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A data‑centric machine 
learning approach to improve 
prediction of glioma grades using 
low‑imbalance TCGA data
Raquel Sánchez‑Marqués 1,2, Vicente García 3* & J. Salvador Sánchez 4

Accurate prediction and grading of gliomas play a crucial role in evaluating brain tumor progression, 
assessing overall prognosis, and treatment planning. In addition to neuroimaging techniques, 
identifying molecular biomarkers that can guide the diagnosis, prognosis and prediction of the 
response to therapy has aroused the interest of researchers in their use together with machine 
learning and deep learning models. Most of the research in this field has been model-centric, meaning 
it has been based on finding better performing algorithms. However, in practice, improving data 
quality can result in a better model. This study investigates a data-centric machine learning approach 
to determine their potential benefits in predicting glioma grades. We report six performance metrics to 
provide a complete picture of model performance. Experimental results indicate that standardization 
and oversizing the minority class increase the prediction performance of four popular machine learning 
models and two classifier ensembles applied on a low-imbalanced data set consisting of clinical factors 
and molecular biomarkers. The experiments also show that the two classifier ensembles significantly 
outperform three of the four standard prediction models. Furthermore, we conduct a comprehensive 
descriptive analysis of the glioma data set to identify relevant statistical characteristics and discover 
the most informative attributes using four feature ranking algorithms.

Keywords  Data-centric machine learning, Glioma grade, Class imbalance, Feature ranking, Clinical factors, 
Molecular biomarkers

Gliomas are the most common primary tumors of the central nervous system that arise from glial or precursor 
cells, characterized by increased relapse and mortality rates. Gliomas include astrocytomas, oligodendrogliomas, 
and ependymomas. According to the 2007 World Health Organization (WHO)1, astrocytomas are classified into 
four grades based on the growth potential and aggressiveness. Grades I (pilocytic astrocytomas) and II (diffuse 
astrocytomas) correspond to the most benign tumors with a favorable prognosis and are considered low-grade 
gliomas (LGG), whereas grades III (anaplastic astrocytomas) and IV (glioblastomas multiforme, GBM) are 
considered high-grade gliomas (HGG). Glioblastoma multiforme is the most common, malignant, aggressive, 
and challenging type of primary brain tumor; it grows rapidly and has the lowest survival rate, with a 5-year 
survival of around 5%2. Since LGG and HGG show different progression and response, and treatment resistance, 
accurate and early diagnosis and grading are essential to plan appropriate treatment. Furthermore, it should be 
noted that some subtypes of LGG can lead to GBM in a few months3, so it is crucial to differentiate LGG from 
GBM as early as possible.

Currently, the standard procedure for diagnosing, classifying, and grading gliomas is based on histopatho-
logical analysis of a sample of brain tissue acquired by surgical biopsy or at the time of resection4. However, the 
potential risks (e.g., the likelihood of damaging a vital brain area can cause neurological deficits) and limita-
tions inherent to biopsy have led to the search for less invasive alternatives without adverse side effects. Thus, 
significant research efforts have been directed towards the development of neuroimaging techniques that allow 
the non-invasive extraction of a variety of so-called radiomic features (commonly divided into morphological 
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features, textural features, functional features, and semantic features) for the diagnosis, classification of differ-
ent types of tumors, predicting prognosis and determining the morphology and location of the tumor5,6. For 
instance, Cheng et al.7 used radiomic features for prediction of glioma grade, Lee et al.8 for pancreatic cancer, 
Miranda et al.9 for rectal cancer, Nguyen et al.10 for non-small cell lung cancer, Khanfari et al.11 for prostate cancer 
grading, and Kim et al.12 for prediction of disease-free survival in triple-negative breast cancer. In the particular 
case of glioblastoma, radiomics has emerged as powerful, non-invasive tools to obtain more information about 
the pathogenesis and therapeutic responses, providing significant biological insights into imaging features6.

Magnetic resonance imaging (MRI) and computed tomography (CT) are the most commonly used neuro-
imaging modalities13. However, other emerging techniques such as functional MRI (fMRI), magnetic resonance 
spectroscopy (MRS), positron emission tomography (PET), single-photon emission computed tomography 
(SPECT), combined PET/CT and hybrid PET/MRI are gaining increasing relevance for the diagnosis, prognosis, 
and monitoring of gliomas14–16. Despite the relevance and usefulness of neuroimaging, advances in genomics 
and proteomics have allowed the identification of prominent molecular biomarkers that contain both diagnostic 
and prognostic information for tumors of the central nervous system, becoming a pivotal tool for the evaluation 
of some gliomas and clinical decision making in neuro-oncology17. In 2021, WHO incorporated molecular data 
as a primary factor in classifying and determining the grade of gliomas, which, together with classic clinical and 
histological characteristics, can provide better performance18. Both methods based on neuroimaging techniques 
and those that focus on analyzing molecular biomarkers are supported by various machine learning and deep 
learning models due to their ease in processing large volumes of data and finding the most informative features, 
as well as their strong performance19–21.

Deepak and Ameer22 explored the performance of deep transfer learning with a pre-trained GoogLeNet to 
extract features from MRI images to discriminate between three types of brain tumors. Analysis of molecular 
mutations using MRI features proved to be a useful method for diffuse LGG prediction, with the advantage of 
being a non-invasive procedure23. Alksas et al.24 proposed an imaging-based glioma grading system that uses 
contrast-enhanced MRI, fluid-attenuated inversion-recovery MRI, and diffusion-weighted MRI to extract mor-
phological, textural, and functional features. Then, the optimal features given by the Gini impurity index are fed 
to a multi-layer perceptron (MLP) to discriminate between different grades of glioma. Matsiu et al.25 developed 
a deep learning model to predict the LGG molecular subtype using a mixture of clinical and radiomic data. An 
overall accuracy of 68.7% was obtained when the imaging data included MRI, PET, and CT data. Gutta et al.26 
conducted some experiments with a set of 237 patients to demonstrate that the performance of features learned 
by a convolutional neural network was superior to that of standard radiomic features for glioma grade predic-
tion. Cheng et al.7 used a total of 2153 intratumoral and peritumoral features extracted from preoperative multi-
parametric MRI scans of 285 patients to predict glioma grade, reaching an area under the ROC curve (AUC) of 
0.975. Furthermore, this technique was shown to have strong generalization performance when applied to an 
independent validation data set with 65 patients.

