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Biomarker patterns 
and mechanistic insights 
into hypothermia 
from a postmortem metabolomics 
investigation
Albert Elmsjö 1*, Liam J. Ward 1, Kie Horioka 2,3, Shimpei Watanabe 4, Fredrik C. Kugelberg 1,5, 
Henrik Druid 2 & Henrik Green 1,5

Postmortem metabolomics holds promise for identifying crucial biological markers relevant to death 
investigations and clinical scenarios. We aimed to assess its applicability in diagnosing hypothermia, a 
condition lacking definitive biomarkers. Our retrospective analysis involved 1095 postmortem femoral 
blood samples, including 150 hypothermia cases, 278 matched controls, and 667 randomly selected 
test cases, analyzed using UHPLC-QTOF mass spectrometry. The model demonstrated robustness 
with an R2 and Q2 value of 0.73 and 0.68, achieving 94% classification accuracy, 92% sensitivity, 
and 96% specificity. Discriminative metabolite patterns, including acylcarnitines, stress hormones, 
and NAD metabolites, along with identified pathways, suggest that metabolomics analysis can be 
helpful to diagnose fatal hypothermia. Exposure to cold seems to trigger a stress response in the 
body, increasing cortisol production to maintain core temperature, possibly explaining the observed 
upregulation of cortisol levels and alterations in metabolic markers related to renal function. In 
addition, thermogenesis seems to increase metabolism in brown adipose tissue, contributing to 
changes in nicotinamide metabolism and elevated levels of ketone bodies and acylcarnitines, these 
findings highlight the effectiveness of UHPLC-QTOF mass spectrometry, multivariate analysis, and 
pathway identification of postmortem samples in identifying metabolite markers with forensic 
and clinical significance. The discovered patterns may offer valuable clinical insights and diagnostic 
markers, emphasizing the broader potential of postmortem metabolomics in understanding critical 
states or diseases.
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Unraveling the mysteries behind the ultimate trigger for mortality involves navigating through a complex web of 
physiological, environmental, and contextual intricacies, presenting a multifaceted puzzle demanding compre-
hensive exploration and understanding. In most countries, unnatural or unexpected deaths shall be reported to 
the police, which then will request a forensic autopsy. Typically, a forensic autopsy implies a careful dissection of 
all internal organs and a thorough external examination of the body, and also most often includes toxicological 
and microscopical analysis of samples collected during the autopsy. Hypothermia, characterized by a critical 
reduction in core body temperature, caused by extended exposure to low temperature, often outdoors, can present 
significant challenges in differentiating it from other causes of death, particularly when signs of external trauma 
or coexisting medical conditions are present1–3. In typical cases of fatal hypothermia, sign of undressing at the 
scene, stress ulcerations in the mucosa of the ventricle (Wieschnieski’s spots), frost erythema in the skin and 
immuno-positivity for heat shock protein 70 of podocyte cell nuclei in the kidneys can be seen2–4. However these 
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findings may be absent, which in part can be dependent on the ambient temperature and the length of the expo-
sure. Moreover, conventional postmortem examinations, relying only on structural macroscopic and microscopic 
changes may fail to provide conclusive evidence regarding the cause of death in suspected hypothermic cases4,5.

Recent advancements in the field of metabolomics, a branch of systems biology concerned with the compre-
hensive analysis of endogenous metabolites within biological systems, offer an intriguing approach to unraveling 
the intricate metabolic alterations associated with hypothermia-related deaths. Postmortem metabolomics stands 
as a promising frontier in biomarker discovery, presenting an opportunity to unearth novel biological mark-
ers that could significantly enhance both clinical practice and investigations into causes of death6–11. In cases 
of complex conditions like hypothermia, where definitive biomarkers are lacking, postmortem metabolomics 
holds significant promise in providing valuable insights and enhancing diagnostic capabilities12. By analyzing 
the composition of low-molecular weight molecules present after death, postmortem metabolomics provides a 
unique opportunity to uncover the pathophysiological changes that occurred leading up to an individual’s demise. 
This method allows us to delve into the metabolic alterations postmortem, potentially unraveling the intricate 
pathways associated with hypothermia-induced fatalities.

