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Functional genetic variants
and susceptibility and prediction
of gestational diabetes mellitus

Gongchen Huang?3, Yan Sun'?, Ruiqi Li!, Lei Mo?, Qiulian Liang*“ & Xiangyuan Yu'*

The aetiological mechanism of gestational diabetes mellitus (GDM) has still not been fully understood.
The aim of this study was to explore the associations between functional genetic variants screened
from a genome-wide association study (GWAS) and GDM risk among 554 GDM patients and 641
healthy controls in China. Functional analysis of single nucleotide polymorphisms (SNPs) positively
associated with GDM was further performed. Univariate regression and multivariate logistic
regression analyses were used to screen clinical risk factors, and a predictive nomogram model was
established. After adjusting for age and prepregnancy BMI, rs9283638 was significantly associated
with GDM susceptibility (P <0.05). Moreover, an obvious interaction between rs9283638 and clinical
variables was detected (Pj,;eraction < 0-05). Functional analysis confirmed that rs9283638 can regulate
not only target gene transcription factor binding, but it also regulates the mRNA levels of SAMD7
(P<0.05). The nomogram model constructed with the factors of age, FPG, 1hPG, 2hPG, HbAlc, TG
and rs9283638 revealed an area under the ROC curve of 0.920 (95% Cl 0.902-0.939). Decision curve
analysis (DCA) suggested that the model had greater net clinical benefit. Conclusively, genetic variants
can alter women'’s susceptibility to GDM by affecting the transcription of target genes. The predictive
nomogram model constructed based on genetic and clinical variables can effectively distinguish
individuals with different GDM risk factors.
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Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy and is defined as
the onset or the first discovery of glucose intolerance during pregnancy'. Worldwide, it affects approximately
2-20% of all pregnant women, but, in China, approximately 14.8% of pregnant women are affected?. Studies have
confirmed that GDM can ultimately lead to adverse outcomes and long-term adverse effects on mothers and
their offspring, such as foetal macrosomia, preeclampsia (PE), preterm birth, spontaneous abortion, respiratory
distress syndrome, small for gestational age (SGA), large for gestational age (LGA), polycythemia, future obesity
and type 2 diabetes mellitus (T2DM)*~>. GDM poses a serious threat to the health and quality of life of patients
and their offspring®’.

Similar to the pathogenesis of T2DM, GDM can be caused by insulin resistance and insufficient insulin
secretion compensation®®. Currently, the known causes of GDM include older age at pregnancy, prepregnancy
overweight or obesity, excessive weight gain during pregnancy, family history of T2DM, and past history of
GDM?!%. Epidemiological evidence shows that a family history of diabetes is an independent risk factor for
GDM, and the closer individuals are to diabetes patients, the greater the risk of GDM is during pregnancy'"'% In
addition, the incidence rate of GDM in Asian women during pregnancy is approximately 3-7 times greater than
that in Caucasians'!*. This indicates that genetic factors are also involved in the pathogenesis of GDM. Therefore,
identifying individual genetic risk factors for GDM is highly important for disease prevention and control.

Single nucleotide polymorphisms (SNPs) are the main variant form of the human genome and determine
the core information of genetic susceptibility to disease. It has been widely applied in disease risk prediction
and patient prognosis assessment'®. SNPs located in different functional regions of genes may affect promoter
and enhancer activity, alternative splicing, messenger RNA (mRNA) conformation and posttranscription level,
protein function and structure and even cause changes in the biological traits of an individual'*'®, Genome-wide
association studies (GWASs) are considered an effective approach for detecting SNPs associated with complex
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disease phenotypes or traits across the entire genome, providing more genetic clues for the pathogenesis of
human diseases. At present, a certain number of GDM susceptibility SNPs have been successfully identified*'*-2,

