
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19981  | https://doi.org/10.1038/s41598-024-69069-0

www.nature.com/scientificreports

Polygenic prediction of human 
longevity on the supposition 
of pervasive pleiotropy
M. Reza Jabalameli 1, Jhih‑Rong Lin 1, Quanwei Zhang 1, Zhen Wang 1, Joydeep Mitra 1, 
Nha Nguyen 1, Tina Gao 2, Mark Khusidman 1, Sanish Sathyan 3, Gil Atzmon 1,2,4, 
Sofiya Milman 1,2, Jan Vijg 1, Nir Barzilai 1,2,5 & Zhengdong D. Zhang 1*

The highly polygenic nature of human longevity renders pleiotropy an indispensable feature of 
its genetic architecture. Leveraging the genetic correlation between aging-related traits (ARTs), 
we aimed to model the additive variance in lifespan as a function of the cumulative liability from 
pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across 
different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body 
mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the 
UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants 
of longevity, we reasoned that a composite polygenic score would approximate a substantial 
portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for 
distinguishing exceptional survival. We showed that coefficients derived from our ensemble model 
could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed 
the predictive performance of our model for distinguishing the enrichment of exceptional longevity 
among long-lived individuals in two replication cohorts (the Scripps Wellderly cohort and the Medical 
Genome Reference Bank (MRGB)) and showed that the median lifespan in the highest decile of our 
composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of iLGS, 
we identified protein markers associated with exceptional longevity irrespective of chronological 
age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach 
demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs 
in defining exceptional longevity and assisting the identification of individuals at a higher risk of 
mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature 
associated with iLGS highlights the functional pathway upstream of the PI3K-Akt that can be 
effectively targeted to slow down aging and extend lifespan.
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The human lifespan is a complex trait that reflects the interplay of numerous socioeconomic factors and genetic 
predispositions. Its narrow-sense heritability ( h2 ) has been estimated in the range of 15 to 33%1,2. Recently, a 
lower estimate (< 10%) has been reported after correcting for assortative mating3. The magnitude of missing 
heritability suggests that a large portion of heritable variation in human survival may come from the infinitesimal 
effects of numerous loci spread widely across the entire genome4. In fact, findings from moderately powered 
genome-wide association analysis (GWASs)5–7 are consistent with the perceived polygenic architecture of human 
lifespan, healthspan, and longevity. This notion complements other potential explanations like environmental 
influences and epistatic interactions.

The extensive polygenicity underlying human lifespan has some immediate implications. With a finite number 
of genes and a theoretically infinite number of age-related traits and endophenotypes, extensive pleiotropy would 
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be inevitable8,9. The shared genetic component across correlated traits tags the common mechanisms amenable 
for drug development to slow the aging process and increase the healthspan10,11. If only a handful of rare alleles 
would underlie exceptional longevity, then the mutational target would be extremely narrow and, therefore, 
highly sensitive to population dynamics. In populations with a small effective size ( Ne ) or appreciable founder 
effect, the strong impact of genetic drift would have supplanted other evolutionary forces and ultimately either 
drive the longevity-increasing rare variants to fixation or complete removal from the gene pool12. In the absence 
of earlier observations among bottlenecked and isolated populations that acquired such extraordinary longev-
ity in an evolutionarily short period (in terms of the number of generations), the extent of missing heritability 
attributable to rare variants remains to be determined.

We posited an infinitesimal model for longevity in which variation in human lifespan is primarily determined 
by the additive effect of many segregating common variants (MAF > 1%), each with a small effect size. Given 
the additive model, we reasoned that the polygenic score would approximate a substantial proportion variance 
in lifespan among long-lived individuals. Leveraging the pervasive pleiotropy, we modeled highly complex and 
non-linear interactions among segregating variants to construct the integrated longevity genetic scores (iLGSs) 
for distinguishing differential survival. We studied a cohort comprising 515 Ashkenazi Jewish centenarians and 
442 ethnically matched controls with known age at death (Supplementary Fig. S1). We validated the predictive 
capacity of iLGS for distinguishing enrichment of exceptional longevity among the Wellderly cohort (n = 510) 
and Medical Genome Reference Bank (MRGB) cohort (n = 2,570) and subsequently converted the model to 3.8 
million single nucleotide polymorphism (SNP) weights using the European descent portion of the Genetic Epi-
demiology Research on Adult Health and Aging (GERA) cohort (n = 62,268). Finally, we investigated proteomic 
correlates of exceptional longevity using iLGS and identified drugs with repurposing potentials for ameliorating 
the aging process. The schematic overview of the study is provided in Fig. 1.

Results
Tracking the allele frequency changes as a function of viability
Selective pressure early in life favors maximization of the fetal viability and fecundity during adulthood, although 
later in life, it attenuates maximizing the homeostasis maintenance13–16. The adaptive response to changing 

Fig. 1.   The schematic overview of the analysis. Our analysis constitutes six major steps; in Step 01, we used 
the sliding regression framework to track allele frequency changes across 48 age bins in the Einstein LonGenity 
cohort. We fitted a robust linear regression with MM-estimator for each variant to derive the slope and p-value 
of association with chronological age. Variants surpassing the genome-wide significance threshold (p < 5e − 8) 
were followed up in the UK Biobank; in Step 02, the association of 34 candidate variants with 614 disease 
endpoints and traits were investigated in a PheWAS analysis. For each variant, we used the Bonferroni-corrected 
association p-values for shortlisting associated traits; in Step 03, we used GWAS summary statistics across the 
87 traits (53 associated traits from PheWAS analysis + 34 additional blood and urine biomarkers) to calculate 
the polygenic scores (PGS) for unrelated participants in the Einstein LonGenity cohort (n = 957); in Step 04, we 
split our cohort into the derivation set (consisting of training and test sets, n = 715) and validation set (n = 242). 
Using the derivation portion of our cohort, we applied a stacked Elastic-net regression framework to effectively 
combine PGS across the 87 traits and construct a composite prognostic score to distinguish survival chances. 
We trained the ensemble model on 65% of the derivation set and tested on the remaining 35%. Our model 
achieved an AUC of 0.87 in the validation set. Using coefficients derived from our stacked model, we computed 
the integrated Longevity Genetic Scores (iLGS). Subsequently, using an external cohort (GERA cohort), we 
converted the scores to a set of 3.8 million variant weights. In Step 05, we carried out survival analysis to test 
the performance of iLGS in predicting survival in the validation set as well as two external cohorts including 
the Wellderly and MRGB cohorts; in Step 06, we carried out a sex-stratified association analysis to identify 
proteomic correlates of iLGS. Proteins significantly associated with iLGS were subsequently queried in the 
DrugBank database to identify druggable targets. Drugs targeting or interacting with iLGS associated proteins 
were investigated for potential repurposing as senolytic.
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selective pressure often entails allele frequency changes at many segregating loci influencing the trait9. Deter-
minants of the evolutionary trade-off between viability and fecundity characterize the polygenic response that 
results in the fluctuation of allele frequencies across different age groups17. To identify variants underlying 
exceptional longevity, we adopted a regression framework similar to that of Bergman et al.18, which tracks allele 
frequency changes across different age bins. Variants with a negative impact on longevity are expected to be 
naturally purged from the centenarian gene pool, while those with a positive contribution to healthy aging are 
expected to be enriched in the gene pools toward the extremities of the human lifespan.

In constructing our sliding regression framework (see “Methods”), we assumed that due to the specific age 
structure of our discovery cohort (between the ages of 56 and 111), the fitness cost of pro-aging alleles monoto-
nously decreases their presence in the gene pool, while pro-longevity alleles will monotonously increase in 
frequency. Neutral alleles with no effect on longevity will appear with constant frequency during aging. Hence, 
the regression slope would reflect the overall direction of the effect conferred at each variant by the minor allele. 
We tested 8,090,427 variants in total and identified 34 independent lead SNPs at the genome-wide significance 
threshold (P < 5E − 8) (Supplementary Fig. S2 and Supplementary Table S1). Allele frequency of these 34 lead 
SNPs in centenarians and controls are also displayed in the Supplementary Table S1. These variants are sex 
independent as allelic frequencies in each age bin were corrected for the sex effect (see Methods). Among the 
34 variants, two are coding, and the rest are non-coding (mapping to intronic and intergenic regions), and 20 
variants are tagging expression Quantitative Trait Loci (eQTL) (Supplementary Table S2). As proof of principle, 
we also tracked the frequency of each of the three APOE haplotypes (ε2, ε3, and ε4) tagged by rs429358 and 
rs7412 across directly genotyped and phased samples. As expected, we identified a significant negative effect 
(β = − 21.84, P = 4.25E − 7) for APOE-ε4 haplotype (Supplementary Fig. S3).