Sun et al.27 compared several radiomic feature selection algorithms and classification models in glioma grad-
ing, concluding that the combination of feature selection based on a support vector machine (SVM) with an MLP 
performed the best in discriminating between LGG and GBM. Cho et al.28 used the minimum redundancy maxi-
mum relevance algorithm with mutual information as the information measure to select the top five features from 
a total of 468 radiomic features and three classifiers (logistic regression, SVM, and random forest) to distinguish 
between HGG and LGG images. Bae et al.29 evaluated the performance and generalizability of traditional machine 
learning and deep learning models for distinguishing glioblastoma from single brain metastasis using radiomic 
features. Zhao et al.30 applied Cox proportional hazards, SVM and random forest to a large glioma data set with 
3462 patients for survival prediction, concluding that the best performance was achieved when incorporating 
radiation therapy and chemotherapy administration status. Tasci et al.31 introduced a new hierarchical voting-
based strategy for feature selection for glioma grading based on clinical and molecular characteristics, improving 
the performance of using the least absolute shrinkage and selection operator (LASSO) method together with 
classifier ensembles. Joshi et al.32 proposed a two-stage ensemble for glioma detection and grading based on 
clinical and histological data. Munquad et al.33 employed a correlation-based feature selection scheme and an 
SVM to predict LGG and subtypes, achieving an average accuracy of 91%. Ren et al.34 predicted IDH1 (isocitrate 
dehydrogenase 1) and ATRX (alpha-thalassemia mental retardation X-linked chromatin remodeler) mutations 
for molecular stratification of LGG using an SVM with a recursive feature elimination algorithm to select an 
optimal subset of 28 radiomic features. Zheng et al.35 developed a functional deep neural network to identify 
high-risk IDH1-mutant glioma patients using clinical factors and molecular features, achieving 90% accuracy.

Zhan et al.36 proposed a computer-aided diagnosis for grading gliomas which consists of a feature extraction 
step using PCA to reduce the dimensionality of the data and a prediction step based on a k nearest neighbors 
classifier. Wu et al.37 evaluated 50 machine learning algorithms over a data set with 1114 eligible glioma patients 
and showed that their performance was better than that of the clinical prediction model. The authors concluded 
that this kind of prediction models can serve as a non-invasive prediction tool for preoperative diagnostic grad-
ing of glioma. Ye et al.38 employed four machine learning algorithms (SVM, random forest, extreme gradient 
boosting, and generalized linear model) to investigate the relationship between overall survival and the clinical 
history parameters, pathological characteristics, and molecular alterations of gliomas. The experiments concluded 
that extreme gradient boosting was the best performing model when applied to a data set with 198 patients. 
Zhou et al.39 analyzed the correlation between LGG stemness and clinicopathological characteristics. In addition, 
the authors used SVM, extreme gradient boosting and LASSO to identify genes critical for stemness subtype 
prediction. Kha et al.40 uses Shapley additive explanations (SHAP) analysis to select the best wavelet radiomics 
features, which were then used with extreme gradient boosting to predict the codeletion status of chromosome 
1p/19q in LGG patients.
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While most cutting-edge research has focused on the model-building stage of the machine learning process, 
the performance of a model is highly dependent on data quality. It is now widely accepted that performance 
improvements are primarily achieved through a data-centric approach41. Unlike model-centric systems that 
focus on how to modify the code, algorithms and representations to improve accuracy and generalization, data-
centric approaches focus on curating the data to produce a better performing model. Data-centric machine 
learning comprises a series of tasks, including standardization and normalization, data cleaning, feature extrac-
tion, dimensionality reduction, feature transformation, instance selection, undersampling, data synthesis, and 
oversampling42. However, even recognizing the importance of data-centric methods, the challenge is to find an 
appropriate balance between these and model-centric methods to provide a robust machine learning solution43.

This paper aims to present a data-centric approach applied to The Cancer Genome Atlas (TCGA) data set 
and explore the potential benefits of oversampling and undersampling algorithms to address class imbalance, 
thus comparing their performance with that of six machine learning models (k nearest neighbors, support vector 
machine, multi-layer perceptron, logistic regression, random forest, and CatBoost). Furthermore, we conduct 
a comprehensive descriptive analysis of the data set to identify some statistical features and discover the most 
informative attributes using four feature ranking algorithms (information gain, Gini index, Chi-squared, and 
random forest). Next, a comparison is carried out with the best performing prediction models using all the 
features that make up the data set versus the case of using only the five most relevant attributes.

Methodology
This section presents the data set used and its main characteristics, the experimental protocol, and the perfor-
mance evaluation methods.

Data
All experiments were carried out using a data set31 obtained from the widely used and publicly available reposi-
tory of genome atlas data on TCGA (https://​www.​cancer.​gov/​tccg). In particular, the data set was built on the 
basis of the TCGA-LGG and TCGA-GBM projects and consists of three clinical factors (Gender, Age at diagnosis 
and Race) and 20 frequently mutated molecular biomarkers from 839 patients diagnosed with LGG or GBM. As 
seen in Table 1, all predictors are categorical type, except for the attribute Age at diagnosis, which is numerical. 
The molecular features are represented by the values 0 (not mutated) and 1 (mutated) according to the TCGA 
case number. It is worth noting that it was not necessary to apply any deletion or imputation technique because 
the data set used in the experiments did not contain missing data on any of the attributes (predictor variables).

Table 1.   Information on the 23 predictors in the data set.