Disease prediction models can predict individuals’ probability of developing disease or experiencing certain
conditions in the future?. Previous studies have extensively constructed GDM nomogram prediction models
based on conventional clinical parameters (age, BMI, blood pressure, FPG, HbA ¢, glucose and lipid levels, etc.)
for early disease detection, prevention and treatment®-*. During the construction process of the nomogram
model, the factors included in the model were scored based on the size of the logistic regression coefficients and
then presented in the form of scaled line segments. The probability of corresponding outcome events occurring
was determined by calculating the total score. This type of model can effectively predict the risk of individual
GDM occurrence and help doctors make decisions through the use of visualized clinical predictions that provide
personalized and highly accurate risk estimates®. However, there is a lack of risk factors characterized by genetic
susceptibility as a predictive indicator. It is of great clinical significance to establish a practical risk prediction
model for complex human diseases, including GDM prevention and control, by combining genetic variants and
environmental risk factors.

Here, a large sample size case—control study was conducted to validate the effects of SNPs screened by GWAS
on the incidence of GDM. Subsequently, a nomogram model with GDM-positively associated SNPs and clinical
indicators was constructed for early GDM prediction.

Methods
Study population
All subjects who met the following inclusion criteria were enrolled in the Affiliated Hospital of Guilin Medical
University from September 2014 to April 2016: singleton pregnancy, no family relationship and no metabolic
disease, such as type 1/2 diabetes mellitus. A routine 75-g oral glucose tolerance test (OGTT) was performed
between 24 and 28 weeks of gestation. According to the standards of the International Association of Diabetes
and Pregnancy Research Groups (IADPSG), women can be diagnosed with GDM if their fasting plasma glucose
(FPG) is25.1 mmol/L, 1-h plasma glucose (1hPG) is>10.0 mm/L or 2-h plasma glucose (2hPG) is > 8.5 mmol/L.

At the initial discovery stage, 96 GDM patients and age and pre-BMI matched 96 healthy pregnant women
from the same period were recruited to conduct a genome-wide association study (GWAS) for screening GDM
associated SNPs (GDM-SNPs) by using infinium Asian Screening Array (ASA, illumina) BeadChip. During the
validation phase, singleton pregnant women of the same conditions were recruited, and candidate SNPs were
genotyped in 554 GDM patients and 641 healthy pregnancies. In addition, biological samples from the other 42
normal pregnant women, including peripheral whole blood and placental tissues, were collected to detect the
biological functions of the positively associated variants.

The Ethics Committee of Guilin Medical University approved this research (Number: GLMC20131205), and
the study was conducted in accordance with the Declaration of Helsinki. All included subjects signed informed
consent forms prior to study procedures. The details of this study design are depicted in the flowchart in Fig. 1.

Infinium Asian screening array (ASA)

All DNA samples were extracted using DNA-extraction kits (Tiangen Biotech). Genotyping module of
Genomestudio v2.1 (illumina) was used to call the genotype, and to obtain high-quality data for GWAS. We
pruned the data set of discovery stage with the following criteria: (1) SNP call rate>95%, and a threshold for
Hardy-Weinberg equilibrium (HWE) of 0.0001, minimum allele frequencies (MAF) < 1% and sex chromosome
SNP sites; (2) Sample call rates > 95%; In addition, to exclude closely related individuals, we calculated genome-
wide identity by descent (IBD) for each pair of samples and removed samples with PI-HAT > 0.25. We took group
analysis quality control from 1000Geomics Northern and Western European Ancestry (CEU), Japanese in Tokyo
(JPT) and Han Chinese in Bejing (CHB) database to Confirm whether the sample grouping meets expectations
and detect outlier samples.

Clinical and biochemical characteristics

Clinical and biological characteristics, including age, prepregnancy weight (kg), height (m), systolic blood
pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), 1-h plasma glucose (1hPG),
2-h plasma glucose (2hPG), triglyceride (TG), total cholesterol (TC), haemoglobin Alc (HbA1c), low-density
lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), etc., were obtained from a
unified questionnaire and patient medical records.