Several genomic loci included multiple prioritized genes, including two of the previously reported contribu-
tors of aging, such as LPA and LDLR6. The strongest association signal for longevity (i.e., rs76430661) was on 
5q35.3 where six genes were prioritized (COL23A1, HNRNPAB, N4BP3, ZNF454, ZNF879, and PRELID1. (Sup-
plementary Fig. S4). The variant physically maps to the second intron of COL23A1 and is an eQTL for all the 
prioritized genes apart from ZNF454 which is prioritized based on chromatin interactions. While none of the 
prioritized genes in the locus has been previously described in the context of aging, upregulation of a closely 
related family member of HNRNPAB is suggested to prevent age-dependent cognitive decline in Alzheimer’s 
disease (AD) mouse models19.

The largest two risk loci on 6q26 and 19q13 (tagged by rs41272112 and rs147053538), each with 16 and 50 
genes, respectively, represented the highest density of prioritized coding genes physically located in the locus 
(Supplementary Table S3). The lead SNP on 6q26 (rs41272112) maps to the exon 26 of LPA and the risk locus 
is an eQTL for 8 genes including LPA itself and PLG. The locus shows chromatin interactions with IGF2R, 
AGPAT4, and FNDC1 (Supplementary Fig. 5). Exposure to high Lp(a) (lipoprotein A) levels is associated with 
coronary heart disease20 and was recently shown to be causally related to shortened parental lifespan in the UK 
Biobank21; nevertheless, the relationship between Lp(a) concentrations and all-cause mortality among patients 
with established cardiovascular diagnosis is debated22. Given that the prioritized missense variant in the locus is 
not damaging (CADD: 0.06, PrimateAI: 0.30), it is likely that its negative association with longevity (β = − 0.21, 
P = 4.2E − 08) is mediated through a more stable Lp(a) resulting from the c.4262G > A mutation. It is worth not-
ing that the risk locus also shows chromatin interactions with the insulin-like growth factor 2 receptor (IGF2R), 
which has been identified to be associated with parental longevity7. Furthermore, coding variant rs3798220, 
which is in complete LD with the prioritized tag SNP, has been identified to show the most substantial individual-
level effect in "lost healthy life years" across the participants of the UK Biobank and FinnGen cohort23.

The lead SNP rs147053538 on 19q13 maps to the intergenic region between PSG11 and PSG7, and the risk 
locus is an eQTL for six genes including ARHGEF1 and shows chromatin interactions with 13 additional genes 
including CEACAM1 (Supplementary Fig. S6). Rho Guanine Nucleotide Exchange Factor 1 (ARHGEF1) was 
identified to be crucial in angiotensin II-induced hypertension, and its inactivation has been suggested as an 
amenable target for treating high blood pressure24. Given the proposed association of hypertension with late-stage 
dementia and Alzheimer’s disease25,26, the net effect of the risk loci in modulating the expression of ARHGEF1 
merits further investigation. Remarkably, age-dependent upregulation of carcinoembryonic antigen‐related cell 
adhesion molecule 1 (CEACAM1) is identified to result in endothelial impairments and promotion of athero-
sclerotic plaque formation during aging27. Whether the favorable impact of the locus on longevity is mediated 
through the downregulation of ARHGEF1 expression or CEACAM1 (or both) is not clear, but we speculate that 
the locus implicates an important cardiovascular component of longevity that can be therapeutically targeted 
for ameliorating aging.

The most prolific regulatory activity was observed by rs11556579, where 43 genes were prioritized by both 
eQTL mapping and chromatin interactions, including MAN1B1 on 9q34 (Supplementary Fig. S7). ER man-
nosidase I (Man1b1) is involved in the intracellular clearance of misfolded alpha1-antitrypsin28. Accumulation 
of misfolded α1-antitrypsin plaques in the lesions of AD is previously reported29, and it has been shown that 
properly folded protein protects against amyloid-β-induced toxicity in microglial cells30. Moreover, treatment 
of type-2 diabetes mouse models with α1-antitrypsin rescues glucose intolerance and normalizes blood glucose 
levels31. In light of recent findings on the significance of heme homeostasis in longevity and the proposed mecha-
nism of action for metformin32 that mimics α1-antitrypsin protection against heme oxidation, it is highly likely 
that the favorable impact of the locus is mediated through the regulation of MAN1B1 expression that ensures 
conformational acuity of α1-antitrypsin. The expression of the gene is downregulated in AD33, and we speculate 
that the risk locus implicates the link between T2D and AD.

Additionally, the lead SNPs on 2q24 and 2q32 (i.e., rs6757605 and rs59642822, respectively) tagged eQTL loci 
that regulate the expression of GPD2 and GLS1 respectively (Supplementary Fig. S8). Suppression of gpd-2 in C. 
elegans is shown to further extend the lifespan of daf-2 mutants34 and inhibition of GLS1 ameliorated age-related 
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pathologies by eliminating senescent cells in aged mice35. Given that downregulation of both genes results in 
extended lifespan in animal models, it is likely that the favorable effect of these two loci on human longevity is 
mediated by the attenuation of gene expression by eQTLs in LD with the lead SNPs.

Overall, positional, eQTL, and chromatin interaction mapping prioritized 332 genes of which 191 genes are 
exclusively the target of expression alteration by the 20 eQTLs. Gene-set analysis suggests a shared biological 
function that is enriched in the CD40 pathway, thyroid hormone-mediated pathway, osteoblast proliferation, 
and apolipoprotein binding; however, significance levels do not withstand the multiple-test correction (Sup-
plementary Table S4).

iLGS model construction
Multimorbidity is a common phenomenon during aging36. The shared genetic component among age-
related traits (ARTs) and age-related diseases (ARDs) results in genetic correlation and underlies certain 
multimorbidities37. Given the limited size of our discovery cohort, any polygenic derivation of additivity of effect 
solely based on the few associated signals (from our sliding regression framework) is massively underpowered 
and not capable of capturing the full spectrum of additive variance underlying longevity. However, given the 
shared pathways among ARTs and ARDs38, we reasoned that combining the polygenic effect among age-related 
pleiotropic traits enables the robust approximation of the shared genetic effect in the common pathways related 
to human lifespan.

To explore the pleiotropic landscape of the 34 variants identified in the sliding-regression framework, we 
carried out a phenome-wide association study (PheWAS) using GWAS summary statistics primarily from the 
UK Biobank (see “Methods”). Overall, we tested the association of 1,504 traits across 28 domains, of which 223 
unique traits and diseases across 17 domains were identified to be significantly associated with the candidate 
variants (Supplementary Table S5). The association signals were significantly enriched across three domains 
including Skeletal (P = 1.0E-05, OR = 4.39), Metabolic (P = 6.8E-05, OR = 1.90), and Cognitive domains (P = 6.3E-
05, OR = 3.20) (Supplementary Table S6). The most significant associations across these three domains included 
traits such as heel bone mineral density (skeletal domain), impedance measures of body fat percentages (meta-
bolic), and overall cognitive performance.

Given the ubiquitous pleiotropy revealed in the PheWAS analysis, we constructed a model that integrates the 
complex interplay of pleiotropic ARTs in shaping longevity. Here, we consider genes as the units determining 
longevity and presume that total contribution to longevity is better approximated by the additive effect of their 
constituent functional variants on pleiotropic traits determining the evolutionary trade-offs throughout the life 
history of the species39. Traits identified by PheWAS analysis either causally influence longevity or simply arise 
from the spurious pleiotropy due to linkage disequilibrium (LD)40. Regardless of the true nature of the genetic 
correlation between these traits and longevity, we reasoned that a model summarizing the total additive genetic 
variance conferred by genetically correlated traits while accounting for multicollinearity among them would 
yield a descriptive statistic that can be used to distinguish survival.

We applied a stacked ensemble method to construct the integrated longevity genetic score (iLGS). We first 
randomly split the Einstein LonGenity cohort into the derivation (n = 715) and validation (n = 237) sets. We 
then used polygenic risk scores of 53 select PheWAS-identified traits and 34 additional UK Biobank blood and 
urine biomarker traits (See “Methods”). We trained and evaluated the ensemble model using fivefold cross-
validation on the derivation dataset, with each fold consisting of 65% training data and 35% testing data. Our 
model achieved an area under the curve (AUC) of 0.91 in the derivation set and 0.87 in the validation set. The 
schematic overview of the model construction is provided in Fig. 2.

