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Dual layer energy management 
model for optimal operation 
of a community based microgrid 
considering electric vehicle 
penetration
Pavitra Sharma *, Debjanee Bhattacharjee , Hitesh Datt Mathur  & Puneet Mishra 

This work develops a dual-layer energy management (DLEM) model for a microgrid (MG) consisting 
of a community, distributed energy resources (DERs), and a grid. It ensures the participation of 
all these energy entities of MG in the market and their interaction with each other. The first layer 
performs the scheduling operation of the community with the goal of minimizing its net-billing cost 
and sends the obtained schedule to the DER operator and grid. Further, the second layer formulates a 
power scheduling algorithm (PSA) to minimize the net-operating cost of DERs and takes into account 
the load demand requested by the community operator (COR). This PSA aims to achieve optimal 
operation of MG by considering solar PV power, requested demand, per unit grid energy prices, and 
state of charge of the battery energy storage system of the DER layer. Moreover, to study the impact 
of electric vehicles (EVs) load programs on DLEM, the advanced probabilistic EV load profile model 
is developed considering practical and uncertain events. The EV load is modelled for grid to vehicle 
mode, and a new mode of EV operation is introduced, i.e., vehicle to grid with EV demand response 
strategy (V2G_DRS) mode. The solar PV and load demand data are obtained from the MG setup 
installed and buildings present at the university campus. However, a scenario reduction technique 
is used to deal with the uncertainties of the obtained data. In order to evaluate the efficacy of the 
developed DLEM, its results are compared to previously reported energy management models. The 
results reveal that DLEM is superior to the existing models as it decreases the net-billing cost of COR 
by 13% and increases the profit of the DER operator by 17%. Further, it is found that for the highest 
EV penetration, i.e., 30 EVs, the V2G_DRS mode of EV operation reduces the total energy imported 
by COR by 11.39% and the net-billing cost of COR by 7.88%. Therefore, it can be concluded that the 
proposed model with the introduced V2G_DRS mode of EV makes the operation of all the entities of 
MG more economical and sustainable.
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Electric vehicle, Vehicle to grid, Demand response strategy

Abbreviations
MG	� Microgrid
IEA	� International Energy Agency
COP	� Conference of Parties
RER	� Renewable energy resource
DER	� Distributed energy resource
EV	� Electric vehicles
COR	� Community operator
BESS	� Battery energy storage system
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NOC	� Net-operating cost
PSA	� Power scheduling algorithm
DRS	� Demand response strategy
EVLP	� Electric vehicle load profile
G2V	� Grid to vehicle
V2G	� Vehicle to grid
SOC	� State of charge
NBC	� Net-billing cost

Indices and Sets
t ∈ T 	� Time interval, T ⊆ N,T = {1, 2, 3, . . . ,T}

bg ∈ NBG	� Number of buildings,NBG ⊆ N,NBG = {1, 2, 3, . . . ,NBG}

n ∈ NEV	� Number of EVs,NEV ⊆ N,NEV = {1, 2, 3, . . . ,NEV }
d ∈ DEV	� Type of EVs, DEV ⊆ N,DEV = {1, 2, 3, . . . ,DEV }

Parameters
PRPV	� Rated power of the solar PV generator in kW
ηPV	� Performance coefficient of the PV power converter
PḿL  and PḾL 	� Minimum and maximum limits of load demand in kW
ηPV	� Efficiency of solar PV system
Gt
m	� Measured solar radiation at time ‘t’

GN	� Nominal solar radiation in W/m2

θ tA,m	� Measured ambient temperature at time ‘t’
θN	� Panel temperature in standard test conditions at °C
Kθ	� Temperature coefficient in °C−1

ζO&MPV 	� Operation and maintenance coefficient for the installed PV system
�
avg
G 	� Average value of energy trading price of the grid in $/kWh

ρB	� Self-discharge rate of BESS
ηB,Ch/DCh	� Charging and Discharging efficiency of BESS
ERB	� Rated energy capacity of BESS.
PḾB,Ch/Dch	� Maximum limit of charging and discharging power of BESS
SOCḿ

B  and SOCḾ
B 	� Minimum and Maximum limits of the SOC of the BESS

SOCB,th	� Threshold value of SOC of the BESS
PḾB,Ch and PḾB,Dch	� Maximum charging and discharging limit of the BESS
�O&M

B  and �O&M
B 	� Variable and fixed O&M cost coefficients of BESS

ηEV ,Ch/ηEV ,Dch	� Charging and Discharging efficiency of EV
ER,dEV 	� Rated capacity of dth type EV battery
SOCḾ

EV	� Maximum value of SOC of EV battery
SOCth

EV ,Dch	� Threshold limit of SOC of EV battery till which discharging can be performed
PdEV ,Ch/Dch	� Rated charing/ discharging rate of EV in kW/h
NEV_P	� Number of EV plug-points at EVS
NE
EV , NR

EV, NV
EV	� Number of EVs of employees, residential people and visitors

αE , αV and αR	� Ratios of employees, visitors, and residential EV owners.
SḾ,d
EV 	� Maximum distance EV can travel in one charge

TDḿ
L 	� Minimum value of leave time duration required for V2G operation

Variables
P
t,bg
L 	� Load demand of the building in kW at time ‘t’

PtTCL	� Total load demand of the community in kW
PtTCL,DER	� Load demand of the community fulfilled by DERs in kW at time ‘t’
PtPV	� Power generated by solar PV in kW at time ‘t’
PtB,Ch/P

t
B,Dch	� Charging and discharging power of the BESS at time instant ‘t’

PtG,Ex	� Power exported by the grid to COR in kW at time ‘t’
PtG,Im	� Power imported by the grid from DERs in kW at time ‘t’
SOCt

B and SOCt+1
B 	� SOC of BESS at ‘t’ and ‘t + 1’ instant

C
t
COR	� Net-billing cost of COR in $

C
t
DER	� Net-operating cost of DER operator in $

�
t
G	� Energy trading price of the grid at a time ‘t’ in $/kWh
�
t
DER	� Energy trading price of the DERs at a time ‘t’ in $/kWh
PtEP	� Equivalent power in kW at time ‘t’
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Tn
PI	� Plug-in time of EV

Tn
AT	� Arrival time of EV

Tn
PO	� Actual plug-out time of EV

TDn
Ch	� Time duration required by the EV for getting fully charged

TDḾ,n
Dch 	� Maximum discharging time duration of EV

TDn
Dch	� Actual discharging duration of EV

Tn
EPO	� Estimated plug-out time of EV

Tn
DPO	� Desired plug-out time of EV

Sn,dEV	� Distance travelled by nth EV of dth type
TDn

L	� Leave time duration of nth EV
ξnG2V	� EV owner’s input regarding G2V operation
ξnDRS	� EV owner’s input regarding participation in DRS operation
Kn
V2G_DRS	� Decision variable of EV aggregator

Tn
Dch,end	� Time at which discharging of EV ends

Tn
Ch,starts	� Time at which charging starts after discharging process of EV

SOCn,d
EV ,PI	� SOC of EV at the time of plug-in

PtEV ,G2V , PtEV ,V2G , and PtEV ,DR	� Daily EVLP of NEV EVs in case of G2V, V2G and DR operation