Candidate SNP selection and genotyping

Preliminary selection of candidate SNPs was based on the strength of the association effect on GDM
(P<1.0x107%) according to the Infinium Asian Screening Array (ASA) BeadChip. The SNP function prediction
(FuncPred) tool (https://manticore.niehs.nih.gov/snpinfo/snpfunc.html) was subsequently used for screening
potential functional variants in the Chinese Han population in Beijing (CHB) with minimum allele frequencies
(MAF) greater than 0.05.

The candidate variants were genotyped via the Sequenom MassARRAY platform. The multiplex PCR master
mix was composed of 1.0 pl of template DNA (20 ~ 100 ng/pl), 1.850 pl of ddH,0, 0.625 pl of 1.25 x PCR buffer
(15 mmol/L MgCl,), 0.325 pl of 25 mmol/L MgCl,, 0.1 pl of 25 mmol/L dNTPs, 1 pl of 0.5 umol/L primer mix,
and 0.1 pl of 5 U/ul HotStar Taq polymerase. The reaction was conducted at 94 °C for 15 min, followed by 45
cycles at 94 °C for 20 s, 56 °C for 30 s and 72 °C for 1 min, with a final incubation at 72 °C for 3 min. The primers
used are listed in Supplemental Table SI.
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Figure 1. The flowchart of the study design. TFBS indicated transcription factor-binding sites, e QTL indicated
expression quantitative trait locus.

Functional analysis of positively associated SNPs

For positively associated SNPs located in TFBSs, the Alibaba 2.1 tool (http://gene-regulation.com/pub/programs/
alibaba2/index.html) was used to explore potential biological functions. In addition, to determine whether the
SNP was an expression quantitative trait locus (eQTL), we also carried out validated experiments in our study.

According to the Aidlab DNA Extraction Kit (Aidlab Biotechnology Co., Ltd., China), genomic DNA was
extracted from peripheral blood of 42 healthy pregnant women, and then the optical density values of each
sample at 260 nm and 280 nm were measured using a NanoDrop spectrophotometer (Thermo Scientific,
Waltham, MA, USA) to determine the DNA concentration and purity. Next, the genotypes of the candidate
SNPs were determined using Kompetitive Allele Specific Polymerase Chain Reaction (KASP)¥ in a StepOnePlus™
real-time PCR system (Thermo Fisher Scientific, Life Technologies Holding Pte Ltd., China). The 10-ul reaction
system contained 5 pl of Flu Arms 2 x PCR mix, 0.5 pl of three specific primers (F1: 0.1 pl, F2: 0.1 ul, and R:
0.3 pl), 0.5 pl (25-150 ng) of DNA and 4 pl of ddH,O. The cycling conditions were as follows: hot-start Tap
activation at 95 °C for 3 min, followed by 10 touchdown cycles at 95 °C for 15 s and at 61-55 °C for 60 s (61 °C
decreasing to 0.6 °C per cycle to achieve a final annealing and elongation temperature of 55 °C), followed by
30 amplification cycles at 95 °C for 15 s, 55 °C for 60 s and postread at 30 °C for 60 s. The primer sequences are
shown in Supplemental Table S1.

Total RNA was extracted from the placental tissues of 42 normal pregnant women using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The concentration and purity
of the extracted RNA were tested using a Thermo Scientific Nanodrop-2000c microspectrophotometer. Total
RNA (2 pug) was reverse transcribed into cDNA according to the instructions for the reverse transcription kit
(HaiGene, Harbin, China). Finally, quantitative real time polymerase chain reaction (QRT-PCR) was performed
using the GLPBIO SYBR Green qPCR Mix (2 x) kit on the StepOne Plus TM real-time PCR system. The 10 pl
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RT—qPCR system contained 1 pl of cDNA template, 5 pl of 2x SYBR Green PCR Mastermix, 2 pl of forwards
and reverse primer concentrations and 3.4 pl of DEPC ddH2O. The PCR mixtures were denatured at 95 °C for
10 min, followed by 40 cycles of 95 °C for 15 s and 65 °C for 60 s. The 24 (-~ AACt) method was used to quantify
gene expression, with GAPDH serving as an internal control®®. The primer sequences are shown in Supplemental
Table S1.

