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Functional genetic variants 
and susceptibility and prediction 
of gestational diabetes mellitus
Gongchen Huang 1,3, Yan Sun 1,3, Ruiqi Li 1, Lei Mo 2, Qiulian Liang 1* & Xiangyuan Yu 1*

The aetiological mechanism of gestational diabetes mellitus (GDM) has still not been fully understood. 
The aim of this study was to explore the associations between functional genetic variants screened 
from a genome-wide association study (GWAS) and GDM risk among 554 GDM patients and 641 
healthy controls in China. Functional analysis of single nucleotide polymorphisms (SNPs) positively 
associated with GDM was further performed. Univariate regression and multivariate logistic 
regression analyses were used to screen clinical risk factors, and a predictive nomogram model was 
established. After adjusting for age and prepregnancy BMI, rs9283638 was significantly associated 
with GDM susceptibility (P < 0.05). Moreover, an obvious interaction between rs9283638 and clinical 
variables was detected (Pinteraction < 0.05). Functional analysis confirmed that rs9283638 can regulate 
not only target gene transcription factor binding, but it also regulates the mRNA levels of SAMD7 
(P < 0.05). The nomogram model constructed with the factors of age, FPG, 1hPG, 2hPG, HbA1c, TG 
and rs9283638 revealed an area under the ROC curve of 0.920 (95% CI 0.902–0.939). Decision curve 
analysis (DCA) suggested that the model had greater net clinical benefit. Conclusively, genetic variants 
can alter women’s susceptibility to GDM by affecting the transcription of target genes. The predictive 
nomogram model constructed based on genetic and clinical variables can effectively distinguish 
individuals with different GDM risk factors.
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Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy and is defined as 
the onset or the first discovery of glucose intolerance during pregnancy1. Worldwide, it affects approximately 
2–20% of all pregnant women, but, in China, approximately 14.8% of pregnant women are affected2. Studies have 
confirmed that GDM can ultimately lead to adverse outcomes and long-term adverse effects on mothers and 
their offspring, such as foetal macrosomia, preeclampsia (PE), preterm birth, spontaneous abortion, respiratory 
distress syndrome, small for gestational age (SGA), large for gestational age (LGA), polycythemia, future obesity 
and type 2 diabetes mellitus (T2DM)3–5. GDM poses a serious threat to the health and quality of life of patients 
and their offspring6,7.

Similar to the pathogenesis of T2DM, GDM can be caused by insulin resistance and insufficient insulin 
secretion compensation8,9. Currently, the known causes of GDM include older age at pregnancy, prepregnancy 
overweight or obesity, excessive weight gain during pregnancy, family history of T2DM, and past history of 
GDM8,10. Epidemiological evidence shows that a family history of diabetes is an independent risk factor for 
GDM, and the closer individuals are to diabetes patients, the greater the risk of GDM is during pregnancy11,12. In 
addition, the incidence rate of GDM in Asian women during pregnancy is approximately 3–7 times greater than 
that in Caucasians13,14. This indicates that genetic factors are also involved in the pathogenesis of GDM. Therefore, 
identifying individual genetic risk factors for GDM is highly important for disease prevention and control.

Single nucleotide polymorphisms (SNPs) are the main variant form of the human genome and determine 
the core information of genetic susceptibility to disease. It has been widely applied in disease risk prediction 
and patient prognosis assessment15. SNPs located in different functional regions of genes may affect promoter 
and enhancer activity, alternative splicing, messenger RNA (mRNA) conformation and posttranscription level, 
protein function and structure and even cause changes in the biological traits of an individual16–18. Genome-wide 
association studies (GWASs) are considered an effective approach for detecting SNPs associated with complex 
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disease phenotypes or traits across the entire genome, providing more genetic clues for the pathogenesis of 
human diseases. At present, a certain number of GDM susceptibility SNPs have been successfully identified14,19–21.

