation of micro grids (MGs), communication protocols etc., restructure 
the conventional grid as shown in Fig. 1.

The heavy penetration of RES in conventional electrical grid undoubtedly improves the flexibility of grid but 
reduces the reliability and safety due to intermittent nature of it3. Even the inclusion of RES plays a vital role in 
reaching the sustainable goals. Moreover, the world has seen an increased frequency of extreme natural disasters. 
These events adversely impact the electrical grid, specifically the less hardened distribution grid. Therefore, it 
is imperative to analyze the critical infrastructures like electrical power grid under extreme events like natural 
disaster and cyber-attack possibilities. However, it is evident from the literature that optimal uses of distributed 
generations (DGs) can minimize the overall impact on a power system network due to extreme events. Conse-
quently, this paper explores the DGs operation, modelling & analyzing of EV load and impact of earthquake on 
overall distribution grid resiliency.

Relevance of DGs in distribution grid
The distribution system was initially built to cater the different load consumers without any local electrical gen-
eration. In contrast, presently, distribution companies rely on DGs for several benefits. Despite the clear advan-
tages of integration RES-DGs, it presents technical challenges in terms of voltage, frequency, phase unbalance, 
short circuit level and protection coordination. Eventually, integrating RES-DGs improves the flexibility to cater 
surplus demand, but the price must be made in terms of system stability. Moreover, there are certain advantages 
of DGs integration apart from matching demand response. Like, author in Ref.4, presents a method which sup-
presses the ferro-resonance issue with the DG on the IEEE 33 bus system. In addition, in paper5, the author 
presented the impact of low voltage ride through (LVRT) during the sudden disconnection of large RES plant. 

Figure 1.   Contemporary smart grid2.
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Furthermore, the author also presented various control strategies for controlling the effect of LVRT. However, it 
is concluded that the intermittent nature of RES-DGs can also lead towards mismatch in generation and demand.

Stochastic loading of EVs
EVs are revolutionary technology of this century, meant to achieve a green environment. In contrast, EVs are 
seen as stochastic load on distribution grid. It is evident from the literature that the DGs placement improves 
the voltage profile and minimizes power losses. Conversely, EV load in distribution grid can degrade the voltage 
profile, power quality and may enhance the power losses, if their future growth with their load profile and pattern 
is not being considered in planning stage. In this regard, the maximum stress will be on the low voltage distribu-
tion grid, as 90% of personnel vehicles are probably charged at home charging stations, whereas the remaining 
10% are on commercial charging facilities6. Moreover, the penetration of EVs will be increased exponentially 
in the future. For an example, the capital city of India, Delhi has worst air quality index. Therefore, EVs will be 
adopted more rapidly than other metro cities in India. On that note, a report prepared by A. Sharma6, presents 
the load profile of Delhi, with and without EVs for 2025 and 2030, as shown in Figs. 2 and 3, respectively. In 
addition, the report graph shows that there is an additional approximate 2 GW/day increase in the load due to 
EVs by the year 2025 and 8 GW by 2030.

Therefore, it is imperative to study the dynamic loading of EVs over electric distribution grid. Consequently,, 
recent literature presents the many modelling techniques to calculate the EV load demand over distribution grid. 
However, many of these modelling techniques considered controlled charging behavior which subsequently 
imposes wrong EV demand over 24 h of period. Moreover, few recent studies suggested the strategies for sus-
tainable deployment of EV infrastructure without considering the RES integration and its intermittency7. In 
Ref.7, authors have considered only power quality issue of the grid to develop the sustainable strategies for EV 
infrastructure deployment. However, without considering the future aspect of grid dynamics, it is absurd to say 
that any strategy would be sustainable towards EV infrastructure development. Furthermore, in Ref.8, authors 
have presented the optimal allocation of RES and DGs and validated the results on 28 bus Indian distribution 
system. The presented paper8, shows the impact of renewable DGs and EVs on distribution grid. However, the 
paper limits its finding in terms of EV demand modelling and quasi dynamic load flow solution. Moreover, the 

Figure 2.   Delhi (India) load profile with and without EV for 20256.

Figure 3.   Delhi (India) load profile with and without EV for 20306.
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paper does not include the EV driving behavior to formulate the 24-h load demand and, also lacks in terms of 
RES intermittency. Similarly, the paper9, presents a method to minimize the EV charging impact in distribution 
grid using DGs and DSTATCOM. However, while modelling the EV load, the author considered the EV load as 
constant and performed the load flow on absolute value.

Therefore, this presented manuscript caters such aspect by presenting an idea, on dynamically changing 
grid conditions in terms of EV load uncertainty and RES intermittency. However, the unavailability of data on 
growth rate, charging pattern, social behavior and driving range of different categories of EVs (like, personal, 
utility vehicle, city commute, big transportation trucks), necessitate the use of probability theory to model the 
EVs loading as random variable. Therefore, it becomes necessary to model the EVs stochastic pattern while 
planning for RES-DGs integration. Consequently, the problem statement has two variables, intermittent gen-
eration (RES) and partly load (EVs), which need to be taken care of by planning engineers duly accounting for 
the future uncertainty.