Data processing

In this study, the data were processed with IBM SPSS Statistics 28 for Windows (IBM Corp., Armonk, NY, USA) and R
4.3.1 software. Clinical and biochemical variables are shown as the mean + SD or percentage and were analysed using
independent sample ¢ tests or chi square (%) tests. Logistic regression analysis was adopted to evaluate the association
between variants and GDM risk with the odds ratio (OR) and its corresponding 95% confidence interval (CI). One-
way ANOVA was used to compare expression levels among the different genotypic samples. Additionally, univariate
logistic regression and multivariate regression analysis by forwards stepwise selection with the Akaike information
criterion (AIC) were employed to determine the clinical risk factors for GDM.

A predictive nomogram model composed of clinical risk factors and positive SNPs was eventually constructed
using the R package “rms”. The area under the receiver operating characteristic curve (AUC) was used to evaluate
the model’s performance. The calibration curve by internal validation with a bootstrap method with 1000
resamples was generated to assess the level of consistency between the predicted and observed values. The clinical
utility and net benefit were estimated by decision curve analysis (DCA). Finally, a web-based interactive dynamic
nomogram was established via the R package “DynNom”. A two-sided test was adopted, and P values < 0.05 were
considered to indicate statistical significance.

Results

Patient characteristics

The selected characteristics of the patients are shown in Table 1. There were no significant differences in TC,
HDL-c or LDL-c between the two groups (P>0.05). However, the mean age, pre-BMI, SBP, DBP, FPG, 1hPG,
2hPG, HbAlc and TG levels in GDM patients were much greater than those in controls (P<0.05).

Candidate SNPs Screening

According to the GWAS, a large amount of GDM associated SNPs were screened (Fig. 2). Based on the established
variant screening strategy, 5 SNPs were ultimately selected, of which 4 SNPs (rs17099985, rs9283638, rs6798181,
rs796749) were predicted to be located at transcription factor-binding sites (TFBS), and one SNP (rs1742473)
was predicted to be located at a splicing site (SS) (Supplemental Table S2).

SAMD7 rs9283638 C>T and GDM risk

The frequency distribution of the three genotypes of the 5 variants followed the Hardy Weinberg equilibrium
(HWE) law (P> 0.05) in the control group. Significant differences in the genotype distribution of rs9283638
were observed between GDM patients and controls (y*=9.06, P=0.011) (Table 2).

Unconditional logistic regression analysis revealed that rs9283638 was significantly associated with GDM risk.
Compared with the CC genotype, the TT genotype increased GDM risk by 54% (TT vs. CC: crude OR=1.54, 95%
CI 1.05-2.26, P=0.029). However, after adjusting for age and BMI, the positive associations previously described
no longer existed. However, we did find a significant correlation with GDM risk in the recessive model (TT vs.
CC/CT: adjusted OR=1.57, 95% CI 1.06-2.32, P=0.025) as shown in Table 2.

Variables Case (n=554) Controls (n=641) t/x? P

Age (years) 31.55+4.76 28.83+4.13 10.44 <0.001
Pre-pregnancy BMI (kg/m?) 23.14+3.61 21.44+3.00 8.72 <0.001
SBP (mmHg) 111.61+10.59 108.76£9.38 4.89 <0.001
DBP (mmHg) 70.51+8.74 68.68+£7.90 3.78 <0.001
FPG (mmol/L) 522+1.33 4.41+0.37 13.96 <0.001
1hPG (mmol/L) 9.76+£2.25 6.96+1.43 25.30 <0.001
2hPG (mmol/L) 8.30+2.17 6.08+1.10 21.85 <0.001
HbAlc (%) 5.44+0.68 5.00+£0.48 12.62 <0.001
TG (mmol/L) 2.67+1.20 2.43+1.01 3.82 <0.001
TC (mmol/L) 537+1.15 5.29+1.07 1.30 0.194
HDL-c (mmol/L) 1.66+0.42 1.65+0.40 0.31 0.756
LDL-c (mmol/L) 3.49+1.02 3.45+1.01 0.68 0.496