# Predictor Type Domain

1 Gender Clinical 0, 1

2 Age Clinical [14.42 . . . 89.29]

3 Race Clinical 0, 1, 2, 3

4 IDH1 Molecular 0, 1

5 TP53 Molecular 0, 1

6 ATRX Molecular 0, 1

7 PTEN Molecular 0, 1

8 EGFR Molecular 0, 1

9 CIC Molecular 0, 1

10 MUC16 Molecular 0, 1

11 PIK3CA Molecular 0, 1

12 NF1 Molecular 0, 1

13 PIK3R1 Molecular 0, 1

14 FUBP1 Molecular 0, 1

15 RB1 Molecular 0, 1

16 NOTCH1 Molecular 0, 1

17 BCOR Molecular 0, 1

18 CSMD3 Molecular 0, 1

19 SMARCA4 Molecular 0, 1

20 GRIN2A Molecular 0, 1

21 IDH2 Molecular 0, 1

22 FAT4 Molecular 0, 1

23 PDGFRA Molecular 0, 1

https://www.cancer.gov/tccg
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Descriptive statistics
The data set consists of two classes indicating the glioma grade: 487 (58.05%) patients with LGG (the positive 
class, 0) and 352 (41.95%) with GBM (the negative class, 1), resulting in an imbalance ratio of 1.38 (i.e., the ratio 
of majority to minority samples in the data set). Of the total samples in the data set, 488 (58.16%) correspond to 
men (0) and 351 (41.84%) to women (1). Regarding the attribute Race, there are 765 cases of white people (0), 
59 of black or African American people (1), 14 of Asians (2), and only 1 American Indian (3). Table 2 reports 
the distribution of cases according to glioma grades for the clinical factors. The mean age values in Table 2 sug-
gest that there are no significant differences between males and females affected by these brain tumors, even 
regardless of the glioma grade. On the other hand, the data regarding patient race could be biased because the 
vast majority of cases are white people, so any conclusions about the incidence of glioma based on the attribute 
Race could be erroneous.

Table 3 summarizes a series of descriptive statistics for the attribute Age at diagnosis according to the gender 
of the patients, including measures of central tendency and measures of dispersion: minimum and maximum 
values, arithmetic mean, median, mid range, standard deviation (SD), standard error (SE), 95% confidence inter-
val (95% CI), first (Q1) and third (Q3) quartiles, interquartile range (IQR), coefficient of skewness, coefficient 
of kurtosis, kurtosis excess, and coefficient of variation (CV). Additionally, we conducted Kolmogorov-Smirnov 
(K-S) test46 (with Lilliefors significance correction) at a significance level of 0.05 to check for normality of the 
distribution of the samples in each gender; if p-value > 0.05 , it may be assumed that the data follow a normal 
distribution. We chose the K-S test instead of the Shapiro–Wilk test because it is more appropriate for large 
sample size (N ≥ 50)47.

To visualize the shape of the distributions, Fig. 1 shows histograms and density plots for the attribute Age at 
diagnosis for both males and females. In addition, it also displays the Q-Q plots for the attribute Age at diagnosis. 

Table 2.   Distribution of cases (N (%)) according to glioma grades based on clinical factors. For Age at 
diagnosis, the mean and (standard deviation) are shown.

Total (N = 839) LGG (N = 487) GBM (N = 352)

Gender

 Male 488 (58.16) 271 (55.65) 217 (61.65)

   Age at diagnosis 51.15 (15.81) 43.32 (13.52) 60.94 (12.72)

 Female 351 (41.84) 216 (44.35) 135 (38.35)

  Age at diagnosis 50.63 (15.57) 44.57 (12.92) 60.33 (14.53)

Race

 White 765 (91.18) 457 (93.84) 308 (87.50)

 Black/African American 59 (7.03) 21 (4.31) 38 (10.80)

 Asian 14 (1.67) 8 (1.64) 6 (1.70)

 American Indian 1 (0.12) 1 (0.21) 0 (0.00)

Table 3.   Descriptive statistics of the attribute Age at diagnosis.

Male (N = 488) Female (N = 351)

Lowest value 14.42 20.32

Highest value 89.29 85.61

Mean 51.1528 50.6331

Median 52.1250 50.3500

Mid range 51.86 52.97

SD 15.81075 15.56781

SE 0.03240 0.04436

95% CI Lower bound 49.7466 48.9988

            Upper bound 52.5591 52.2674

Q1 38.14 38.04

Q3 63.24 62.11

IQR 25.14 24.07

Coefficient of skewness 0.04337 0.11670

Coefficient of kurtosis 2.20588 2.17555

Kurtosis excess − 0.81268 − 0.85033

CV 0.30909 0.30746

K-S statistic 0.0615 0.0545

K-S p-value 0.0496 0.5801
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As can be seen, the residuals (green dots) tend to deviate quite a bit from the 45-degree line (blue) only at the 
tail ends, indicating that the data follow a normal distribution.

On the other hand, Fig. 2 shows a box-plot with the distribution of the attribute Age at diagnosis for LGG 
(class 0) and GBM (class 1) cases. The dark blue vertical and the thin blue lines represent the mean age and 
standard deviation, respectively. The median is shown with a yellow vertical line, while the blue highlighted area 
represents the values between the first and the third quartiles.

Table 4 displays counts (frequencies) and proportions (relative frequencies) for the 20 molecular biomarkers. 
Note that the list is ordered from highest to lowest by the count (or percentage) of cases with a mutation in the 
corresponding biomarker, ranging from 404 for IDH1 to 22 for PDGFRA.

Experimental protocol
The multiple machine learning models used to predict glioma grade in the experiments included four standard 
classification models and two powerful classifier ensembles. The standard models were k-nearest neighbors 
(kNN), SVM, MLP, and logistic regression (LR). The ensembles were random forest (RF) and CatBoost. kNN is 
a non-parametric learning algorithm that produces the class label of an input sample based on the majority vote 
of its k closest training cases. SVM is a supervised machine learning model that classifies data by finding the 
hyperplane that optimally separates the samples of one class from the other, that is, the hyperplane that maximizes 
the distance (margin) between the closest samples of the opposite class. One of the most interesting features of 
SVM is that it works for both linear and nonlinear problems, as well as being less prone to overfitting. When 
data are not linearly separable, some kernel function must be used to transform the training data into a higher-
dimensional feature space that allows linear separability. An MLP is an artificial neural network that consists 
of multiple layers of interconnected neurons: an input layer that receives the input sample as a combination of 
the feature values, an output layer that performs the classification by using some activation function, and one 

Figure 1.   Histograms (green boxes), density plots (red line) and Q-Q plots for the attribute Age at diagnosis.

Figure 2.   Distribution of values for the attribute Age at diagnosis.
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or more hidden layers (placed in between the input and output layers) whose neurons perform computations 
on the inputs. The logistic regression model makes a prediction based on the probability that an input sample 
belongs to a particular class: if the probability is greater than 0.5, the sample is assigned to that class; otherwise, 
the sample is classified to the other class.