Impact of natural disasters on electric grid
Recently, the world has seen many catastrophic events like earthquakes, cyclones, floods, cloudbursts, etc. These 
events adversely impact the electrical grid, as shown in Fig. 4, and the recent disaster and their impact on elec-
trical infrastructure are mentioned in Table 110–14. Also, the map in Table 1 is showing the storm’s track and 
intensity, as per the Saffir–Simpson scale15–19. The disruption of electrical infrastructure halts all the essential and 
non-essential supply. The critical essential utilities like water supply, communication, fire utility and critical com-
munity center loads require reliable electrical power to cope with the post-disaster situation and to reinforce the 
recovery process20. Therefore, a resilient distribution grid is a prima requirement, serving at least critical utilities 
and essential services. Recent literature has fair amount of studies, addressing the power grid resiliency. For an 
example, a dart game theory approach for the enhancement of resiliency during extreme event is presented21. In 
addition, the proposed model also reduces load shedding and cost of restoration.

Contribution of the presented paper
The transition towards green energy is going to be faster than ever. Consequently, the entire power system 
structure will see many reinforcements to adapt dynamic changes as discussed above. The maximum changes 
will occur on low (440 V) and medium voltage (up to 33 kV) distribution grid. The distribution part is also 
most vulnerable towards natural disruption. Therefore, a sustainable planning of distribution grid with modern 
machine learning tools is essential for utility. The paper provides a detailed analysis of voltage variations over a 
24-h period with up to 30% EV penetration, highlighting the critical need for grid ancillary services to support 
frequency and reactive power.

Moreover, the presented study examines grid transformation during extreme events over a 24-h timeframe, 
underscoring the necessity for distributed generation (DG) allocation to ensure grid stability from seconds 
to minutes. This research offers a fresh perspective on power system planning, emphasizing the preparedness 
required for high EV penetration and the resilience needed against high-impact events.

The paper also advocates for the integration of DGs and battery storage to enhance power flow and grid 
stability. It also explores optimized battery charging and discharging strategies, contributing to the discourse 

Figure 4.   Damaged electrical infrastructure and solar plants after natural disaster22.
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on improving grid efficiency and reliability. Overall, this work provides valuable insights and practical solutions 
for future power system planning and management in the context of increasing EV adoption and extreme event 
resilience. The novel contributions (objectively) of the presented paper are stated hereunder:

•	 RES-DGs sizing and siting to improve voltage profile and to reduce carbon emission duly accounting the 
intermittency of RES.

•	 Probabilistic approach to model EV load profile based on driving distance, battery status and time of charging 
and discharging.

•	 Optimal allocation of RES-DGs to minimize the adverse effect of EV load on voltage stability and power 
quality.

•	 Modelling of natural disaster for vulnerability assessment of distribution feeders.
•	 Application of supervised learning algorithm in planning phase for planning of resilient distribution grid 

against natural disruption.

The rest of the paper is organized into 6 sections. Section “Introduction” weaves the background of the 
problem statement and subsequently highlights the contribution of the paper. Section “Power system resiliency 
modelling” formulates the power system resiliency modelling. Section “Impact modelling of EV load on dis-
tribution grid” models the randomness of EV load on distribution grid using probabilistic approach in Indian 
context. Framework for sizing & siting of solar PV in distribution grid along with EV loading has been presented 
in section “Problem formulation for sizing and siting DGs”. Section “Impact of extreme event on an urban Indian 
electric grid” deduces the impact analysis for an extreme disruption using machine learning techniques and an 
urban Indian electric grid of Dehradun city has been taken to examine the efficacy of framework. Lastly, the 
findings of the presented manuscript have been concluded in section “Conclusion”.

Table 1.   Recent natural disruption10–14.

Disruption/year Wind gust (Km/h)
Map showing the storm’s track and intensity, as per the Saffir–Simpson 
scale15–19 (map images are directly taken from15–19 without any modifications) Total damage cost