Disease prediction models can predict individuals’ probability of developing disease or experiencing certain 
conditions in the future22. Previous studies have extensively constructed GDM nomogram prediction models 
based on conventional clinical parameters (age, BMI, blood pressure, FPG, HbA1c, glucose and lipid levels, etc.) 
for early disease detection, prevention and treatment23–25. During the construction process of the nomogram 
model, the factors included in the model were scored based on the size of the logistic regression coefficients and 
then presented in the form of scaled line segments. The probability of corresponding outcome events occurring 
was determined by calculating the total score. This type of model can effectively predict the risk of individual 
GDM occurrence and help doctors make decisions through the use of visualized clinical predictions that provide 
personalized and highly accurate risk estimates26. However, there is a lack of risk factors characterized by genetic 
susceptibility as a predictive indicator. It is of great clinical significance to establish a practical risk prediction 
model for complex human diseases, including GDM prevention and control, by combining genetic variants and 
environmental risk factors.

Here, a large sample size case‒control study was conducted to validate the effects of SNPs screened by GWAS 
on the incidence of GDM. Subsequently, a nomogram model with GDM-positively associated SNPs and clinical 
indicators was constructed for early GDM prediction.

Methods
Study population
All subjects who met the following inclusion criteria were enrolled in the Affiliated Hospital of Guilin Medical 
University from September 2014 to April 2016: singleton pregnancy, no family relationship and no metabolic 
disease, such as type 1/2 diabetes mellitus. A routine 75-g oral glucose tolerance test (OGTT) was performed 
between 24 and 28 weeks of gestation. According to the standards of the International Association of Diabetes 
and Pregnancy Research Groups (IADPSG), women can be diagnosed with GDM if their fasting plasma glucose 
(FPG) is ≥ 5.1 mmol/L, 1-h plasma glucose (1hPG) is ≥ 10.0 mm/L or 2-h plasma glucose (2hPG) is ≥ 8.5 mmol/L.

At the initial discovery stage, 96 GDM patients and age and pre-BMI matched 96 healthy pregnant women 
from the same period were recruited to conduct a genome-wide association study (GWAS) for screening GDM 
associated SNPs (GDM-SNPs) by using infinium Asian Screening Array (ASA, illumina) BeadChip. During the 
validation phase, singleton pregnant women of the same conditions were recruited, and candidate SNPs were 
genotyped in 554 GDM patients and 641 healthy pregnancies. In addition, biological samples from the other 42 
normal pregnant women, including peripheral whole blood and placental tissues, were collected to detect the 
biological functions of the positively associated variants.

The Ethics Committee of Guilin Medical University approved this research (Number: GLMC20131205), and 
the study was conducted in accordance with the Declaration of Helsinki. All included subjects signed informed 
consent forms prior to study procedures. The details of this study design are depicted in the flowchart in Fig. 1.

Infinium Asian screening array (ASA)
All DNA samples were extracted using DNA-extraction kits (Tiangen Biotech). Genotyping module of 
Genomestudio v2.1 (illumina) was used to call the genotype, and to obtain high-quality data for GWAS. We 
pruned the data set of discovery stage with the following criteria: (1) SNP call rate > 95%, and a threshold for 
Hardy–Weinberg equilibrium (HWE) of 0.0001, minimum allele frequencies (MAF) < 1% and sex chromosome 
SNP sites; (2) Sample call rates > 95%; In addition, to exclude closely related individuals, we calculated genome-
wide identity by descent (IBD) for each pair of samples and removed samples with PI-HAT > 0.25. We took group 
analysis quality control from 1000Geomics Northern and Western European Ancestry (CEU), Japanese in Tokyo 
(JPT) and Han Chinese in Bejing (CHB) database to Confirm whether the sample grouping meets expectations 
and detect outlier samples.

Clinical and biochemical characteristics
Clinical and biological characteristics, including age, prepregnancy weight (kg), height (m), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), 1-h plasma glucose (1hPG), 
2-h plasma glucose (2hPG), triglyceride (TG), total cholesterol (TC), haemoglobin A1c (HbA1c), low-density 
lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), etc., were obtained from a 
unified questionnaire and patient medical records.

Candidate SNP selection and genotyping
Preliminary selection of candidate SNPs was based on the strength of the association effect on GDM 
(P < 1.0 × 10−3) according to the Infinium Asian Screening Array (ASA) BeadChip. The SNP function prediction 
(FuncPred) tool (https://​manti​core.​niehs.​nih.​gov/​snpin​fo/​snpfu​nc.​html) was subsequently used for screening 
potential functional variants in the Chinese Han population in Beijing (CHB) with minimum allele frequencies 
(MAF) greater than 0.05.