RF44 is an extension of the bagging method made up of multiple decision trees, each generated from a sample 
drawn with replacement from the training set (i.e., with replacement means that one sample could be selected 
multiple times, while others could not be selected at all). During the construction of a tree, the best split is 
selected from a random subset of features, thus ensuring low correlation between decision trees. When classify-
ing new input samples, all trees make a judgment and the final decision is made by majority vote. CatBoost45 is 
an improved implementation of gradient boosting on binary decision trees, which means that each new tree is 
trained to minimize the loss function of the previous model (i.e., to reduce the error made by previous trees) 
using gradient descent. CatBoost handles categorical features not by using a binary substitution of the categori-
cal values but by performing a random permutation of the training data (this ensures different orderings during 
different stages of the gradient boosting process) and calculating the average label value for the sample with the 
same class value placed before the given one in the permutation.

Before applying the prediction models, the values of the attribute Age at diagnosis were normalized using 
the z-score standardization technique so that the mean of all values was 0 and the standard deviation was 1. A 
raw value x of the feature is converted into a normalized value z by

where x̄ and SD are the mean and standard deviation of a feature, respectively.
Note that normalization was applied solely to Age at diagnosis because all other attributes were categorical. 

On the other hand, to find the best values of the hyperparameters for the machine learning models, we fine-tuned 
them using an 80-20 stratified holdout setting method (Table 5).

Performance evaluation
We adopted a stratified 10-fold cross-validation method, where the data set was randomly divided into ten 
stratified non-overlapping blocks of roughly equal size. The models were trained with nine of these blocks com-
bined and then applied to the remaining block to estimate the performance. This process was repeated for each 
of the 10 blocks, giving a total of 755 training samples and 84 testing samples in each of the 10 iterations of the 
cross-validation. Performance was then calculated as the average of the 10 estimates thus obtained. We used six 
scalar indicators to evaluate the prediction performance: classification accuracy (Acc), Precision (Prec), Recall, 
Specificity (Spec), F1-score (F1), and Matthews correlation coefficient (MCC). All these measures were derived 
from a 2× 2 confusion matrix, where each entry (i, j) represents the number of true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN).

(1)z =
x − x̄

SD

Table 4.   Frequencies and proportions for the molecular biomarkers.

Biomarker

 Non-mutated (0)  Mutated (1)

Count Proportion (%) Count Proportion (%)

IDH1 435 51.85 404 48.15

TP53 491 58.52 348 41.48

ATRX 622 74.14 217 25.86

PTEN 698 83.19 141 16.81

EGFR 727 86.65 112 13.35

CIC 728 86.77 111 13.23

MUC16 741 88.32 98 11.68

PIK3CA 766 91.30 73 8.70

NF1 772 92.01 67 7.99

PIK3R1 785 93.56 54 6.44

FUBP1 794 94.64 45 5.36

RB1 799 95.23 40 4.77

NOTCH1 801 95.47 38 4.53

BCOR 810 96.54 29 3.46

CSMD3 812 96.78 27 3.22

SMARCA4 812 96.78 27 3.22

GRIN2A 812 96.78 27 3.22

IDH2 816 97.26 23 2.74

FAT4 816 97.26 23 2.74

PDGFRA 817 97.38 22 2.62
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In addition to these scalar metrics, we also included the receiver operating characteristics (ROC) and the 
precision-recall curves to visualize how the machine learning models used in the experiments perform in predict-
ing the classes. The ROC curve plots a false positive rate (i.e., 1-specificity) on an X-axis against a true positive 
rate on a Y-axis; the closer the curve approaches the upper left corner of the ROC space, the better the model is 
at predicting the classes. The precision-recall curve shows the ratio between precision (ratio of true positives in 
positive predictions) and recall (ratio of true positives in positive class) at different thresholds; ideally, the curve 
should be as close to the top right corner as possible.

Results and discussion
This section consists of three blocks. First, we investigated the most informative molecular biomarkers based on 
the distribution of cases in each glioma grade and checked whether these results agree with the results of four 
feature ranking algorithms. The second block analyzes the performance of six standard prediction models and 
classifier ensembles for glioma grading. Finally, we apply some resampling techniques to handle class imbalance 
and verify if this leads to increased performance.

Most informative features
Values in Table 6 show the distribution of cases according to glioma grades for the mutated molecular biomarkers 
(i.e., feature value = 1). As can be seen, IDH1 mutations are the most common, being detected in 404 patients 

Table 5.   Model hyperparameters.

Model Parameter Settings Best value Model Parameter Settings Best value

kNN
Neighbors (k) [1 . . . 15] 5

 RF

Number of trees [80, 100, 120] 120

Distance metric Euclidean Number of attributes 
considered at each split [1 . . . 23] 11

SVM
Cost (C) [0.01 . . . 1] 1 Limit depth of trees [3 . . . 10] 5

Kernel Linear, RBF Linear

 CatBoost

Estimator Tree Tree

MLP

Hidden layers [1 . . . 3] 1 Number of trees [80, 100, 120] 100

Neurons in hidden layer [50, 100, 150] 50 Learning rate [0 . . . 1] 0.03

Activation function Logistic, ReLu ReLu Limit depth of trees [3 . . . 10] 6

Learning iterations [50 . . . 200] 100 Regularization type LASSO, Ridge Ridge

LR Regularization type LASSO, Ridge Ridge

Table 6.   Distribution of cases (N (%)) according to glioma grades based on mutated molecular biomarkers 
(bold values indicate the most discriminating molecular biomarkers, that is, those with the greatest difference 
between LGG cases and GBM cases).

