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Crop water productivity 
assessment and planting structure 
optimization in typical arid 
irrigation district using dynamic 
Bayesian network
Yantao Ma 1,2, Jie Xue 2,3,4*, Xinlong Feng 1*, Jianping Zhao 1, Junhu Tang 5, Huaiwei Sun 6, 
Jingjing Chang 2 & Longke Yan 1,2

Enhancing crop water productivity is crucial for regional water resource management and agricultural 
sustainability, particularly in arid regions. However, evaluating the spatial heterogeneity and 
temporal dynamics of crop water productivity in face of data limitations poses a challenge. In 
this study, we propose a framework that integrates remote sensing data, time series generative 
adversarial network (TimeGAN), dynamic Bayesian network (DBN), and optimization model to assess 
crop water productivity and optimize crop planting structure under limited water resources allocation 
in the Qira oasis. The results demonstrate that the combination of TimeGAN and DBN better improves 
the accuracy of the model for the dynamic prediction, particularly for short-term predictions with 4 
years as the optimal timescale (R2 > 0.8). Based on the spatial distribution of crop suitability analysis, 
wheat and corn are most suitable for cultivation in the central and eastern parts of Qira oasis while 
cotton is unsuitable for planting in the western region. The walnuts and Chinese dates are mainly 
unsuitable in the southeastern part of the oasis. Maximizing crop water productivity while ensuring 
food security has led to increased acreage for cotton, Chinese dates and walnuts. Under the combined 
action of the five optimization objectives, the average increase of crop water productivity is 14.97%, 
and the average increase of ecological benefit is 3.61%, which is much higher than the growth rate 
of irrigation water consumption of cultivated land. It will produce a planting structure that relatively 
reduced irrigation water requirement of cultivated land and improved crop water productivity. This 
proposed framework can serve as an effective reference tool for decision-makers when determining 
future cropping plans.

Keywords  Dynamic planting distribution, TimeGAN, Dynamic Bayesian network, Crop water productivity, 
Crop suitability assessment

Water resources are one of the most important natural resources, also indispensable for the survival and devel-
opment of human beings1. Agriculture accounts for the largest share of water allocation, accounting for about 
70% of annual freshwater use2. FAO estimates that the irrigated area in developing countries will increase by 
34% in 2030. The agricultural water use will increase by 14% under the irrigation management and practices. 
In the context of rapid population growth, economic development and environmental change, water and food 
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scarcity become a global issue3. How to achieve sustainable development of water resources and agriculture is 
a topic of concern for countries4.

The water footprint, water scarcity and crop water productivity are currently used as main indicators to assess 
water resources and agricultural sustainability5–8. Crop water productivity variation is closely related to climate, 
soil, socio-economic, human activities and other factors9. The crop water productivity is usually considered as 
ideal indicator to reflect the spatial variability affecting crop growth yield and water consumption. Therefore, 
assessing the impact of changes in cropping patterns on changes in water productivity is crucial for optimal 
utilization of water resources in agriculture.

At present, the research on the crop water productivity assessment and optimal allocation of agricultural 
water mainly includes three aspects. The first aspect is to optimize regional crop planting area using traditional 
mathematical optimization algorithms10. The second one is to establish a spatial distribution model to achieve 
spatial optimization of crops11. The third one is to simulate optimization based on some kinds of agent systems 
or dynamic systems. However, most of the studies focus on static optimization. Few studies are considering to 
assess the spatial heterogeneity and temporal dynamics of crop water productivity to optimize agricultural plant-
ing structure using an effective dynamic approach. Dynamic Bayesian networks (DBN) as a temporal extension 
of Bayesian networks is mainly used for ideal approach to model the dynamic process12. The thorny issue is that 
the data-driven DBNs place certain demands on the amount of data13. Yoon proposed a machine deep learning 
method (time series adversarial generative networks (TimeGAN)) for synthesizing time series14. TimeGAN has 
shown good performance in dynamic data augmentation. Therefore, how to combine TimeGAN and DBN to 
realize dynamic prediction of crop water productivity poses greater challenge.

The aim of this study establishes a dynamic optimization model framework integrating TImeGAN, Dynamic 
Bayesian networks (DBN) and multi-objective models to be applied in the Qira oasis of Xinjiang, Northwest 
China. The frameworks are to conduct (1) data augmentation of existing remote sensing data and statistical data 
by TimeGAN; (2) dynamic prediction of crop water demand and planting scale using DBN based on generated 
data; and (3) optimization of future crop planting structure using crop suitability assessment and multi-objective 
optimization model. This study can serve as an effective reference tool for decision-makers when determining 
future cropping plans.