The candidate variants were genotyped via the Sequenom MassARRAY platform. The multiplex PCR master 
mix was composed of 1.0 μl of template DNA (20 ~ 100 ng/μl), 1.850 μl of ddH2O, 0.625 μl of 1.25 × PCR buffer 
(15 mmol/L MgCl2), 0.325 μl of 25 mmol/L MgCl2, 0.1 μl of 25 mmol/L dNTPs, 1 μl of 0.5 μmol/L primer mix, 
and 0.1 μl of 5 U/μl HotStar Taq polymerase. The reaction was conducted at 94 °C for 15 min, followed by 45 
cycles at 94 °C for 20 s, 56 °C for 30 s and 72 °C for 1 min, with a final incubation at 72 °C for 3 min. The primers 
used are listed in Supplemental Table S1.

https://manticore.niehs.nih.gov/snpinfo/snpfunc.html
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Functional analysis of positively associated SNPs
For positively associated SNPs located in TFBSs, the Alibaba 2.1 tool (http://​gene-​regul​ation.​com/​pub/​progr​ams/​
aliba​ba2/​index.​html ) was used to explore potential biological functions. In addition, to determine whether the 
SNP was an expression quantitative trait locus (eQTL), we also carried out validated experiments in our study.

According to the Aidlab DNA Extraction Kit (Aidlab Biotechnology Co., Ltd., China), genomic DNA was 
extracted from peripheral blood of 42 healthy pregnant women, and then the optical density values of each 
sample at 260 nm and 280 nm were measured using a NanoDrop spectrophotometer (Thermo Scientific, 
Waltham, MA, USA) to determine the DNA concentration and purity. Next, the genotypes of the candidate 
SNPs were determined using Kompetitive Allele Specific Polymerase Chain Reaction (KASP)27 in a StepOnePlus™ 
real-time PCR system (Thermo Fisher Scientific, Life Technologies Holding Pte Ltd., China). The 10-µl reaction 
system contained 5 µl of Flu Arms 2 × PCR mix, 0.5 µl of three specific primers (F1: 0.1 µl, F2: 0.1 µl, and R: 
0.3 µl), 0.5 µl (25–150 ng) of DNA and 4 µl of ddH2O. The cycling conditions were as follows: hot-start Tap 
activation at 95 °C for 3 min, followed by 10 touchdown cycles at 95 °C for 15 s and at 61–55 °C for 60 s (61 °C 
decreasing to 0.6 °C per cycle to achieve a final annealing and elongation temperature of 55 °C), followed by 
30 amplification cycles at 95 °C for 15 s, 55 °C for 60 s and postread at 30 °C for 60 s. The primer sequences are 
shown in Supplemental Table S1.

Total RNA was extracted from the placental tissues of 42 normal pregnant women using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The concentration and purity 
of the extracted RNA were tested using a Thermo Scientific Nanodrop-2000c microspectrophotometer. Total 
RNA (2 µg) was reverse transcribed into cDNA according to the instructions for the reverse transcription kit 
(HaiGene, Harbin, China). Finally, quantitative real time polymerase chain reaction (QRT-PCR) was performed 
using the GLPBIO SYBR Green qPCR Mix (2 ×) kit on the StepOne Plus TM real-time PCR system. The 10 µl 

Figure 1.   The flowchart of the study design. TFBS indicated transcription factor-binding sites, e QTL indicated 
expression quantitative trait locus.

http://gene-regulation.com/pub/programs/alibaba2/index.html
http://gene-regulation.com/pub/programs/alibaba2/index.html
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RT‒qPCR system contained 1 µl of cDNA template, 5 µl of 2 × SYBR Green PCR Mastermix, 2 µl of forwards 
and reverse primer concentrations and 3.4 µl of DEPC ddH2O. The PCR mixtures were denatured at 95 °C for 
10 min, followed by 40 cycles of 95 °C for 15 s and 65 °C for 60 s. The 2^(− ΔΔCt) method was used to quantify 
gene expression, with GAPDH serving as an internal control28. The primer sequences are shown in Supplemental 
Table S1.