The stacked Elastic-net regression framework shrank the coefficients of fifteen traits to zero, and the final 
score was constructed using the coefficients of the remaining 72 traits (out of 87 initial traits) and 297 interac-
tion terms (See “Methods”). The size of adjusted coefficients in the final model is provided in Supplementary 
Tables S7 and S8. As expected, the pattern of genetic correlation (rg ) among the traits included in our model 
revealed several distinct clusters (Fig. 3): (1) The biggest cluster includes different body impedance measures that 
are significantly correlated with different metabolic and cardiovascular traits (including systolic blood pressure, 
diabetes, birth weight, and the birth weight of first child), different metabolic traits and anxiety; (2) Impedance 
measures are negatively correlated with numerous reproductive traits, which include age at menarche, age at 
first sexual intercourse, age at first birth and age at menopause; (3) Fat impedance measures are also negatively 
correlated with different measures of fluid intelligence and usual walking pace; (4) Among the biomarker traits 
the greatest number of intra-domain correlations belong to C-reactive protein and triglyceride (each with 28 
significant inter-domain genetic correlation), which accounts for most intra-domain correlations.

Across the individual PGS (polygenic score) terms, high-density lipoprotein (HDL) cholesterol, fluid intel-
ligence (chained arithmetic measure), and forced vital capacity are positive top contributors to longevity, while 
glycated hemoglobin (HbA1c), apolipoprotein B, and body mass index (BMI) are top negative contributors to 
longevity. Our model also entails the interactions among traits (Extended Fig. 1 and Supplementary Fig. S9). 
Since the iLGS is linearly correlated with longevity, traits with multiple interacting partners can potentially tag 
canonical longevity features. Several interesting insights are immediately discernible from the interacting pairs 
in our model. Across the 12 domains, traits in the “biomarkers” category have the most interacting partners. 
Out of the 34 blood and urine biomarkers included in the model, 32 interact with at least three other traits. The 
insulin-like growth factor 1 (IGF1) has the highest number of interactions (17 partners), followed by rheumatoid 
factor (15 partners), alkaline phosphatase, and estradiol (both with 14 partners). (Extended Fig. 1). The "cognitive 
function" traits have the second-highest number of interactions with other traits among the remaining domains. 
Within this domain, educational attainment interacts with 14 other traits, representing the most important non-
biomarker traits in describing the model variance (Extended Fig. 1). Traits in the metabolic, immunological, and 
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reproduction domains, each with 45, 34, and 29 total interactions, respectively, account for most of the remaining 
cross-trait interactions in our model. When traits were considered individually, age at first birth, anxiety, and 
walking pace has the most interacting partners, following educational attainment (Extended Fig. 1).

Based on our model, the interaction between fluid intelligence and serum total bilirubin has the most favora-
ble contribution to longevity, and the interaction between IGF1 and direct bilirubin has the most negative effect 
on longevity. Across the individual PGS terms, high-density lipoprotein (HDL) cholesterol, fluid intelligence 
(chained arithmetic measure), and forced vital capacity were revealed as the top contributors to increased lon-
gevity, and Glycated hemoglobin (HbA1c), Apolipoprotein B, and body mass index (BMI) were identified as the 
top negative contributors to longevity.

iLGS distinguishes differential survival
Using the coefficients derived from our stacked model, we computed the iLGS across 59,534 individuals with 
European ancestry in the GERA cohort and converted the scores to a set of 3.8 million variant weights (See 
“Methods” and Supplementary Fig. S10). We subsequently assessed the risk prediction performance of iLGS for 
distinguishing differential longevity in three independent cohorts.

Using the validation portion of our in-house cohort (n = 242), we applied a multivariate Cox proportional haz-
ard model to evaluate the association of iLGS with age at death while controlling for sex, APOE4 status, and their 
interaction with iLGS (See “Methods”). iLGS was associated with age at death with a hazard ratio (HR) of 0.09 
(95% CI = [0.05, 0.18], P = 6.9E-13) per standard deviation of iLGS (Fig. 4a). This is equivalent to a 3% decrease 
in the baseline mortality hazard per one unit increase in the iLGS. The role of sex has been widely recognized as 
a factor that contributes to differences in exceptional longevity41, and, expectedly, we identified a significantly 
increased hazard rate for mortality among males against the baseline hazard (Fig. 4a; HR = 1.84, 95% CI [1.25, 
2.73], likelihood ratio test in Cox proportional hazard model, P = 2.10E-3). However, no statistical interaction 

Fig. 2.   Overview of the iLGS model construction pipeline. We derived integrated Longevity Genetic Scores 
(iLGS) in three steps: (a) First, across unrelated individuals in the Einstein LonGenity cohort, we calculated 
polygenic scores for a total of 87 traits (53 associated traits from PheWAS analysis + 34 additional blood and 
urine biomarkers). We used LD clumping and p-value thresholding to derive the best score for each trait; (b) 
Next, we applied a stacked Elastic-net regression framework to combine the polygenic scores and derive iLGS. 
This method entails passing the output from one model to the next to increase model accuracy and derive 
meaningful insight. By sandwiching a polynomial regression between two Elastic-net regressions, we created a 
search space for the model to select the most informatic PGS and their interactions for predicting longevity. We 
started with 87 PGS as input and derived 369 PGS and interaction terms with model accuracy of around 91% 
in the derivation set upon fivefold cross-validation; (c) Using the validation portion of the Einstein LonGenity 
cohort (n = 242) and two additional cohorts, including the Wellderly (n = 510) & Australian Healthy Ageing 
cohort (MRGB; n = 2,570) we replicated the predictive performance of iLGS for distinguishing differential 
lifespan. Our model achieved an area under the curve (AUC) of 87% in the validation portion of the Einstein 
LonGenity cohort.
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between iLGS and sex was identified for mortality hazard (Fig. 4a; HR = 0.43, 95% CI [0.17, 1.10], P = 7.76E − 2), 
which indicates that the association of iLGS with survival is largely sex-independent and cross-gender differ-
ence in overall survival is not influenced by any sex-specific effects of iLGS. Furthermore, given the well-known 
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Fig. 3.   Heatmap plot showing the pattern of genetic correlation and the magnitude of narrow-sense heritability 
across the traits used for constructing the iLGS. Pairwise genetic correlation ( rg , n = 2,556) across the 72 traits 
(out of 87 initial traits) used in constructing iLGS was calculated using bivariate LD score regression. Positive 
and negative genetic correlations are shown in green and red respectively. P-values for the significance of genetic 
correlations are FDR corrected using the Benjamini–Hochberg method. The magnitude of the rg significance is 
indicated by the asterisks. The bars at the bottom of the plot show the magnitude of narrow-sense heritability 
across the 72 traits. The colour of each bar corresponds to the respective domain of the trait; (ALB: Albumin, 
ALP: Alkaline phosphatase, ALT: Alanine aminotransferase, APOA: Apolipoprotein A, APOB: Apolipoprotein 
B, AST: Aspartate aminotransferase, BILD: Direct bilirubin, BUN: Urea, CA: Calcium, CHOL: Cholesterol, CRE: 
Creatinine (in serum), CYS: Cystatin C, GGT: Gamma glutamyltransferase, GLU: Glucose, HBA1C: Glycated 
haemoglobin, HDL: HDL cholesterol, IGF1: Insulin growth factor-1, LDLD: LDL cholesterol, LPA: Lipoprotein 
A, PHOS: Phosphate, SHBG: Sex hormone binding globulin, TBIL: Total bilirubin, TES: Testosterone, TP: 
Total protein, TRIG: Triglycerides, UA: Urate, UCR: Creatinine in urine (enzymatic), URK: Potassium in urine, 
URMA: Microalbumin in urine, VITD: Vitamin D, FVC: Forced vital capacity, FEV1: Volume that has been 
exhaled at the end of the first second of forced expiration).
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Fig. 4.   The association of iLGS as compared with other risk factors with longevity and differential survival across the quintiles of 
iLGS. (a) Cox regression hazard ratios (HR) for the association of sex, APOE haplotypes and iLGS with age at death. An HR greater 
than 1 suggests an increased risk of death, and an HR below 1 indicates a smaller risk. Expectedly, the risk of earlier death is increased 
among males. Neither of the APOE haplotypes was revealed to be significantly associated with age at death in the study population. 
However, the direction of HRs was consistent with the unfavourable effect of APOE ε4 haplotypes on longevity. We also modelled 
the interaction of iLGS with APOE ε4 haplotype and sex to confirm that the association is independent of the sex effect of APOE 
haplotype status. (b) Stratified Kaplan–Meier curves showing differential survival across the top  (Q5