Table 1. Demographic and clinical characteristics in cases and controls. Significant values are in bold. SBP
systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, 1hPG 1-h plasma glucose,
2hPG 2-h plasma glucose, HbA I¢ Hemoglobin Alc, TG Triglyceride, TC Total cholesterol, HDL-c High-
Density Lipoprotein cholesterol, LDL-c Low-Density Lipoprotein Cholesterol.
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Figure 2. Manhattan plot demonstrating the -log,, P value for the SNPs in the gestational diabetes mellitus
genome-wide association study at the discovery stage. The red line represents the genome-wide significance
threshold (P=5x107%).

Genotype | Case | Control | Pywe | P | Crude OR (95%CI) | P | Adjusted OR (95%CI) | P
1517099985

GG 396 461 1 1

GT 144 164 0.82 0.966 | 0.92(0.44-1.93) 0.826 | 0.98(0.74-1.30) 0.899
TT 14 15 0.94(0.44-2.02) 0.875 | 1.13(0.50-2.54) 0.766
GT/TT 158 179 1.03(0.80-1.32) 0.833 | 0.99(0.76-1.30) 0.963
GG/GT 540 625 1 1

TT 14 15 0.93(0.44-1.94) 0.837 | 1.14 (0.51-2.54) 0.756
159283638

CC 234 286 1 1

CT 206 295 0.550 | 0.011 | 0.85(0.67-1.09) 0.211 | 0.87(0.67-1.13) 0.295
TT 73 58 1.54(1.05-2.26) 0.029 | 1.46(0.97-2.21) 0.071
CT/TT 279 353 0.97(0.77-1.22) 0.772 | 0.97(0.75-1.25) 0.805
CC/CT 440 581 1 1

TT 73 58 1.66(1.15-2.40) 0.007 | 1.57(1.06-2.32) 0.025
151742473

TT 395 475 1 1

TC 145 156 0.820 |0.350 |0.59(0.26-1.35) 0.214 | 1.14(0.86-1.52) 0.355
CcC 14 10 0.66(0.29-1.54) 0.341 | 2.04(0.84-4.94) 0.113
TC/CC 159 166 1.15(0.89-1.49) 0.278 | 1.19(0.91-1.57) 0.209
TT/TC 540 631 1 1

CC 14 10 1.64(0.72-3.71) 0.239 | 1.97(0.82-4.76) 0.130
156798181

TT 411 468 1 1

TC 131 156 0.550 |0.590 |0.96(0.73-1.25) 0.743 | 0.98(0.74-1.39) 0.903
cC 10 17 0.67(0.30-1.48) 0321 |0.71(0.31-1.63) 0.423
TC/CC 141 173 0.93(0.72-1.20) 0.572 | 0.96(0.73-1.26) 0.745
TT/TC 542 624 1 1

CcC 10 17 1.48(0.67-3.25) 0.333 | 0.72(0.31-1.63) 0.427
15796749

CC 271 340 1 1

CT 202 244 0.130 | 0.948 |1.04(0.81-1.33) 0.762 | 0.97(0.75-1.26) 0.823
T 45 57 0.99(0.65-1.51) 0.965 |0.99(0.63-1.55) 0.955
CT/TT 247 301 1.03(0.82-1.29) 0.806 | 0.97(0.76-1.25) 0.832
CC/CT 473 584 1 1