The primary objective of our research is to discern distinct biomarker patterns associated with hypothermia, 
enhancing the accuracy of its identification during postmortem examinations. Additionally, our study seeks to 
elucidate the mechanistic underpinnings of these biomarker patterns within physiological pathways, aiming to 
enhance our comprehension of the biological mechanisms underlying hypothermia.

Materials and methods
Study population and data selection
All autopsy cases admitted between late June 2017 and November 2020 at the Swedish National Board of Forensic 
Medicine, aged 18 or older, and that underwent toxicological screening in femoral blood using high-resolution 
mass spectrometry, were considered for inclusion in this study (n = 17,011). Case information were extracted 
from the Swedish Forensic Medicine database13. During the study period, we considered cases in which hypother-
mia was stated as the primary cause of death by the responsible pathologist and without no hospital visits prior 
to the fatalities or signs of an apparent putrefaction process. Controls were selected from a pool of 3089 femoral 
blood samples from deceased subjects. The selected causes of death included cardiovascular diseases (e.g., acute 
myocardial infarction and acute pulmonary heart disease), cerebrovascular diseases (e.g., subarachnoid hemor-
rhage and intracerebral hemorrhage), aortic rupture, traumatic injuries (e.g., skull fractures, subdural hemor-
rhage, injury of the thorax), and effects of external causes such as strangulation and drowning. The ICD-9 codes 
associated with these causes of death were 410K, 415B, 430, 431, 441A, 441B, 441D, 800K, 852M, 861L, 900L, 
933, 992X, 994B, 994K, 994N, and 994W (the sufficies are according to the Swedish ICD-9 codes, but some are 
specific to Swedish forensic pathologist to allow for a better specification of the different medical conditions). The 
controls were selected based on similarity with the study group, primarily considering sex and age. The distribu-
tion of causes of death among the controls is detailed in Supplementary Table S1. The final dataset comprised 
150 hypothermia cases and 278 matched controls to be used for metabolite pattern and marker identification.

To evaluate the performance of the markers and to simulate a real-world application a test group was created 
by pseudo-randomly selecting the first 10 males and 10 females from each month within the inclusion period. 
This test set consisted of 667 cases after excluding individuals under the age of 18, cases lacking available toxico-
logical screening data, cases admitted to emergency care before their demise and any cases previously included 
as a hypothermia or control case.

The hypothermia cases and matched controls were randomly divided into a training set (3/4) and a validation 
set (1/4). The training set was employed for creating and refining the multivariate model, while the validation 
set was used for evaluation and validation of the model.

Institutional review board statement
This study was approved by the Swedish Ethical Review Authority (Dnr 2019-04530). Due to the retrospective 
nature of the study, the need of informed consent was waived by Swedish Ethical Review Authority. All methods 
were carried out in accordance with relevant guidelines and regulations.

Data acquisition and metabolomics analysis
UHPLC-QToF data, from the selected postmortem cases, obtained during drug screening in femoral blood 
together with multivariate analysis was used to identify postmortem biomarkers. In short, blood samples were 
prepared and analyzed according to a standardized procedure described elsewhere14. Each sample was prepared 
by protein precipitation including an addition of three internal standards (amphetamine-D8, diazepam-D5 and 
mianserin-D3). All samples were injected on a UHPLC-ESI-QToF system. Separation was performed on C18 
column using gradient elution (Supplementary Fig. S1). MS-data was collected in positive mode and the total 
acquisition time for each sample was 12 min. Each analytical run included a blank whole blood sample containing 
the three internal standards, analyzed in the beginning and at the end of each run. An acceptable run showed 
absolute areas over 1.2 × 106,1.4 × 106 and 1.6 × 106 for amphetamine-D8, diazepam-D5 and mianserin-D3 respec-
tively, a retention time deviation of maximum ± 0.1 min and a mass accuracy deviation of maximum ± 5 ppm.

