www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

On the analysis and deeper
properties of the fractional
complex physical models
pertaining to nonsingular kernels

Emad Fadhal**!, Abdul Hamid Ganie?, N. S. Alharthi?, Adnan khan*, Dowlath Fathima? &
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This study solves the coupled fractional differential equations defining the massive Thirring model
and the Kundu Eckhaus equation using the Natural transform decomposition method. The massive
Thirring model is a dynamic component of quantum field theory, consisting of a coupled nonlinear
complex differential equations. Initially, we study the suggested equations under the fractional
derivative of Caputo-Fabrizio. The Atangana-Baleanu derivative is then used to evaluate the
comparable equations. The results are significant and necessary for exploring a range of physical
processes. This paper uses modern approach and the fractional operators in this situation to develop
satisfactory approximations to the offered problems. The proposed approach combines the natural
transform technique with the efficient Adomian decomposition scheme. Obtaining numerical findings
in the form of a fast-converge series significantly improves the scheme’s accuracy. Some graphical
plot distributions are presented to show that the present approach is very simple and straightforward.
We performed a fractional order analysis of assumed phenomena to demonstrate and validate the
effectiveness of the future technique. The behaviour of the approximate series solution for several
fractional orders is shown visually. Additionally, the nature of the derived outcome has been observed
for various fractional orders. The derived results demonstrate how simple and efficient the proposed
method is to apply for analysing the behaviour of fractionally-order complex nonlinear differential
equations that arise in related fields of engineering and science.

Keywords Fractional massive Thirring model, Fractional Kundu-Eckhaus equation, Atangana-Baleanu and
Caputo-Fabrizio operator, Analytical techniques

In modern studies, it is important to examine complex models that represent nonlinear processes and examine
their behaviour. Mathematics plays a very significant role in explaining their nature in relation to time and other
dependent aspects. Since the beginning of calculus development till now, its fundamentals and applications have
gained a lot of attention. In light of the fact that it is the only tool capable of reliably and successfully predicting
the behaviour of processes that are raised in nature as issues facing living things or as potential solutions. Many
pioneers and young scholars have recently brought to give specific limitations when using classical calculus to
model or construct complex phenomena. In particular, when looking at historical mechanisms, long-range
propagations, hereditary traits, non-Morkian processes and others. Meanwhile, the idea of non-integer order
calculus emerged from an association between two renowned mathematicians shortly after the classical one'=.
Due to the concept’s unfamiliarity with its essence and accompanying applications compared to classical notions,
few scholars were drawn to it during the seventeenth and eighteenth centuries. However, as a result of the previ-
ously mentioned limitations of integer order calculus and the advancement of computational tools, the idea of
fractional calculus (FC) has recently captured the interest of many physicists, engineers, and mathematicians in
an effort to develop the necessary theory and corresponding computational tools to address real-life problems
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and improve human lifestyles. The foundation for the FC was supplied by numerous prominent scholars who
acknowledged the scientific requirements for bringing this idea to life®™°.

Differential equations of classical integer order are unable to express the memory property. Since fractional
order derivatives may be utilized for expressing memory and inherited features in a number of domains, it is
necessary to introduce fractional order differential equations. Sun et al. describe a variety of practical uses of
fractional calculus in science and engineering.!! The study of the exact and computational solutions of fractional
differential equations has led to the development of significant approaches due to their importance in several
domains. Divergence and convergence of the solutions are equally significant as the models. For a physical model
to be fractionally simplified, it must have an appropriate definition. In the past few decades, several definitions
of fractional derivatives were developed. Riemann-Liouville (R-L), Caputo, CF, ABC, Grunwald-Letnikov, and
Riesz fractional derivatives are a few of the commonly used definitions found in the literature'*. The R-L
derivative of constant is not zero, and the R-L and Caputo fractional derivatives have a unique kernel. Recently,
novel fractional derivatives with a nonsingular kernel have been introduced to address these limitations. Two
fractional derivatives are presented here: one is a Caputo-Fabrizio derivative with an exponential kernel'*-%,
and the other is an Atangana-Baleanu derivative with a modified Mittag-Lefller function as the kernel'*~*. In
fact, these derivatives may also be thought of as a filter regulator in addition to being a differential operator. An
additional advantage of these intriguing derivatives are the explanation of some materials macroscopic behav-
iour. In recent years, numerous scientists have paid close attention to these derivatives motivating behaviours.