Data processing
In this study, the data were processed with IBM SPSS Statistics 28 for Windows (IBM Corp., Armonk, NY, USA) and R 
4.3.1 software. Clinical and biochemical variables are shown as the mean ± SD or percentage and were analysed using 
independent sample t tests or chi square (χ2) tests. Logistic regression analysis was adopted to evaluate the association 
between variants and GDM risk with the odds ratio (OR) and its corresponding 95% confidence interval (CI). One-
way ANOVA was used to compare expression levels among the different genotypic samples. Additionally, univariate 
logistic regression and multivariate regression analysis by forwards stepwise selection with the Akaike information 
criterion (AIC) were employed to determine the clinical risk factors for GDM.

A predictive nomogram model composed of clinical risk factors and positive SNPs was eventually constructed 
using the R package “rms”. The area under the receiver operating characteristic curve (AUC) was used to evaluate 
the model’s performance. The calibration curve by internal validation with a bootstrap method with 1000 
resamples was generated to assess the level of consistency between the predicted and observed values. The clinical 
utility and net benefit were estimated by decision curve analysis (DCA). Finally, a web-based interactive dynamic 
nomogram was established via the R package “DynNom”. A two-sided test was adopted, and P values < 0.05 were 
considered to indicate statistical significance.

Results
Patient characteristics
The selected characteristics of the patients are shown in Table 1. There were no significant differences in TC, 
HDL-c or LDL-c between the two groups (P > 0.05). However, the mean age, pre-BMI, SBP, DBP, FPG, 1hPG, 
2hPG, HbA1c and TG levels in GDM patients were much greater than those in controls (P < 0.05).

Candidate SNPs Screening
According to the GWAS, a large amount of GDM associated SNPs were screened (Fig. 2). Based on the established 
variant screening strategy, 5 SNPs were ultimately selected, of which 4 SNPs (rs17099985, rs9283638, rs6798181, 
rs796749) were predicted to be located at transcription factor-binding sites (TFBS), and one SNP (rs1742473) 
was predicted to be located at a splicing site (SS) (Supplemental Table S2).

SAMD7 rs9283638 C > T and GDM risk
The frequency distribution of the three genotypes of the 5 variants followed the Hardy Weinberg equilibrium 
(HWE) law (PHWE > 0.05) in the control group. Significant differences in the genotype distribution of rs9283638 
were observed between GDM patients and controls (χ2 = 9.06, P = 0.011) (Table 2).

Unconditional logistic regression analysis revealed that rs9283638 was significantly associated with GDM risk. 
Compared with the CC genotype, the TT genotype increased GDM risk by 54% (TT vs. CC: crude OR = 1.54, 95% 
CI 1.05–2.26, P = 0.029). However, after adjusting for age and BMI, the positive associations previously described 
no longer existed. However, we did find a significant correlation with GDM risk in the recessive model (TT vs. 
CC/CT: adjusted OR = 1.57, 95% CI 1.06–2.32, P = 0.025) as shown in Table 2.

Table 1.   Demographic and clinical characteristics in cases and controls. Significant values are in bold. SBP 
systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, 1hPG 1-h plasma glucose, 
2hPG 2-h plasma glucose, HbA1c Hemoglobin A1c, TG Triglyceride, TC Total cholesterol, HDL-c High-
Density Lipoprotein cholesterol, LDL-c Low-Density Lipoprotein Cholesterol.