Background and motivation
Promoting energy generation using indigenous resources, especially renewable energy resources (RERs) and 
low-carbon technology, has gained immense popularity. Several countries have been working to shift to greener, 
more sustainable energy systems to eliminate the harmful environmental consequences of their existing energy 
systems. In this regard, at the 26th annual summit of COP (Conference of Parties), i.e., COP26, more than 200 
countries pledged to keep temperature rises within 1.5 deg.C and to reach net zero emissions by 20501. It is 
suggested by the International Energy Agency (IEA) that this goal can be achieved by increasing the integrated 
installation of distributed energy resources (DERs) such as solar PV systems and energy storage systems (ESSs) 
and by more adoption of electric vehicles (EV)2. This integration of DERs and a set of loads is termed a microgrid 
(MG)3–5. It reflects that the MG has multiple energy entities, such as DERs, loads, and grid, which are responsible 
for its complete operation6,7. However, to achieve the economical and reliable operation of MG, it is necessary 
that each energy entity (DERs, loads, etc.) interacts with each other and individually participates in an energy 
management model.

In recent years, the load demand on the energy system has also increased with the construction of large-
scale communities, which consist of groups of buildings and EV charging stations. They are major electricity 
consumers and can use DERs along with the grid to fulfill their power demand8–10. However, to attain substantial 
economic profit for the community owner, it is necessary to optimally manage their energy consumption (includ-
ing buildings and EV loads) and energy exchanges with DERs and the grid. Further, due to the uncertain nature 
of renewable-based DERs, a scheduling strategy is required that minimizes their operating cost while fulfilling 
the load demand of the community.

Electric vehicles (EVs) have gained high attention as a green energy transportation in the past few years11. It 
can play a crucial role in the energy management of community load by optimally managing their charging time 
and the energy stored in their batteries12. By enabling the vehicle to grid (V2G) power transfer technology and 
implementing an EV-based demand response strategy (DRS), the community owner can obtain more financial 
benefits. But, due to the uncertain EV owner’s behavior, the efficient modeling of EV load profile for various 
EV operations becomes complicated. Therefore, to achieve effective energy scheduling for the communities, it 
is important to model the EV load profile (EVPL) while considering uncertain EV owners’ behavior for various 
EV modes.

Further, these aforementioned challenges have motivated the authors to simultaneously deal with a complex 
problem of achieving energy management of individual entities of MG, i.e., DERs and communities having 
residential & commercial buildings and EV stations.

Literature review
The short-term scheduling of MGs is one of the interesting and complex concerns for the researchers because 
planning must consider the interests of all market participants, such as producers, consumers, etc13. However, 
several researchers have developed MG energy management, considering the producer’s participation. An MG 
EMS is developed to account for the uncertainty of forecasting energy output from RES and necessary load14,15. 
A MILP formulation for planning the operation of DC microgrids integrated with solar panels and ES devices 
was developed in16. A centralized energy management system for MG energy management in the islanded mode 
is introduced17. In ref.18, a decentralized energy management system for the coordinated operation of MGs in an 
energy distribution system is developed. The objective is to reduce operating costs in the on-grid- mode while 
ensuring power stability in the off-grid mode. Authors of19 propose a hybrid energy management system as a 
hierarchical system for optimizing power transactions, energy storage, and energy distribution in multi-MGs. 
A two-stage energy management model for active distribution networks is presented in ref.20. In the first stage, 
the scheduling of MG is performed, and in the second stage, the main grid is planned. In ref.21, the uncertainty 
in load demand and photovoltaic power forecasts is modelled as a tri-layer MAS22,23 architecture for a day-ahead 
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scheduling strategy. However, in these research works, consumers didn’t have the flexibility to participate directly 
in the energy market, resulting in restricting consumers from interacting with DER and grid operators.

In this regard, a multi-objective model for home energy management is developed based on the stochastic 
method to model uncertainties associated with the system24. The authors of ref.25 employed the deep reinforce-
ment learning technique to create an efficient home energy management system. A robust home energy manage-
ment model is proposed, which takes into consideration all the inherent uncertainties of the system26. However, 
these works are based on smart home systems that are prosumers; therefore, the individual economic operation 
of DER and the customer side have not focused. The authors of ref.(s)27,28 present building energy management 
systems to manage, control and optimization of buildings. In ref.(s)29,30, a dual-layer optimal dispatching model 
is developed in which the first layer aims to obtain maximum load satisfaction, and the second layer optimizes 
the power utilization ratio. The majority of these consumer EMSs either do not consider the EVs (or vehicle to 
grid (V2G) operation),26,31,32 and focus only on residential consumer load.

The rise in the penetration of EVs has motivated the researchers to develop a MG scheduling strategy that 
also considers EV load along with consumer load33–35. However, the modelling of the EV load profile has created 
further challenges for the development of an adequate MG scheduling strategy. Numerous studies have been 
conducted to model the EV load profile accurately. It is generally performed using three major techniques: his-
torical data regression method, machine learning prediction model and stochastic simulation method based on 
probability distribution36. The historical data regression approach37 includes the regression analysis prediction 
model38 and the day prediction model39. The disadvantages of this strategy include a lack of historical data and 
conflicting statistical criteria, which can lead to errors in mathematical equations and reduce prediction accuracy. 
Further, machine learning prediction algorithms have been widely employed in recent years to anticipate short-
term load for EV charging. Intelligent algorithms such as neural networks40–43, support vector machines44–46, 
and deep learning47,48 are frequently utilized. However, the integrity and the accuracy of historical data have a 
significant impact on forecast results.

The Monte Carlo approach from stochastic simulation method49,50 is currently the most extensively used in 
MG scheduling to estimate EV load profile (EVLP)51, can simulate random processes and is suitable for macro 
prediction of unpredictable behaviors of EV users. In this regard, a bi-level optimization strategy for the decen-
tralized coordination of multi-energy communities with EVs and V2G operation has been proposed in which 
the upper level performs the daily planning of multi-energy communities and in the lower level, the planning 
of electricity and natural gas networks52. Further, the authors of ref.53,54 have developed a three-layer risk-averse 
game theoretic-based strategy in which a demand response operation for smart buildings is planned in the first 
layer, then in the second layer, the scheduling of smart buildings as per demand response program and EV fleets 
for V2G services is obtained. Finally, the third layer of scheduling for a group of MGs is performed. A multi-stage 
mechanism for flexibility-oriented energy management of the distribution system is developed, in which the first 
stage minimizes the operating cost of smart homes that have EVs; the second stage schedules the microgrid, and 
the third stage takes care of grid flexibility55,56. In these research works, the EVLP is modelled considering the 
arrival time and SOC of the EV battery. Similarly, more factors could be added to the EVLP model. Like, authors 
of ref.57proposed an EV charging load prediction model by taking into account numerous random parameters 
such as place, temperature, and road conditions. Most of these studies assume that (1) As the EV arrives at the 
station, it starts charging instantaneously irrespective of the available number of EV plug points, (2) the EV will 
leave the station only after it is fully charged whereas this leaving duration of EV is uncertain and is governed by 
human behavior. However, these assumptions limit the practical modelling of EVLP.