The raw LC/MS data from the selected autopsy cases were exported to mzData-files using Masshunter. The 
postmortem metabolomics analysis was conducted using the ’XCMS’ package in R (4.1.2), which integrates the 
’CAMERA’ package for feature annotation, as previously described6. In XCMS the centWave algorithm were used 
for feature detection using the following parameters Δm/z of 30 ppm, minimum peak width of 3 s, maximum 
peak width of 30 s and signal to noise threshold of 3 with noise variable set to 500. Retention time correction was 
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performed using the Obiwarp function and for the grouping an mz width of 0.05, base width of 3 and minimum 
fraction of 0.6 were used.

Data preprocessing and multivariate analysis
The training set was normalized in Excel using the probabilistic quotient normalization, and log transformed, 
scaled with unit variance and subjected to multivariate analysis using SIMCA 17.0.2 (Umetrics, Umeå, Sweden). 
Features with a retention time < 60 s and > 660 s were excluded. Principal component analysis (PCA) was used 
to give an overview of the data, enabling identification of outliers and observation of trends. In addition, partial 
least square (PLS) models for age, sex and BMI were created to investigate systematic differences in the meta-
bolic profiles. Orthogonal partial least square discriminant analysis (OPLS-DA) was used to identify variables 
contributing to group classification between hypothermia and control cases. Model complexity were reduced 
by stepwise removing non-contributing features using variable importance for the projection plots (VIP) for 
visualization and variable selection. The overall goal was to retain a practical and efficient classification model 
with as few variables a possible.

Experimental reproducibility was assessed by examining the score plots from the principal component analy-
sis (PCA), by cross validation in OPLS-DA model of the training set, and by external validation of the OPLS-DA 
model using a validation set to assess the predictability of the multivariate model. False positives and false nega-
tives were investigated in depth, together with using a test set with randomly selected control cases, in order to 
elucidate the usability and predictability of the final model.

Features in the final model were identified and annotated by matching molecular weight (± 5 ppm) and 
retention time against an in-house database and the online Human Metabolome Database (https://​hmdb.​ca). All 
features were also uploaded into MetaboAnalysts (version 6.0) module, functional analysis, usable for untargeted 
metabolomics data. The basic assumption is that putative annotation at individual compound level can collec-
tively predict changes at functional levels as defined by metabolite sets or pathways15. Statistical variances among 
the three study groups for both annotated and non-annotated metabolites were validated through univariate 
analysis via Kruskal–Wallis test, with subsequent Bonferroni correction to compensate for effects of multiple 
comparisons (SPSS, ver. 29.0, IBM).

Results
Demographic overview and data processing
Table 1 provides a demographic overview of the cases selected for the primary study groups and the test set. 
Notably, no statistically significant differences were found in sex, BMI, and known PMIs (p > 0.05) between the 
hypothermia cases and their matched controls. Even though there were no statistical differences between medi-
ans, there was a noticeable age distribution difference. In addition it’s important to highlight that a considerable 
portion of the hypothermia cases had unknown PMIs. When assessing the last observed time until the body 
was found as PMI, differences did indeed emerge. Particularly for the randomly selected controls, significant 
differences were evident, as they were not matched meticulously with the study groups, resulting in marked 
demographic disparities. Mass spectra data were processed using XCMS to compile a comprehensive list of 
chromatographic peaks with specific accurate masses and retention times, termed features. After the exclusion 
of features with a retention time of < 60 s and > 660 s, this selection resulted in 2526 features being available for 
multivariate modeling.