Amphan (2020) 150 Approximated damage cost: $14 billion

Tauktae (2021) 195 Approximated damage cost: $2.1billion

Mocha (2023) 256 Approximated damage cost: $1.07 million

Sitrang (2022) 83 Approximated damage cost: $34.4 million

Jawad (2021) 75 Approximated damage cost: $50.35 million
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Power system resiliency modelling
The electric grid has a significant role in human life; primarily things depend on electricity. Therefore, a resilient 
power system structure that can provide electricity supply during disastrous events (intentional/unintentional) is 
required. The traditional grids were constructed to satisfy the demand in usual operating condition. However, it is 
evident now that the conventional grid is highly vulnerable to high impact natural disruption. Therefore, it is time 
to improve the resiliency of the distribution network by restoring the power in the distribution system quickly 
after the event. It is apparent from the literature that DERs (specifically solar PV) along with optimally sized ES 
units (mostly battery storage) have proven to enhance the grid resiliency during the catastrophic events23–27. 
Moreover, the author28, proposed a metric for finding the optimal location of energy storage units in the distri-
bution system, further improving the voltage profile. In paper29, optimal sizing and siting of the constant and 
variable capacitors during grid connection and isolated modes are identified using the spotted hyena optimizer 
(SHO) algorithm. Furthermore, the author includes various load levels, and the results show an overall net cost 
saving with DGs duly including the capability of active and reactive power injection. In addition, quantum 
annealing methodology is presented by Silva for minimizing the power loss in the network30. The power grid’s 
reliability differs from the grid resiliency concept in terms of operating and time horizon. The subsequent sections 
present the details about power grid resilient network and how it differs from the reliability aspect.

Reliable electric grid
The main objective of an electrical grid is to deliver a reliable and continuous power supply. Hence, reliability in 
terms of the electrical grid deals with high-frequency low-impact events and considers the equipment’s ageing 
effects. The system’s reliability is its ability to continuously supply power to the loads without disruption31. The 
reliability of a power system is measured by various indices such as probability vs expectation in load loss, fre-
quency and duration of power failure, and severity of the failure32. These indices are evaluated either empirically 
or predictively. In empirical methods, reliability indices are measured by data collection, while in predictive, 
many ways can be considered for the evaluation, such as network reconfiguration, system behavior, operational 
characteristics etc. The three main indices are as follows.

i. Loss of load probability estimation (LOLP):

where ⊓ =
1
T

∑Ncy

i=1 Ti(d) and  T = Ncy .Try . ⊓ = Load failure probability estimator ; cy = cycle; E = Expectation 
operator; T = Time period. Ncy = No.ofcyclesinsimulation ; Ti(d) = Interruption duration.

ii. Loss of load frequency estimation (LOLF): It estimates the frequency of failures per unit of time.

where � = Load failure frequency estimator and is given by � =
Ncy

T
iii. Expected power not served estimation (EPNS): This index evaluates the failure states of expected demand/

power not served. The EPNS is given as:

where P
{

fi
}

= ProbabilityofoccurrenceandL
{

fi
}

= loadcurtailmentstate; Fi = setoffailurestates.
Furthermore, the power system reliability indices can be divided based on nature, either probabilistic or 

deterministic. The probabilistic index is much more challenging to incorporate as they deal with uncertain-
ties like loss of power but provide a quality solution. In contrast, the deterministic index is a reserved type and 
easy to use. However, the reliability factor is incorporated in decision or planning processes such as power grid 
expansion. The author33 proposed stochastic programming for developing a power system network. Moreover, 
t reliability indices are also considered at the planning stage.

Resilient electrical grid
A resilient grid is a complicated concept with many driving areas such as grid hardening, transient stability, 
and adequate resources to examine the resilience, like polar vortex34 and generator governor. The assessment of 
vulnerability has a goal of locating weak nodes for the improvement of security and resiliency.

The term resilience has various definitions provided by multiple organizations and researchers. According to 
a UK organization, reliability, resistivity, redundancy, retort, and recovery define a power network’s resilience34. 
CENTRE (National Centre for Earthquake Engineering Research) provides the terms "redundancy, resourceful-
ness, and rapidity consist of the framework of word resilience"34. Whereas the MCEER (Multidisciplinary Centre 
for Earthquake Engineering Research) defined the term as the "ability of social units to mitigate hazards that 
contain the effects of disasters when they occur and carry out recovery activities in ways that minimize social 
disruption and mitigate the effects of future disaster"35. In 2013, the White House stated the term resiliency as 
"the ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disrup-
tions"36. "The ability to withstand and reduce the magnitude and/or duration of disruptive events, which includes 
the capability to anticipate, absorb, adapt to and/or rapidly recover from such an event" is the power system 
resiliency definition stated by IEEE37. It is concluded from the literature that the term resiliency defined in the 
literature varies by two factors, namely, adaptation and recovery. Although the terms resiliency and reliability 
seem the same. However, the resiliency of a system is the property of the object to return to equilibrium after 
major environmental disturbances such as natural and intentional disasters.

(1)LOLP = E[⊓],

(2)LOLF = E[�],

(3)EPNS =

∑

fiǫFi

P
{

fi
}

.L{fi},
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In comparison, the system’s reliability is its ability to supply power to the loads continuously without disrup-
tion. The basic difference in resiliency and reliability is given in Table 238. The resilience enhancement work is 
based on the ability to adapt and ability to recover during the disruption.

Impact modelling of EV load on distribution grid
The penetration of E-mobility is inevitable on distribution grid due to global concern of rising CO2 emission. 
Therefore, demand of EV is imperative to map on distribution grid to analyze the weak feeders and adverse 
impacts. However, the exact load modelling of EV in distribution grid requires the historical behavior of charg-
ing/discharging pattern, which eventually does not exist due to its gestation period. Therefore, it is being mod-
elled as probability distribution function (PDF) of random variable derived on traffic pattern and geographical 
nature in literature39. The framework is presented in Fig. 5.