Research limitations and contributions
Table 1 is provided in order to compare the details of past articles with the presented article. A thorough examina-
tion reveals that none of the prior studies assessed the impact of the simultaneous presence of residential & com-
mercial building loads EV operating modes with DRS on the economic aspects of MG. Few studies considered 
the fair opportunity for the consumers to interact with all the other energy entities of MG directly. Furthermore, 
it is evaluated that EVLP modelling considering (1) random human behavior in terms of leaving time duration 
of EV and (2) availability of EV plug-points for the situations where a number of EVs arriving at the stations are 
more than the available plug-points are not studied. Also, the application of demand response strategy (DRS) to 
EV load while maintaining their comfort is unexplored.

Thus, this study presents a dual-layer energy management model (DLEM), which aims to achieve the simul-
taneous optimal operation of DERs and the community layer of the MG. The first layer of DLEM aims to mini-
mize the net-billing cost (NBC) of the community, and the optimal operation of DERs is achieved in the second 
layer by minimizing the net-operating cost (NOC) of DERs. This will increase the profit of community operator 
(COR) as well as DER operator. In addition, the impact of various community EV load programs, such as grid 
to vehicle (G2V) and V2G, with the implementation of EV DRS on other energy units of MG is investigated. 
The main contributions of this paper are as follows:

•	 Development of a distributed model, DLEM which aims to achieve economic and sustainable operation of 
every energy entity of MG by ensuring their participation in the market and their interactions with each 
other. The first layer ensures community consumer interaction and minimizes their NBC, and in the second 
layer, a power scheduling algorithm (PSA) is proposed that optimizes the NOC of DERs and maintains the 
health of BESS.

•	 Advanced probabilistic modelling of EVLP by considering the availability of EV plug-points at EV stations 
and uncertain events that are totally governed by the EV owner behavior.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17499  | https://doi.org/10.1038/s41598-024-68228-7

www.nature.com/scientificreports/

•	 Introduction of a V2G_DRS mode of EV operation that combines the concept of vehicle-to-grid power 
transfer services and demand response programs to minimize the peak load of the community while ensur-
ing the EV owner’s comfort.

The remainder of this article is as follows. Section 2 discusses the system description and modelling of model 
components. Section 3 presents the probabilistic modelling of the electric vehicle load profile (EVLP). Section 4 
discusses the modelling of the proposed dual-layer energy management model (DLEM). Section 5 presents the 
case studies and their results. The article is concluded in Sect. 6.

Model development
This section consists of the modelling of MG components such as solar PV generation systems, energy storage 
units, load demand and grid connection. Further, a detailed advanced probabilistic modelling of a cluster of EV 
load, with G2V, V2G and DRS modes, is presented.

System description
Figure 1 shows the schematic of the system studied in this paper, which consists of MG having a community, 
DERs, and a main grid. The community consist of residential and commercial buildings and several EV plug-
points that facilitate charging and V2G services for EVs, which is connected to an EV aggregator that directly 
communicates with the COR. The DER layer of MG is comprised of a solar PV generation system and a battery 
energy storage system (BESS). As per Fig. 1, the COR, DER operator and grid exchange the information with 
each other and send the control action as per the obtained optimal decision.

Modelling of solar PV power generation system
The electric power generated by the solar PV is calculated as in (1)58.

where,  PRPV is the rated power of the PV generator, Gt
m is the measured solar radiation at time t, GN is the nominal 

solar radiation which is assumed to be 1000W/m2, Kθ is a constant equal to − 0.0357 °C−1, θ tA,m is the measured 
ambient temperature at time t, θN is the panel temperature in standard nominal test conditions, which is assumed 

(1)PtPV = ηPV · PRPV ·
Gt
m

GN

[

1+ Kθ

{

θ tA,m − θN
}]

∀t ∈ T

Table 1.   Comparison of the details of past articles with the presented article.

Author’s name Objectives
Mathematical 
modelling

Individual 
consumer 
interaction with 
all the energy 
entities

Load type EV operation

Modelling of 
EVLP

Uncertainty 
modellingResi-dential Comm-ercial G2V V2G DRS

Xiang et al.12, 
Jiang et al.13, and 
Olivares et al.17

Operating cost Single layer ❌ ❌ ❌ ❌ ❌ ❌ ❌ Scenario genera-
tion and reduction

Javanmard et al.20
Operating cost, 
power loss, voltage 
deviation

Multi layer ❌ ✔ ❌ ❌ ❌ ❌ ❌ Info-gap decision 
theory

Mansouri et al.22 Operating cost 
with comfort index Multi layer ❌ ✔ ❌ ❌ ❌ ❌ ❌ Scenario genera-

tion and reduction

Tostado-Véliz 
et al.24 and Alam 
et al.25

Optimal operation, 
per-day electricity 
cost

Multi layer ✔ ✔ ❌ ❌ ❌ ❌ ❌ Forecasting

Pan et al.29
Load satisfaction, 
economic opera-
tion

Multi layer ✔ ✔ ❌ ❌ ❌ ❌ ❌ ❌

Martinez-Pabon 
et al.31

Economical 
operation, power 
congestion

Single layer ✔ ✔ ❌ ✔ ❌ ❌ Data analytics ❌

Meng et al.52 Operating cost, 
planning Multi layer ❌ ❌ ✔ ✔ ✔ ❌

Conventional 
probabilistic 
modelling

Robust optimiza-
tion method

Zhou et al.55 Optimal operation, 
satisfaction Index Multi layer ❌ ✔ ❌ ✔ ✔ ✔

Conventional 
probabilistic 
modelling

Scenario genera-
tion and reduction

Present

Operating cost of 
the DER Layer of 
MG and net-billing 
cost of community 
layer

Multi layer ✔ ✔ ✔ ✔ ✔ ✔

Advanced proba-
bilistic modelling 
considering 
random human 
behaviour and 
availability of EV 
plug-points

Scenario genera-
tion and reduction
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to be 25 °C and ηPV is the performance coefficient of the PV power converter. T  is a subset of N , represents time 
intervals, defined as  T = [1,2, 3 . . . ,T]. T is the total number of time intervals.

Modelling of BESS
The BESS is mathematically modelled using (2–3)59.

where PtB,Ch and PtB,Dch are the charging and discharging power of the BESS at time instant ‘t’, respectively. PtB,Ch 
is always negative and PtB,Dch is always positive. SOCt

B and  SOCt+1
B  is the SOC of BESS for the present and next 

time instant respectively. ρB is the self-discharge rate of the BESS. ηB,Ch and ηB,Dch are the charging and discharg-
ing efficiencies of the BESS. ERB is the rated energy capacity of BESS.

Moreover, the ESS operation is subject to the following constraints in (4–5).

where PḾB,Ch and PḾB,Dch are the maximum charging and discharging limit of the BESS. The SOC of the BESS 
(SOCt

B) should remain in the limits which are minimum ( SoCḿ
B ) and maximum (SoCḾ

B ).

Load modelling of building
The load demand of each building can be represented using (6).