Multivariate modeling and model evaluation
When applying supervised OPLS-DA analyses, we successfully distinguished the study groups based on metabolic 
features. The OPLS-DA model demonstrated statistical significance, with R2 = 0.83 and Q2 = 0.67, along with a 
CV-ANOVA p-value of < 0.001. After stepwise removing features from this model. The final OPLS-DA model only 
contained 44 unique features. This model exhibited a high goodness-of-fit with a comparable predictive perfor-
mance as the first model, reporting R2 = 0.73 and Q2 = 0.68, along with a CV-ANOVA p-value of < 0.001 (Fig. 1A).

In the training set, the model correctly classified 93% of the 322 samples, with a sensitivity of 89% and a 
specificity of 95% for the hypothermia cases. However, 21 samples were misclassified: 15 false negatives and 
6 false positives. Notably, one of the false negatives had drowning as primary cause of death and should have 
been categorized as drowning case from the beginning, except for that no clear trend was observed in the false 

Table 1.   Demographic overview with medians and interquartile ranges. 1 Postmortal intervalls (PMI) based on 
cases with known PMI. 2 PMI estimates for cases where the death was unwitnessed, based on the last time seen 
alive until sampling occured. The PMIs are fairly long, but for both groups they are predominantly due to long 
cold storage time at the morgue before autopsy and sampling.

Hypothermia cases
n = 150

Matched controls
n = 278

Random controls
n = 667

p-value
Hypoth. vs matched cont

Sex (male/female) 103/47 187/91 350/317 0.767

Age (years) 74 (56–82) 76 (66–84) 60 (45–70) 0.030

BMI (kg/m2) 24 (21–27) 24 (22–28) 25 (21–30) 0.115

PMI1 (days) 5 (4–9) 6 (4–7) 5 (4–8) 0.420

PMI2 (days) 8 (6–11) 6 (4–8) 8 (5–12)  < 0.001

https://hmdb.ca
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Figure 1.   Model trimming overview. (A) Score plot demonstrating group separation between hypothermia 
cases (blue) and control cases (green) in the training set (R2Y = 0.73 and Q2 = 0.68). (B) Score plot for the 
validation set in the final OPLS-DA model. (C) Score plot of the randomly selected autopsy cases colored 
according to density of samples. (D) Score plot of the randomly selected autopsy cases, with acidosis as primary 
or contributing cause of death colored as red, n = 25. (E) ROC curve for the validation set. (F) Functional 
analysis with MetaboAnalyst 6.0 using Mummchog and GSEA algorithms.
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negatives. Among the false positives, four cases had drowning, and two had subarachnoid hemorrhage listed as 
the primary cause of death. Two of these six had hypothermia listed as a contributing cause of death.

To further evaluate the model’s predictability, the remaining 106 autopsy cases were utilized as an external 
validation set. Each autopsy case was predicted and classified using the final model with a threshold determined 
by the true and false positive rates from the training set. The predicted score plot and the ROC curve for the 106 
cases in the validation set are shown in Fig. 1. In the validation set, the model accurately classified 94% of the 
samples, with a sensitivity of 92% and a specificity of 96%. However, six samples were misclassified: three false 
negatives and three false positives. No discernible pattern was observed for the false negatives, but all three false 
positives were drowning cases.

To assess the model’s applicability in a real setting and to identify any potential differential causes of death 
exhibiting a similar metabolite pattern to hypothermia, we examined 667 randomly selected control samples. The 
predicted score plot for these randomly selected controls is displayed in Fig. 1. Since hypothermia, as expected, 
represent a low proportion of the autopsy cases the vast majority of the samples were correctly predicted as 
controls, as shown in the density plot in Fig. 1C. Nevertheless, among the samples, 72 (11%) had a predicted 
score (tPS) above the threshold of 3. This threshold corresponds to achieving a sensitivity of 75% in identifying 
hypothermia cases in the validation set.