iLGS) and bottom quintile of 
iLGS  (Q1

iLGS) in comparison to the survival of individuals with iLGS in the interquintile range (log-rank test between the top quintile 
(Q5

iLGS) and IQR: p = 2.47e − 5, log-rank test between the bottom quintile (Q1
iLGS)  and IQR: p = 2.75e − 27). (c) Plot depicting the Cox 

regression HRs for the association of iLGS quintile with age at death. Given that our inhouse cohort is primarily ascertained to include 
centenarians, we adopted the Q1

iLGS as the baseline hazard and calculated the HRs for the remaining quintile against the hazards of 
Q1
iLGS . We also included sex as a covariate to adjust for the sex effect.
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effect of APOE haplotypes on human longevity42,43, we also investigated the association of all these haplotypes 
with age at death and modeled the interaction of APOE-ε4ε4 genotype with the iLGS in our multivariate Cox 
regression model (See “Methods”). Neither of the APOE haplotypes was significantly associated with mortality 
in our validation set (Fig. 4a). Similarly, the effect of iLGS on survival appears to be independent of APOE-ε4 
status as we did not identify any evidence of statistical interaction between iLGS and the APOE-ε4ε4 haplotype 
(HR = 0.53, 95% CI = [0.12, 2.24], P = 3.87E-1) (Fig. 4a). We carried out a stratified Kaplan–Meier analysis across 
the quintiles of iLGS to investigate if survival curves are significantly different across the top and bottom quintiles 
compared to the interquintile range (IQR) (Fig. 4b and Extended Fig. 2). The cumulative incidence of death 
was significantly different between the top quintile (Q5

iLGS) and IQR (log-rank test, P = 247E − 5) and between 
the bottom quintile (Q1

iLGS) and IQR (P = 2.75E − 27). A comparison of Kaplan–Meier functions across deciles 
revealed that, on average, individuals with iLGS in the top decile live up to 4.8 years longer. Furthermore, the risk 
of death for individuals in the bottom two quintiles (i.e., bottom 40%) is maximum before the age of 85, while for 
individuals in the top quintiles, the risk of death does not peak until over the age of 95 years (Extended Fig. 2). 
The better survival outcome across the top quintile of iLGS is consistent with the coefficient estimates from the 
Cox proportional hazards model assessing HRs across the quintiles of iLGS (Fig. 4c).

We replicated the association of the top and bottom iLGS quintiles with three age categories (age at last 
contact: ≥ 95, [90, 94], and < 90) in two independent cohorts, which include the Scripps Wellderly cohort44 and 
the Medical Genome Reference Bank (MRGB) cohorts, two independent cohorts specifically ascertained to 
comprise a healthy aging population. However, since the absolute “age at death” for participants of these two 
cohorts are not available, we formulated the null hypothesis ( H0 ) as no association between the top (Q5

iLGS) and 
bottom (Q1

iLGS) quintiles with age category at the last point of contact, and tested for evidence against H0 using a 
Fisher’s Exact test. In the Wellderly cohort, the top quintile ( Q5

iLGS) was significantly associated with both the ≥ 95 
and [90, 94] age categories (Fig. 5a). Individuals in Q5

iLGS are 3.67 times more likely to surpass 95 years of age 
(95% CI [1.68, 7.95], P = 6.68E-4) and 2.49 times more likely to fall into the [90, 94] age bin (95% CI [1.70, 3.73], 
P = 6.89E-6) than the rest of the iLGS strata. Here, the definitive lifespan is not known, and “age at last contact” 
is used as an approximate proxy for lifespan. As such, age categories further away from the two oldest age bins 
(i.e., ≥ 95 and [90, 94]) are necessarily comprised of individuals who have already achieved their maximum 
lifespan and individuals who will live longer and proceed to higher age bins. Therefore, the odds of individuals 
with favorable polygenic background (i.e., Q5

iLGS ) is expected to be attenuated in the lower age bins and continue 
to increase as we move to upper age-bins. This is consistent with the observed 1.47-fold increase in the odds of 
association between the Q5

iLGS and the ≥ 95 age category (compared to the [90, 94] age bin). Since individuals of 
the Wellderly cohort are essentially devoid of age-related conditions, the lack of association between the bottom 
quintile iLGS (Q1

iLGS) and age categories is not surprising (Fig. 5a). In the MRGB cohort, Q5
iLGS is significantly 

associated with both the ≥ 95 and [90, 94] age bins (Fig. 5b). Here, individuals in Q5
iLGS are 4.27 times more 

likely to surpass 95 years of age (95% CI [3.43, 5.33], P = 7.88E − 47) and 3.66 times more likely (95% CI [2.96, 
4.53], P = 2.37E − 30) to reach the [90, 94] age category than the rest of the population. Individuals with iLGS in 
the bottom quintile (Q1

iLGS) were significantly depleted from the [90, 94] age bin (OR: 0.50, 95% CI [0.25, 0.90], 
P = 3.02E − 2). Conversely, Q1

iLGS was significantly enriched among individuals in the < 90 age bin (OR: 1.38, 95% 
CI [1.08, 1.76], P = 9.79E − 3).

Fig. 4.   (continued)
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Fig. 5.   Replication of iLGS association with age at last contact in the Wellderly and MRGB cohort. (a) Plot 
illustrating enrichment of top and bottom quintile iLGS scores ( Q5

iLGS & Q1
iLGS ) across three age bins (age 

at last contact: ≥ 95, [90–94] and < 90) of the Wellderly cohort. (asterisks identify significant associations). 
(b) Enrichment of top and bottom quintile iLGS scores ( Q5

iLGS & Q1
iLGS ) across three age bins (age at last 

contact: ≥ 95, [90–94] and < 90)) of the MRGB cohort. (asterisks identify significant associations).
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In both replication cohorts, the strength of association between Q5
iLGS and the older age categories is signifi-

cantly stronger. Given that age at death in these cohorts is undetermined, we speculate the stronger signal toward 
exceptional longevity arises from the more homogenous cohort construct among individuals achieving the upper 
limits of lifespan. Using the available clinical data in the MRGB cohort, we further investigated the association 
between Q5

iLGS and three age-related traits: extreme obesity (BMI > 40 kg/m2), treatment history for high blood 
pressure and treatment history for high cholesterol. Despite the expected direction of effect across the three traits 
(Supplementary Fig. S11), the protective effect of Q5

iLGS is only statistically significant against treatment for high 
blood pressure (OR: 0.64, 05% CI [0.98, 0.42], P = 3.82E − 2).

Burden of rare variants across Q1

iLGS

 and Q5

iLGS

Given the association of Q5
iLGS with an extended lifespan, we compared the burden of rare pathogenic variants 

(PrimateAI score ≥ 0.9 and alternative allele frequency < 1%) among the top versus bottom quintile iLGS carriers 
across centenarians and non-centenarians in our longevity cohort. A significant difference in the number of rare 
pathogenic variants between the Q5

iLGS and Q1
iLGS centenarians was observed (p < 0.03, Supplementary Fig. S12). 

It appears centenarians in the top quintile iLGS collectively carry a higher burden of rare pathogenic variants 
compared to centenarian carriers of Q1

iLGS . This perhaps reflects the buffering effect of the favorable polygenic 
background that offsets the higher burden of rare pathogenic variants among Q5

iLGS carriers. This observation 
is consistent with a liability threshold model, where the accumulation of liabilities from pathogenic variants is 
favorably offset by the higher threshold rendered by the polygenic background45. To assess whether the observed 
significant difference (i.e., the p-value) in rare-variant burden between the two groups of centenarians was 
attributed to iLGS scores, we conducted a permutation test with 1000 iterations of randomization, in each of 
which a pseudo p-value was calculated to construct the null distribution. These pseudo p-values were calculated 
based on the difference in rare-variant burden between the top and bottom-quintile centenarians using shuffled 
iLGS scores. The permutation p-value (p = 0.03) suggested that the significant difference was indeed attributed 
to iLGS scores.