(2)PtB,ch/P
t
B,Dch =







PtB < 0 if BESS is charging
PtB > 0 if BESS is discharging ∀t ∈ T

PtB = 0 if BESS is on stand − by

(3)SOCt+1
B =















SOCt
B(1− ρB)−

�

PtB,Ch·ηB,Ch·�t

ERB

�

ifBESS is charging

SOCt
B(1− ρB)−

�

PtB,Dch
ηB,Dch·E

R
B
·�t

�

if BESS is discharging
∀t ∈ T

(4)0 > PtB,Ch > PḾB,Ch∀t ∈ T

(5)0 < PtB,Dch < PḾB,Dch∀t ∈ T

(6)PḿL ≤ P
t,bg
L ≤ PḾL ∀t ∈ T , bg ∈ NBG

Figure 1.   Schematic of the MG consisting of community, DERs, and a main grid.
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where Pt,bgL  is the predicted total load of the building ‘bg’ at time interval ‘t’.   PḿL  and PḾL  are the minimum and 
maximum limits of the load, respectively. NBG is a subset of N , represents number of buildings intervals, defined 
as  NBG = [1,2, 3 . . . ,NBG]. NBG is the total number of buildings.

Grid connection modelling
The grid can export power to COR and can import power from DERs and is represented by (7).

where PtG,Ex is the power exported to the COR by the grid and PtG,Im is the power imported by the grid from the 
DERs.

Proposed advanced probabilistic modelling of EVLP
This section details the advanced probabilistic modelling of EVLP for clusters of various types of EVs. In this 
study, the EVLP is obtained for two user modes, i.e., G2V, where only charging of EVs is taken into account and 
V2G_DRS, which facilitates both charging & discharging of EVs and application of DRS to the EVs. The daily 
distance traveled by an EV and the arrival time (the time at which EV arrives at the EV station) are extracted 
by using Monte Carlo simulation from the log-normal and normal probability density functions, respectively. 
This work takes into account the two most essential conditions in the probabilistic modelling of EVLP, which 
are as follows:

•	 If the number of available EV plug-points is less than the number of EVs arriving at the station, in that case 
the arrival time of the EV and the plug-in time (time at which EV is plugged-in) may not be equal.

•	 The expected time duration at which EV may leave the EV station, i.e., leave time duration, is highly uncertain 
and is governed by human behaviour. Therefore, it may not be equal to the estimated plug-out time (the time 
at which EV is fully charged).

Hence, in order to model the EVLP accurately, the above conditions are important. As the leave time dura-
tion of the EV and the type of EV that is input by the EV owners are uncertain parameters, they are modelled 
as a random variable.

This study considers four different types of EVs. The EV owners are segregated into three categories: employ-
ees of the buildings, visitors coming to the buildings, and residential public coming to charge their EVs.

Let the total number of EVs coming to the station be NEV . Further, the number of EVs of employees ( NE
EV ), 

visitors ( NV
EV ), and residential people ( NR

EV ) can be calculated using (8–11).

where αE , αV and αR are the ratios of employees, visitors, and residential EV owners with respect to total number 
of EVs.

The mean and standard deviation used to generate the arrival time of EV ( Tn
AT ) for employees, visitors, and 

residential EV owners are shown in Table 2.

Grid to vehicle mode (G2V)
This mode focuses on unidirectional power flow, i.e., only charging the EVs. As the EV reaches the station, the 
EV aggregator takes the specific input from the EV owner, such as the present SOC of the EV and the leave 
time, i.e., the expected time at which the EV may leave the station, irrespective of its SOC. Using these inputs, 
the EV aggregator will calculate the estimated plug-out time (when the EV will be fully charged) and display 
it to the EV owner. If the leave time is less than the estimated plug-out time, then a notification will be sent to 

(7)Grid Power =

{

PtG,Ex When grid is exporting to COR
PtG,Im When grid is importing from DERs

(8)NE
EV = αENEV

(9)NV
EV = αCNEV

(10)NR
EV = αRNEV

(11)αE + αV + αR = 1

Table 2.   Mean and standard deviation of the arrival time of EV for employees, visitors, and residential EV 
owners.

Type of EV owner Mean of Tn

AT
Standard deviation of  Tn

AT
 in hour

Employees 9:00 0.25

Visitors 11:00 and 18:00 1

Residential 20:00 1
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the EV owner regarding this difference in this time, and depending on the owner’s input, represented by ξnG2V , 
aggregator takes the decision.

The plug-in time of EV (Tn
PI ) can be calculated using (12). It is assumed that the plug-in time of the EV is the 

start time of charging of EV.

where Tn−1
PO  is the plug-out time of previous EV. NEV_P is the number of EV plug-points. NEV is a subset of N , 

represents number of EVs and is defined as NEV = [1, 2, 3, . . . ,NEV ]. NEV  represents the total number of EVs.
The charging duration (TDn

Ch) of each EV can be obtained from (13)60.

where SOCn,d
EV ,PI is the SOC of nth EV having dth type, at the time of plug-in; ER,dEV  represents the rated energy 

capacity of EV in kWh, PdEV ,Ch is the rated charging rate of EV in kW/h; ηEV ,Ch is the charging efficiency of EVs. 
DEV is a subset of N , represents type of EV and is defined as  DEV = [1, 2, 3 . . . ,DEV ]. DEV represents the total 
types of EVs. NEV and DEV  represents the total number and total types of EVs, respectively.

The estimated plug-out time of EV (Tn
EPO)  can be further calculated using (14).

The actual plug-out of EV (Tn
PO) totally depends on the leave time duration of EV (TDn

L) and the decision 
input (ξnG2V ) given by the EV owner and can be calculated by (15).

The charging power (Pt,nCh) required to charge the EV can be estimated using (16). The associated time interval 
to this charging power can be calculated using (12) and (15)60.

As EV charging time intervals are independent of each other, therefore they can be accumulated. The daily 
EVLP of a large number of EVs for G2V mode can be calculated using (17).

where PtEV ,G2V is the daily EVLP of (NEV ) EVs in case of G2V user mode.

Vehicle to grid and demand response strategy mode (V2G_DRS)
This mode is a combination of V2G and governed grid to vehicle, i.e., the DRS mode of EVs. It provides flex-
ibility to the EV owner of discharging their EV batteries and earning financial incentives from it. The V2G deals 
with the bi-directional power flow between the EVs, and MG and the DRS govern the G2V operation. In the 
V2G_DRS mode, the EV aggregator plays two vital roles. It allows the EVs to discharge during dynamic peak 
price hours and charge them during low price hours. The amount of power to be discharged from the EVs is 
dynamic and depends on the SOC and leave time duration of the EV. Hence, the EV aggregator calculates it 
and makes sure that the EV is fully charged (after participating in V2G) before the EV leaves the station. This 
maintains the comfort of EV owners and motivates them to contribute to V2G. Further, it also encourages the 
EV owners to participate in the DRS by shifting their charging load from peak load hour to off-peak load hour.

The plug-in time of EV (Tn
PI ) and the charging duration (TDn

Ch) of each EV can be obtained from (12) and 
(13), respectively.