Variables Case (n = 554) Controls (n = 641) t/χ2 P

Age (years) 31.55 ± 4.76 28.83 ± 4.13 10.44  < 0.001

Pre-pregnancy BMI (kg/m2) 23.14 ± 3.61 21.44 ± 3.00 8.72  < 0.001

SBP (mmHg) 111.61 ± 10.59 108.76 ± 9.38 4.89  < 0.001

DBP (mmHg) 70.51 ± 8.74 68.68 ± 7.90 3.78  < 0.001

FPG (mmol/L) 5.22 ± 1.33 4.41 ± 0.37 13.96  < 0.001

1hPG (mmol/L) 9.76 ± 2.25 6.96 ± 1.43 25.30  < 0.001

2hPG (mmol/L) 8.30 ± 2.17 6.08 ± 1.10 21.85  < 0.001

HbA1c (%) 5.44 ± 0.68 5.00 ± 0.48 12.62  < 0.001

TG (mmol/L) 2.67 ± 1.20 2.43 ± 1.01 3.82  < 0.001

TC (mmol/L) 5.37 ± 1.15 5.29 ± 1.07 1.30 0.194

HDL-c (mmol/L) 1.66 ± 0.42 1.65 ± 0.40 0.31 0.756

LDL-c (mmol/L) 3.49 ± 1.02 3.45 ± 1.01 0.68 0.496
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Figure 2.   Manhattan plot demonstrating the -log10 P value for the SNPs in the gestational diabetes mellitus 
genome-wide association study at the discovery stage. The red line represents the genome-wide significance 
threshold (P = 5 × 10–4).

Table 2.   Association analysis of studied genetic variants with GDM risk. Significant values are in bold. HWE 
Hardy–Weinberg Equilibrium test. a Genotype distribution difference tested by χ2. b Unconditional logistic 
regression analysis. c Adjusted for age, pre-BMI in logistic regression models.

Genotype Case Control PHWE Pa Crude OR (95%CI) Pb Adjusted OR (95%CI) Pc

rs17099985

 GG 396 461

0.82 0.966

1 1

 GT 144 164 0.92(0.44–1.93) 0.826 0.98(0.74–1.30) 0.899

 TT 14 15 0.94(0.44–2.02) 0.875 1.13(0.50–2.54) 0.766

 GT/TT 158 179 1.03(0.80–1.32) 0.833 0.99(0.76–1.30) 0.963

 GG/GT 540 625 1 1

 TT 14 15 0.93(0.44–1.94) 0.837 1.14 (0.51–2.54) 0.756

rs9283638

 CC 234 286

0.550 0.011

1 1

 CT 206 295 0.85(0.67–1.09) 0.211 0.87(0.67–1.13) 0.295

 TT 73 58 1.54(1.05–2.26) 0.029 1.46(0.97–2.21) 0.071

 CT/TT 279 353 0.97(0.77–1.22) 0.772 0.97(0.75–1.25) 0.805

 CC/CT 440 581 1 1

 TT 73 58 1.66(1.15–2.40) 0.007 1.57(1.06–2.32) 0.025

rs1742473

 TT 395 475

0.820 0.350

1 1

 TC 145 156 0.59(0.26–1.35) 0.214 1.14(0.86–1.52) 0.355

 CC 14 10 0.66(0.29–1.54) 0.341 2.04(0.84–4.94) 0.113

 TC/CC 159 166 1.15(0.89–1.49) 0.278 1.19(0.91–1.57) 0.209

 TT/TC 540 631 1 1

 CC 14 10 1.64(0.72–3.71) 0.239 1.97(0.82–4.76) 0.130

rs6798181

 TT 411 468

0.550 0.590

1 1

 TC 131 156 0.96(0.73–1.25) 0.743 0.98(0.74–1.39) 0.903

 CC 10 17 0.67(0.30–1.48) 0.321 0.71(0.31–1.63) 0.423

 TC/CC 141 173 0.93(0.72–1.20) 0.572 0.96(0.73–1.26) 0.745

 TT/TC 542 624 1 1

 CC 10 17 1.48(0.67–3.25) 0.333 0.72(0.31–1.63) 0.427

rs796749

 CC 271 340

0.130 0.948

1 1

 CT 202 244 1.04(0.81–1.33) 0.762 0.97(0.75–1.26) 0.823

 TT 45 57 0.99(0.65–1.51) 0.965 0.99(0.63–1.55) 0.955

 CT/TT 247 301 1.03(0.82–1.29) 0.806 0.97(0.76–1.25) 0.832

 CC/CT 473 584 1 1

 TT 45 57 0.98(0.65–1.47) 0.902 1.00(0.65–1.54) 1.000
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According to the stratified analysis, compared with individuals with the CT/TT genotype, individuals with the 
rs9283638 TT genotype had a greater risk of GDM in the age > 30.09 years (adjusted OR = 2.80, 95% CI 1.45–5.41, 
P = 0.002), DBP ≤ 69.53 mmHg (adjusted OR = 1.75, 95% CI 1.06–2.91, P = 0.035) and TG subgroup ≤ 2.54 mmol/L 
(adjusted OR = 2.20, 95% CI 1.29–3.75, P = 0.004) subgroups. A significant interaction effect of rs9283638 with 
age (Pinteraction = 0.017) was observed under the recessive model (Table 3).