These 72 autopsy cases were categorized into nine classes based on their primary cause of death, including 
ketoacidosis, brain injury, drowning, drug intoxications, hanging, heart and cardiovascular diseases, pneumonia, 
other causes of death and an unknown cause of death. The prevalence of cases predicted as hypothermia was 
roughly similar to or lower than 11% for potential differential diagnoses such as brain injury (4%), drowning 
(7%), drug intoxication (7%), and heart and cardiovascular diseases (9%) (Table 2). Notably, as many as 17 out 
of 25 ketoacidosis cases in the random control set were misclassified as hypothermia, suggesting that the model 
encounters challenges in distinguishing between ketoacidosis and hypothermia (Fig. 1D). It is important to 
note that, among these 72 cases, five had hypothermia listed as a contributing cause while none of the cases with 
tPS < 3 had hypothermia as a contributing cause.

Metabolite identification and pathway analysis
In-house and online public database matching led to the identification of the 44 features that discriminate the 
hypothermia group, resulting in putative metabolite identifications listed in Table 3. These identified metabolites 
include carnitines, stress hormones, NAD metabolites, purine metabolites, and known biomarkers for renal dys-
function. To provide visual representation of the changes in the hypothermia cases, six specific metabolites—three 
upregulated and three downregulated across multiple pathways—are depicted as boxplots in Fig. 2, highlighting 
distinctive differences between the three groups.

For the functional analysis in MetaboAnalyst, all 2256 features were uploaded. MetaboAnalyst identified 230 
empirical compounds in the dataset, and the following 7 pathways exhibited a combined p-value, based on the 
Mummchog and GSEA algorithms, of less than 0.05: C21-steroid hormone biosynthesis and metabolism, vitamin 
B3 (nicotinate and nicotinamide) metabolism, carnitine shuttle, arginine and proline metabolism, androgen and 
estrogen biosynthesis and metabolism, and vitamin B12 (cyanocobalamin) metabolism, as shown in Fig. 1B.

Discussion
Hypothermia, a potentially life-threatening condition characterized by a dangerously low body temperature, 
has long been a subject of scientific inquiry1,2,12,16. Its complex pathophysiology has intrigued researchers for 
years, leading to investigations into the metabolic dysfunctions it induces in search of potential biomarkers12,17,18. 
Over the years, several biomarkers have been suggested, such as 3-hydroxybutyric acid, cortisol, and arginine. 
Recognizing the challenges in finding a single marker that might be too unspecific, our approach aims to identify 
a pattern capable of classifying hypothermia cases with high sensitivity and specificity and explore the potential 

Table 2.   Distribution of primary causes of death for cases predicted as hypothermic in the test set. The values 
in the table represent the number of cases classified as hypothermic in the test set. A tPS > 3 (Y-pred of 0.7), 
correspond to a sensitivity of 75% and a specificity 100% based on the hypothermia cases in the validation 
set. The number in brackets after each value represents the total count of cases with the same primary cause 
of death in the test set. In the test set, 5 cases had hypothermia as contributing cause of death, each of these 5 
cases was predicted as a hypothermia case.

Groups of primary cause of death tPS > 3, n = 72 (total n = 667) Hypothermia as contributing cause of death

Acidosis 17 (25) 2

Drowning 1 (14) –

Unknown cause of death 10 (51) 1

Brain damage/bleeding 2 (49) –

Cardiovascular conditions 14 (153) 1

Hanging 0 (61) –

Drug intoxication 9 (122) 1

Pneumonia 9 (44) –

Other 10 (148) –
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for incorporating these biomarkers into forensic screening methods. Furthermore, potential biomarkers could 
also enhance our understanding of the physiological responses during hypothermia and might hold promise 
for clinical applications. These biomarkers could serve as valuable tools for monitoring and potentially treating 
hypothermia cases in a clinical setting, thereby advancing our capacity to manage and mitigate the impact of 
this condition.

Postmortem metabolomics as a screening tool for hypothermia
In the realm of metabolomics, the validation of multivariate models is of paramount importance. Even so, a 
significant proportion of metabolomics investigations rely exclusively on cross-validation. In this study, we 
employed a three-set design encompassing a training set, a validation set, and a test set. The final model thereby 
underwent evaluation not only through cross-validation but also via external validation on unseen samples. 
Furthermore, testing on randomly selected samples provided insights into the model’s real-world performance. 
This approach provided a robust foundation for the comprehensive validation and evaluation of the applicability 
of postmortem metabolomics.