The desired plug-out time of EV (Tn
DPO) can be calculated using (18).

The EV aggregator takes the decision (Kn
V2G_DRS) of performing V2G/DRS/G2V depending on the following 

conditions, as shown by (19).

(12)Tn
PI =

{

Tn
PI if NEV_P ≥ NEV

Tn−1
PO if NEV_P < NEV

∀n ∈ NEV

(13)TDn
Ch =

(

1− SOCn,d
EV ,PI

)

∗ ER,dEV

ηEV ,Ch ∗ P
d
EV ,Ch

∀n ∈ NEV∀d ∈ DEV

(14)Tn
EPO = Tn

PI + TDn
Ch∀n ∈ NEV

(15)Tn
PO =

{

Tn
EPO if TDn

L ≥ TDn
Ch

Tn
EPO if TDn

L < TDn
Chandξ

n
G2V = 1 ∀n ∈ NEV

Tn
L if TDn

L < TDn
Chandξ

n
G2V = 0

(16)Pt,nCh for each ′t ′ interval of TDn
Ch = PdEV ,Ch ∀t ∈ T , ∀n ∈ NEV ∀d ∈ DEV

(17)PtEV ,G2V =

NEV
∑

n=1

Pt,nCh∀t ∈ T , ∀n ∈ NEV

(18)Tn
DPO = Tn

PI + TDn
L∀n ∈ NEV

(19)Kn
V2G_DRS =



























if Tstart
PP ≤ Tn

PI ≤ Tend
PP and TDn

L ≥ TDḿ
L and Tn

DPO > (Tend
PP + TDn

Ch)
Send request to the EV owner to perform V2G

if Tstart
PP ≤ Tn

PI ≤ Tend
PP

Send request to the EV owner to participate in DR
otherwise
Allow the EV owner to perform G2V operation
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where Tstart
PP  and Tend

PP  are the start and end of the peak price time interval. TDḿ
L  is the minimum value of leave 

time duration of EV required for the V2G.

Decision of the EV aggregator: allowing the EV owner to perform V2G
The plug-in time of EV is assumed to be the start of the discharging time of the EV. The maximum discharging 
duration (TDḾ,n

Dch ) of EV until it reaches the threshold SOC (set by the EV aggregator) can be calculated from 
(20)61.

where SOCḾ
EV refers to a maximum limit of SOC of an EV battery and SOCth

EV ,Dch refers to threshold limit of SOC 
of EV battery till which discharging can be performed. PdEV ,Dch is the rated discharging rate of EVs in kW/h. 

Sn,dEV is the distance travelled by the EV and SḾ,d
EV  is the maximum distance EV can travel in one charge in km.

The estimated plug-out time of EV (Tn
EPO) where EV starts charging after the end of peak price (Tend

PP ) can be 
calculated using (21).

Using above equations, the discharging duration (TDn
Dch) of EV can be obtained using (22).

The time at which discharging of EV ends ( Tn
Dch,end) can be calculated using the (23).

The discharging power (Pt,nDch) taken from the EV can be estimated using (24). The associated time interval 
to this discharging power can be calculated using (12) and (23)61.

The time at which charging of EV starts (Tn
Ch,starts) after discharging is calculated from (25).

The actual plug-out time of EV (Tn
PO) which will be the time at which discharging and charging process of 

EV will end can be estimated by (26).

The charging power of EV can be estimated using (16). As EVs discharging and charging time intervals are 
independent of each other, therefore they can be accumulated.

By combining all the cases above, the daily EVLP of a large number of EVs for V2G operation can be calcu-
lated using (27).

where PtEV ,V2G is the daily EVLP of (NEV ) EVs in case of V2G user operation.

Decision of the EV aggregator: Sending the request to the EV owner to participate in DRS
In this case also the plug-in time of EV (Tn

PI ) and the charging duration (Tn
Ch) of each EV can be obtained from 

(12) and (13), respectively. Further, depending on the EV owner’s input (ξ evDRS) towards the sent DRS request, the 
EV aggregator takes the decision. The actual plug-out time of EV (Tn

PO) can be calculated using (28).

Moreover, the charging power calculation of EV is similar as in (16). The daily EVLP for a DRS operation of 
a large number of EVs can be calculated using (29).

(20)TDḾ,n
Dch =

(

SOCḾ
EV − SOCth

EV ,Dch

)

∗ ER,dEV

PdEV ,Dch

−
Sn,dEV ∗ ER,dEV

PdEV ,Dch ∗ S
Ḿ,d
EV

∀n ∈ NEV∀d ∈ DEV

(21)Tn
EPO = Tend

PP + TDn
Ch∀n ∈ NEV

(22)TDn
Dch =

{

(Tn
DPO − Tn

EPO)ifT
n
DPO > Tn

EPOandT
n
DPO − Tn

EPO < TDḾn
Dch

TḾn
DchifT

n
DPO > Tn

EPOandT
n
DPO − Tn

EPO > TDḾn
Dch

∀n ∈ NEV

(23)Tn
Dch,end = Tn

PI + TDn
Dchn ∈ NEV

(24)Pt,nDchforeach
′t ′ofTDn

Dch = PdEV ,Dch∀t ∈ T , ∀n ∈ NEV , ∀d ∈ DEV

(25)Tn
Ch,starts =

{

Tn
Dch,endifT

n
Dch,end ≥ Tend

PP

Tend
PP ifTn

Dch,end < Tend
PP

∀n ∈ NEV

(26)Tn
PO = Tn

Ch,starts + TDn
Ch + TDn

Dch∀n ∈ NEV

(27)PtEV ,V2G =

NEV
∑

n=1

Pt,nDch + Pt,nCh∀t ∈ T , ∀n ∈ NEV

(28)Tn
PO =

{

Tend
PP + TDn

Ch if EV owner accepts the DR request (ξnDRS = 1)
Tn
PI + TDn

Ch ifEV owner denies the DR request (ξnDRS = 0)
∀n ∈ NEV

(29)PtEV ,DR =

NEV
∑

n=1

Pt,nCh∀t ∈ T , ∀n ∈ NEV
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The total EV load for V2G_DRS (PtEV ,V2G_DRS) can be defined as in (30).

Modelling of proposed dual layer energy management model (DLEM)
This section details the modelling of the DLEM developed in the presented work. It ensures individual participa-
tion and interactions between the community, DERs, and grid in order to achieve energy management of MG. In 
the first stage, community energy management is performed by the community operator (COR), and the power 
schedule is obtained by minimizing the NBC of the COR. This power schedule consists of time slots in a day of 
grid and DERs to fulfil the demand of the community. Then, in the second layer, the DER operator performs the 
energy management of the DERs while fulfilling the demand request sent by the COR. It minimizes the NOC of 
DERs through a PSA that optimally utilizes the BESS to maintain its health. Further, the final schedule is sent to 
the grid to fulfil the demand as per the first and second layers. The implementation steps of the proposed DLEM 
are presented in Fig. 2. It should be remarked that the uncertainties caused by the RERs, load demand, and EVLP 
are included in the model through the scenario generation and reduction technique.