Study area
Qira oasis in Hotan Prefecture of Xinjiang, Northwest China was selected as the research area 
( 80◦ 03′ E− 82◦ 13′ E , 35◦ 18′ N− 39◦ 30′ N ) (Fig. 1), covering an area of 274.63 km2 . The Qira oasis belongs 
to a warm temperate arid desert climate. The annual average rainfall is only 33.5 mm, while the evaporation of 
water surface is 2505 mm. The Qira oasis relies primarily on the Qira River for water supply and agricultural 
irrigation. Originating from the central region of the northern slope of Kunlun Mountain, the Qira River is pre-
dominantly fed by a combination of meltwater from ice and snow as well as rainfall. The annual runoff volume 
between 1985 and 2018 amounted to 1.23 m3.

Figure 1.   The location of the Qira Oasis in the Hotan region of Xinjiang.
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Qira oasis is a thriving place for agriculture, 90% of which can be farmed. Agriculture accounts for 97.7% of 
water resources, of which 82.1% comes from the Qira River and the remaining 17.9% comes from groundwater15. 
The wheat, maize, cotton, Chinese dates and walnut are major crops. The Chinese dates and walnu account for 
59.4% and 23.0% of the Qira area, respectively. In recent years, due to the sustainable development of agricul-
ture and water resources, irrigation water and water supply for arable land are increasing. This exacerbates the 
contradiction between supply and demand. To ensure certain water and food security, it is very important for 
water resource managers to adjust agricultural planting structure based on crop water demand and planting scale.

Methods and data
The research framework of this paper is shown in Fig. 2: (1) the index system is determined from the four aspects 
of driving force, pressure, state and influence through the conceptual framework of DPSIR16. Due to the finiteness 
of time series data, the time series generation Adversarial network (TimeGAN) in machine learning method 
is used to learn the whole index system and get more time series data; (2) the generated data were evaluated 
from both qualitative and quantitative aspects. Qualitative evaluation is to initially determine the fit between 
the original data and the generated data by the violin diagram of each index, and then consider the degree of 
coincidence after dimensionality reduction by applying principal component analysis (PCA) and T-Distributed 
Neighbor Embedding (t-SNE). The quantitative assessment is the Kolmogorov–Smirnov test to analyze the dif-
ference between the two sample distributions; (3) the generated data is used to build a dynamic Bayesian network 
prediction model to realize the dynamic change of the crop water productivity. Meanwhile, the multi-objective 
optimization model is applied to optimize the planting structure of five characteristic crops.

Dynamic prediction model based on TimeGAN and DBN
Construction of prediction index system
The model is conceptualized through the DPSIR (driver, pressure, state, impact, and response) framework17. 
By identifying the main system variables and the link relationship between them, and then determining vari-
ables based on expert knowledge and literature review, each variable should be guaranteed to be observable and 
measurable18. 12 indicators are finally determined. The driving force variables include drought index, irrigation 
water consumption, available land and crop prices. The pressure variables include actual evapotranspiration, 
crop water requirements and crop size. The state variables include crop relative productivity and crop water 
productivity. The impact variables include the economic productivity of crops, the proportion of people farm-
ing and the reliability of crops. The formulas of DPSIR can be seen in the Complementary Formulas 1.1 of 
supplementary materials.

Data augmentation processing of TimeGAN
The GAN, proposed by Ian J. Goodfellow, is one of the most popular approaches in the field of deep learning.
TImeGAN (time-series generative adversarial network) is a variant of GAN, which is a time-series generative 
data generation model. The approach has shown good performance in time-series data enhancement tasks. The 
main idea is to combine the versatility of unsupervised GAN methods with the conditional probability principles 
provided for supervised autoregressive models to produce time-preserving dynamic time series. TImeGAN is 
mainly composed of four network components: embedded function, recovery function, sequence generator and 

Figure 2.   Research framework in this study.
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sequence discriminator. The first two are self-coding components, while the last two are adversarial components. 
The specific flow chart is shown in Fig. 3.

The variables in this study such as aridity index and actual evapotranspiration are affected by historical 
data and have certain autocorrelation, so the relationship between data autocorrelation and features should be 
considered in the process of data generation20.The verification of synthetic data mainly includes univariate and 
overall data. The univariate is mainly obtained by drawing a violin graph, and then the Kolmogorov–Smirnov 
test (K-S test) is used to verify whether the data trend is consistent with the original distribution. The overall 
data is presented after dimensionality reduction using principal component analysis and t-Distributed Stochastic 
Neighbor Embedding (t-SNE).