Fractional differential equations (FDEs) are applied in many fields, including hydrodynamics, solid-state
physics, optic fibres, quantum science, computational biology, physical sciences, and astrophysics. These FDEs
have become quite attractive for modelling natural phenomena because of the substantial expansion of the
use of fractional calculus in applied mathematics. Solving these equations has been shown by many scientists
from other disciplines to be a useful and interesting area of research. In the fields of mathematical science and
engineering, many researchers have recently found effective methods for handling various kinds of models,
including Laplace-residual power series method?*?*, Homotopy perturbation general transform method?*%,
Adomian decomposition general transform method?®®, optimal auxiliary function method?, General residual
power series method®®*?!, Laplace transform decomposition method®?, Adams-Bashforth-Moulton method*?,
Yang transform decomposition method**** and many more*-*°. This study examines a model that represents
important events in quantum field theory. The study of photonics, water waves, quantum field theory, and other
areas is significantly improved by the nonlinear Schrédinger (NLS) equation. The two best-known models that
explain the self-interactions of a Dirac field are the massive Thirring model (MTM) and the Kundu-Eckhaus
equation (KE). The Kundu-Eckhaus equation was introduced in the 1980s as a linearizable version of the NLS
equation by Kundu*® and Eckhaus et al.**2, In this case, we looked at the fractional massive Thirring model
(FMTM) and the fractional Kundu-Eckhaus (FKE) equation. To better capture the fundamental behaviour of
the complicated model, the fractional-order approach has been used to represent the memory consequences in
the system**. The FKE equation

(DE(E,R) = ez + 20 () +fIf|* =0, 0<g<1, (1)
with
f(£,0) = ae's. )
The FMTM equations are given by
(DI (E,R) + ;) + g+ flgl* =0,
LDZgER) +g) +f+glfP =0, 0<g<1,
with
£(£,0) = ae'’®, g(£,0) = be'®. (4)

where q is the arbitrary order, ¢ is the imaginary number (i.e.,t = +/—1), and f(£,8) and g(&, R) are the complex
smooth envelop functions of spatial (§) and temporal (X) variables. The connection between a Miura transfor-
mation and the complex Burgers equations and Kundu-Eckhaus was demonstrated by the authors in*%. The KE
equation is a useful tool for studying the behaviour of many phenomena emerging in chemistry and for modelling
the propagation of very short pulses in quantum and nonlinear optics. It may also be used to show the optical
properties of fem-to-second lasers. Furthermore, a nonlinear complex system with two components is the mas-
sive Thirring model (MTM)*>*. The propagation of an optical pulse in nonlinear or periodic optical medium
is depicted using this model. The relationship between the quantums in the quantum Thirring model and the
e-Gordon model has received a lot of attention*”*%. This relationship aids the problem under consideration in
determining the model either in terms of perturbation theory or in terms of standard perturbation theory for
quantum solitons.

The primary goal of this work is to solve the FKE equation and FMT model while examining the process by
which the resulting solutions behave in relation to fractional order. Numerous authors have found and examined
the numerical as well as analytical solutions to these equations since they are crucial in explaining a wide range of
complicated phenomena. For an example, rogue-wave solutions for the KE equation were found by the authors
in*, and auxiliary equation expansion and modified unified algebraic approaches are taken into consideration
to determine the soliton solution for the KE problem. Additionally, a number of effective methods are used
for examining these equations, including g-homotopy analysis transform technique®, extended trial function
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method®!, modified simple equation scheme®? and numerous methods for KE and MTM equations with classical
and non-integer order derivatives®®,

This paper presents an approach for analysing the analytical solution of the fractional coupled Kundu-Eckhaus
equations and the Massive Thirring equations. The technique is based on the formulation of the Natural trans-
form with ADM. In comparison to the traditional Adomian technique, the proposed method simplifies the
estimate of the series terms by eliminating the need to compute the fractional integrals or the fractional deriva-
tive in the recursive mechanism. NTDM avoid all round-off errors and do not require linearization, predefined
assumptions, perturbation, or discretization. The recommended technique yield reliable outcomes that provide
accurate solution to the required problems. In the numerical examples, our methods yielded infinite series as a
result. It is observed that the computational series gets very close to the exact solution after a certain number of
iterations, and the resulting series gives us the results very quickly. This paper provides a basic framework for
researchers to analyse this approach and use them in a variety of applications to obtain precise and approximate
results in a short amount of time. The problems are also examined from a fractional aspect using the findings of
fractional problem analysis performed using the recommended methodology. This study is designed in a way
that: Sect. Basic definitions provides a brief discussion of the necessary definitions of FC, the natural transform,
and its fractional derivatives. In Sect. Formulation of the methodology, we provide a general analysis of the indi-
cated methodology. We discuss the suggested technique’s convergence analysis in Sect. Convergence analysis. In
Sect. Test problems, we offer two numerical applications to verify the validity of our suggested approach and also
present it with certain graphical representations. The final portion discusses the conclusion.