This section shows the impact of EV loading on IEEE-33 bus system. Therefore, to identify the charging/
discharging time a PDF function has been formulated based on the collected data on arrival and departure of 
current vehicle in urban city of India (Dehradun). The PDF(s) to identify the charging time and its loading 
characteristic, the following assumptions are made as stated below:

•	 Li-ion battery has been considered as per the current market status of EVs.
•	 No commercial charging infrastructure has been considered; therefore, it is assumed that charging happens 

at individual’s premises (non-commercial).
•	 In Indian context TATA EVs have been studied and two models, TATA Tigor and TATA Nexon considered 

to model the EV load profile.

Table 2.   Difference in resiliency and reliability.

S. no Resiliency Reliability

1 This term is dedicated to the low probability high impact events such as earthquakes, 
landslides and many more

This term dedicated to the high probability low impact events such as system fault, 
component failure etc

2 Resilience has various characteristics – adaptive and recovery modes It is fixed in nature mainly

3 It deals with consumer power interruptions and natural and man-made disasters It deals with consumer power interruptions

4 Evaluated for specific threats Evaluated for all the threats

5 Measures the pre, during, and post-disaster effects Measures frequency and duration of power failure

Electric
Vehicle’s
Stochastic
Behaviour

Data of
distributed RES
generation in a

day

Day Load
Demand
Profile

Cumulative
load profile
with EV

Analyze
Distribution grid
parameters

Identification of
critical feeders and
optimal nodes for

EV load

Input

End

Figure 5.   Methodological framework to analyze the EV load impact on distribution grid.
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•	 TATA Tigor has 26 kWh battery capacity and Nexon model comes up with 30.2 kWh and 3.3 kWh home 
charger unit which takes around 9–12 h for full charge (TATA Tigor) and 12–14 h for Nexon model having 
conversion efficiency stands approximately at 82%.

•	 The daily travel distance to model the battery state of charge (SOC) level and required charging energy is 
derived through running behavior of the present vehicles in urban city of India and a PDF function has 
obtained.

•	 The load profile of EVs with respect to charging and SOC’s PDF(s) function has been generated using Monte-
Carlo simulation.

•	 The penetration of EVs on IEEE-33 bus system is assumed in three levels, 10%, 20% and 30% on the buses 
6, 18, 24 and 30.

Generation of PDF functions
To develop the EV load profile, a PDF function for arrival/departure of EV on weekdays has been generated. To 
model the traffic pattern, an urban city of India (Dehradun) as a case has been considered. Equations 4 and 5 
present the PDF for arrival and departure of EVs40, respectively and subsequent plots are shown in Figs. 6 and 7.

Furthermore, the PDF function for distance travel in a day has been created using logarithmic distribution 
as presented in Eq. (6) and plotted in Fig. 8. Thenceforth, the probability distribution of State of Charge (SoC) 
of the battery has been obtained from Eqs. (7) & (8). Consequently, the charging profile of EV load for a day has 
been created from Eq. (9).
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Figure 6.   PDF of arrival and departure of EV on weekdays.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17057  | https://doi.org/10.1038/s41598-024-67927-5

www.nature.com/scientificreports/

(7)SoC = 1−
d

R
;R = Range of EV on full charge,

(8)PDFSoC =

1

R(1− SoC)σ
√

2π
e
−

(ln(R(1−SoC))−µ)
2

2σ2 ,

(9)Tcharing = kWhbattery(1− SoC)/(0.82× Pcharger).
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Load flow profile with EV loading
As stated above, three levels of penetration have been considered viz. 10%, 20% and 30% distributed on four 
buses. The charging profiles for EVs have been generated through PDF functions and Monte-Carlo simulation. 
Hence, Fig. 9a–d shows the IEEE-33 bus absolute voltage profile with 10% EV penetration, 24—hour voltage 
profile, EV bus profile and PV bus profile respectively.

Similarly, Figs. 10a,b and Fig. 11a,b present the voltage profile with 20% and 30% EV penetration respectively 
for EV and PV bus for visual comparison.

The above voltage profiles shown for different scenarios, evident that EV loading has an adverse impact on the 
overall system. Moreover, it is imperative to consider the EV load profile during the planning phase for optimal 
allocation of distributed generation.

Problem formulation for sizing and siting DGs
Objective function
To obtain the optimal DGs sizing and siting, a binary PSO optimization technique41,42 is used in which a binary 
variable is taken i.e., 0 or 1 for optimal siting and PSO for sizing. The objective functions (F) are: (i) To minimize 
the active power loss (ii) Boost the voltage profile.