First layer of DLEM
This stage is associated with the COR and aims to minimize the electricity and EV charging bills of the building 
and EV owners. The subcomponents of the first layer are discussed in the following sub-sections.

Objective function
The total load of the community (PtTCL)  can be expressed as (31). The objective function of this stage is shown 
in (32) and is minimized under the constraint described in (33)-(34).

(30)PtEV ,V2G_DRS = PtEV ,G2V + PtEV ,V2G + PtEV ,DR∀t ∈ T

(31)PtTCL =

NBG
∑

bg=1

P
t,bg
L + PtEV∀bg ∈ NBG

Figure 2.   Implementation steps of the proposed DLEM.
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where Pt,TCL,DER is the load demand of the community met by the DER layer at time ‘t’ in kW and PtG,Ex is the 
power exported by the grid to meet the demand of the community in kW. �tDER and �tG are the rate of energy of 
DERs and grid in $/kWh. PḾG,Ex is the maximum limit of power exported by the grid.

Second layer of DLEM
The second layer of DLEM is associated with the DER operator and focuses on the minimization of the NOC of 
DERs. It takes the input from the first layer and uses a proposed PSA to obtain the power schedule. The compo-
nents of the second layer are discussed in the following sub-sections.

Objective Function
In this stage, the NOC of DERs is minimized, and the objective function consists of the O&M cost of the solar PV 
system, BESS, the cost associated with the power imported by the grid and the cost earned by the DER operator 
for supplying power to the buildings and EVs getting charged at EV charging stations. The objective function 
NOC of DERs becomes as shown in (35).

where, ζO&MPV  is the operation and maintenance coefficient for the installed PV system in $/h. PtB,Ch/Dch is BESS’s 
charging or discharging power at time instant ‘t’. �O&M

B  and �O&M
B  are the variable and fixed O&M cost coef-

ficients of BESS in $/kWh and $/h, respectively, where �O&M
B  depends on the PtB,Ch/Dch.

The formulated cost objective function is minimized subject to the constraints presented in (4–6), (36–37):

where PtTCL,DER , PtPV and PtG,Im is the total community load demand fulfilled by the DERs, power generated by 
solar PV, and power imported by the grid from MG at time instant ‘t’. PtB,Ch/Dch is positive when BESS discharges, 

and it is negative when BESS is charging. PḾG,Im is the maximum limit of power imported by the grid.

Power scheduling algorithm (PSA)
In order to achieve the optimal operation of DERs, especially BESS, the PSA is proposed in the second layer of 
DLEM. It decides the operation of DERs based on several factors, such as solar PV power, load demand power, 
and the SOC condition of the BESS. In PSA, the decision for every time instant ‘t’ is taken based on the equivalent 
power at a time ‘t’ (PtEP) calculated using (38), average grid price (�avgG ) , the threshold value of SOC (SOCB,th), 
grid price (�tG) and SOC of BESS (SOCt

B) at a time ‘t’. The SOCB,th is the minimum value of SOC of BESS required 
to maintain the optimum depth of discharge (DOD). If the PtEP is negative, the charging of BESS and power to 
be exported to the grid is dependent on the average and present grid price of energy. Whereas for the positive 
value of PtEP , the decision of discharging of BESS and sending the demand request to the grid is taken based on 
the SOC condition of BESS. In this way, the DER operator can sell the extra solar PV energy units at the time of 
higher grid prices and can maximize the profit, whereas by using the SOC condition for discharging of BESS, 
the health of BESS can be maintained.

Case study and simulation results
This section discusses a case study with simulation results. The developed mathematical formulation was coded 
under MATLAB R2020a, and the optimization problems were solved using a well-known meta-heuristic algo-
rithm, particle swarm optimization61. All the simulations were run on an Intel® Core™ i7-1065G7, 1.50 GHz, 
16.00 GB RAM, over a 24-h horizon. The time step is fixed equal to 1 hour.

(32)MinCT
COR =

T
∑

t=1

C
t
COR =

T
∑

t=1

(PtTCL,DER ∗ �tDER)+
(

PtG,Ex ∗ �
t
G

)

∀t ∈ T , ∀bg ∈ NBG

(33)PtTCL = PtTCL,DER + PtG,Ex∀t ∈ T

(34)0 < PtG,Ex < PḾG,Ex∀t ∈ T

(35)
MinCT

DER =

T
∑

t=1

C
t
DER =

T
∑

t=1

ζO&MPV +
{(∣

∣

∣
PtB,Ch/Dch ∗�t

∣

∣

∣
∗�O&M

B

)

+�O&M
B

}

−
{(

Pt,TCL,DER ∗ �tDER
)

∗�t
}

−
{(

PtG,Im ∗ �tG
)

∗�t
}

∀t ∈ T

(36)PtTCL,DER − PtPV − PtB,Ch/Dch + PtG,Im = 0∀t ∈ T

(37)0 < PtG,Im < PḾG,Im∀t ∈ T

(38)PtEP = PtTCL − PtPV
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Figure 3.   Real-time data-based 365 scenarios (a) solar PV generation and load demand of (b) residential and 
(c), (d) commercial buildings I & II, respectively.

(a)                                                                            (b)

                                      (c)                                                                            (d)

Figure 4.   Reduced scenarios of (a) solar PV generation and load demand of (b) residential and (c), (d) 
commercial buildings I & II, respectively obtained using the Scenario reduction technique.
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Initializing
This section discusses the case studies and the input data taken into account. In this study, the ratings of the model 
components are obtained from the MG setup installed at the university campus. Therefore, the rated capacity of 
the solar PV system and BESS of MG is 41kWp and 81kWh (360 V, 225Ah), respectively.

Further, as the obtained data has a large number of sets, the scenario reduction technique is used to reduce 
them into 10 scenarios. Figure 3 shows the solar PV generation and load demand data of residential and com-
mercial buildings obtained from the university campus where the MG setup is installed. Further, Fig. 4 shows 
the reduced 10 scenarios of solar PV generation and load demand data of residential building and commercial 
buildings I & II, respectively. Table 3 shows the different simulation parameters used in the study. Moreover, the 
details of the types of EVs, along with their specifications, are discussed in Table 4.

Table 3.   Values of different simulation parameters.

S.No Parameter Value S.No Parameter Value

1 ζO&M
PV

0.057 $/h 11 ηB,Ch/ηB,Dch 0.85

2 SOC
Ḿ
B

100% 12 NEV 10,20,30

3 SOC
ḿ
B

30% 13 αE ,αV ,αR 30%,50%,20%

4 E
R
B

81kWh 14 NEV_P 3

5 P
Ḿ
G,Ex

kW 15 ηEV ,Ch/ηEV ,Dch 90%

6 P
Ḿ
G,Im

 − 35 kW 16 DEV 4

7 P
Ḿ

B,Ch/Dch
 − 4.05 kW/4.05 kW 17 TD

ḿ
L

3 h

8 �O&M
B SOC

Ḿ
EV

100%

9 �O&M
B

0.02854 $/h 19 SOC
th

EV ,Dch
60%

10 ρB 5% per month

Table 4.   Details of the types of EVs along with their specifications.