Basic definitions
In this portion, we evoke some essential notions of FC.

Definition 2.1 The Riemann-Liouville integral is termed as below™”:

¢
1%(p) =L/ (o — ¥ jWdv, g>0, ¢ >0,
F'(a) Jo

(5)
and Ij(g) =j(¢).
Definition 2.2 The Caputo derivative is described as follows™:
DY — ["apm; _ 1 0 m—qg—1.m d
ol (9) = i) = m—q (p—v) " (w)dv, (6)
¢
form—1<qg<m, meN, ¢>0,jeCl',v>—1
Definition 2.3 The CF derivative is described as follows®:
(

Dij(p) = —— / < o )D(;(v))dv, 7)

having0 < g < 1.
Definition 2.4 The ABC derivative is termed as below®’:
. ( ) ( .

Dijp) = - / ( i >D(/(v))dv, (8)
with 0 < g < 1, and U(q) illustrated the normalization function with U(0) = U(1) = 1and the Mittag-Leffler
function is Eq(2) = Y _moy WM_H).

Definition 2.5 The NT of f(R) is described as follows:
00
NT(f(R)) = P(o, p) = / O ER)AR, 0 € (—00,00). )
—00
ForR € (0,00), NT of f(R) is stated as
o0
NTER)HN) = NTH®) = P (o, p) = / e NEN)R, o € (0,00), (10)
—00
with G(R) demonstrating the Heaviside function.
Definition 2.6 The inverse NT of P(p, p) is described as follows:
NT'[P(o, p)] = £(R), YR >0. (11)

Lemma 2.1 IfNT of f;(R) is f; (0, p) and £ (R) is £2 (0, p), then
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NT[e1f1(R) + 2£2(R)] = a1 NT[f;(R)] + aNT[£,(R)] = e1f1 (0, p) + c2f2(0, 0), (12)
where c1 and ¢, are constants.
Lemma 2.2 Ifinverse NT of P1 (0, p) and P2 (0, p) are £, (R) and £,(R) then
NT™'[e1P1(e, p) + c2P2(0, p)] = alNT ™' [P1(0, p)] + &aNT ' [Ps(0, p)] = c1fi (R) + 22(R),  (13)

where ¢y and cy are constants.

Definition 2.7 The NT of Caputo derivative is described as follows®’:

a4 1
NT[DE] = (%) (NT[f(m] - (5) f<0>). (14)
Definition 2.8 The NT of CF derivative is described as follows>”:
1 1
NT[DI] = ——— (NT[f(N)] — (7)f(0)),
NE T g e 0 (15)
Definition 2.9 The NT of ABC derivative is described as follows>:
Uldl 1
NT[DI] = ———— (NT[f N)] — <7)f 0)).
M l—g+ag)e ( o )" (16)

Formulation of the methodology
In this portion, we construct the idea of NTDM which is utilized to derive the approximate results.

DEf(£,R) = J(F(E,R)) + K(f(§,R)) + h(E,N), (17)
with
£(£,0) = ¢ (). (18)

Case | (NTDMcF) :
Operating NT on Eq. (17) with CF derivative results in

¢($))
—— [ NT[f(&,R)] — —= | = NT[M(&,N)],
p(q,p,g)( [£(&,N)] 0 [M(E,R)] (19)
with
P
p(q>p,g)=l—q+q(5), (20)
and
M(E,R) = T(E(E,R) + KEE,R) + h(E,N). (21)
Operating inverse NT on Eq. (19) results in
f(e.) =00 (€0 4 g miTiage 0 ). (22)
The nonlinear term KC(f (£, X)) is represented as
KEER) =) Ar (23)
t=0

Now, we will expand the function f (£, X) in series form as
o0

FE,R) =) fi(EN). (24)
i=0

Use Eqs. (23)-(24) in (22) yields
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D fiE, ) =NT! (M) +p(a, p, @NTIA(E, N)])
i=0