However, there was no significant association between GDM risk and other variants (rs17099985, rs1742473, 
rs6798181 and rs796749) in the present study (P > 0.05) (Table 2).

Functional analysis of positively associated SNPs
According to bioinformatic analysis, the rs9283638 polymorphism located at a TFBS can change the types of 
transcription factors binding to the promoter region under different alleles, which may affect gene transcription 
(Fig. 3a and b). Furthermore, expression quantitative trait locus (eQTL) analysis of placental tissues revealed that 
rs9283638 C > T could significantly regulate the mRNA levels of SAMD7 (P = 0.017). As shown in Fig. 4a and b.

Variable screening and nomogram establishment
Through the univariate and multivariate logistic regression analysis, 6 clinical factors were considered risk factors 
for GDM: age, FPG, 1hPG, 2hPG, HbA1c and TG. Considered the rs9283638 was associated with an increased 
GDM risk, the predictive nomogram model was eventually constructed with the positive SNP (rs9283638 
recessive model) and significant clinical factors (Supplemental Table S3). The patients were randomly assigned 
to the training and validation cohorts at a 7:3 ratio; thus, there were 805 patients in the training set and 344 
patients in the validation set. The GDM risk can be predicted based on the sum of assigned points for each 
risk factor’s level. Higher total scores indicate that GDM events are more likely to occur (Fig. 5a). In addition, 
to facilitate the use of nomograms for clinicians, we constructed a dynamic nomogram online to visualize the 
predictive results for GDM. The probability of GDM occurrence can be easily determined by inputting personal 
values of risk indicators into the web-based application (Fig. 5b–d).

Table 3.   Stratified analysis for associations between rs9283638 and GDM risk. Significant values are in bold. 
a Unconditional logistic regression analysis. b Adjusted for age, pre-BMI in logistic regression models. c Test for 
multiplicative interaction obtained from logistic regression models.

Variables TT (Case/Control) CC/CT (Case/Control) Crude OR (95%CI) Pa Adjusted OR (95%CI) Pb Pc