Dynamic Bayesian network modeling
A Bayesian network, also known as a Bayesian belief network, is a graphical model that allows for the design of 
random relationships between a set of variables21. Applications of BN can be found in a variety of fields rang-
ing from social to economic and biological disciplines. The formulas of Bayesian network can be found in the 
Complementary Formulas 1.2 of supplementary materials. Dynamic Bayesian network (DBN) is an extension 
of Bayesian network, which can model variables that affect with time. It extends the classical Bayesian network 
(BN) by adding time dimension, and is suitable for describing the dynamic fluctuations of complex systems22. A 
DBN is composed of multiple BNs among which each individual BN is called a time slice. Multiple time slices 
are linked by some variables to form a dynamic Bayesian network. Figure 4 shows a dynamic Bayesian network 
with three nodes and three time slices. In the process of DBN modeling, it mainly includes structure learning and 
parameter learning. Structural learning can be learned according to expert knowledge or from data according 
to EM algorithm, mountain climbing algorithm, etc. Parameter learning is the internal parameter of learning 

Figure 3.   Schematic diagram of TimeGAN’s data processing19.

Figure 4.   A simple DBN of three nodes and three time slices.
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network structure, and it can also be learned through expert knowledge or maximum likelihood estimation and 
EM algorithm22.

Mean absolute error (MAE), standard deviation (SD) and fitting coefficient (R2) were used to evaluate the 
predictive effect of the final model:

where �yi represents the predicted value, yi represents the true value, yi represents the average value, m represents 
the number of samples.

Crop suitability assessment
The evaluation of crop suitability refers to the suitability of crop growth for the corresponding planting land. 
The growth and development of different crops are closely related to climate, topography, soil and other natural 
environmental conditions. There are obvious differences in crop yield and quality under different natural envi-
ronmental conditions. Crop suitability can quantify the effect of spatial variability on crop growth. It is the main 
basis for crop selection in the process optimizing regional planting layout23. The suitability of a crop for a given 
location can be measured by a suitability index, which is the product of the affiliation value and the weight of 
the indicator with a value between 0 and 1.

The crop suitability evaluation in this study consisted of nine indicators related to topographic factors and soil 
characteristics. The topographic factor were mainly slope. The soil data were pH, soil bulk weight, soil organic 
matter, effective phosphorus, alkaline dissolved nitrogen, effective potassium, total nitrogen, clay, silt, and sandy 
soils. In the process determining the weights of the indicators, the main method of calculation is to utilize a 
combination of subjective and objective methods. A comprehensive analysis was conducted by the empirical data 
of crop cultivation in the study area and the historical data summarized in the literature and CRITIC method24,25. 
The final weights of the indicators were calculated as:

where wni denotes the weight of the first n indicator for the first i crop, ani denotes the weight of the first i crop 
obtained from the literature, and bn denotes the weight calculated from the raster data using the CRITIC method.

The suitability index was categorized into four grades from high to low using the natural breakpoint clas-
sification. The lower the grade, the higher the suitability. The suitability evaluation can compare the suitability 
of the same crop in different geographic locations and the suitability of different crops in the same geographic 
location. It can provide the necessary data basis for the optimization of planting layout.

Multi‑objective planting structure optimization model
Objective function.  The standard function is mainly considered from two perspectives, one is the manager 
and the other is the farmer. From the perspective of managers, the consumption of irrigation water, ecological 
benefits and productivity are taken into account. From the farmer’s level, the main consideration is crop yield 
and economic benefits.

Irrigation water consumption refers to the amount of irrigation water including losses during transportation 
and the amount of irrigation water required for normal crop growth. The objectives are described as:

wherewi is the irrigation quota of the crop i ( m3 ), Ai represents the planting area of the crop i(ha).
Ecosystem benefits can be described as the benefits that humans derive directly or indirectly from ecosystem 

functions, which refer to the habitat, biological or systemic characteristics or processes of an ecosystem24. The 
equivalent weight coefficient of individual crops is set as the equivalent weight coefficient of farmland, and the 
economic value of an equivalent ecological benefit weight factor is equal to 1/7 of the market value of the corre-
sponding crop of 1 hectare. Therefore, the comprehensive ecological benefits of crops and crop yield are given as:
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where si represents the ecological service value of crop i ( yuan).zi denotes the average yield of a hectare of crop 
i ( kg).