Z T (6 N) + A

+NT™ (p(q, p,@)NT
i=0

Similarly,

£9F 6 %) =NT-! <¢(s)

+ p(a, p, ©)NT[h(, N)])

£ (6,8) =NT ™! (p(q, p, 0)NT[T (£ (€, R)) + Ao]),

£ &,%) =NT ! (p(q, p, ONTLT (B1(E,R) + All), 1=1,2,3,-+-

The solution of (17) in NTDMcr manner is obtained by utilizing (26) in (24) as

£F(E,R) = £57 (5, R) + £77 (6, %) + £57(E,R) + -+

Case Il (NTDMagc)
Operating NT on Eq. (17) with CF derivative results in

- (NT[f(E N)] — @) = NT[M (&, R)],
j(@p,0) e
with
_ 1—q+q(5)?
jla,p,0) = W

Operating inverse NT on Eq. (28) results in

£5,8) = ("f) + (@ p,@)NTIM(E, N)])

The nonlinear term IC(f (&, X)) is represented as

K@EER) =) A

i=0

The series form solution for the function f (&, R) is illustrated as
o0
£E,R) =) F(EN).
Use Egs. (31)-(32) in (30) yields

Z £;(€,8) =NT~!

i=0

(d)(g) +j(a, p, 0)NT[R(E, N)])

> TEER) + A

+ NT! (j(q, p,0)NT
i=0

Similarly,

£45C (£, 8) =N ("5(;) +j(a, p, ONTIh(E, N)])

£15C(£,R8) =NT ! (j(q, p, 0)NT[T (o (£, R)) + Ao)),

£156(&,8) =NT ™! (j(a, p, ONT[T (F1(E,8)) + A]), [ =1,2,3,---

The solution of (17) in NTDM 4 g manner is obtained by utilizing (34) in (32) as

£45C (&, %) = £85C(E, %) + £ 6, R) + 55 E %) + - -

).

).

(28)

(29)

(34)
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Convergence analysis
The convergence analysis for NTDMcr and NTDM4pc is illustrated below.

Theorem 4.1 The NTDMcr result for (17) is unique at 0 < (B1 + B2)(1 — a + aR) < L.

Proof AssumeG = (C[J1,]].||) having norm||¢ (R)|| = maxwes|¢ (R)]is Banach space,V continuous function on
J.LetI : G — Gisanon-linear mapping, here

£, =f5 + NT ' [p(q, 1, p)NTLT (F1(€,8)) + K(E(E,¥)]], 1> 0.

Let | T (f) — J(*)| < By|f — f*|and [K(f) — K({*)| < By|f — £*|, where f := f(&,R) and f* := £*(&£,R) are
values of two separate functions and 3,13, are Lipschitz constants.

|1 = 11| < maxe/INT ™ (e pINTLT (6) — T (£)]

+ p(a . INTIK () = K(E)]]
< masxyer [ BINT ™ [p(q, . p)NTIIE — £°]]
-1 * (36)

+ BoNT " [p(as . p)NTLIE — £°])]

< maxey(By + Ba) [NT ' [p(q, u, p)NT|f — £[]]

< (B1 + B) [NT™'[p(q, 1, ))NTIIf — £°]1]

= Bi+By)(1 — g+ I — £

I is contraction as 0 < (B; + B2)(1 — g + gR¥) < 1. Thus the result of (17) is unique in terms of Banach fixed
point theorem. d

Theorem 4.2 The NTDM g, result for (17) is unique when 0 < (B) + B5) (l —g+ %ﬁl)) < 1.
Proof Due to the fact that this proof is the same as that of Theorem 1, it was skipped. 0
Theorem 4.3 The NTDMcr result of (17) is convergent.