Type of EV Wheeler type E
R,d

EV
 in kWh P

d

EV ,Ch/Dch
 in kW/h S

Ḿ,d

EV
 in km Time required for full charge in hours

Type 1 2-wheeler 3 0.6 128 5

Type 2 2-wheeler 4.56 1.14 145 4

Type 3 3-wheeler 7.4 1.85 125 4

Type 4 3-wheeler 5.76 1.65 60 4

Figure 5.   Daily profile of solar PV power, total load of all the buildings and load of residential and commercial 
buildings I & II.
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Figure 6.   Per unit cost of energy exchange with grid and DER layer of MG.

                                         (a)                                                                                          (b)
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Figure 7.   EV load scenarios generated for (a) G2V and (b)V2G_DRS operation mode considering 20 EVs.

Figure 8.   Modelled EVLP for G2V and V2G_DRS operation mode considering 10,20, and 30 EVs.
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Figure 5 shows the daily profile of solar PV power, total load of buildings and load of residential and com-
mercial buildings I & II, which is used as an input for all the cases. Further, Fig. 6 shows the per unit cost of 
energy exchange with the grid.

Results of probabilistic modelling of EV load profile (EVLP)
This section details the results obtained from modelled EVLP under G2V and V2G_DRS mode of operation of 
EV. The probabilistic modelling of EVLP under G2V operation gives the charging profile of EV, and V2G_DRS 
mode models the charging/discharging load profile of EV. In this study, the EVLP modelling is performed for 
10, 20, and 30 EVs, and for each level, 400 EV load scenarios are generated using the developed probabilistic 
model. These scenarios were further reduced to 10 scenarios using the scenario reduction technique. The EV load 
scenarios generated for G2V and V2G_DRS operation mode considering 20 EVs are shown in Fig. 7a and 7b, 
respectively. Moreover, Fig. 8 shows the modelled EVLP for G2V and V2G_DRS operation modes considering 
10,20 and 30 EVs.

Results obtained from DLEM without considering EV penetration
This section shows the results obtained from the first and second layers of DLEM without considering EV pen-
etration. The power imported by COR from DERs and grid is represented by P_COR_DER and P_COR_GR, 
respectively. The power exported to the grid from DERs is represented by P_DER_GR.

First layer
Figure 9 shows the expected time slots in a day of grid and DERs provided by COR to fulfil its demand. As it 
depends on the energy exchange prices of the grid and DERs, it is valid for all the cases.

Figure 9.   Expected time slots in a day of grid and DERs provided by COR to fulfill its demand.

Figure 10.   Hourly schedule of total load demand of COR, solar PV generation, BESS power, and power 
exchanges between COR, DERs and grid.
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Second layer
Figure 10 shows the hourly schedule of total load demand of COR, solar PV generation, BESS power, P_COR_
DER, P_COR_GR and P_ DER_GR.

It is observed from Fig. 10 that from time instants, 1st to 8th, the load of COR is fulfilled by the grid and after 
that till 17th it is fulfilled by DERs. Further, for time instants, 18th and 19th the load is fulfilled by both DERs and 
grid. After that, the load is fulfilled only by grid till 24th time interval. Moreover, as the proposed PSA optimizes 
the operation of BESS, therefore, the BESS is only discharged during peak price hours of the grid.

Comparative study of proposed DLEM with existing energy management models
The performance of DLEM is compared to two types of existing energy management models. Among them, 
the first model considers interactions of COR only to the DER layer20,22,52, whereas the second model involves 
interactions of COR only to the grid31, represented by EEM 1 and EEM 2, respectively. Table 5 shows the results 
in terms of NBC of community and NOC of DERs with these existing models and proposed DLEM. The nega-
tive value of NOC shows the profit earned by the DER layer operator. Further, Table 6 shows the effect of DLEM 
on NBC of the community layer and profit of DER layer with respect to existing energy management models.

It is clearly observed from Tables 5 and 6 that DLEM provides the minimum NBC for COR and maximum 
profit to DER operators. It has decreased the NBC of COR by 12.99% and 16.29% with respect to EEM 1 and 
EEM 2, respectively. Further, DLEM increases the economic profit of DER operators by a 16.96% increase. It is 
evident from these results that DLEM is a more effective and profitable energy management model than previ-
ously reported models.

Table 5.   shows the results of existing energy management models and proposed DLEM.

Parameters

Existing energy management 
models

EEM 1 EEM 2 DLEM

NBC of community in $ 13.7 14.24 11.92

NOC of DERs in $  − 10.01 –  − 11.708

Table 6.   Effect of DLEM on NBC of community layer and profit of DER layer with respect to existing energy 
management models.

Percentage change in parameters due to DLEM With respect to EEM 1 With respect to EEM 2

Percentage decrement in NBC of COR 12.99% 16.29%

Percentage increment in economic profit of DER operator 16.96% –

Figure 11.   Power exchange schedule of COR, DERs and GR under G2V and V2G_DRS mode of EV operation.
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Performance analysis of DLEM considering EV penetration
Further, the performance of DLEM with EV penetration is analyzed based on power exchanged between COR, 
DERs and GR. The effect of proposed modes of EVs, i.e.., G2V and V2G_DRS on these power exchanges is evalu-
ated. Also, the impact of the increasing number of EVs on these power exchanges is examined by considering 
10, 20 and 30 EVs.

Effect of EV and its mode of operation on various parameters
Figure 11 shows the schedule of power exchange between COR, DERs, and grid with 30 EVs in G2V and 
V2G_DRS modes of EV operation.

It is observed from Fig. 11 that as EV penetration occurs in the system, the P_COR_DER and P_COR_GR 
significantly increase independent of the mode of EV operation. In contrast, the P_COR_GR is dependent on 
the mode of EV operation. Due to this, the P_COR_GR becomes the minimum for the V2G_DRS case. It is 
mainly because this mode focuses on discharging of EVs/shifting the EV load during/ from peak hour time as 
per the grid, which reduces the demand request of COR on the grid. The P_ DER_GR is highest for without 
EV case, and it drastically reduces after EV penetration, as shown for G2V case. However, with V2G_DRS, it is 
further increased. Therefore, it can be concluded that V2G_DRS mode benefits all the energy entities of MG, 
i.e., community, DERs, and grid.

Effect of increasing number of EVs
Figure 12a and 12b shows the schedule of power exchanged between COR, DERs and grid with 10, 20, 30 EVs 
under G2V and V2G_DRS mode of EV operation, respectively.

(a)

(b)

Figure 12.   Power exchange schedule of COR, DERs and grid with 10, 20, 30 EVs under (a) G2V (b) V2G_DRS 
mode of EV operation.
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It is evident from the Fig. 12a and 12b, as the number of EVs increases in the system, the P_COR_DER 
and P_COR_GR also increase. Whereas P_DER_GR decreases with the increase in EVs for the G2V case, in 
comparison, it almost remains constant for V2G_DRS mode. It signifies that the increasing number of EVs has 
no considerable effect on P_DER_GR.

Table 7.   Summary of the considered cases.