Proteomics correlates of iLGS and anti‑aging drug repurposing
The quantitative size of iLGS is determined at birth and remains constant over an individual’s life course. Given 
the association of iLGS with longevity, we searched for the proteomic correlates of the score among the 238 indi-
viduals (123 males and 115 females with available proteomic data) in our validation set. In doing so, we reasoned 
that proteomic predictors of aging and longevity could be detected via the patterns of association between the 
proteome and the iLGS. Briefly, we tested the association between 4,265 proteomic markers and iLGS among 
males and females separately and identified significant associations with FDR < 0.05 (See “Methods”). Among 
females, 37 proteins were positively associated with iLGS, while three—MAT2B, CLEC2B, and CMPK1—show 
negative association (Fig. 6a). Among these 40 proteins, 30 were associated with chronological age among female 
Ashkenazi Jews46 (Supplementary Table S9), and ten were differentially expressed among centenarians with a 
consistent direction of effect47 (Supplementary Table S9). The top proteins most significantly associated positively 

Fig. 6.   Proteomic correlates of iLGS. Volcano plot showing the association of plasma proteins with iLGS among 
female (a) and male (b) subsets of the validation set with available proteomic data (n = 115 and 123 respectively). 
The x-axis denotes the “effect size”, and the y-axis shows − log10 Benjamini–Hochberg corrected p-value of 
association. Proteins clustered to the right are positively correlated with iLGS and proteins clustered to the left 
are negatively associated with iLGS. Proteins surpassing the significance threshold at BH < 0.05 are identified by 
red asterisks.
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with iLGS were semaphorin 4B (SEMA4B, β = 4.94, P = 1.49E-6) and Pleiotrophin (PTN, β = 3.98, P = 1.49E-6) 
(Fig. 6a). Previous studies have shown the association of pleiotrophin with both chronological age and extended 
lifespan47–49 and identified the association between the expression of SEMA4B and favorable proteomic signature 
of intermittent fasting50. On the other hand, methionine adenosyltransferase 2B (MAT2B) showed the most 
significant negative association with iLGS (β = -3.56, P = 2.05E-5) (Fig. 6a). The connection of MAT2B to aging 
has not been studied, although its overexpression has been attributed to poor prognosis of triple-negative breast 
cancer51 and critical illness in COVID-1952.

Among male subjects (n = 123), only three proteins were significantly associated with iLGS (Fig. 6b). R-spon-
din 4 (RSPO4) showed the most significant positive association (β = 4.82, P = 1.85E − 6), consistent with the 
increased expression of RSPO4 among centenarians as previously reported47. We detected a positive association 
for Thioredoxin domain-containing protein 5 (TXNDC5, β = 4.25, P = 3.28E-6). While the association of endo-
plasmic reticulum (ER) protein TXNDC5 with human longevity has not been previously reported, its transcrip-
tional upregulation has been shown to be associated with aging in long-lived red sea urchins53. We also identified 
a negative association for lysine methyltransferase 2D (MLL2, β = − 6.38, P = 4.19E − 5). Among the 43 proteins 
significantly associated with iLGS in either males or females, the direction of effect was inconsistent between 
the sexes for only three proteins: MAT2B, CELEC2B, and CMPK1 (although not significant in males) (Sup-
plementary Table S9). This inconsistency might indicate the sex differences in the proteomic signature of aging.

We queried the DrugBank database (version 5.1.8)54 to identify drugs targeting or interacting with the 43 
iLGS-associated proteins. We only considered drugs with ongoing clinical trial status (see “Methods”). Our 
rationale was that the underlying mechanism of action for drugs interacting with iLGS-associated proteins 
might implicate the pathways relevant to longevity and they could be repurposed as anti-aging treatments. We 
identified 25 unique drugs interacting with 11 proteins (Table 1). One noteworthy drug, fostamatinib, interacts 
with at least four longevity-promoting proteins. It is a selective inhibitor of spleen tyrosine kinase (Syk)55 that 
acts upstream of the PI3K-Akt pathway, which is upregulated during aging and whose downregulation promotes 
improved cell survival in neurons56. The suppression of Syk attenuates the PI3K-Akt signaling, which inhibits 

Table 1.   List of 25 unique drugs interacting with 11 protein correlates of iLGS.

Target protein Drug ID Drug Name Drug effect Therapeutic indications Clinical phase

PTN↑

DB08865 Crizotinib ALK inhibitor Non-small cell lung cancer (NSCLC) Approved

DB09063 Ceritinib ALK antagonist Non-small cell lung cancer (NSCLC) Approved

DB11363 Alectinib ALK inhibitor Non-small cell lung cancer (NSCLC) Approved

DB12267 Brigatinib ALK inhibitor Non-small cell lung cancer (NSCLC) Approved

DB12010 Fostamatinib ALK inhibitor Chronic immune thrombocytopenia (ITP) Approved

DB12130 Lorlatinib ALK inhibitor Non-small cell lung cancer (NSCLC) Approved

TAGLN↑ DB11638 Artenimol ligand Plasmodium falciparum infection Approved

MAT2B↓ DB00134 Methionine Enzyme, substrate Dietry supplementation Approved

MYL6B↑ DB08378
4-[4-(2,5-DIOXO-PYRROLIDIN-1-YL)-
PHENYLAMINO]-4-HYDROXY-
BUTYRIC ACID

Unknown – Experimental

IL2RB↑

DB00041 Aldesleukin Agonist/ Modulator Renal cell carcinoma Approved

DB00074 Basiliximab Chimeric antibody (IL-2 receptor 
antagonist) Kidney transplant rejection Approved

DB00111 Daclizumab Chimeric antibody (IL-2 receptor 
antagonist) Relapsing forms of multiple sclerosis Investigational

DB00004 Denileukin diftitox agonist Cutaneous T-cell lymphoma Approved

EPHB6↑ DB12010 Fostamatinib ALK inhibitor Chronic immune thrombocytopenia (ITP) Approved

DCLK1↑ DB12010 Fostamatinib ALK inhibitor Chronic immune thrombocytopenia (ITP) Approved

CMPK1↓

DB00441 Gemcitabine Target, inhibitor Ovarican cancer/NSCLC/Breast & lung 
cancer Approved

DB00709 Lamivudine Enzyme, substrate HIV and hepatitis B infections Approved

DB08934 Sofosbuvir Enzyme, substrate Hepatitis C infection Approved

DB01262 Decitabine Enzyme, substrate Myelodysplastic syndromes Approved

EPHA1↑ DB12010 Fostamatinib ALK inhibitor Chronic immune thrombocytopenia (ITP) Approved

B4GALT1↑

DB00141 N-Acetylglucosamine Target Osteoarthritis Approved

DB02696 6-Aminohexyl-uridine-C1,5’-diphosphate Target – Experimental

DB03013 N-acetyl-beta-D-glucosami-
nyl-(1- > 4)-N-acetyl-beta-D-glucosamine Target – Experimental

DB03501 Galactose-uridine-5’-diphosphate Target – Experimental

DB03685 Uridine monophosphate Target – Experimental

DB03814 2-(N-morpholino)ethanesulfonic acid Target – Experimental

MLL2↓
DB00494 Entacapone Unknown Idiopathic Parkinson’s Disease Approved

DB01752 S-adenosyl-L-homocysteine Unknown – Experimental
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mTOR and activates FOXO, leading to the activation of proapoptotic processes and cell cycle arrest. Although 
its precise mechanism of action is unclear, the active metabolite in fostamatinib has been recently found as a 
novel senolytic agent57. Given the extent of its interaction with longevity-promoting proteins, this drug merits 
further investigation as a potential anti-aging treatment.

Discussion
In this study, we developed a predictive genetic score for longevity (iLGS) based on GWAS summary statistics 
for a compendium of aging-related traits. We posited that the highly complex and polygenic architecture of 
human longevity is well approximated by a composite polygenic score that models the cumulative liabilities 
from ARTs. We assessed the performance of our model for distinguishing differential survival and showed, at 
the population level, iLGS predicts prolonged lifespan independent of sex or APOE haplotype status. We also 
established that the top quintile of iLGS is significantly enriched among individuals surpassing 95 years in the 
extant populations. Finally, we identified protein correlates of iLGS and proposed drugs that could be repurposed 
for potential anti-aging treatments.