Age (year) 0.017

  ≤ 30.09 25/45 202/402 1.11(0.66–1.86) 0.704 0.99(0.58–1.71) 0.980

  > 30.09 48/13 238/178 2.76(1.45–5.25) 0.002 2.80(1.45–5.41) 0.002

Pre-BMI(Kg/m2) 0.365

  ≤ 22.23 34/38 189/394 1.87(1.14–3.06) 0.013 1.68(1.00–2.82) 0.052

  > 22.23 38/20 251/185 1.40(0.79–2.49) 0.250 1.35(0.75–2.45) 0.318

SBP (mmHg) 0.757

  ≤ 110.08 38/40 205/331 1.53(0.95–2.47) 0.079 1.66(1.00–2.74) 0.050

  > 110.08 35/18 235/249 2.06(1.14–3.74) 0.017 1.55(0.82–2.93) 0.182

DBP (mmHg) 0.570

  ≤ 69.53 41/37 206/304 1.64(1.01–2.64) 0.044 1.75(1.06–2.91) 0.030

  > 69.53 32/21 234/276 1.80(1.01–3.20) 0.047 1.29(0.69–2.40) 0.431

FPG (mmol/L) 0.115

  ≤ 4.79 25/50 176/513 1.46(0.88–2.43) 0.148 1.54(0.90–2.63) 0.118

  > 4.79 48/8 264/67 1.52(0.69–3.37) 0.300 1.33(0.58–3.03) 0.500

 1hPG (mmol/L) 0.714

  ≤ 8.26 19/46 104/460 1.83(1.03–3.25) 0.040 1.69(0.93–3.07) 0.085

  > 8.26 54/12 336/120 1.61(0.83–3.11) 0.158 1.60(0.81–3.15) 0.173

2hPG (mmol/L) 0.205

  ≤ 7.11 18/50 129/478 1.33(0.75–2.37) 0.324 1.31(0.72–2.39) 0.375

  > 7.11 55/8 311/102 2.26(1.04–4.89) 0.040 2.15(0.97–4.75) 0.059

HbA1C (%) 0.588

  ≤ 5.20 23/40 159/435 1.57(0.91–2.71) 0.103 1.53(0.87–2.68) 0.138

  > 5.20 50/18 281/145 1.43(0.81–2.55) 0.220 1.43(0.78–2.61) 0.251

TG (mmol/L) 0.485

  ≤ 2.54 42/30 222/371 2.34(1.42–3.85) 0.001 2.20(1.29–3.75) 0.004

  > 2.54 31/28 218/209 1.06(0.62–1.83) 0.830 1.04(0.58–1.85) 0.894
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Validation of the nomogram
The predictive nomogram had an area under the curve (AUC) of 0.920 (95% CI 0.902–0.939, P < 0.001) in 
the training cohort and 0.834 (95% CI 0.778–0.890, P < 0.001) in the validation cohort, indicating the good 
discriminating ability of the model (Fig. 6a and b). The nomogram calibration plot was roughly close to the ideal 
line, revealing good agreement between the predicted and observed values (Fig. 6c and d). As shown in the DCA 
analysis, the model curves for most of the risk threshold probabilities were above the two lines (“treat all” or “treat 
none”), suggesting that the nomogram model had greater net clinical benefit (Fig. 6e and f).

Discussion
GDM is considered to pose a serious threat to the short-term and long-term health of mothers and their 
offspring29. Identifying high-risk populations for GDM is particularly useful for early intervention and prevention 
of disease progression30,31. Although significant progress has been made in identifying the mechanism of GDM 
susceptibility, they have not been fully understood. It is now recognized that GDM is a multifactorial disease and 
exhibits a clear genetic tendency. That is, genetic variants may alter individuals’ genetic susceptibility to GDM, 
even under the same environmental conditions32,33. Here, while clarifying the association between genomic 
SNPs and GDM, we further attempted to construct a nomogram predictive model to predict the risk of GDM in 
pregnant women. It is believed to be of great social significance for the prevention and control of GDM.

In the present study, we observed a significant association between rs9283638 and the risk of GDM in the 
population of Guilin, China. This finding is consistent with the findings of numerous previous studies8,10,13,14,19–21. 
Meaning, there are obvious genetic characteristics involved in the pathogenesis of GDM, and a series of associated 
genes and SNPs are involved in disease occurrence at the genetic level. Furthermore, these findings suggest that 
the studied SNPs exert different effects on different levels of some clinical indicators, and significant interactions 
have been observed between rs9283638 and age. Similarly, Kwak SH et al. reported that the CDKAL1 SNP 

Figure 3.   The prediction for the transcription factor binding site (TFBS) using AliBaba 2.1. (a) The 
transcription factors of rs9283638 C allele in 97–106 bp. (b) The transcription factors of rs9283638 T allele in 
101–110 bp.
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rs7754840 was significantly associated with insulin expression, inhibition of insulin secretion in pancreatic 
β-cells and birth weight of a baby20, while Polina V et al. suggested that genetic variants of MTNR1B (rs10830963 
and rs1387153) can reduce early insulin secretion through parallel signalling pathways in pancreatic β-cells, 
thereby regulating glucose metabolism34. These findings indicated that genetic variants may modify the genetic 
background of an individual or, combine with environmental features or clinical traits, may affect individuals’ 
susceptibility to complex human diseases. Personal differences associated with GDM may be affected by SNPs 
or SNP-environmental factor interactions.

It is speculated that the construction of a predictive model can serve as an important bridge between clinical 
epidemiology or molecular epidemiology and clinical practice, and it could become an effective means of 
identifying high-risk populations, guiding clinical diagnosis and treatment, promoting the prevention and control 
of complex diseases, and improving patient clinical prognosis35,36. The nomogram prediction model integrates 
multiple disease-related indicators and draws scaled line segments on the same plane in a certain proportion 
to express the relationships between selected variables. The model quantifies the occurrence rate and high-
risk factors for GDM risk, intuitively representing the probability of patients developing GDM, and provides 
personalized risk assessment for subjects 26,37,38.