S.No Cases

Mode of EV
Number of 
EVs

G2V V2G_DRS 10 20 30

1 Without (W/O) EV – – – – –

2 G2V_10EVs ✔ – ✔ – –

3 G2V_20EVs ✔ – – ✔ –

4 G2V_30EVs ✔ – – – ✔

5 V2G_DRS_10EVs – ✔ ✔ – –

6 V2G_DRS_20EVs – ✔ – ✔ –

7 V2G_DRS_30EVs – ✔ – – ✔

Figure 13.   Total energy imported by COR from DERs for all the cases.

Figure 14.   Total energy imported by COR from grid for all the cases.



19

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17499  | https://doi.org/10.1038/s41598-024-68228-7

www.nature.com/scientificreports/

Figure 15.   Total energy exported by DERs to the grid for all the cases.

Figure 16.   Net-billing cost of COR for all the considered cases.

Figure 17.   Net-operating cost of DERs for all the considered cases.
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Cumulative results obtained from DLEM for all the cases
This section discusses the summary of all the cases considered regarding energy exchanged in a day between 
COR, DERs, and grid, as well as NBC of COR and NOC of DERs. Table 7 shows the information of the cases 
studied.

Figures 13, 14 and 15 show the total energy imported by COR from DERs, total energy imported by COR from 
the grid and total energy exported by DERs to the grid obtained by DLEM for all the case studies, respectively.

It can be observed from Figs. 13 and 14 that the energy imported by COR from DERs and grid keeps on 
increasing as the number of EVs increases, irrespective of the mode of EV operation. However, the energy 
imported by COR from DERs remains similar in both modes of EV operation. Whereas the energy imported by 
COR from the grid is maximum with G2V case and is lowest with the V2G_DRS mode of operation.

From Fig. 15 it can be noted that the total energy exported by the DERs to the grid is maximum for without 
EV case, and it starts decreasing as the number of EVs increases irrespective of the mode of EV operation. This 
is mainly because after the EV penetration, the total load of the community increases, and DERs export more 
power to the community than the grid. However, there is a slight increment in total power exported by the DERs 
to the grid with V2G_DRS mode.

Figures 16 and 17 show the NBC of COR and the NOC of DERs for all the cases, respectively.
From Fig. 16, it can be observed that the NBC of COR is lowest for without EV case and highest with the G2V 

mode. Moreover, the V2G_DRS mode decreases the NBC of COR irrespective of the number of EVs. Further, 
in Fig. 17, the negative values of DERs’ NOC show the profit earned by DER operator. It is noticed from Fig. 17 
that the profit earned by DERs is maximum for, without EV cases but starts decreasing as the EV penetration 
increases.

The V2G_DRS mode of EV operation has a significant impact on the total energy imported by COR from the 
grid, total energy exported by DERs to grid and NBC of COR. Therefore, Table 8 shows the percentage incre-
ment/decrement in these parameters obtained from the V2G_DRS mode of EV operation with respect to G2V 
for different numbers of EVs.

From Table 8 it is observed that, for 10, 20 and 30 no. of EVs, the V2G_DRS mode of EV operation has 
decreased the total energy imported by COR from the grid by 7.14%, 9.77% & 11.39%, respectively. Further, it 
has increased the total energy exported by DERs to the grid by 0.6%, 0.84% and 2.51% for the same no. of EVs, 
respectively. This change in these parameters significantly impacts the operation of COR and thus decreases the 
NBC of COR by 3.01%, 6.02% & 7.88% for 10,20 & 30 EVs, respectively. Also, this change is magnified by the 
increase in the number of EVs; therefore, it is highest for 30 EVs. Consequently, it can be concluded that the 
V2G_DRS mode of EV operation helps optimize the NBC of COR and the operation of DERs by increasing its 
export.

Conclusion
A dual-layer energy management (DLEM) model is developed for the optimal operation of a microgrid (MG) 
consisting of a community, DERs and a grid. The community is comprised of residential and commercial build-
ings with electric vehicle (EV) chargers. The DER layer of MG is composed of solar PV and a battery energy 
storage system (BESS). The proposed DLEM aims to achieve economic and sustainable operation of every energy 
entity of MG and ensures their interaction with each other. The first layer of DLEM focuses on minimizing the 
net-billing cost (NBC) of the community operator (COR), whereas the second layer minimizes the net-operating 
cost (NOC) and maximizes the profit earned by the DER operator. The COR generates the demand request in 
the first layer of DLEM and sends it to DER and the grid. Further, in the second layer of DLEM, the optimal 
schedule of DERs is obtained using a formulated power scheduling algorithm (PSA) and takes into account the 
demand request of COR. The PSA makes the decision to charge/discharge BESS, export power to the grid, and 
send information for exporting power to COR by the grid in case of insufficient power.

Moreover, an advanced probabilistic electric vehicle load profile (EVLP) model is developed by considering 
(1) the availability of EV stations and (2) uncertain human behaviour in terms of the random time at which the 
EV may leave the station. The EVLP is modelled for two operating modes, i.e., grid to vehicle (G2V) and a novel 
vehicle to grid with EV demand response strategy (V2G_DRS) mode. The V2G_DRS mode motivates the EV 
owners to participate in peak load management by either performing vehicle-to-grid transfer or shifting the EV 
load from peak load hours to off-peak load hours as a demand response act.

The data for solar PV and load demand are obtained from the MG setup installed at the university campus. 
However, a scenario reduction technique is used to deal with the uncertainties of the obtained data. Further, to 
evaluate the performance of DLEM, various scenarios were considered, and the highlights of the results are as 
follows:

Table 8.   Percentage increment/decrement in total energy imported by COR from grid, total energy exported 
by DERs to grid, NBC of COR obtained from V2G_DRS mode with respect to G2V for different no. of EVs.

S.No No. of EVs

Percentage increment/decrement in parameters obtained from V2G_DRS mode of EV operation with respect to G2V

Decrement in total energy imported by COR 
from grid Increment total energy exported by DERs to grid Decrement in NBC of COR

1 10 7.14 0.60 3.01

2 20 9.77 0.84 6.02

3 30 11.39 2.51 7.88
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(1)	 Simulation results reveal that the DLEM decreased the billing cost of COR by 13% and increased the profit 
of the DER operator by 17% compared to existing energy management models.

(2)	 The efficacy of DLEM is evaluated by considering three EV penetration levels, i.e., 10, 20, and 30 EVs, 
with each mode of EV operation. The results conclude that, after the penetration of EVs, the total energy 
imported by COR from DERs and the grid is increased, and the energy exported by the DERs to the grid 
is decreased, irrespective of EV mode.

(3)	 The V2G_DRS mode of EV operation has decreased the energy import by COR from the grid by 7.14%, 
9.77% and 11.39% for 10, 20 and 30 EVs, respectively, as compared to the G2V mode. Moreover, the billing 
cost of COR has decreased by 3.01%, 6.02% & 7.88% for the same number of EVs, respectively.

Thus, the proposed DLEM with V2G_DRS mode results in the individual economic operation of all the 
energy layers of MG, especially the community and DER layers, making them more sustainable. For future 
research direction, the impact of flexible thermostatically controllable loads can be analyzed to provide a more 
cost-effective energy management solution for consumer entity of MGs.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on request.
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