The final model exhibited remarkably high predictive power, as demonstrated by both cross-validation and 
external validation, with sensitivity and specificity exceeding 90%. A noteworthy aspect of our findings is the 
limited number of metabolites (n = 44) required to achieve this impressive predictive capability. One such envi-
ronments, hypothermia could have significantly contributed to death, even if it is not explicitly mentioned on 
death certificates. However, in the test set only 1 out of 14 drowning cases were classified as hypothermic. The 
interplay between drowning and hypothermia presents a diagnostic challenge, as both conditions might share 
overlapping metabolic profiles.

Moreover, we employed a test set to investigate whether other causes of death shared a similar metabolomic 
profile with hypothermia. This test set validated the model’s high sensitivity by classifying all cases where hypo-
thermia was a contributing cause of death. Notably, in the test set, 17 out of 25 ketoacidosis cases were classified 
as hypothermia cases, while the remaining 8 cases teetered on the borderline of being classified as a hypothermia 
case. The correlation between hypothermia and ketoacidosis is intriguing, given that conditions known to induce 
ketoacidosis often serve as triggers for secondary hypothermia19. Secondary hypothermia often occurs in the 
context of underlying clinical conditions or concurrent medications that affect the body’s ability to maintain its 
internal core temperature (e.g. malnutrition, underlying diseases such as diabetes or alcohol that impair central 
thermoregulation), which are also known to cause ketoacidosis20–22. It could therefore be argued that the test 
set showed no potential differential diagnosis as the ketoacidosis cases might be hypothermic as well. However, 

Table 3.   Putative annotation of metabolites with fold changes in hypothermia vs control groups. 1 Metabolites 
identified with in-house database.

ID Adduct m/z Δ ppm Rt (s) F-change p-values

Hydroxybutyric acid [M+Na]+ 127.0369 3 72 2.6  < 0.001

2PY/4PY [M+H]+ 153.0657 1 86 3.9  < 0.001

2PY/4PY [M+H]+ 153.0656 1 129 4.1  < 0.001

Hippuric acid [M+H]+ 180.0655 0 205 1.9  < 0.001

Phenylacetylglutamine [M+H]+ 265.1180 1 209 2.2  < 0.001

2-Methylbutyroylcarnitine1 [M+H]+ 246.1700 0 219 2.8  < 0.001

Suberoyl-l-carnitine1 [M+H]+ 318.1908 1 220 7.0  < 0.001

Sebacoyl-l-carnitine [M+H]+ 346.2220 1 307 6.6  < 0.001

Tetrahydrocortisone1 [M+H]+ 365.2317 2 390 3.1  < 0.001

Octanoylcarnitine1 [M+H]+ 288.2170 0 403 2.2  < 0.001

Hydroxydecanoyl carnitine [M+H]+ 332.2427 1 410 2.1  < 0.001

Cortisol1 [M+H]+ 363.2161 1 419 4.1  < 0.001

Decanoyl-l-Carnitine1 [M+H]+ 316.2482 0 501 4.4  < 0.001

Hydroxytetradecanoyl carnitine [M+H]+ 388.3053 1 571 2.2  < 0.001

Unknown – 392.2801 – 572 2.2  < 0.001

Hydroxyoctadecenoylcarnitine [M+Na]+ 464.3365 4 579 2.2  < 0.001

Tetradecenoyl-l-carnitine1 [M+H]+ 370.2950 0 589 2.4  < 0.001

Oleoylcholine [M+H]+ 368.3520 1 658 3.3  < 0.001

S-Adenosyl-l-methionine [M+H]+ 399.1440 3 61 0.21  < 0.001

Glutamylalanine [M+H]+ 219.0976 0 64 0.46  < 0.001

1-(beta-d-Ribofuranosyl)-1.4-dihydronicotinamide [M+Na]+ 279.0950 1 87 0.27  < 0.001