Given the independent hazard effect of environmental and genetic factors on the pathogenesis of GDM, this 
study incorporated validated SNPs significantly associated with GDM and clinical indicators (age, FPG, 1hPG, 
2hPG, HbA1c and TG) to construct a GDM risk prediction nomogram model. This model demonstrated a good 
ability to distinguish individual GDM risks, with an area under the ROC curve of 0.920. The genetic-clinical 
model can help clarify the probability of women developing GDM during pregnancy, thereby identifying high-
risk individuals and leading to personalized prevention. It is extremely important to accurately prevent GDM 
in individuals during early pregnancy.

The potential gene expression regulatory region variants not only serve as genetic markers but also may affect 
individual physiological and pathological manifestations by regulating the expression of genes or interacting 
with environmental exposure factors, making them suitable for revealing the susceptibility mechanisms of 
complex traits and diseases. For example, the functional variant rs10830963 was associated with GDM risk by 
regulating the expression levels of the MTNR1B gene, fasting blood glucose, fasting insulin, and homeostasis 
model assessment for insulin resistance39. In the present study, we found that rs9283638 is significantly 
associated with the risk of GDM and has significant interactions with age. Furthermore, we found that the above 
association findings seem to be biologically plausible. Functional analysis suggested that rs9283638 C > T can 
affect transcription factor binding to specific binding motifs and alter the transcription of the SAMD7 gene. In 
addition, mRNA level detection in placental tissues revealed that rs9283638 can be an eQTL that regulates the 
expression levels of SAMD7 mRNA. This finding provides new insight into the biological genetic mechanism 
of susceptibility to GDM.

However, this study has several limitations. First, as a hospital-based case‒control study, there will inevitably 
be bias in subject selection and data collection. Second, potential confounding factors of GDM, such as smoking 
status, poor obstetrics, malnutrition, and socioeconomic factors, were not assessed. These factors are likely to 
interfere with the true effects of the association between the studied variants and GDM risk. Third, the very 

Figure 4.   Schematic diagram of the genotyping of rs9283638 and the expression quantitative trait locus (eQTL) 
analysis of SAMD7. (a) rs9283638 genotyping plot by Kompetitive Allele Specific Polymerase Chain Reaction 
(KASP-PCR). (b) Analysis of SAMD7 differential expression level under different genotypes. *P < 0.05.
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low frequency of genotypes tested in the studied variants may still limit the statistical performance, especially 
in subgroup analysis. Finally, limited in-depth biological functional analysis of significantly associated variants 
was conducted in this study.

Figure 5.   The static and dynamic nomogram for predicting individual GDM risk. (a) A static nomogram for 
GDM risk prediction. Each risk indicators corresponding to level can be given different scores, and the total 
scores obtained by adding these scores from all variables can use to predict the GDM risk. (b) The risk variables 
input panel of the online dynamic nomogram (https://​qiuli​anl.​shiny​apps.​io/​GDM Predict/). (c) Person GDM 
predictive results’ graph visualization. (d) Showing individual GDM predictive probability and its corresponding 
95% confidence intervals.

https://qiulianl.shinyapps.io/GDM
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In the present study, we confirmed that rs9283638 is significantly related to the risk of GDM. The potential 
mechanism may involve independent genetic risk effects and genetic-environmental interactions affecting female 
individuals′ susceptibility to GDM. Based on key genetic SNPs and clinical parameters, a predictive nomogram 
model with good potential for the early identification and prevention of GDM has been successfully established.

Figure 6.   Validation of the nomogram. (a) Receiver operating characteristic (ROC) curves in training set with 
an area under the curve (AUC) of 0.920, cutoff value of 0.428, specificity of 80.6%, sensitivity of 89.9%. (b) 
ROC curve in validation set with a AUC of 0.834. (c) Calibration plot in training set conducted by a bootstrap 
method with 1000 resamples. (d) Calibration plot in validation set conducted by a bootstrap method with 1000 
resamples. (e) A decision curve analysis (DCA) in training set. (f) DCA curve in validation set.
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 Data availability
The datasets generated and/or analysed during the current study are available in the dryad repository, doi: https://​
doi.​org/https://​doi.​org/​10.​5061/​dryad.​fj6q5​743m.
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