Proof Letf,, = > ., f.(¢,R). To show that f,, is a Cauchy sequence in G. Assume,

m
1 — £ull = maxses| Y £, n=1,2,3,- -

r=n+1
m
< maxsgs|NT™" | p(a, 1, ONT| 3 (T (Frm1) +K<fr_1>>m
r=n+1
m—1
= maxnes [NT™" | p(q, i, INT| Y (T (F) + K(£)) | (37)
r=n+1
< maxpesINT ' [p(q, s, p)NT(T (Fu—1) — T (Fr—1) + KEn—1) — KE—1))]]]
< Bimaxses INT ™ [p(a, st pINTI(T (Fn—1) — T (Ea—1))]I
+ Bymaxses INT ' [p(q, s, p)NT[(K (£n—1) — KE—))]I
= (B1 +B)(1 — g+ a®)|[fu—1 — f11ll
Letm = n + 1, then
101 — £all < By — £a11] < B2{Ifu1fuzll < -+ < B"|If1 — foll, (38)
where B = (B; + B2)(1 — g+ aR). Similarly, we have
||fm - fn|| =< ||fn+1 - fn” + ||fn+2fn+l|| + -+ ||fm - fm—1||>
Bn Bn—H L Bm—l f _ f
(B" + +- 4 L — foll (39)
1—pBm" ¢
B ——— ,
< ( — >|| Al
As0 < B < 1,wegetl — B™ " < 1. Therefore,
Bl’l
[fm — fall < 1_Bmaﬁmejllflll- (40)
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Since|[f; ]| < oo, [|f — fu]] = Owhenn — oco. Thus, the series f,, is convergent due to fact that f,,; is a Cauchy
sequence in G.

Theorem 4.4 NTDMjpc solution of (17) is convergent.
Proof Due to the fact that this proof is the same as that of Theorem 3, it was skipped.

Test problems
In this potion, we implemented NTDM to obtain the analytical approximate solutions in the form of convergent
series.

Problem1
Assume the FKE equation given:
(D (E,R) = feg + 20 (|f))e +fIf|* =0, 0<g<1, (41)
with
£(£,0) = ae's. (42)
By simplification
Df(&,R) = L(fgg + 2(ffcf + £26;) + f3f2). (43)

Operating NT on Eq. (1) results in

NT[DZf(£,R)] = L(N’]I‘{f;g} + Z(NT{fffg} + NT{fzfg }) + NT{PEZ}). (44)

This implies
Qinqr[f(g,x)] — 0?79f(£,0) = (NT |:fgg + 2(ff + £2f;) + f3f2}. (45)
Operating inverse NT on Eq. (45) results in
£(5,8) = {ae’g} — NT! {LWNT{% +o(fif + £2F) + f3f2H. (46)

Application of NTDMcr

Now, we will expand the function f (&, R) in series form as
o0

£E,R) =) fiEN). (47)
1=0

The nonlinear terms ffsf = 70 A, £2f: = 0%, By, £2£2 = 3°7°, C1, in terms of Adomian polynomials are
taken as follows:

ZflJrl(S:N) = {aelé}
1=0

(0 —ale — ) - - - “
— NT! [LWNT{QE + Z(Z A+ Z Bl) + ch}} .
@ 1=0 1=0 1=0
Similarly,
fo(£,8) =ae',
. (49)
f1(5,8) =’ @° —a)(q(R — 1) + 1),
qZNZ
£EN) =—efa@t - 1)? (0 — @) + 200 - QN+ = ) (50)
Lastly, it can be continued to the following series:
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f(€,R) = Zfz(c‘E)N) =HER) +HEN) +HEN) +---,

1=0

2032
f(&,8) = ae’* +15@° —a)(g® — 1) + 1) — ea(@* — 1)? ((1 —)?+2q(1 — PN + %) 4.

(51)
Application of NDMagc
Now, we will expand the function f(§, X) in series form as
o0
£E,R) =D fiE,N). (52)
1=0

The nonlinear terms ffsf = 370, A, £2f: = S°0°, By, £2£2 = 3°7°, C1, in terms of Adomian polynomials are
taken as follows:

D o finEN) = [ae’g]
=0

a(pd a_ pa
— NT! {L'D (e +q2(§ @ DNT{f;g-i—Z(ZA[-FZB[) +ch}].
e 1=0 1=0 1=0
Similarly,
fo(£,R) =ae't,
s (N (54
f1(&,8) =1e'>(a a)(l q—+ F(q+1)>’
20029 q
o af 4 2 9 R _ R 2
£(6,8) =—¢€"a@" - 1) {F(Zq—{—l) +2q(1 q)r,(q+1) +(1—-a } (55)

Lastly, it can be continued to the following series:

f(€,R) = Zfz(S,N) =HER) +HEX) +HEN) +---,

=0

b B _ aR*® )_zs 4_ 2{ PR _ 56
f(&,8) = ae's +1e'%(a a)(l q+F(q+1) eSa@* —1) F(2q—|—1)+2q(1 q) (56)

Nd

— — 2 ...
F(q+1)+(1 q)}-ﬁ- .