Water productivity can be expressed as crop productivity per unit of water, which can measure the yield per 
unit of water The average water productivity and economic benefits are written as:

Constraints.  According to the Qira County Statistical Yearbook, the resident population of Qira County was 
160,000 in 2018. The minimum annual per capita demand for wheat is 250 kg and that for maize is 100 kg 
according to the setting of food security by Erenstein26. The average growth rate of planting scale was taken as 
the largest variable proportion of planting scale according to the statistical yearbook of Qira County from 2008 
to 2018. Similarly, the proportion of growth and reduction of each crop is also based on the corresponding vari-
able proportion.

Crop water requirement constraint:

Planting area constraints:

Yield constraint:

where α is the variable proportion of the planting scale,Ti is the average of the planting scale of the crop i , Ti
max 

is the maximum of the crop i planting scale, αi
min and αi

max is the proportion of the crop that can be reduced and 
increased respectively. Ymin is the total minimum production ( kg).

Data collection
The water resources data in this paper are from the water resources Bulletin of Hotan Prefecture from 2008 to 
2018. The planting area and output data are from the statistical yearbook of Hotan Prefecture from 2008 to 2018. 
Rainfall (1 km spatial resolution) was obtained from Goddard Earth Sciences Data and Information Services 
(https://​disc.​gsfc.​nasa.​gov). Potential evapotranspiration (1 km spatial resolution) was obtained from the CGIAR 
Spatial Information Consortium (https://​cgiar​csi.​commu​nity). Irrigation quotas are determined according to 
agricultural irrigation water quotas issued by Bureau of Quality and Technical Supervision of Xinjiang Uygur 
Autonomous Region (Table 1). The crop coefficient of crop water demand involved in the calculation process is 
derived from literature data (Table S1)21,27. The land data involved in the crop suitability assessment were obtained 
from the Harmonized World Soil Database version 1.2) (HWSD) by the Food and Agriculture Organization of 
the United Nations (FAO) and the International Institute for Applied Systems (IIASA) in Vienna. The basic soil 
indicators extracted by using ArcGIS 10.8. The digital elevation model (DEM) data (1 km spatial resolution) 
were obtained from the geospatial data cloud.
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Table 1.   Basic data of irrigation area.

Crop Irrigation quotas (m3/ha) Ecological service value (RMB/ha) Average yield (kg/ha) Average price (RMB/kg)

Wheat 5100 1690 5982.87 1.98

Maize 5400 2133 8344.40 1.78

Cotton 6600 3543 1800.54 13.73

Walnut 5100 4834 2114.75 16.35

Chinese date 5100 918 1093.40 6.14

https://disc.gsfc.nasa.gov
https://cgiarcsi.community
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Results
Expansion results of time series data
Figures 5 and 6 show the distribution and comparison between the original dataset and the expanded dataset. 
Although there are some differences between the expanded dataset and the original dataset in 12 indicators, it 
is basically consistent. The median of the indicator is basically consistent, indicating that the average level of the 
data is consistent. The simultaneous decrease of the two quantiles of drought index and actual evapotranspiration 
indicates that the fluctuation degree of data is small. The simultaneous increase of irrigation water consumption 
and crop economic water productivity indicates that the fluctuation degree of data is large. The box plots of crop 
water demand and crop scale are skewed from the original data. The difference between the original dataset and 
the expanded dataset was analyzed to further test whether the expanded dataset was consistent with the original 
dataset using the Kolmogorov–Smirnov test (K-S test). According to the test results in Table 2, the P-values of 
all indicators are greater than 0.05, indicating that all the dataset pass the test. The distribution of the expanded 
dataset is consistent with that of the original dataset.

Due to the particularity of time series data, it is necessary to evaluate it from the aspect of data integrity. 
Figure S1 shows the presentation of the overall data after dimensionality reduction by principal component 
analysis and t-SNE, respectively. It can be seen that the original data points basically overlap with the expanded 
data points. t-SNE has a higher coincidence degree, because it can maintain the local structure of the dataset. 
Therefore, the synthetic dataset after dimensionality reduction has high similarity with the original dataset, 
presenting certain reliability and trustworthiness.

Prediction of crop water requirement and planting scale using DBN
According to the synthesized data, the correlation between the variables was tested by Pearson correlation coef-
ficient (Fig. 7). The correlation coefficients between crop water demand and planting scale and other variables in 
the original data are basically above 0.6, while the overall correlation in the synthetic data is somewhat weakened 
with around 0.5. The correlation coefficient between evapotranspiration and drought index is approximately 1, 
indicating that there is a very strong linear relationship between the two.