1-(beta-d-Ribofuranosyl)-1.4-dihydronicotinamide [M+Na]+ 279.0948 1 103 0.24  < 0.001

Inosine [M+Na]+ 291.0698 1 126 0.41  < 0.001

1-(beta-d-Ribofuranosyl)-1.4-dihydronicotinamide [M+H]+ 257.1129 1 129 0.27  < 0.001

Pantothenic acid [M+H]+ 220.1179 0 156 0.56  < 0.001

6-Methylthioinosine [M+Na]+ 321.0624 1 191 0.43  < 0.001
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differentiating different types of ketoacidosis represents a crucial area for future research in postmortem metabo-
lomics. As different types of ketoacidosis (e.g., due to diabetes, alcohol, starvation) can exhibit distinct metabolic 
profiles, comparing these with the metabolic signatures of hypothermia could uncover specific biomarkers unique 
to each condition. For example, metabolites related to alcohol metabolism, such as ethyl glucuronide, may help 
differentiate alcoholic ketoacidosis from other forms. Similarly, markers of nutritional status and stress response 
could be informative in cases of starvation and hypothermia, respectively. Even so, the model’s predictive power 
for the validation set and the limited set of differential diagnosis demonstrates in the test set, proves the potential 
of postmortem metabolomics as a screening tool for hypothermia.

Metabolic changes and affected pathways during hypothermia
When exposed to cold conditions, the body often initiates a stress response, leading to an increase in cortisol 
production as it attempts to maintain core body temperature and adapt to the cold environment, which might be 
why we see upregulated level of cortisol and the observed pattern and C21 hormone response in the functional 
analysis. The rise in cortisol levels might reflect the biological stress response to cold, and cortisol has been sug-
gested as a marker for cold exposure23. Another significant mechanism during hypothermia induced stress is 
vasoconstriction, where peripheral blood vessels constrict to minimize heat loss. This change in blood flow can 
lead to reduced renal perfusion and glomerular filtration rates, possibly explaining the observed alterations in 
metabolic markers related to renal function, such as N-methyl-2-pyridone-5-carboxamide (2PY), N-methyl-
2-pyridone-5-carboxamide (4PY), phenacetylglutamine, and hippuric acid24,25.

Figure 2.   Boxplots depicting the logarithmic absolute intensities of 6 selected metabolites . Outliers and 
extreme values have been excluded to visualize differences between group. * indicates p-value < 0.001 between 
groups.
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As the body fights the cold, its metabolic rate significantly increases. This increased metabolism is an energy-
intensive process aimed at generating heat and preserving core body temperature. Thermogenesis consumes 
NADH, which may explain the observed patterns in nicotinamide metabolism. Metabolites, including 1-(beta-
d-ribofuranosyl)-1,4-dihydronicotinamide (a precursor of nicotinamide), s-adenosylmethionine (SAM, a vital 
co-substrate in the nicotinamide pathway), and the end products 2PY and 4PY, were the precursor and co-factor 
are downregulated while the waste products are up-regulated. This pattern aligns with observations in living 
subjects24,25. Furthermore, the thermogenesis in brown adipose tissue could account for the accumulation of end 
products from the Krebs cycle and β-oxidation, such as hippuric acid, phenylacetylglutamine, and hydroxybutyric 
acid. Additionally, there’s a consensus in the literature regarding increased levels of blood ketone bodies, includ-
ing β-hydroxybutyrate, acetone, isopropyl alcohol, and increased cortisol levels2,12,17,26 Moreover, the increase in 
β-oxidation in brown adipose tissue may also contribute to the elevated levels of circulating acylcarnitines, and 
might be why the carnitine shuttle seems affected. Interestingly a model restricted to cases aged 70 or younger 
(Supplementary Fig. 1), outperformed the model in Fig. 1. This might be explained by the amount and activity of 
brown adipose tissue (BAT) which is expected to decline with age27. As BAT is important in energy homeostasis 
and thermogenesis, the metabolome differences in younger individuals are expected to be greater between the 
groups in comparison to older individuals. Furthermore, acylcarnitines have been proposed as a trigger and a 
fuel source for brown fat thermogenesis28. To conclude, these results aligns with findings from a previous targeted 
metabolomics study on forensic hypothermia cases by Rousseau and colleagues in 201912.