TT 45 57 0.98(0.65-1.47) 0.902 | 1.00(0.65-1.54) 1.000

Table 2. Association analysis of studied genetic variants with GDM risk. Significant values are in bold. HWE
Hardy-Weinberg Equilibrium test. *Genotype distribution difference tested by 2. ®Unconditional logistic
regression analysis. “Adjusted for age, pre-BMI in logistic regression models.
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Variables \ TT (Case/Control) | CC/CT (Case/Control) | Crude OR (95%CI) \ P \ Adjusted OR (95%CI) | P* 3
Age (year) 0.017
<30.09 25/45 202/402 1.11(0.66-1.86) 0.704 0.99(0.58-1.71) 0.980
>30.09 48/13 238/178 2.76(1.45-5.25) 0.002 | 2.80(1.45-5.41) 0.002
Pre-BMI(Kg/m?) 0.365
<22.23 34/38 189/394 1.87(1.14-3.06) 0.013 | 1.68(1.00-2.82) 0.052
>22.23 38/20 251/185 1.40(0.79-2.49) 0.250 1.35(0.75-2.45) 0.318
SBP (mmHg) 0.757
<110.08 38/40 205/331 1.53(0.95-2.47) 0.079 1.66(1.00-2.74) 0.050
>110.08 35/18 235/249 2.06(1.14-3.74) 0.017 | 1.55(0.82-2.93) 0.182
DBP (mmHg) 0.570
<69.53 41/37 206/304 1.64(1.01-2.64) 0.044 | 1.75(1.06-2.91) 0.030
>69.53 32/21 234/276 1.80(1.01-3.20) 0.047 | 1.29(0.69-2.40) 0.431
FPG (mmol/L) 0.115
<4.79 25/50 176/513 1.46(0.88-2.43) 0.148 1.54(0.90-2.63) 0.118
>4.79 48/8 264/67 1.52(0.69-3.37) 0.300 1.33(0.58-3.03) 0.500
1hPG (mmol/L) 0.714
<8.26 19/46 104/460 1.83(1.03-3.25) 0.040 | 1.69(0.93-3.07) 0.085
>8.26 54/12 336/120 1.61(0.83-3.11) 0.158 1.60(0.81-3.15) 0.173
2hPG (mmol/L) 0.205
<7.11 18/50 129/478 1.33(0.75-2.37) 0.324 | 1.31(0.72-2.39) 0.375
>7.11 55/8 311/102 2.26(1.04-4.89) 0.040 | 2.15(0.97-4.75) 0.059
HbAI1C (%) 0.588
<5.20 23/40 159/435 1.57(0.91-2.71) 0.103 1.53(0.87-2.68) 0.138
>5.20 50/18 281/145 1.43(0.81-2.55) 0.220 1.43(0.78-2.61) 0.251
TG (mmol/L) 0.485
<2.54 42/30 222/371 2.34(1.42-3.85) 0.001 | 2.20(1.29-3.75) 0.004
>2.54 31/28 218/209 1.06(0.62-1.83) 0.830 1.04(0.58-1.85) 0.894

Table 3. Stratified analysis for associations between rs9283638 and GDM risk. Significant values are in bold.
*Unconditional logistic regression analysis. ®Adjusted for age, pre-BMI in logistic regression models. “Test for
multiplicative interaction obtained from logistic regression models.

According to the stratified analysis, compared with individuals with the CT/TT genotype, individuals with the
rs9283638 TT genotype had a greater risk of GDM in the age > 30.09 years (adjusted OR=2.80, 95% CI1.45-5.41,
P=0.002), DBP <69.53 mmHg (adjusted OR=1.75, 95% CI 1.06-2.91, P=0.035) and TG subgroup <2.54 mmol/L
(adjusted OR=2.20, 95% CI 1.29-3.75, P=0.004) subgroups. A significant interaction effect of rs9283638 with
age (Pipteraction = 0-017) was observed under the recessive model (Table 3).

However, there was no significant association between GDM risk and other variants (rs17099985, rs1742473,
rs6798181 and rs796749) in the present study (P>0.05) (Table 2).

Functional analysis of positively associated SNPs

According to bioinformatic analysis, the rs9283638 polymorphism located at a TFBS can change the types of
transcription factors binding to the promoter region under different alleles, which may affect gene transcription
(Fig. 3a and b). Furthermore, expression quantitative trait locus (eQTL) analysis of placental tissues revealed that
rs9283638 C>T could significantly regulate the mRNA levels of SAMD7 (P=0.017). As shown in Fig. 4a and b.