According to the synthesized dataset, a dynamic Bayesian network model is established by using R software, 
which is a free software environment for statistical computing and graphics with R version 4.4.0 (https://​www.r-​
proje​ct.​org/). The data is randomly divided into training set and test set. Through the training, it is found that 
the prediction accuracy of network structure established by discretized data is much higher than that by direct 
numerical data. Therefore, this paper finally uses quantile discretized data for structure learning. The structure 
learning algorithm is the max–min hill-climbing algorithm (MMHC). As the amount of data increases, the 

Figure 5.   Distribution of original dataset and extended dataset. The green one is the original dataset, and the 
orange one is the expanded dataset. The black part in the middle of each figure is the boxplot of the dataset. The 
small white circle in the middle is the median.

https://www.r-project.org/
https://www.r-project.org/
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network structure becomes more and more complex, but the prediction accuracy rises first and then declines. 
After continuous debugging, the first 800 observations of the data set are selected to learn the structure, and 
the final network structure is as shown in Fig. 8. It can be seen that the drought index affects the actual evapo-
transpiration, which is consistent with the actual situation. The actual evapotranspiration further affects the 
crop price and the consumption of irrigation water. Crop yield affects reliability, crop water productivity, crop 
water demand and crop scale by affecting crop economic water productivity and the proportion of agricultural 
employees. Ultimately, there is a causal relationship between the amount of irrigation water and the available land.

The maximum likelihood estimation (MLE) is used to learn the parameters in the training set. The final 
complete dynamic Bayesian network model is formed. Since the network structure is relatively complex and 
there are many influence relationship arcs, this paper only selects the relationship of the first time slice to show 
in Table 3. The influence intensity between nodes in the first time slice can be specifically understood from the 
formulas. The parameters in the last four time slices are not consistent with those in the first time slice, because 
they change due to the influence of nodes in some previous time slices.

Based on the results of the dynamic Bayesian network model, the crop water requirement and planting 
scale were respectively predicted. Table S2 shows the prediction results on the extended dataset. It can be seen 
that the R2 of the four time periods is relatively high with a good fitting effect. Table S3 displays the prediction 
results on the original dataset. The prediction effect on the planting scale is better than that on the crop demand 

Figure 6.   Comparison between the original dataset and the extended dataset over five consecutive periods. The 
green one is the original dataset, and the orange one is the expanded dataset. The black part in the middle of 
each figure is the boxplot of the dataset. The small white circle in the middle is the median.

Table 2.   K-S test results of indicators.

Indicator P-value Indicator P-value

AI 0.1623 Crop_scale 0.0948

Irri_water 0.1272 Crop_water_productivity 0.1820

Plowland 0.0546 Crop yield 0.1616

Crop_price 0.1486 Economic_water_productivity 0.3140

ET 0.1648 Agr_population_rate 0.4853

Crop water requirement 0.1269 Reliablity 0.1261
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Figure 7.   Correlation coefficients of original data and synthetic data (CP crop price, IWU the consumption 
of irrigation water, PL plowland, CWR​ crop water requirement, CS crop scale, ET the maximum 
evapotranspiration of crop, AI aridity index, AGR​ the proportion of agricultural planting population, CY crop 
yield, EWP economic water productivity, CWP crop water productivity, RE reliability).

Figure 8.   Prediction model structure of dynamic Bayesian network. Each color represents a time slice, and each 
node is a variable. The time increases from left to right.

Table 3.   Relationships for the first time slice.

Node Relational formulas

AI_t_4 AI_t_4 = 0.027 

CY_t_4 CY_t_4 = 131259.1 

ET_t_4 ET_t_4 = 1.215+ 974.065*AI_t_4 

CP_t_4 CP_t_4 = 33.525+ 0.206 *ET_t_4 

EWP_t_4 EWP_t_4 = −3.627+ 4.654 · 105 ∗ CY_t_4 

AGR_t_4 AGR_t_4 = 4.190 · 102 + 2.158 · 106*CY_t_4 

CWR_t_4 CWR_t_4 = −5.417 · 107 + 1.185 · 109*AGR_t_4 

RE_t_4 RE_t_4 = 1.323− 0.181 *EWP_t_4 

CS_t_4 CS_t_4 = 4.529107 · 103 + 5.912 · 105 ∗ CWR_t_4+ 1.253 · 104AGR_t_4 

CWP_t_4 CWP_t_4 = 0.986− 0.614*RE_t_4 

IWU_t_4 IWU_t_4 = 3.964 · 108−2.039 · 106 *CP_t_4+ 6581.14 *CS_t_4− 4.808 · 108 *CWP_t_4 