Our investigation into the metabolomic profile differences between hypothermia cases and controls cases 
revealed distinct variations in several metabolites, indicating potential biomarkers for accurate identification. A 
Summary of affected metabolites and their relation to thermogenesis and renal dysfunction is found in Fig. 3. 
Notably, the study identified key metabolic pathways associated with hypothermia pathophysiology, shedding 
light on underlying mechanisms. Additionally, the observed differences, especially in metabolites linked to spe-
cific pathways, present promising avenues for developing targeted treatments or interventions. These findings not 
only hold diagnostic implications for hypothermia but also offer insights into potential therapeutic approaches. 
Understanding the altered metabolic pathways could pave the way for treatment strategies aimed at mitigating 
the effects of hypothermia and improving patient outcomes.

Potential insights and limitation
Postmortem metabolomics presents a novel avenue for exploring potential biomarkers that offer insights into 
the mechanisms of states or diseases. This approach provides an opportunity to investigate aspects that might 
be unfeasible to explore in clinical settings due to practical or ethical constraints. It is essential to highlight the 
clinical implications of these findings. Beyond revealing the potential to probe disease mechanisms using post-
mortem samples, an approach potentially more ethical than clinical investigations and closer to actual human 
conditions than animal models, the results underscore the possibility of identifying crucial markers for various 
diseases or conditions.

However, it is important to mention that our analytical method was primarily optimized for forensic toxi-
cological screening, which has implications for the width of metabolome coverage. Expanding the screening to 
include various chromatographic conditions and both positive and negative ionization methods could potentially 
unveil more markers related to hypothermia. It is therefore important to not overinterpret the metabolite changes 
and relate them to the mechanism of hypothermia. However, the decision to utilize the current forensic toxico-
logical screening analytic method was guided by the aim of creating a practical and efficient classification model. 
A simple and straightforward model, employing as few metabolites as necessary for prediction, was considered 

Figure 3.   Summary of affected metabolites and their relation to thermogenesis and renal dysfunction. Blue 
arrow and snowflake are indicative if up- or downregulated in the hypothermia group in comparison to 
matched controls. Created with biorender.com.
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more important than to unravel the mechanism behind hypothermia. It is likely that further refinements of the 
data may provide additional insights into the mechanisms underlying hypothermia.

In the context of postmortem metabolomics, little is known about factors such as postmortem interval, 
postmortem degradation, and postmortem redistribution and their influence on the metabolome29. However, to 
mitigate these issues, we only included autopsy cases showing no putrefaction, aiming to minimize the potential 
impact of these factors on the metabolome and no apparent differences in postmortem interval were observed 
between the study groups. Having said that, examination of samples from decomposed samples are important 
to find out if the results obtained can be applied on such cases. We recognize the analytical method’s limita-
tions and the need for further research to elucidate the mechanisms underlying hypothermia and the impact of 
postmortem factors on the metabolome.

Conclusions
In conclusion, our study’s utilization of a three-set design, strong predictive capabilities, and intriguing metabolite 
correlations in the mechanism of hypothermia, highlights the potential of postmortem metabolomics. This study 
serves as evidence that postmortem metabolomics could offer means to delve into the mechanisms underlying 
critical states or diseases which might hold relevance beyond forensic applications.

Data availability
The data that support the findings of this study are available on request from the corresponding author. The data 
are not publicly available, due to legal and ethical considerations.
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