In building our model, a few key assumptions were made. First, we assumed a highly polygenic architecture 
underlying human longevity. Our assumption of high polygenicity and genome-wide distribution of associated 
variants is supported by the proportional correlation of lifespan heritability with chromosomal length (Supple-
mentary Fig. S13), which indicated that genomic loci with a non-neutral net effect on longevity are numerous 
and widely distributed across the genome. This is consistent with the overwhelmingly polygenic architecture 
inferred from a wide variety of complex traits58,59. Second, we posited that the deviation of an individual’s lifespan 
from the population mean is primarily due to the additive liability conferred by common variants and can be 
well approximated by an additive model. Our assumption of “additivity of effects” aligns with the “omnigenic 
model” of complex traits60, which posits that a significant portion of heritability is derived from common vari-
ants, each contributing a modest effect size61. Obviously, rare variants with sizable effects may still be relevant 
in the context of longevity, although such variants are primarily implicated for traits under a strong selective 
pressure9,62. Given the attenuated selective pressure during the aging13,15, variants with a substantially detrimental 
effect on survival are expected to be under a more lenient purifying selection. Consequently, their frequency is 
not necessarily bound to lower limits, and therefore, rare variants with large effect sizes on aging and longevity 
are expected to be scarce. Third, we modeled lifespan as a function of a set of traits that are directly or indirectly 
under selection. Of note, lifespan is the ultimate trait at the top of the fitness hierarchy and its variance is deter-
mined by the interplay of other fitness components, which include fertility, fecundity, and inclusive fitness. We 
used polygenic scores of nested traits (as a reasonable proxy for unmeasured trait values) to model the perceived 
interplay and derive a single composite genetic score for longevity. Unlike other biological age predictors (such 
as epigenetic clocks, telomere length, transcriptomic, and metabolic predictors) that are dependent on the actual 
chronological age and may vary over time, iLGS is stable throughout life and can be assessed from birth. Thus, 
the score can be incorporated with other quantitative predictors of age later in life when they become available 
to give a more accurate prediction of biological age.

Our results showed that iLGS generalizes well in predicting lifespan in the extant populations when the age at 
death is not yet available. Furthermore, we showed that in the Wellderly and MRGB cohorts of healthy aging, the 
odds of individuals with top quintile iLGS ( Q5

iLGS ) increased sharply in the ≥ 95 age bin. Although we identified a 
protective association between Q5

iLGS and the treatment history for high blood pressure in the MRGB cohort, we 
did not observe a significant association between the iLGS and the age at onset (or post-intervention survival) 
for cardiovascular complications or three cancer types (breast, prostate, and skin) in a small portion (n = 390) of 
our in-house cohort with available data. A number of possibilities may explain this lack of association: (1) The 
age distribution in our test set is relatively narrow (95 ~ 111 years) (Supplementary Fig. S1), and therefore, our 
ability to discriminate individuals based on iLGS strata is reduced accordingly. In particular, these complications 
occur in such a narrow range after age 95 that the age at onset and the survival time are indistinguishable across 
iLGS strata; (2) Heterogeneity of the investigated conditions may play an important role that is underappreciated 
by our model. Specifically, the underlying cause of differences in the age at onset or survival time may not be 
completely polygenic in nature (hence not distinguishable by our model) and simply arise due to the acquired 
somatic mutations in the case of cancers and lifestyle differences in the case of cardiovascular complications. This 
is quite an interesting possibility since studies into the congestive heart failure diagnosis have also questioned 
the validity of prognostic markers among centenarians63; and (3) Given the limited sample size, our study was 
underpowered.

The specific pattern of interaction among individual traits in our model provides new insights into the approx-
imate relationship between different traits and longevity. We observed that a great majority of these interactions 
are mediated through the insulin-like growth factor 1 (IGF1). This recapitulates the well-established significance 
of this hormone in human aging and underscores the relevance of interventions targeting IGF1-extended sign-
aling network for longevity64. Consistent with this, we highlight the repurposing potential of fostamatinib as a 
senolytic drug candidate. It interacts with four iLGS-associated proteins (PTN, EPHA1, EPHB6, and DCLK1) 
and attenuates the PI3K-Akt signaling, which leads to a range of favorable outcomes that collectively promote 
longevity64. Further, we highlight the significance of our finding for proteins associated with iLGS. Unlike earlier 
studies into the proteomic correlates of longevity, where it is not clear whether differential protein levels are truly 
causal or simply fluctuate due to aging, our results are not confounded by the chronological age.

Nevertheless, our results should be considered in light of a few limitations. First, in constructing our model, 
we used GWAS summary statistics from individuals of primarily European ancestry. Polygenic scores are sensitive 
to allele frequency differences and patterns of LD that vary with ancestry65,66. Thus, our model will likely under-
perform in populations of non-European descent. Second, it remains to be determined whether the association 
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of iLGS with lifespan is independent of lifestyle factors. Although we showed that the association of iLGS with 
longevity is independent of gender and APOE status, using the available data, we could not rule out the con-
founding effect of lifestyle choices. If the effect of iLGS on longevity is mediated through a confounder such as 
dietary pattern or medication intake, we expect that protein correlates of iLGS to be also confounded. However, 
we could not test for this confounding in a replication cohort with available lifestyle data like the UK Biobank 
dataset since summary statistics for constructing iLGS were primarily obtained from UK Biobank GWAS studies.

Taken together, we showed how pervasive pleiotropy could be leveraged in constructing a composite poly-
genic score for longevity. The application of iLGS to the extant populations offers an opportunity for better risk 
management among individuals at the lower end of the score distribution. These individuals are more likely to 
develop age-related pathologies earlier in life and, therefore, benefit from lifestyle modifications. Moving forward, 
in expectation of more powerful GWAS studies in diverse populations, we believe our method offers a promising 
framework for stratifying life expectancy in the extant population.

Methods
Ethics statement
In this study, we used datasets from the UK Biobank (application number 58069), as approved by the UK 
Biobank board, the Wellderly cohort (the Scripps Institute, La Jolla, USA) obtained from the European Genome-
Phenome Archive (EGAS00001002306), the Medical Genome Reference Bank cohort obtained from the Garvan 
Institute of Medical Research, Australia, and the Genetic Epidemiology Research on Adult and Aging (GERA) 
obtained through dbGaP (request number 82588-1). The study and data access were approved by Albert Einstein 
Institutional Review Board, protocols 2019–9922 (reference number: 05294). All methods were carried out in 
accordance with the relevant guidelines and regulations, and informed consent was obtained from the research 
participants.

Data sets
Einstein LonGenity cohort
We performed our analysis on a sub-cohort of 1,740 (722 males and 1018 females) offspring of Ashkenazi Jewish 
centenarians and controls recruited longitudinally in the LonGenity project at the Albert Einstein College of 
Medicine67. These individuals were genotyped on a custom array at 635,623 SNPs and subsequently underwent 
whole-exome sequencing (WES). Details pertaining to DNA sample preparation and sequencing are explained 
elsewhere68.

Wellderly cohort
For replication, we used the whole-genome sequence data from 510 healthy elderly individuals (aged between 
80 and 105 years) without any chronic conditions or medication history recruited through the Scripps Insti-
tute Wellderly study. Details pertaining to the cohort demography and the genome sequencing procedure are 
explained in an earlier study44.

MRGB cohort
For replication, we also used the whole-genome sequence data from 2,570 individuals (1,251 males & 1,319 
females) in the Medical Genome Reference Bank (MRGB) cohort. This cohort comprises Australians who lived 
at least 70 years of age without any history of cancer, dementia, and cardiovascular disorders at baseline entry or 
study follow-ups. Gender-stratified age distributions across participants are provided in Supplementary Fig. S14. 
The cohort demography and genome sequencing details are explained elsewhere69.

GERA cohort
We used a GERA (Genetic Epidemiology Research on Aging) sub-cohort of 62,268 individuals with European 
ancestry to convert iLGS to SNP weights. We used pre-computed principal component scores released by the 
GERA consortium to filter out 16,151 individuals with non-European ancestry.

Quality control (QC)
We applied standard GWAS QC measures70 implemented in PLINK v1.90b71. Briefly, we removed individu-
als with a mismatch between the reported and inferred gender from the sex chromosomes. We restricted our 
analysis to unrelated individuals for all cohorts by excluding the younger participants from each pair of close 
relationships (up to second-degree). Our QC measures at the sample level also included removing individuals 
with < 95% call rate, individuals with extensive runs of homozygosity, or non-European ancestry as determined 
by the PCA analysis. The Einstein LonGeity cohort analysis exclusively focused on the Ashkenazi Jewish cluster. 
At the variant level, our QC measure involved removing SNPs with < 1% minor allele frequency (MAF), SNPs 
with < 95% call rate among all individuals, or an extreme deviation from the Hardy–Weinberg equilibrium 
(HWE) at P ≤ 1E-06, which most likely represents poor genotyping.