PL_t_4 PL_t_4 = 2.320 · 104 + 3.647 · 106 ∗ IWU_t_4+ 2.804 · 106 *CWR_t_4 
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water, but it is still worse than that on the expanded dataset. This may be due to certain information loss during 
the expansion of the dataset. The data of 2013 is selected as the parent node of the first time slice, and the crop 
water demand and planting scale in the next four years are predicted (Fig. S1). The optimization results can be 
obtained by expanded dataset into the optimization model.

Evaluation of planting suitability
Figure 9 shows the spatial distribution of topographic factor and soil properties. The sandy loam and loamy sandy 
soils are mainly distributed in Qira oasis. There are a few sandy clay loam soils in the north and east. The slope of 
the study area is very small and close to 0. The pH of the soil is mainly in the range of 4.3 to 8.0 with an average 
value of 6.21, showing a weak acidity. The spatial distribution of soil organic matter, quick-acting phosphorus, 
alkaline-dissolved nitrogen, quick-acting potassium and total nitrogen were more concentrated, with contents 
of 0.39–33.63%, 3.27–6.4 mg/kg, 10.82–104.06 mg/kg, 119.84–301.75 mg/kg and 1.44 g/100 g–2.28 g/100 g. 
However, the mean values were lower with 1.81%, 5.33 mg/kg, 65.12 mg/kg, 228.75 mg/kg and 1.76 g/100 g, 

Figure 9.   Spatial distribution of topographic factor and soil properties. (a) SLOPE: Slope. (b) PH. (c) BD: 
Bulk density. (d) ST: Soil texture. (e) SOM: Soil organic matter. (f) AP: Effective phosphorus. (g) AN: Alkaline 
Nitrogen. (h) AK: Quick-acting potassium. (i) TN: Total Nitrogen. The image is generated by Arcgis10.8 
(https://​deskt​op.​arcgis.​com/​zh-​cn/​deskt​op/​index.​html).

https://desktop.arcgis.com/zh-cn/desktop/index.html
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respectively. The soils in the study area were anti-organic matter and quick-acting phosphorus. The alkaline 
dissolved nitrogen belonged to the medium level. The quick-acting potassium and total nitrogen were more 
abundant. Although the soil organic matter content was low, the data dispersion was still high. This may be 
related to the amount of fertilizers used by farmers in the area.

After determining the evaluation system of crop indicators, it is necessary to determine the weight of indica-
tors for each crop. Table S4 displays the weights for crop evaluation indicators using the CRITIC method Wheat is 
sensitive to soil texture and quick-acting potassium content, while maize has a high demand for three fertilizers: 
nitrogen, phosphorus and potassium. Cotton has a more pronounced need for alkaline dissolved nitrogen and 
effective phosphorus, while walnuts and Chinese dates are mainly sensitive to nitrogen fertilizers.

Based on the affiliation and index weights, the suitability indices of different crops were calculated on each 
grid cell. Figure 10 shows the spatial distribution of the suitability of five crops in Qira oasis. The suitability indi-
ces of wheat, maize, cotton, walnut and Chinese date are 0.36–0.66, 0.41–0.67, 0.33–0.65, 0.23–0.67, 0.18–0.69, 
respectively. According to the topographic factors and soil properties as evaluation indexes, the most suitable 
areas for wheat and maize are the central and eastern parts of Qira oasis. Cotton is not suitable for planting in 
the western region, while walnut and Chinese date are less suitable for planting due to their strong adaptability, 
mainly distributed in the southeastern part of the oasis.

Planting structure optimization
According to the prediction results and the corresponding multi-objective functions, NSGA-II algorithm is used 
to solve the problem, and the solution set of the optimal solution is obtained. The Pareto front line is obtained 
by optimization (Fig. S3). To select the most appropriate solution in a set, the entropy weight method and ran-
dom forest are used to determine the weights of each objective function (Table 4). The entropy weight method 
determines the weight according to the variability of the index. The weight of irrigation water consumption is the 
largest, while the random forest ranks the contribution degree to crop scale based on the Gini index judgment. 
The final results are all relatively average around 0.2, indicating high importance.