Variable screening and nomogram establishment

Through the univariate and multivariate logistic regression analysis, 6 clinical factors were considered risk factors
for GDM: age, FPG, 1hPG, 2hPG, HbAlc and TG. Considered the rs9283638 was associated with an increased
GDM risk, the predictive nomogram model was eventually constructed with the positive SNP (rs9283638
recessive model) and significant clinical factors (Supplemental Table S3). The patients were randomly assigned
to the training and validation cohorts at a 7:3 ratio; thus, there were 805 patients in the training set and 344
patients in the validation set. The GDM risk can be predicted based on the sum of assigned points for each
risk factor’s level. Higher total scores indicate that GDM events are more likely to occur (Fig. 5a). In addition,
to facilitate the use of nomograms for clinicians, we constructed a dynamic nomogram online to visualize the
predictive results for GDM. The probability of GDM occurrence can be easily determined by inputting personal
values of risk indicators into the web-based application (Fig. 5b-d).
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Figure 3. The prediction for the transcription factor binding site (TFBS) using AliBaba 2.1. (a) The
transcription factors of rs9283638 C allele in 97-106 bp. (b) The transcription factors of rs9283638 T allele in
101-110 bp.

Validation of the nomogram

The predictive nomogram had an area under the curve (AUC) of 0.920 (95% CI 0.902-0.939, P <0.001) in
the training cohort and 0.834 (95% CI 0.778-0.890, P <0.001) in the validation cohort, indicating the good
discriminating ability of the model (Fig. 6a and b). The nomogram calibration plot was roughly close to the ideal
line, revealing good agreement between the predicted and observed values (Fig. 6¢c and d). As shown in the DCA
analysis, the model curves for most of the risk threshold probabilities were above the two lines (“treat all” or “treat
none”), suggesting that the nomogram model had greater net clinical benefit (Fig. 6e and f).

Discussion

GDM is considered to pose a serious threat to the short-term and long-term health of mothers and their
offspring®. Identifying high-risk populations for GDM is particularly useful for early intervention and prevention
of disease progression®**!. Although significant progress has been made in identifying the mechanism of GDM
susceptibility, they have not been fully understood. It is now recognized that GDM is a multifactorial disease and
exhibits a clear genetic tendency. That is, genetic variants may alter individuals’ genetic susceptibility to GDM,
even under the same environmental conditions®>*. Here, while clarifying the association between genomic
SNPs and GDM, we further attempted to construct a nomogram predictive model to predict the risk of GDM in
pregnant women. It is believed to be of great social significance for the prevention and control of GDM.

In the present study, we observed a significant association between rs9283638 and the risk of GDM in the
population of Guilin, China. This finding is consistent with the findings of numerous previous studies®!®!3419-21,
Meaning, there are obvious genetic characteristics involved in the pathogenesis of GDM, and a series of associated
genes and SNPs are involved in disease occurrence at the genetic level. Furthermore, these findings suggest that
the studied SNPs exert different effects on different levels of some clinical indicators, and significant interactions
have been observed between rs9283638 and age. Similarly, Kwak SH et al. reported that the CDKALI SNP
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Figure 4. Schematic diagram of the genotyping of rs9283638 and the expression quantitative trait locus (eQTL)
analysis of SAMD?. (a) rs9283638 genotyping plot by Kompetitive Allele Specific Polymerase Chain Reaction
(KASP-PCR). (b) Analysis of SAMD? differential expression level under different genotypes. *P<0.05.

rs7754840 was significantly associated with insulin expression, inhibition of insulin secretion in pancreatic
B-cells and birth weight of a baby?’, while Polina V et al. suggested that genetic variants of MTNRIB (rs10830963
and rs1387153) can reduce early insulin secretion through parallel signalling pathways in pancreatic 3-cells,
thereby regulating glucose metabolism*®. These findings indicated that genetic variants may modify the genetic
background of an individual or, combine with environmental features or clinical traits, may affect individuals’
susceptibility to complex human diseases. Personal differences associated with GDM may be affected by SNPs
or SNP-environmental factor interactions.