We imputed the QC’ed genotypes across filtered individuals using the Michigan Imputation server72 and 1000 
Genomes phase 3 haplotypes as the reference panel. For the UK Biobank sub-cohort, we directly obtained ver-
sion 3 of the imputed genomes from the consortium. Post-imputation QC measures across all cohorts included 
removing SNPs with IMPUTE2 info score < 0.5, MAF < 1%, or an extreme deviation from HWE at P ≤ 1E−06. For 
the Einstein LonGenity cohort, we merged the post-imputation genotypes with the exome data while correcting 
for the strand orientation. Prior to merging, genotypes from the exome data were restricted to bi-allelic loci only, 



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19981  | https://doi.org/10.1038/s41598-024-69069-0

www.nature.com/scientificreports/

and INDELs were removed. Wherever the imputed genotype was different from the exome data, we replaced the 
inferred alleles with the observed allele from the whole-exome sequencing (WES) data.

Principal component analysis (PCA)
To avoid stratification bias, we restricted our analysis to a single ancestry (ASJ for the Einstein LonGenity 
cohort and European ancestry for the replication cohorts). We used pre-imputed genotypes to calculate principal 
components in KING v2.2.573. Before running KING, we applied a more stringent QC measure using PLINK 
(v.1.90b) to remove SNPs and individuals with < 99% call rate. Samples were pruned to include founders only. 
Additionally, SNPs with MAF < 5% were removed and pruned to include uncorrelated SNPs at pairwise r2 < 0.2 . 
The top three PCAs were projected to that of 1000 Genomes phase 3 data, and samples with European ancestry 
were selected for downstream analysis.

Sliding regression framework
Unrelated ASJ samples from the Einstein LonGenity cohort (n = 957) were divided into 48 overlapping bins 
according to their reported age at death. Bins were constructed to contain 30 individuals and an overlapping size 
of 15 individuals between the neighboring windows. The choice of parameters (window size and overlap size) 
selected and robustness of model was confirmed by carrying out simulation analysis across twelve different con-
figurations in simulated model (window size (i.e. Nw.s ∈ {20, 30, 40, 50}) and the overlap size (i.e. Noverlap ∈ {5, 10, 
15}). The model consists of 100 genomic loci across 1000 individuals with age-at-death distribution resembling 
our discovery cohort. The allelic frequency across 8,090,428 imputed SNPs was calculated in each bin. Details 
about the age distribution of participants in each bin are provided in the Supplementary Table S10. To remove 
the sex effect in the ultimate model and correct for the different male/female ratios across bins, calculated allele 
frequencies were regressed on to the number of females in each bin and residuals were then used in the final 
regression model so that:

where γ is the age at death, βj is the slope of regression, ej is the sex-corrected frequency from the prior regression, 
and α is the intercept of regression defined by the expected mean age at death in our discovery cohort (~ 70 years). 
We tested for an effect of gender-corrected allele frequency (ej) by a two-tailed t-test where we constructed our 
test hypothesis as below:

We interpreted positive βj and negative βj as pro-longevity and pro-aging, respectively. For each βj , we cal-
culated the standard error using the formula below:

where, γ is the age at death, γ̂  is the estimated age at death, n is the total number of bins, ej is the frequency 
residual and e j is the mean of frequency residuals. Variants surpassing the genome-wide significant threshold 
(P < 5E-8) were selected for replication analysis in the UK Biobank dataset and downstream analysis.

The number of variants in all age bins was consistent across all autosomes.

Functional enrichment analysis
To identify functionally relevant SNPs, we used FUMA74 to analyze the summary statistics from the sliding 
regression analysis. Variant coordinates in all analyses were defined according to the Hg19/GRCh37 assembly. We 
identified significant independent SNPs as variants surpassing the genome-wide significant threshold (P < 5E-08) 
and are independent of each other at r2 < 0.1. We defined LD blocks surrounding the lead SNP according to the 
whole-genome LD maps of the European population75 and included all known SNPs in the LD block (regardless 
of being included in the sliding regression) that are in LD with the lead SNP at r2 ≥ 0.5 for eQTL and chromatin 
interaction mapping. The defined risk loci, therefore, may contain SNPs that were not available in the summary 
statistic input from the sliding regression but are linked to the significant independent SNPs according to the 
1000G reference panel. For each risk locus, we only retained SNPs with MAF ≥ 0.1 in the Ashkenazi Jewish popu-
lation. Additionally, where the distance between two risk loci in neighboring LD blocks was less than 250 kb, the 
neighboring LD blocks were merged to a single larger risk locus. We mapped SNPs to the nearest gene within a 
10 kb window for positional mapping. For eQTL and Chromatin interaction mapping, annotation was carried 
out over the entire risk region and genes within the risk locus, and those located outside that are linked to the 
SNPs in the genomic risk locus were prioritized.

Phenome wide association analysis (PheWAS)
We tested the association of the shortlisted variants with 1,504 well-powered traits and disease endpoints ascer-
tained primarily from the UK Biobank76. Each SNP was interrogated for association independently, and traits 
surpassing the Bonferroni corrected threshold for multiple testing were reported as significantly associated. To 
test whether the extent of observed pleiotropy is higher than expected in specific trait domains, we defined the 

γ = α + βjej

{H0 :
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βj = 0

)
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(
βj �= 0
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null distribution as an equal number of positive signals across all domains (under the null hypothesis of no dif-
ferences in domain-specific pleiotropy). We used a one-sided Fisher’s exact test to compute odd ratios.

Polygenic risk score (PRS) calculation
We calculated the additive effect of common variants on the genetic liability of traits associated with candidate 
variants. We used the clumping and thresholding strategy implemented in PRSice software. We computed poly-
genic scores for each trait independently using the formula below:

where βj is the effect size (or log odds ratio (OR) for binary traits) of the allele j, ψ is the allele dosage for SNP j, 
and M is the total number of SNPs after pruning.

We followed the best practice recommendation for PRS calculation77. Briefly, we calculated the chip heritabil-
ity (h2

SNP) across each independent trait using the LD score regression78 and confirmed h2
SNP > 0.05. Designations 

of the effect allele across all summary statistics were harmonized to match those of the UK Biobank. We used 
PRSice-279 to calculate PRSs. We implemented the standard “clumping + thresholding” method to remove highly 
correlated SNPs (r2 > 0.1) and retain only the most significant associations. Since the optimal SNP association 
P-value for inclusion in the PRS calculation is unknown a priori, we generated PRS across a range of p-value 
thresholds and selected the threshold providing the highest Nagelkerke R2.

We calculated the PRS correlation (rPRS) as Pearson’s correlation of standardized PRS across the 87 traits. As 
expected, PRS scores for traits within the same domain and related biomarkers showed a higher correlation.

Derivation of composite polygenic scores
We modeled the age at death using the scaled PRS scores across the 87 traits (53 traits from PheWAS analysis 
and 34 blood and urine biomarker traits). All PRSs were standardized to the unit scale (i.e., zero mean and unit 
standard deviation) across the entire dataset. We split our cohort into derivation (n = 715) and validation set 
(n = 242). To increase the statistical power of the model for predicting longevity, the derivation set was enriched 
for samples with age at death over 95 years.

We used a stacked model with five-fold cross-validation to predict age at death based on traits’ PRSs. From 
the 87 distinct traits and endophenotypes, we first fitted an Elastic-net regression to remove non-informative 
PRSs. Next, the remaining PRSs were used in a polynomial regression to derive the informative interactions 
between the PRS scores, and finally, all interaction terms and individual PRS scores were plugged into the final 
elastic-net regression to remove the non-informative interaction terms. In all penalized regression steps, we 
tested a range of penalties to decide the optimum penalty threshold and selected the best-performing model in 
terms of cross-validated AUC. We derived the iLGS from the formula below:

where βi is the coefficient of PRS for trait i  in the ultimate model, and βij is the non-zero coefficients for the 
interaction terms between PRSs i and j drawn from c (n, 2) , in which n = 77 is the total number of PRSs with 
non-zero coefficient from the primary elastic-net regression (Fig. 2).

Derivation of iLGS SNP weights
We used a subsample of 62,268 individuals with European ancestry from the GERA cohort to derive the SNP 
weights. We imputed genotypes across autosomes using the Michigan Imputation Server72 and 1000 Genomes 
phase 3 haplotypes as the reference panel. We excluded SNPs with IMPUTE2 info score < 0.5 and carried out 
standard QC on the remaining SNPs. To enhance the calibration of statistics derived from our generalized linear 
model, we removed loci with minor allele counts less than 20 in PLINK (version 2.0). We calculated kinship coef-
ficients ( ϕk ) in KING (version 2.2.5)73 and removed related individuals up to the second degree, which is defined 
as ϕk > 0.088. Imputed and QC’ed genotypes from the remaining 59,534 individuals were used in a generalized 
linear regression formwork to derive iLGS SNP weights according to the formula below:

where iLGS is the vector of scores, Gj is the dosage matrix for variant j, (PC1 + · · · + PC3 + sex + B.C + (sex × B.C)) 
is the fixed-covariate matrix correcting for the top 10 principal components, sex, birth cohort (B.C), and the 
interaction of sex with birth cohort and ε is the residual error subject to least-square minimization.