Predictor Total (N = 839) LGG (N = 487) GBM (N = 352)

IDH1 404 (48.15) 381 (94.31) 23 (5.69)

TP53 348 (41.48) 235 (67.53) 113 (32.47)

ATRX 217 (25.86) 183 (84.33) 34 (15.67)

PTEN 141 (16.81) 25 (17.73) 116 (82.27)

EGFR 112 (13.35) 31 (27.68) 81 (72.32)

CIC 111 (13.23) 107 (96.40) 4 (3.60)

MUC16 98 (11.68) 41 (41.84) 57 (58.16)

PIK3CA 73 (8.70) 39 (53.42) 34 (46.58)

NF1 67 (7.99) 29 (43.29) 38 (56.72)

PIK3R1 54 (6.44) 21 (38.89) 33 (61.11)

FUBP1 45 (5.36) 43 (95.56) 2 (4.44)

RB1 40 (4.77) 6 (15.00) 34 (85.00)

NOTCH1 38 (4.53) 38 (100) 0 (0.00)

BCOR 29 (3.46) 17 (58.62) 12 (41.38)

CSMD3 27 (3.22) 12 (44.44) 15 (55.56)

SMARCA4 27 (3.22) 23 (85.19) 4 (14.81)

GRIN2A 27 (3.22) 7 (25.93) 20 (74.07)

IDH2 23 (2.74) 21 (91.30) 2 (8.70)

FAT4 23 (2.74) 11 (47.83) 12 (52.17)

PDGFRA 22 (2.62) 6 (27.27) 16 (72.73)
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(48.15% of the total cases studied). However, these mutations occur in 94.31% of cases with LGG and only in 
5.69% of cases with GBM, confirming previous findings that this is a very informative molecular biomarker for 
glioma grading17,34,48: IDH1/2 mutations have been largely associated with grade II and III gliomas and second-
ary glioblastomas49. Looking at the biomarkers with 50 or more cases, similar conclusions can be drawn for the 
molecular biomarkers ATRX with 84.33% of LGG, PTEN (phosphatase and tensin homolog) with 82.27% of 
patients affected by GBM and CIC (capicua transcriptional repressor) with 96.40% LGG. In the case of biomark-
ers with a low percentage of patients, we find NOTCH1 (notch receptor 1) (100% of LGG), FUBP1 (far upstream 
element binding protein 1) (95.56% of LGG), IDH2 (isocitrate dehydrogenase 2) (91.30% of LGG), SMARCA4 
(SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4) (85.19% 
of LGG) and RB1 (retinoblastoma transcriptional corepressor 1) (85.00% of GBM).

To support the conclusions drawn from the values in Table 6, we ran four feature ranking algorithms on the 
normalized data set with the aim of checking which are the most informative predictors: information gain, Gini 
index, Chi-squared, and RF. Note that identifying the most informative clinical factors and glioma molecular 
biomarkers can be valuable in obtaining relevant biological information. On the other hand, in some practical 
cases, having small feature sets with high prediction accuracy can become paramount to minimize response time.

Information gain (infGain) estimates the relevance of a predictor based on the amount by which the entropy of 
the class decreases when considering that feature. The Gini index (Gini) estimates the distribution of a predictor 
in different classes and can be interpreted as a measure of impurity for a feature. Chi-squared (Chi2) measures 
the relationship strength between each variable and the class label. Note that Chi-squared applies to categorical 
predictors, and therefore, numerical attributes (as is the case for Age at diagnosis) must first be discretized into 
several intervals. In the case of RF as a feature ranking method, each tree in the forest calculates the importance 
of a predictor based on its ability to decrease the weighted impurity in the tree.

Since each feature ranking algorithm could yield different results (rankings), fusing them using a multiple 
intersection method was necessary to find out which features got the highest rankings in the output of the four 
algorithms. Thus, looking at the rankings of each algorithm, it was possible to determine which were the five 
most relevant attributes, while there were discrepancies in establishing the most informative attributes from 
the sixth position onwards. From the outputs of the multiple intersection method, Table 7 shows that the four 
feature ranking algorithms agreed to define IDH1 as the most informative attribute, followed by Age at diagno-
sis, PTEN, CIC and ATRX. These results are interesting because they are consistent with the findings of various 
studies conducted in neuroscience and neuro-oncology17,34,48,49 in which the mutated molecular biomarkers that 
best discriminate LGG from GBM were determined, as reported in Table 6. The relevance of this lies in the fact 
that feature selection or ranking algorithms could be used to discover molecular biomarkers with the greatest 
discriminating power instead of other more expensive, time-consuming and difficult to carry out methods.

Table 7.   Results of feature ranking methods. The ranking of each feature is shown in brackets (bold values 
indicate the five most informative predictors based on the multiple intersection method).

Predictor infGain Gini Chi2 RF

Gender 0.003 (19) 0.002 (19) 1.759 (20) 0.010 (13)

Age 0.209 (2) 0.130 (2) 185.221 (2)  0.201 (2)

Race 0.012 (11) 0.008 (11) 6.836 (17) 0.011 (10)

IDH1 0.414 (1) 0.244 (1) 218.137 (1) 0.245 (1)

TP53 0.019 (10) 0.013 (10) 12.852 (10) 0.017 (7)

ATRX 0.078 (5) 0.048 (4) 61.571 (5) 0.029 (4)

PTEN 0.100 (3) 0.066 (3) 94.102 (3) 0.025 (5)

EGFR 0.042 (6) 0.028 (6) 42.410 (6) 0.016 (8)

CIC 0.085 (4) 0.045 (5) 67.040 (4) 0.040 (3)

MUC16 0.010 (14) 0.007 (12) 10.572 (12) 0.008 (17)

PIK3CA 0.001 (22) 0.000 (22) 0.640 (22) 0.010 (12)

NF1 0.006 (18) 0.004 (18) 5.995 (18) 0.011 (11)

PIK3R1 0.007 (17) 0.005 (16) 8.137 (16) 0.006 (18)

FUBP1 0.030 (8) 0.016 (9) 26.000 (9) 0.008 (15)

RB1 0.029 (9) 0.019 (7) 30.434 (7) 0.013 (9)

NOTCH1 0.037 (7) 0.017 (8) 27.466 (8) 0.008 (14)

BCOR 0.000 (23) 0.000 (23) 0.004 (23) 0.008 (16)

CSMD3 0.002 (20) 0.001 (20) 2.051 (19) 0.005 (19)

SMARCA4 0.008 (15) 0.005 (17) 8.166 (15) 0.001 (23)

GRIN2A 0.010 (13) 0.007 (13) 11.438 (11) 0.005 (20)

IDH2 0.011 (12) 0.006 (14) 10.447 (13) 0.023 (6)

FAT4 0.001 (21) 0.001 (21) 0.986 (21) 0.003 (22)

PDGFRA 0.008 (16) 0.005 (15) 8.555 (14) 0.005 (21)
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We ran multidimensional scaling50 to visualize in Fig. 3 the samples from both classes as a function of the 
attribute Age at diagnosis against each of the four most informative biomarkers (IDH1, PTEN, CIC, and ATRX). 
Each blue dot represents an LGG sample, and each red dot is a GBM sample. The regions belonging to each class 
are shaded in blue or red depending on whether they correspond to the LGG or GBM class, respectively. These 
graphs allow us to see how the age of the patients and mutations are related to the grade of glioma. For example, 
Fig. 3a reveals that most LGG cases require IDH1 mutations and occur at younger ages than GBM cases. For 
PTEN (Fig. 3b), LGG occurs when there is no mutation, while GBM does not appear to depend on this molecu-
lar biomarker since approximately the same number of cases is seen both with and without PTEN mutations.