The Eq. (10) is the combined objective function43 and the constraints are given in Eq. (13)–(16)44.
Constraints:
(a) Power flow equations:

(10)F = f1 + f2,

(11)whereas,min.
(

f1
)

=

∑nbr

i=1
I2i ,

(12)max.
(

f2
)

=

N
∑

i=1

Vi(t)− Vrated(t).

(13)Pi(t) = Vi(t)×
∑

i,jǫNb

Vj(t)
(

Gijcosθij(t)+ Bijsinθij(t)
)

,

Figure 9.   (a) Absolute voltage profile with 10% EV penetration. (b) 24-h voltage profile of all buses with 10% 
EV penetration. (c) 24-h voltage profile of EV buses with 10% penetration. (d) 24-h voltage profile of PV buses 
with 10% EV penetration.
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Whereas, Pi(t) = Real power from ith bus at time ‘t’, Qi(t) = Reactive power from ith bus at time ‘t’, Vi(t) = 
Voltage at ith bus at time ‘t’, Vj(t) = Voltage at jth bus at time ‘t’, Gij + Bij  = Element of the Admittance matrix, 
Nb = Set of buses.

(b) Voltage limits:

Vmin = Minimumvoltage at bus.Vb(t) = Bus voltage at time ′t′ . Vmax=Maximum voltage at bus.
(c) Line Loading stability:

LLl(t) = Line loading of “l” line. LLl,max(t) = Maximum permissible loading of “l” line. 

Sizing siting for IEEE‑33 bus system
To validate the proposed optimization algorithm, the IEEE-33 bus system having 12.66 kV radial distribution 
system is taken as a reference. The heatmap of IEEE 33 bus with optimally placed DGs (PV) is shown in Fig. 12.

A combination of binary PSO (for siting) and PSO (sizing) has been applied to find the optimal allocation 
of DGs for IEEE-33 bus system. Table 3 presents the optimal sizing and siting of DGs for IEEE-33 bus system. 
Figure 13 shows that the voltage profile has been improved with the optimal PV placement. It is concluded that 
the generation from PV will suppress the stress on the grid and hence improve the voltage profile.

DG allocation with Quasi dynamic simulation
Quasi dynamic simulation is used to perform multiple load-flow calculations with time-step sizes defined by the 
user. In the presented work a time step size of 15 min is taken. Moreover, 15 min step size is also being used to 
match the generation and demand by state load dispatch center (SLDC), India. To replicate the practical scenario, 
load profile of urban city of India (Dehradun) has been considered for summer season as depicted in Fig. 14. 

(14)Qi(t) = Vi(t)×
∑

i,jǫNb

Vj(t)
(

Gijsinθij(t)− Bijcosθij(t)
)

,

(15)|Vmin(t)| < |Vb(t)
∣

∣< |Vmax(t)
∣

∣,

(16)LLl(t)< LLl,max(t)

Figure 9.   (continued)
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Moreover, the solar PV per unit output on a sunny day for the said region (Dehradun, 30.3165° N, 78.0322° E) 
is considered for quasi-dynamic simulation and shown in Fig. 15.

Comparing Figs. 13 and 16, it is taken out that one day profile shows very less improvement in voltage profile 
with PV as load demand stays at its peak even after irradiance goes down. Therefore, it is recommended to inte-
grate DGs (solar PV, wind etc.) with battery storage system to curtail the intermittency of solar PV generation 
during daytime and hence improving the voltage profile throughout the day.

However, to boost the voltage profile and to cater the PV intermittency; DG with battery storage placement 
is recommended. Thenceforth, the optimization algorithm has been run on optimally integrated PV IEEE-33 
bus system for sizing and siting of battery storage. After 10 iterations, two locations for battery storage have been 
identified on Bus-21 = 248 kW and Bus-18 = 472 kW. Furthermore, per-unit optimal charging/discharging profile 
(24 h) of the battery is shown in Fig. 17.

Also, the voltage profile of the one-day of IEEE-33 system for PV integrated bus is shown in Fig. 18. In com-
parison, one day voltage profile of IEEE-33 system for PV integrated bus with optimal charging/discharging of 
storage (24 h) is shown in Fig. 19. Hence, the overall improved voltage bus profile with PV and storage is shown 
in Fig. 20.

Impact of extreme event on an urban Indian electric grid
The objective of this section is to demonstrate the effectiveness of machine learning techniques to model the 
impact of a natural disruption (earthquake) on electrical infrastructure. Therefore, an urban Indian electric 
distribution grid of Dehradun city (high seismic zone) with critical loads is considered and simulated on power 
factory software, as shown in Fig. 22. The data for distribution grid modelling has been presented in Annexure 
112. Therein, for the impact on grid, earthquake natural disasters are considered as an extreme event in the paper. 
Five-year data is collected from the years 2017 to 2021 to generate the earthquake profile. The collective data set is 
provided in Annexure 2, which shows the magnitude and the event depth (in km). The adopted methodology to 
map the earthquake profile and subsequently generating the damage state of taken case study has been presented 
in Fig. 21. A complete grid has been simulated on PowerFactory45 as per Annexure 1, single line diagram (SLD) 
and voltage profile without damage for 24 h is shown in Figs. 22 and 23, respectively.