Survival regression analysis
We evaluated the utility of iLGS in distinguishing differential longevity in the validation set (n = 242). We used 
the Lifelines package80 (version 0.25.11) to fit a non-parametric Cox’s proportional hazard model according to 
the formula below:

where, h0(t) is the baseline hazard estimated using Breslow’s method. To increase the stability of estimates we 
included a penalizer term of 0.0005 and L1-ratio of 1.0 to shrink the magnitude of β̂i according to:

PRSp =
∑M

j
βj × ψ;ψ ∈ {0, 1, 2},

iLGS =
∑m

i=1
βiPRSi +

∑n

i,j=1
βij(PRSi × PRSj),

iLGS = Gjβj + (PC1 + · · · + PC3 + sex + B.C + (sex × B.C))β ′ + ε

h(x) = h0(t)exp(iLGS.β1 + sex.β2 + (iLGS × sex).β3
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The significance of individual regression coefficients was investigated using the likelihood ratio test. The 
absence of deviation from proportional hazard assumptions was validated using the global test for Schoenfeld 
residuals. We also calculated the cumulative risk of death (as a function of age) across the five quintiles of iLGS 
based on the equation below:

where η̂(t) is the cumulative survival at the given time (t) , ĥ0(t) is the estimated baseline hazard at time t and 
iLGSQ

∗ is the quintile of the iLGS score.

Evaluation of the iLGS
We estimated survival curves across different quintiles of iLGS using the Kaplan–Meier estimator:

where, θi is the number of death events at a particular time ti , and δi is the fraction of the population at risk of 
death prior to time ti . We investigated whether there is a significant difference in survival probability across 
quintiles of iLGS using the log-rank test.

We tested the performance of iLGS for distinguishing the “age at diagnosis” of three late-life cardiovascular 
pathologies (i.e., angina, arrhythmia, and interventional cardiac procedures) and three types of cancers (i.e., 
breast, prostate, and skin cancer) across 242 Ashkenazi Jewish individuals with available clinical and genotypic 
data. Kaplan–Meier survival curves across the top and bottom quintile of iLGS were compared using the log-
rank test. We calculated the survival time post-diagnosis for each trait as the difference between the “age at 
death” and the “age at diagnosis”. In addition, we investigated the association of dummy iLGS quintiles with 
post-diagnosis medical intervention survival time using an ordinary least square regression while controlling 
for the gender effect.

Validating iLGS performance in additional cohorts
We investigated the performance of iLGS to distinguish survival in two additional cohorts. We used whole-
genome sequences from 2570 participants (male 1251; female 1319) of the Medical Genome Reference Bank 
(MGRB) cohort69. This cohort comprises healthy elderly individuals depleted for aging-related disorders and 
cancers. We derived the age of participants based on their respective dates of birth. At the time of analysis, the age 
of participants ranged from 75 to 102 years old (mean = 86; SD = 5.13). We corroborated participants’ reported 
sexes with X-chromosome heterozygosity estimates. Prior to the PRS calculation, we removed variant calls with 
read depth (DP) ≤ 10 or FisherStrand bias (FS > 60). Furthermore, we excluded INDELs and multi-allelic variants 
and subjected the data to the standard QC procedure as explained above. This resulted in 8,496,911 autosomal 
SNPs being used to compute iLGS. We also replicated the performance of iLGS across the 510 participants (194 
males and 316 females) of the Wellderly cohort44 (Supplementary Table S10). Since these samples were sequenced 
using the Complete Genomics platform (Complete Genomics), we initially converted the “transvariants” calls 
to the conventional VCF format. We subsequently removed indels, multi-allelic SNPs, and variants with low 
read-depth DP ≤ 10 or variants flagged as “VQLOW”. Upon standard QC, 3,383,869 autosomal SNPs were used 
for iLGS calculation. Since age at death in these two cohorts was undetermined, we first binned participants of 
each cohort into three age categories: < 90, [90, 94], and ≥ 95. Then, we applied a two-sided Fisher’s exact test to 
investigate the association of top ( Q5

iLGS ) and bottom quintile iLGS ( Q1
iLGS ) with age categories in each cohort 

independently.

Proteomic analysis across quintiles
The LonGenity study used the 5 k SomaScan Assay V4, which includes 5,209 SOMAmer reagents targeting 
human proteins. SomaScan data standardization was carried out by SomaLogic and has been described in detail 
before46. In summary, the study measured the relative concentration of 5,209 human-specific SOMAscan aptam-
ers and 75 non-human and control aptamers in 1,027 participants of the Einstein LonGenity cohort. Normal-
ized aptamer concentrations, measured in relative fluorescent units (RFU), were used to eliminate proteins and 
individuals with significant variation across array runs, as described by Candia et al.81. After conducting quality 
checks, 960 sequences that failed the checks were removed. After excluding non-human proteins, deprecated 
markers, and “noncleavable”, “nonbiotin”, and spurious markers, 4,265 SOMAmer reagents remained available 
for proteomic analysis.

We measured the association between the protein levels and the iLGS using a robust regression with MM-
estimator in the validation set (with available proteomic data) for each gender group separately (123 males and 
115 females). To enhance the reliability of the regression in the presence of anomalous protein-levels, we used 
Cook’s distance to remove outliers with a residual value > 4/n. We carried out a gender-stratified comparison 
between the Q5

iLGS(top quintile iLGS) versus Q1
iLGS (bottom quintile iLGS) across individuals in the ≥ 95 age 

bin and applied the empirical Bayes moderated t-test using the Limma package82 to compare normalized RFU 
intensities. All P-values were corrected for multiple hypothesis testing using the Benjamini–Hochberg method 
(FDR < 0.05). Significant proteins were utilized to search for potential drug candidates for repurposing in the 
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DrugBank database (version 5.1.8)54. We restricted our analysis to drugs with clinical phase assignment as “exper-
imental”, “investigational”, or “approved” status, corresponding to clinical trial phase Ι, ΙΙ, and ΙΙΙ, respectively.

Data availability
Summary statistics for the longevity association of analyzed variants in our Ashkenazi Jewish longevity cohort 
and SNP weights for polygenic scores derived in this study will be available upon request. Due to privacy concerns 
for our research participants, individual-level genetic data from the Einstein LonGenity study are not publicly 
available; however, anonymized data will be shared upon request from a qualified academic investigator, provid-
ing the data transfer is approved by the Institutional Review Board and regulated by a material transfer agree-
ment. The whole genome data from the Medical Genome Reference Bank and the Wellderly cohort is accessible 
through the European genome-phenome archive under study IDs EGAS00001003511 and EGAD00001003941, 
respectively. The genotyping array data for the GERA cohort (Resource for Genetic Epidemiology Research on 
Aging) is available through dbGaP Study Accession: phs000674.v2.p2. We used genotypes and summary statistics 
from publicly available databases to estimate linkage disequilibrium correlations and construct polygenic scores. 
We used the genetic and clinical data from the UK Biobank under research project ID 58,069 (https://​www.​
ukbio​bank.​ac.​uk/​enable-​your-​resea​rch/​appro​ved-​resea​rch/​evolu​tiona​ry-​analy​sis-​of-​ageing-​and-​age-​relat​ed-​disor​
ders-​in-​the-​extant-​human-​popul​ation). The various summary statistics used to calculate genetic correlations are 
available from GeneAtlas (http://​genea​tlas.​roslin.​ed.​ac.​uk/), NealeLab (http://​www.​neale​lab.​is/​uk-​bioba​nk) and 
GWASAtlas (https://​atlas.​ctglab.​nl). We used DrugBank v.5.1.8 to identify drugs with repurposing potential as 
gerotherapeutics which are available at (https://​go.​drugb​ank.​com/​relea​ses/5-​1-8). Source data for figures in this 
study are available in the supplementary documents and upon request from the corresponding author.

Code availability
The code used for the generation of the Integrated Longevity Genetic Scores (iLGS) model and the accompanying 
sensitivity analysis is available on GitHub at: https://​github.​com/​RezaJF/​iLGS.
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