Results of the prediction models
Table 8 reports the results of each of the six evaluation metrics achieved by the prediction models applied to the 
normalized data set (with all predictors) using the experimental protocol described above. The results revealed 
that RF was the best performing model, although closely followed by CatBoost and SVM. In contrast, kNN. MLP 
and LR obtained the lowest values regardless of the performance evaluation metric used.

For better analysis of these results, we performed a pairwise comparison of models using a correlated Bayes-
ian t-test51 for each evaluation metric to check whether the difference in scores between each pair of models 
was significant or not. Unlike the frequentist correlated t-test, where the inference is a p-value, the inference of 
the Bayesian t-test is a posterior probability. Additionally, this test considers the correlation and the uncertainty 
(i.e., the standard error) of the results generated by cross-validation. The outputs of the statistical test are sum-
marized in Table 9, where the number in a cell denotes the probability that the model corresponding to the row 
had a significantly higher score (posterior probability greater than 0.5) than the model corresponding to the 
column. Values in this table indicate that the results obtained by RF and CatBoost were significantly better than 
those of kNN, MLP, and LR, regardless of the metric used. When comparing RF and CatBoost with SVM, it can 
be seen that the differences were not statistically significant when using Prec (0.492 and 0.399) and Spec (0.460 
and 0.416). Finally, posterior probabilities of RF being significantly better than CatBoost revealed that the per-
formance differences between both ensembles were very small, so one should not conclude that RF performed 
better than CatBoost.

Figure 4 plots the ROC curves for the RF and CatBoost ensembles separately for each of the two classes (LGG 
and GBM). The diagonal dotted line represents the behavior of a random classifier, while the full diagonal line 
represents iso-performance in the ROC space so that all the points on the line give the same profit/loss. The closer 
to the top and further to the left this full diagonal line is, the better the classifier result. The AUC was 0.923 for 
RF and 0.924 for CatBoost, that is, the difference between both classifiers was negligible.

Figure 5 shows the confusion matrix corresponding to each of the six prediction models. Although it was seen 
that the imbalance ratio of the data set was moderately low (1.38), the confusion matrix allows us to discover 
the behavior of the models in each of the classes, that is, analyze the number of successes and errors individually 
by class in order to identify whether or not there were differences between predicting samples belonging to the 
majority class and samples of the minority class. Thus, it can be observed that the three models with the best 
performance (RF, CatBoost and SVM) made a lower number of errors than the other three classifiers (kNN, 

Figure 3.   Scatter plot of Age at diagnosis (X-axis) vs. the most informative molecular biomarkers (Y-axis).

Table 8.   Prediction performance of the machine learning models (the best values are in bold).

Model Acc F1 Prec Recall MCC Spec

kNN 0.852 0.853 0.856 0.852 0.702 0.856

SVM 0.867 0.867 0.878 0.867 0.741 0.884

MLP 0.852 0.853 0.857 0.852 0.703 0.859

LR 0.862 0.862 0.865 0.862 0.721 0.866

RF 0.869 0.870 0.878 0.869 0.743 0.883

CatBoost 0.869 0.870 0.877 0.869 0.742 0.882

Mean 0.862 0.863 0.869 0.862 0.725 0.872

SD 0.008 0.008 0.011 0.008 0.019 0.013
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MLP and LG) on the minority class (GBM). In contrast, the number of misclassifications on the majority class 
(LGG) was similar in all classifiers.

Explainability of predictions
Due to the “black box” nature of most machine learning models, one of the main problems is their insufficient 
interpretability or the difficulty in understanding the predictions they make. To shed light on these limitations, 
some methodologies belonging to the eXplainable Artificial Intelligence (XAI)52 paradigm have been proposed 
in order to provide a reasonable understanding of the output of machine learning models. In particular, we 

Table 9.   Pairwise comparison of models.

kNN SVM MLP LR RF CatBoost kNN SVM MLP LR RF CatBoost

Accuracy Recall

 kNN 0.093 0.500 0.286 0.020 0.072  kNN 0.093 0.500 0.286 0.020 0.072

 SVM 0.907 0.895 0.643 0.354 0.324  SVM 0.907 0.895 0.643 0.354 0.324

 MLP 0.500 0.105 0.236 0.077 0.037  MLP 0.500 0.105 0.236 0.077 0.037

 LR 0.714 0.357 0.764 0.306 0.281  LR 0.714 0.357 0.764 0.306 0.281

 RF 0.980 0.646 0.923 0.694 0.501  RF 0.980 0.646 0.923 0.694 0.501

 CatBoost 0.928 0.676 0.963 0.719 0.499  CatBoost 0.928 0.676 0.963 0.719 0.499

F1-score Matthews correlation coefficient

 kNN 0.091 0.493 0.284 0.020 0.070  kNN 0.039 0.504 0.286 0.013 0.056

 SVM 0.909 0.894 0.647 0.354 0.320  SVM 0.961 0.958 0.790 0.440 0.481

 MLP 0.507 0.106 0.240 0.078 0.037  MLP 0.496 0.042 0.242 0.046 0.019

 LR 0.716 0.353 0.760 0.302 0.275  LR 0.714 0.210 0.758 0.219 0.203

 RF 0.980 0.646 0.922 0.698 0.497  RF 0.987 0.560 0.954 0.781 0.544

 CatBoost 0.930 0.680 0.963 0.725 0.503  CatBoost 0.944 0.519 0.981 0.797 0.456

Precision Specificity

 kNN 0.019 0.515 0.290 0.010 0.049  kNN 0.013 0.437 0.281 0.009 0.033

 SVM 0.981 0.980 0.876 0.508 0.601  SVM 0.987 0.976 0.907 0.540 0.584

 MLP 0.485 0.020 0.241 0.031 0.012  MLP 0.563 0.024 0.303 0.037 0.013

 LR 0.710 0.124 0.759 0.167 0.157  LR 0.719 0.093 0.697 0.128 0.115

 RF 0.990 0.492 0.969 0.833 0.579  RF 0.991 0.460 0.963 0.872 0.536

 CatBoost 0.951 0.399 0.988 0.843 0.421  CatBoost 0.967 0.416 0.987 0.885 0.464

Figure 4.   ROC curves for the classifier ensembles.