Figure 23 shows the 156-bus voltage profile with load scalability and solar PV variation in normal conditions. 
It is evident that the lowest voltage goes up to 0.9310 p.u. during late morning to afternoon.

Figure 9.   (continued)
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Clustering of network
The clustering of the entire distribution grid has been done on population density, tourism aspect and connected 
load density. The datasheet is provided in Annexure 3. Several papers in the literature show the optimization pro-
cess duly accounting clustering like in Ref.46, authors have presented EGC-CMOPSO optimization methodology 
based on clustering. However, in the presented manuscript, the clustering has been performed by using super-
vised k-means algorithm and the platform used for visualizing geospatial data is the python library- folium47. 
The total number of clusters required is given as an input to k-means algorithms. This optimal number of clusters 
was obtained from elbow curve during the grid transition, as shown in Fig. 24. The obtained optimal number 
is 8 (Fig. 24a); therefore, the optimal clustered zones within the Dehradun distribution grid are eight as shown 
in Fig. 25. In Fig. 25, the circle denotes the clusters, and the same colour circles represent all belonging to same 
clusters. Moreover, the distribution lines along with optimal clustered zones are shown in Fig. 26.

Simulation of the proposed methodology on an urban Indian electric grid of Dehradun city
The impact analysis of natural disaster has been performed onthe distribution lines of study region (Dehradun 
grid) with tectonics plates modelled using Python as shown in Fig. 27. The last five years earthquake locations 
are show in Fig. 28 (diameter of circles represents the magnitude). Thenceforth, to identify the damageability of 
the infrastructure (11 & 33 kV feeders), peak ground acceleration (PGA) values are calculated for finding the 
ground motion.

The values of PGA are calculated by using Eq. (17)48 and the PGA value distribution curve shown in Fig. 29.

where M is the magnitude of the earthquake. R is the distance between one point in the source of the earthquake.
However, Fig. 29 shows the random distribution of PGAs, so after using A/B probability test function, the 

distribution of PGA value is obtained as shown in Fig. 30.

Risk value assessment
Risk value denotes the damage state of the substation. Based on the risk value, the damage states are classified into 
five states: High impact, Moderate Impact, Normal Impact, Low Impact and Very low Impact. The range used 

(17)PGA = 0.02938.e1.19950M .
[

R + 0.14667.e0.69689M
]−1.73413

,

Figure 9.   (continued)
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for the classification is shown in Table 4 and the respective curve is shown in Fig. 31. However, it is concluded 
that if the PGA value is high it results in high station risk value. Therefore, the final practical values obtained in 
the python platform is the cumulative result of the PGAs of all stations and shown in Fig. 32. In addition, the 
risk value of the stations with associated cluster is mentioned in Table 5.

Thenceforth, after identifying the damage lines for the taken study grid, a closed loop process within python 
algorithm and PowerFactory model has been performed as per Fig. 22 to eliminate damage lines from operational 
state. Consequently, the affected grid after impact analysis and 24-h voltage profile of the grid has been shown 
in Figs. 33 and 34 respectively. The gray region in Fig. 33 shows the affected lines.

Figure 35 presents the comparative visualization of taken distribution grid state before and after an event. 
It is evident that a natural disaster can severely affect the vulnerable distribution grid. However, as per present 
needs, placement of energy storage devices is being implemented in distribution grid to cater the intermittent 
nature of RES and stochastic loading of EV. Therefore, the presented study substantiates that to build the resilient 
futuristic grid, RES and storage planning should consider the natural/manmade disruption analysis. The handy 
machine learning/AI tools are well versed to deliver the results when combined with conventional load flow 
analysis software tools. Consequently, presented grid case study substantiates that if adverse impact analysis due 
to any catastrophic event would have been considered in planning phase than engineers can have contingency 
plan (e.g. parallel critical feeder lines, DGs allocations) to improve the load served after an event which overall 
improves resiliency.

Conclusion
The presented paper proposed the planning framework for a resilient electric distribution grid. To achieve the 
stated objectives, firstly, a load flow analysis of IEEE 33 bus system is simulated that shows the voltage profile 
without any DG placement in the distribution system. Then, using optimization, an optimal allocation of DG in 
the system shows the improvement of voltage profile. Later, a quasi-dynamic simulation is done to analyze the 
one-day behavior of PV and load. The quasi-dynamic simulation shows that the voltage profile after integration 
of DG results in improvement of voltage, however up to an extent. Therefore, it is concluded from comparing 
the voltage profile of the IEEE 33 bus system with different scenarios for reducing the stress on the grid that the 
optimal placement of DG with battery storage in distribution system is the best solution.

Moreover, earlier, the reliability of the electrical grid was the foremost key performance index. However, 
recent developments like RES infusion and EVs adaptability demand a sustainable and stable electrical grid. 