The solution set is weighted and sorted according to the weight, and the largest one is taken as the optimal 
solution to obtain the optimal planting structure. There is little difference between the optimization results of 
the two methods (Fig. 11). The planting proportion of cotton and walnut is significantly increasing, while the 

Figure 10.   Suitability analysis of different crops. (a) Spatial distribution of suitability for wheat in the study 
area, (b) Spatial distribution of suitability for maize in the study area, (c) Spatial distribution of suitability for 
cotton in the study area, (d) Spatial distribution of suitability for walnut in the study area, (e) Spatial distribution 
of suitability for dates in the study area. The image is generated by Arcgis10.8 (https://​deskt​op.​arcgis.​com/​zh-​cn/​
deskt​op/​index.​html)).

https://desktop.arcgis.com/zh-cn/desktop/index.html
https://desktop.arcgis.com/zh-cn/desktop/index.html
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planting area of wheat and maize fluctuates in a small range. Compared with the original planting area, the 
overall planting area after optimization showed an increasing trend. In addition, the Chinese date and walnut 
are the characteristic crops in this area. The planting proportion of them can be increased to improve economic 
benefits under the condition ensuring food security.

Figures S4 and S5 show the comparison between the five optimization objectives and the actual data during 
the four years of prediction. The most significant change is crop output value, which increases significantly due to 
the increase in the planting scale of cotton and walnut. When the entropy weight method and random forest were 
used to calculate weights, the value of ecological services after optimization increased by 3.53% and 10.66%, crop 
water productivity also increased from 0.8 to 1.03 and 1.00, and total crop output also increased by − 2.74% and 
9.30%, respectively (Table 5). The consumption of irrigation water increased by 7.59% and 15.76%, respectively, 
which was related to the overall increase of planting area. From the changes of planting area of each crop, it can 

Table 4.   Weights of entropy weight method and random forest. ENW stands for Entropy weight method and 
RF stands for random forest. IW, ESV, and CWP are irrigation water, ecosystem services value, and crop water 
productivity, respectively.

Method IW ESV CWP Crop yield Total output value

ENW 0.531958 0.126436 0.130059 0.083351 0.128197

RF 0.202436 0.200595 0.200346 0.199290 0.197333

Figure 11.   Planting proportion of various crops. On the left are pie charts of the original crop planting ratio 
from 2014 to 2017, and on the right are stack charts of the original data and optimized structure, where real data 
refers to the original data, EWN refers to the optimization results using entropy weight method, and RF refers to 
the results after random forest optimization.

Table 5.   Comparison of planting area and objective function before and after optimization in 2014.

Attribute Before After EWN After RF

Irrigation water consumption (108) 1.53 1.65 1.77

Ecosystem services value (107) 6.38 6.60 7.06

Crop water productivity 0.80 1.03 1.00

Total crop yield (108) 1.22 1.19 1.33

Total crop production value (108) 4.88 17.9 18.3

Total crop planting area (ha) 28,776.87 30,812.19 33,194.44

Wheat (ha) 7204.67 6386.98 7256.54

Maize (ha) 6927.8 6500.21 7566.50

Cotton (ha) 2924.4 3845.43 3873.61

Walnut (ha) 2344 3789.32 3872.06

Chinese date (ha) 9376 10,290.24 10,625.72



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17695  | https://doi.org/10.1038/s41598-024-68523-3

www.nature.com/scientificreports/

be seen that the fluctuation of wheat and maize is small. In general, the entropy weight method is closer to the 
real situation of Qira oasis than the random forest after optimization.

Discussion
In face of spatial heterogeneity of crop water productivity and data limitation issues, this study proposes an 
integrated approach combining TimeGAN, dynamic Bayesian network, and multi-objective optimization to 
enhance planting planning under drought conditions. Qira oasis in the Hotan region of Xinjiang, China is used 
as a case study to demonstrate the applicability of this methodology. The key advantages of this approach are: 
(1) to enable the establishment of data relationships among multiple indicators and visualizes their temporal 
expansion; (2) to facilitate simultaneous prediction of multiple indicators for the next four years, surpassing 
traditional single-indicator predictions at specific time points; and (3) to further enhanced its applicability by 
incorporating spatial heterogeneity and temporal dynamics.

The results indicate that the dynamic prediction over a span of four years yielded optimal results with an R2 
value exceeding 0.8 for multi-indicator forecasting—demonstrating high precision. This method proves more 
suitable for short-term predictions consistent with Roos28. Many studies employed the data-driven methods for 
constructing predictive models where training data quantity and quality significantly impact model performance 
according to Jones13. In dynamic Bayesian network model of this study, we utilized a dataset synthesized by 
TimeGAN. Qualitative and quantitative evaluations reveal minimal differences in prediction accuracy between 
original and generated datasets, displaying the certain reliability and trustworthiness. When the sufficient data 
is available, the integrated structural model can be established to improve the predictive accuracy encompassing 
multiple time periods and indicators.