Figure 5.   Confusion matrices of the classifiers.
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analyzed the effect of the attributes on the prediction performance using two explainability approaches: global 
feature importance and SHAP.

Global feature importance estimates the contribution of each individual feature to the prediction by measur-
ing the increase in the prediction error of the model after performing permutations on the feature values across 
the data set, which breaks the relationship between the feature and the target variable44,53. A feature is important 
if permuting its values increases the model error, while a feature is of little or no importance if permuting its 
values does not change the error of the model.

Bar charts in Fig. 6 show feature importances in descending order for each classifier, indicating that the IDH1 
biomarker was the most important attribute contributing to the target variable (i.e., glioma grade), regardless of 
the model used. The second most important feature was Age at diagnosis in all cases except when applying the 
MLP neural network (note that even in this case the attribute Age at diagnosis was the third most important). 
It is worth highlighting that these results mostly agree with those reported in Table 7, where these two features 
were also identified as the most relevant when applying the multiple intersection method.

It should be noted that the global feature importance approach reveals the absolute importance of each 
attribute, but it does not indicate the direction of the change given by the permutations, that is, it does not report 
whether the feature increases or decreases the prediction performance of the model. To overcome this limita-
tion, we also employed the SHAP method introduced by Lundberg and Lee54, which is based on the principles 
of cooperative game theory and can provide broad explanations of model predictions at both local and global 
levels. This method computes Shapley values, which quantify the average marginal contribution of a feature to 
the prediction made by the model after considering all possible combinations with other features55, that is, it 
provides information about whether the influence of each characteristic on the prediction value of the model is 
positive (increase) or negative (decrease). The Shapley value of a feature, is calculated as the difference between 
the prediction when the feature is present and the prediction when the feature is absent.

Figure 7 shows the SHAP summary plot for each model, which represents the positive or negative impact 
of each feature on the prediction of one class. On the X-axis is the Shapley value, which denotes how much the 
features contribute to the prediction of a patient diagnosed with GBM across all possible combinations. A value 
less than 0 indicates a negative contribution (i.e., low importance for the prediction of the minority class GBM), 
equal to 0 indicates no contribution, and greater than 0 indicates a positive contribution (i.e., high importance 
for prediction). The left vertical axis (Y-axis) is for features ranked in descending order of their relevance to the 
prediction of class GBM, while the right vertical axis indicates the value of the features from lowest to high-
est. Each dot represents the Shapley value of a sample (patient) plotted horizontally and is colored red or blue 
depending on whether the value is high or low, respectively.

From these plots, it can be seen that Age at diagnosis was the most important feature for the prediction in 
class GBM when the KNN and LR models were used, and the second most relevant with the rest of the classifiers. 
Samples with higher values of this feature (red color) had higher Shapley values, meaning that they contributed 
to the prediction of class GBM. Lower values of this attribute (blue) contributed against the prediction of this 
class. The IDH1 biomarker (categorical attribute) contributed the most to the prediction of GBM class when 
using the MLP, SVM, RF and CatBoost models. As IDH1 is a categorical attribute, its impact on the prediction 
depends on its value (0 = non-mutated, 1 = mutated). Thus, it can be seen that this biomarker with the non-
mutated value for the patient (red color) contributed to the prediction of the GBM class, while the mutated value 
of this attribute contributed negatively.

Figure 6.   Feature importance of the top 5 variables according to the AUC of the model.
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Addressing class imbalance
Considering the differences in misclassifications between the majority class and the minority class, we decided to 
address the class imbalance in order to see if any performance improvement could be obtained. It is well known 
that training a machine learning algorithm with imbalanced data can favor the majority class, typically leading 
to higher misclassification rates over the minority class (GBM). Among the various strategies to address imbal-
anced data, resampling techniques are by far the most widely used approach because they have been proven 
to be efficient, classifier-independent, and can be easily implemented for any problem56. These are designed to 
change the composition of the training data set by adjusting the number of majority and/or minority samples 
until both classes are represented by an approximately equal number of samples. Many researchers have argued 
that over-sampling is generally superior to under-sampling because under-sampling algorithms can discard 
potentially useful data and increase classifier variance57. It should be noted that, to avoid overoptimistic results, 
resampling should be applied only to the training set, not to the entire data set58. In the case of over-sampling, 
for instance, this means that the testing samples are neither over-sampled nor seen by the machine learning 
model during training.

Experiments in this section were carried out with two resampling algorithms. The first is an over-sampling 
algorithm proposed by Chawla et al.59 called SMOTE, which generates artificial samples of the minority class 
(GBM) by interpolating existing samples that are close together. It first finds the k minority nearest neighbors for 
each minority sample, and then synthetic samples are generated in the direction of some or all of those nearest 
neighbors. Depending on the amount of over-sampling required, a certain number of samples are randomly 
chosen from the k nearest neighbors. The second is random under-sampling (RUS), which balances the data set 
by randomly removing samples that belong to the over-sized class (LGG).

Table 10 reports the performance results obtained after preprocessing the normalized data set with SMOTE 
and RUS. The first issue worth mentioning is that oversampling performed better than undersampling, except 
when Recall was used. Secondly, unlike the results obtained with the normalized data set without preprocessing 
(Table 8), now the best model after up-sampling the data set was SVM, although the differences concerning RF 
and CatBoost were really negligible.

To check whether or not the difference in the means of the results with the normalized training set without 
preprocessing and those preprocessed with over-sampling and under-sampling were significant, a two-tailed 
t-test60 was performed for a significance level of 5% ( α = 0.05 ), whose t-values and p-values are shown in 
Table 11. Thus, when comparing the means of Table 8 with those of over-sampling (upper part of Table 10), we 
obtained that the differences were statistically significant in all cases, except when using the specificity to evaluate 
the performance of the models. On the other hand, when comparing them with the means obtained with under-
sampling (bottom of Table 10), we found that the differences in precision and specificity on the non-preprocessed 
set were significantly better than those of the downsized set. Therefore, despite the low imbalance index, the test 

Figure 7.   SHAP summary plots.
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indicated the convenience of over-sampling the normalized data set with the SMOTE algorithm to increase the 
performance of the prediction models.