It is speculated that the construction of a predictive model can serve as an important bridge between clinical
epidemiology or molecular epidemiology and clinical practice, and it could become an effective means of
identifying high-risk populations, guiding clinical diagnosis and treatment, promoting the prevention and control
of complex diseases, and improving patient clinical prognosis®**. The nomogram prediction model integrates
multiple disease-related indicators and draws scaled line segments on the same plane in a certain proportion
to express the relationships between selected variables. The model quantifies the occurrence rate and high-
risk factors for GDM risk, intuitively representing the probability of patients developing GDM, and provides
personalized risk assessment for subjects 25373,

Given the independent hazard effect of environmental and genetic factors on the pathogenesis of GDM, this
study incorporated validated SNPs significantly associated with GDM and clinical indicators (age, FPG, 1hPG,
2hPG, HbAlc and TG) to construct a GDM risk prediction nomogram model. This model demonstrated a good
ability to distinguish individual GDM risks, with an area under the ROC curve of 0.920. The genetic-clinical
model can help clarify the probability of women developing GDM during pregnancy, thereby identifying high-
risk individuals and leading to personalized prevention. It is extremely important to accurately prevent GDM
in individuals during early pregnancy.

The potential gene expression regulatory region variants not only serve as genetic markers but also may affect
individual physiological and pathological manifestations by regulating the expression of genes or interacting
with environmental exposure factors, making them suitable for revealing the susceptibility mechanisms of
complex traits and diseases. For example, the functional variant rs10830963 was associated with GDM risk by
regulating the expression levels of the MTNRIB gene, fasting blood glucose, fasting insulin, and homeostasis
model assessment for insulin resistance®. In the present study, we found that rs9283638 is significantly
associated with the risk of GDM and has significant interactions with age. Furthermore, we found that the above
association findings seem to be biologically plausible. Functional analysis suggested that rs9283638 C>T can
affect transcription factor binding to specific binding motifs and alter the transcription of the SAMD? gene. In
addition, mRNA level detection in placental tissues revealed that rs9283638 can be an eQTL that regulates the
expression levels of SAMD7 mRNA. This finding provides new insight into the biological genetic mechanism
of susceptibility to GDM.

However, this study has several limitations. First, as a hospital-based case—control study, there will inevitably
be bias in subject selection and data collection. Second, potential confounding factors of GDM, such as smoking
status, poor obstetrics, malnutrition, and socioeconomic factors, were not assessed. These factors are likely to
interfere with the true effects of the association between the studied variants and GDM risk. Third, the very
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Figure 5. The static and dynamic nomogram for predicting individual GDM risk. (a) A static nomogram for
GDM risk prediction. Each risk indicators corresponding to level can be given different scores, and the total
scores obtained by adding these scores from all variables can use to predict the GDM risk. (b) The risk variables
input panel of the online dynamic nomogram (https://qiulianl.shinyapps.io/GDM Predict/). (c) Person GDM
predictive results’ graph visualization. (d) Showing individual GDM predictive probability and its corresponding
95% confidence intervals.

low frequency of genotypes tested in the studied variants may still limit the statistical performance, especially
in subgroup analysis. Finally, limited in-depth biological functional analysis of significantly associated variants
was conducted in this study.
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Figure 6. Validation of the nomogram. (a) Receiver operating characteristic (ROC) curves in training set with
an area under the curve (AUC) of 0.920, cutoff value of 0.428, specificity of 80.6%, sensitivity of 89.9%. (b)
ROC curve in validation set with a AUC of 0.834. (c) Calibration plot in training set conducted by a bootstrap
method with 1000 resamples. (d) Calibration plot in validation set conducted by a bootstrap method with 1000
resamples. (e) A decision curve analysis (DCA) in training set. (f) DCA curve in validation set.

In the present study, we confirmed that rs9283638 is significantly related to the risk of GDM. The potential
mechanism may involve independent genetic risk effects and genetic-environmental interactions affecting female
individuals’ susceptibility to GDM. Based on key genetic SNPs and clinical parameters, a predictive nomogram
model with good potential for the early identification and prevention of GDM has been successfully established.
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