Figure 10.   (a) 24-h voltage profile of EV buses with 20% penetration. (b) 24-h voltage profile of PV buses with 
20% EV penetration.
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Besides, a resilient index has become a key indicator in dealing with catastrophic events’ impact on the electri-
cal grid. Therefore, the presented work elaborates on the power system resiliency concept and also differentiates 
the reliability. Subsequently, it is concluded that EVs load can be mapped on the electrical distribution grid 
through the probability of random variables. Therefore, the probability density function (PDF) to map EV den-
sity has been formed based on growth projection and the socio-economic adaptability of EVs. The impact of the 
catastrophic event on the distribution grid has also been addressed. However, the work shows an approach to 
analyze the grid degradation after a catastrophic event for an earthquake-prone, mixed terrain India’s urban city 
electrical distribution grid. The approach considers the optimal clustering of the entire distribution grid based 
on demand, population, and social index. The smart grid definition is changing every day, and the distribution 
grid has become the most dynamic part of the smart grid due to inclusion of RES and EV loading. Therefore, it 
is imperative that planning engineers should consider the natural/manmade disruption analysis for the resilient 
futuristic grid. The presented paper shows merely an approach which has many limitations like lack of actual 
data on EV charging pattern, available land mapping with grid, access to charged lines during & after disastrous 
events, location of underground cables (the impact analysis would have different approach) and the variables list 
goes on. However, this non-linearity will keep on growing moving forward, therefore, including these dimen-
sions as they appear in future will enhance the degree of resiliency for our electrical infrastructure and grid.

Figure 10.   (continued)
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Figure 11.   (a) 24-h voltage profile of EV buses with 30% penetration. (b) 24-h voltage profile of PV buses with 
30% EV penetration.
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Figure 11.   (continued)
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Figure 12.   Heat map of IEEE-33 system with PV placement.

Table 3.   Optimal DGs sizing and siting on IEEE-33 system.

Parameters Outcome

Best cost obtained from PSO [2766977.945]

Total % real power loss in kW 127.648

Total % reactive power loss in kVAR 90.567

Total % voltage deviation 11.720

Total size of RES to be installed 3.464 MW

Total no of RES 05

Best location obtained from PSO [7, 10, 16, 21, 31]

Bus 7 0.955 MW

Bus 10 0.642 MW

Bus 16 0.422 MW

Bus 21 0.821 MW

Bus 31 0.624 MW
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Figure 13.   IEEE-33 bus voltage profile with PV placement.

Figure 14.   One day per unit load profile.
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Figure 15.   One day per unit PV output profile.

Figure 16.   Voltage profile of IEEE 33 Bus with load and PV variability.
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Figure 17.   Optimal charging/discharging profile (24 h).

Figure 18.   Voltage profile of PV bus (24 h).
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Figure 19.   Voltage profile of PV with storage (24 h).

Figure 20.   Overall bus profile with PV and Storage (24 h).
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Figure 21.   Methodological flowchart to model the grid after impact analysis.
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Figure 23.   Dehradun Grid profile without natural disruption damage for 24 h.

Figure 24.   (a) Elbow curve to find optimal clusters. (b) Clusters based on (latitude, longitude, population, 
tourism index, critical load).
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Figure 25.   Optimal clustered zones within the Dehradun distribution grid47, map generated using Leaflet data 
by openstreetmap wiki.

Figure 26.   Optimal clustered zones with connecting lines47, map generated using Leaflet data by openstreetmap 
wiki.
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Figure 27.   Distribution lines of Dehradun grid with tectonics plates47, map generated using Leaflet data by 
openstreetmap wiki.

Figure 28.   All the station lines and the circles show the previous earthquake points and magnitude47, map 
generated using Leaflet data by openstreetmap wiki.

Figure 29.   Initial PGA value distribution.
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Figure 30.   Final data distribution after conversion.

Table 4.   Damage state classification.

S. no Damage state impact Classification range Practical value obtained

1 High impact If the values above [mean + 2*(standard deviation)] Values above 21.279

2 Moderate impact If the values lie between (mean + standard deviation) and 
(mean + 2*standard deviation) Values above 15.3208 and less than 21.279

3 Normal impact If the values lie between (mean–standard deviation) and (mean + standard 
deviation) Values between 9.362 and 15.320

4 Low impact If the values lie between (mean–2*standard deviation) and (mean—stand-
ard deviation) Values between 9.3620 and 3.403

5 Very low impact If the values less than [mean–2*(standard deviation)] Values less than 3.403

Figure 31.   Classifying PGA values into 5 different segments.
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Figure 32.   Damage state with respect to practical data.
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S.no Location Latitude Longitude Population Tourism index Critical load risk_val cluster_label