As a further confirmation of the findings using SMOTE, in Fig. 8 we plotted precision-recall curves for the 
best predictiion models (SVM, RF and CatBoost) when applied to the original training sets and the over-sampled 
training sets. The area under the precision-recall curve was 0.838, 0.860 and 0.872 for SVM, 0.873, 0.91 and 0904 
for RF, and 0.872, 0.908 and 0.898 for CatBoost using the original, over-sampled and under-sampled training 
sets, respectively. These values confirm some performance improvements as a result of addressing class imbal-
ance with SMOTE.

The last experiment focused on analyzing the behavior of the prediction models on the upsized data set using 
the feature vector with the five most relevant attributes according to the multiple intersection method. Table 12 
shows that the best performing models were LR and SVM, which is quite surprising because these results differed 
from those obtained on the data set containing all attributes. On the other hand, when comparing the results of 
the upper part of Table 10 with those of Table 12, one can see that the performance of all the prediction models 
worsened when applied to the reduced sets. To check whether or not the differences were statistically significant, 
we again ran a two-tailed t-test for a significance level of 0.05: t-value = −6.898545, p-value = 0.00098.

Conclusions
Glioma grading and prediction constitute a highly relevant practical health problem that is usually addressed 
using neuroimaging techniques. However, the development of advanced genomics and proteomics methods 
allows the identification of mutations in certain molecular biomarkers that can support diagnosis, prognosis 
and prediction of response to therapy. In this study, several data-centric machine learning models have been 
used to discriminate between LGG and GBM samples using a series of clinical factors and molecular biomark-
ers. Furthermore, a comprehensive descriptive analysis of the data set used in the experiments has also been 
carried out. The descriptive analysis has included several statistics of the attributes and the application of four 
feature ranking algorithms to determine the most relevant characteristics, and it has been possible to observe 
that the molecular biomarkers selected by these algorithms as the most informative agree with the conclusions 
of previous molecular biology studies. However, these algorithms have important advantages because they are 
much less expensive and faster than genomics and proteomics methods.

Of the different machine learning methods analyzed, the two classifier ensembles (RF and CatBoost) have 
obtained the best scores regardless of the metric used. The global feature importance approach revealed the 
absolute relevance of each attribute, while the SHAP analysis of individual samples provided a reasonable inter-
pretation of which attributes contributed most to the prediction of class GBM. On the other hand, when analyzing 
the confusion matrices, important differences have been observed between the misclassifications on the majority 
class and the minority class, which suggested the need to apply some techniques to address the class imbalance. 
In particular, the normalized data set has been preprocessed with an oversampling algorithm (SMOTE) and an 
undersampling algorithm (RUS) and it has been found that upsizing the minority class improves the prediction 
performance. As a final comment, it is worth noting that a model-centric approach applied to the TCGA data 

Table 10.   Prediction performance of the machine learning models using the resampled data sets (the best 
values are in bold).

Over-sampling (SMOTE) Under-sampling (RUS)

Model Acc F1 Prec Recall MCC Spec Model Acc F1 Prec Recall MCC Spec

kNN 0.868 0.867 0.870 0.868 0.738 0.868 kNN 0.854 0.859 0.828 0.892 0.709 0.815

SVM 0.882 0.882 0.886 0.882 0.768 0.882 SVM 0.879 0.885 0.845 0.929 0.762 0.830

MLP 0.862 0.862 0.864 0.862 0.727 0.862 MLP 0.851 0.855 0.831 0.881 0.703 0.821

LR 0.871 0.870 0.873 0.871 0.744 0.871 LR 0.866 0.872 0.838 0.909 0.736 0.824

RF 0.881 0.881 0.885 0.881 0.766 0.881 RF 0.876 0.883 0.841 0.929 0.757 0.824

CatBoost 0.881 0.881 0.885 0.881 0.766 0.881 CatBoost 0.881 0.886 0.847 0.929 0.765 0.832

Table 11.   Statistical comparison between the non-preprocessed data set and the resampled data sets. The 
first line of each method is the t-value, and the second line corresponds to the p-value (italic values indicate 
no significant differences, while underline values indicate that the results without resampling were better than 
those with resampling).

Method Acc F1 Prec Recall MCC Spec

SMOTE
11.055865 10.159443 7.985837 11.055865 12.726012 1.119902

< .01 < .01 < .01 < .01 < .01 0.31365

RUS
2.757831 4.364481 −17.731469 9.101624 3.779645 −13.991676

0.03994 < .01 0.00001 < .01 0.01289 0.00003
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set achieved 0.876 accuracy31, while the data-centric method proposed in this study yielded accuracy rates of 
0.882 (with oversampling) and 0.881 (with both oversampling and undersampling).

While this study provides valuable insights into prediction of glioma grades, an interesting avenue for future 
research refers to the analysis of the possible bias that may arise in predictions against certain sensitive social 
groups (e.g., gender, age, race, etc.). With this objective, the aim is to quantify the existence of bias through fair-
ness metrics and, if necessary, apply bias mitigation methods61,62. When the bias is inherited from the way the 
training set was created, one approach that would reduce the bias is to internally rebalance the class distributions 
so that they are equal across class and sensitive attributes.

Data availibility
The data set used and analyzed during the current study is available in the UCI Machine Learning Repository: 
Glioma Grading Clinical and Mutation Features [Dataset]. https://​doi.​org/​10.​24432/​C5R62J.

Figure 8.   Precision-recall curves for SVM and the classifier ensembles applied with the original training sets 
(a–c) , the oversampled training sets (d–f), and the undersampled training sets (g–i).

Table 12.   Prediction performance of the machine learning models on the oversampled data set using the top 
five attributes (the best values are in bold).

Model Acc F1 Prec Recall MCC Spec

kNN 0.853 0.853 0.855 0.853 0.708 0.853

SVM 0.869 0.868 0.875 0.869 0.744 0.869

MLP 0.868 0.867 0.871 0.868 0.739 0.868

LR  0.871 0.870 0.873 0.871 0.744 0.871

RF 0.867 0.866 0.871 0.867 0.738 0.867

CatBoost 0.866 0.865 0.870 0.866 0.736 0.866

https://doi.org/10.24432/C5R62J
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