According to the optimization model’s planting planning results, the entropy weight method is closer to the 
real situation of Qira oasis than the random forest after optimization. it is evident that the weights assigned to the 
objective functions differ significantly between the entropy weight method and random forest weight method. 
Within the weights calculated by the entropy weight method, irrigation water holds the highest importance. 
Conversely, in the random forest approach, the weights of objective functions are relatively evenly distributed 
around 0.2. When considering the optimized planting structure, their differences become negligible. This finding 
is basically consistent with Jayathilaka23.

The indexes of crop productivity and ecological benefit were also assessed and optimized, as these indicators 
are closely intertwined with water and food sustainability. According to FAO estimates, irrigated farmland in 
developing countries is projected to increase by 34% in 20306,29. Due to enhancing irrigation management and 
practices, agricultural water usage will only rise by 14%. The optimization outcomes presented in this study 
demonstrate that from the base year (2013) to the initial year of dynamic optimization target (2014), there was 
a respective increase of 7.84% and 7.07% in irrigation water volume and crop planting area. Notably, the crop 
productivity experienced a substantial growth of 28.75%, while ecological service value witnessed a modest 
increment of 3.45%. These results support FAO’s estimations and offer certain advantages concerning ecology 
and water productivity.

To sum up, the combination of dynamic Bayesian network and time series adversarial production network 
can achieve the effect of dynamic prediction. Moreover, the remote sensing data can be combined with common 
data to reduce spatial heterogeneity. Multi-objective optimization is more suitable for complex situation analysis 
than single objective optimization. In practical application, users can choose different time slices and objective 
functions according to the actual situation to learn modeling, and can also improve it in DBN12. In addition, 
Zou30 and Li31 respectively pointed out that soil characteristics and agricultural management practices are the 
main driving factors affecting irrigation water scheduling and regional water productivity. In practice, different 
planting methods such as planting proportion and density also have certain effects on crop growth and yield32. 
Therefore, future studies should pay more attention to the effects of different crop densities, soil characteristics 
and irrigation methods on crop optimization models.

Meanwhile, it is important to note that there might be some loss of information during the data generation 
process. The prediction outcomes can also be influenced by different parameter configurations and methods used 
for generating time series data33,34. Therefore, future research should employ diverse data generation techniques 
to compare and select the most optimal approach to enhance prediction accuracy. In addition, only a few indi-
cators are considered in this research for prediction purposes, incorporating additional relevant indicators may 
further improve accuracy—for instance investigating various irrigation methods—An important aspect within 
agricultural cultivation which will be addressed in future studies.

Conclusion
To enhance agricultural water use efficiency and mitigate water and food scarcity, this study establishes a research 
framework based on the Dynamic Bayesian Network (DBN) model for optimizing water resource allocation 
and crop planting structure. Using the Qira oasis of Northwest China as a case study, dynamic predictions are 
conducted using DBN with data augmentation by TimeGAN. DBN proves to be an effective method for paramet-
ric and structural learning within this framework, providing managers with a powerful tool to determine crop 
water demand and planting scale across different time periods. Despite the linear connection between different 
time slices and internals in DBN, it offers users a clear and concise topology with arc strength while improving 
prediction accuracy (R2 > 0.8). The prediction period aligns well with general agricultural planning requirements, 
meeting daily agricultural planning needs.

Based on the prediction results, the method combined with TimeGAN and DBN has better accuracy in 
dynamic prediction model and is suitable for short-term prediction with four years. Maximizing crop water 
productivity while ensuring food security has led to increased acreage for cotton, Chinese dates and walnuts. 
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Under the combined action of the five optimization objectives, the average increase of crop water productivity 
is 14.97%, and the average increase of ecological benefit is 3.61%, which is much higher than the growth rate 
of irrigation water consumption of cultivated land. It will produce a planting structure that relatively reduced 
irrigation water requirement of cultivated land and improved crop water productivity. However, to better address 
the relationship between water resources and food security, it is crucial to consider soil characteristics, agricul-
tural management practices, and different irrigation methods when developing a research framework for water 
resource allocation and sustainable agricultural development in the future study.

Data availability
The datasets used for this study are available from the corresponding author on reasonable request.
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