0 Ajabpur 30.2922 78.0396 24,941 0 0 6 0

1 Anarwala 30.3657 78.0445 399 0 1 11 5

2 Araghar 30.3069 78.0499 1399 1 1 7 5

3 Bairaj 30.0767 78.2896 1507 0 0 0 5

4 Bhaniyawala 30.3657 78.0445 4572 0 1 11 5

5 Bhupatwala 30.8223 77.8546 8763 0 0 4 2

6 Bindal 30.3305 78.0297 7600 0 1 10 2

7 Chakrata road 30.3334 78.0235 3498 0 0 10 5

8 Dakpathar 30.3916 78.0944 17,992 1 1 12 6

9 Dhakrani 30.448 77.7195 12,757 0 0 6 6

10 Doiwala 30.1759 78.1242 8709 0 0 21 2

11 Ganeshpur 30.3026 77.916 2542 0 0 14 5

12 Govindgarh 30.3237 78.0203 8384 0 1 10 2

13 Harbertpur 30.4383 77.736 58,072 0 0 7 3

14 Hathibarkala 30.348 78.0523 13,965 0 0 10 6

15 HimalayanHospital11kV 30.1931 78.165 5878 1 1 4 2

16 ITpark 30.3015 78.0583 6191 1 0 5 2

17 Jhajra 30.3461 77.9182 2923 1 0 24 5

18 Jollygrant11kVI 30.3305 78.0297 9297 1 1 10 2

19 Kargi 30.2849 78.0238 16,412 0 0 6 6

20 Kaulagarh 30.3518 78.0095 9578 0 0 12 2

21 Kyarkuli 30.4327 78.0709 1743 0 0 16 5

22 Lachhiwala11kVI 30.3916 78.0944 1686 0 0 12 5

23 Lakhamanda l11kV 30.3015 78.0583 1044 0 0 5 5

24 Laal Tappad11kVI 30.4555 78.1023 15,038 0 0 27 6

25 Landour11kVII 30.4555 78.1023 3539 1 0 27 5

26 Majra 30.2966 77.9966 21,949 0 0 9 0

27 ManeriBhali 30.267 78.0909 1271 0 0 4 5

28 Miyawala11kVII 30.267 78.0909 8007 0 0 4 2

29 Mohanpur 30.3306 77.9574 8745 0 0 15 2

30 Nagarpalika11kV 30.10647 78.28156 8600 0 0 0 2

31 Nagthat 30.5721 77.9721 47,329 0 0 11 3

32 Nainibagh 30.5705 78.0046 2878 0 0 10 5

33 Natraj 30.3266 78.0357 831 1 1 9 5

34 Niranjanpur 30.2967 78.0141 18,081 0 0 8 6

35 ParadeGround 30.3245 78.0484 8635 1 0 8 2

36 PatelRoad11kVII 30.3136 78.04045 9425 0 0 7 2

37 Purukulgoan 30.4098 78.0675 411 0 0 14 5

38 Raipur 30.5721 77.9721 32,900 0 0 11 7

39 Raiwala11kV 30.0222 78.2147 6558 0 0 0 2

40 RamnagarDanda 30.2967 78.0141 20,619 0 0 8 0

41 Rishikesh 30.0869 78.2676 102,138 1 0 0 4

42 Rudrapur 30.4459 77.8533 140,857 0 0 11 1

43 SIDCUL 30.3572 78.087 7979 0 0 10 2

44 Saharanpur Road 30.31759 78.028984 212 0 0 8 5

45 Sahaspur 30.3927 77.8096 8841 0 0 9 2

46 Sahastradhara 30.387231 78.131606 11,839 1 0 10 2

47 Sahiya 30.6115 77.8753 197 0 0 20 5

48 Savra11kV 30.82238 77.8546 8643 0 0 4 2

49 Selaqui 30.3682 77.8653 22,583 0 0 14 0

50 Selaqui2 30.3682 77.8653 22,583 0 0 14 0

51 Shantikunj 30.309 78.0948 12,889 0 0 6 6

52 SportsCollege 30.3035 78.1046 2878 0 0 5 5

53 TransportNagar 30.022 78.2147 938 0 0 0 5

54 Tyuni 30.9429 77.8496 40,474 0 0 2 7

55 Turner Road 30.26849 78.0069 17,031 0 0 6 6

Continued
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S.no Location Latitude Longitude Population Tourism index Critical load risk_val cluster_label

56 Vasant Vihar 30.3226 78.0037 11,982 0 0 10 2

57 VikasNagar 30.475 77.7652 40,661 0 0 9 7

Table 5.   Cluster zone and associated risk value.

Figure 33.   The heat map of study grid after disruption.
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Figure 34.   Dehradun Grid profile after natural disruption damage for 24 h.

Figure 35.   Parametric evaluation of taken grid case; before and after an event.
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Data availability
The raw data being used to generate the simulation profile has been provided in the form of Annexure 1–3. To 
generate the clustering and earthquake profile can be found at the given below link. https://​drive.​google.​com/​
drive/​folde​rs/​1hjhM​1VAgI​cjZls​T0466​AdV7y-​quRNk​QB?​usp=​drive_​link.
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