On switching g = 1, we obtain the close form solution as

el€
f(&,R) = 0t (a% - 1)e4t5)%' (57)
Example 2
Assume the coupled fractional equations describing the MT model:
((DRF(E,N) +fz) + g + flgl* =0,
(Dgg(EN) +g0) +E+glff =0, 0<q<l, G
with
£(£,0) = ae'’s, g(&,0) =be"s. (59)
By simplification
DRf (€, 8) = lify + g +f(g)],
(60)

Dg(§,8) = iligg +f +g(fD)].
Operating NT on Eq. (3) results in
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NT[DZf (£,8)] = L(LN’H‘{&} —|—NT{g} +N’JT{f(gg)}),

(61)
NT[Dgg(¢,R)] = L<LNT{gg} + N’H‘{f} + N’H‘{g(ff')}).
This implies
QinT[f(g, R)] — 0279 (£,0) = (NT {Lfg +g+ f(gg)} ,
) (62)
Q*qNT[g(E) )] — 0*"9g(£,0) = (NT {ng +f+ g(ff)} .
Operating inverse NT on Eq. (62) results in
f(£,8) = {ae’é} _NT™! {WNT{L& +g +f(gg)H,
(63)
gEN) = {be’s} — NT! {WNT{% +f+ g(ff)H.
Application of NTDMcr
Now, we will expand the function f(§, X) and g(§, X) in series form as
£ER) =) HEN), gEN) =) gEN). (64)
1=0 1=0

The nonlinear terms f(gg) = > 7o, Aj, g(f f) = >0 B, in terms of Adomian polynomials are taken as follows:

3 €N = [ae@] — INT! {WNT{L& +g+ > Al}:|,
1=0

1=0
- - (65)
> g EN) = [be‘é} —NT™! {WNT{L& I BZH.
=0 =0
Similarly,
fo(£,R) = ae®,
,R) = bet,
go(§,R) =Dbe (66)

£1(€,8) = e (b + (b* — Da)(g® — 1) + 1),
g6, N) = (a+ @>— Db)(a®R — 1) + 1),

242
£(6,8) = —¢“(@’b? — a’b(—3 + b%) + b(—2 + b?) +a(2 — 4b” + b*)) ((1 — 9?2901 — R+ & ; )

2632
82(£,8) = —e'* (2b + a*b + a?b(—4 + b%) — a’(—1 4+ b?) + a(—2 + 3b?)) ((1 9?4291 — R+ 2 ; )

(67)
Lastly, it can be continued to the following series:

£(5,%) szz(E,N) =HER) +HER) +HLEN) +---,

1=0
£(£,R) =ae’ + e (b+ (b — Da)(g(® — 1) + 1) — ¥ (@°b? — a’b(=3 + b?) + b(—2 +b%)  (68)

202
—|—a(2—4b2+b4))<(1—q)2+2q(1—q)§~<—|—q; >+

gEN) =) mEN) =g EN) +gERN) +HEN + -,
1=0

g(&,R) =be’ + e (a+ (@® — Db)(a(® — 1) + 1) — & (2b + a*b + a’b(—4 + b%) — a’(—1 + b?)

2002
+a(—2+3b2))((1—q)2+2q(1 —q)N-l—%) +oe
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Application of NDMagc

Now, we will expand the functions f (&, X) and g(§, R) in series form as
o0 o0
fER) =) HEN), g&EN =) gEN). (70)
1=0 1=0

The nonlinear terms f(gg) = > _joq A g(f f) = >i20 B, in terms of Adomian polynomials are taken as follows:

Zflﬂ(é,N) = {ae‘é} — (NT! {pq(gq +a? - Qq))NT{tfg +g+ ZAIH,
1=0

qu 1=0
s (oL 4 g(p — 09)) 0 71)
Y g6 = {be‘é} —LNT*I[" e qu @ NT{ng +f+ZBlH.
1=0 e 1=0
Similarly,
fo(£,8) = ae*,
80(£,8) = be’,
£1(€,8) = 1e¥ (b + (b — 1)a) (1 —g+ %), (72)
73 2 qu
g1(&,R) =1 (@a+ (@a° - 1)b) 1—q+m s
q2N2q
£,(6,8) = —e' (@°b? — a?b(=3 + b?) + b(=2 + b?) + a2 — 4b” + b%)) {7 +29(1 —q)
FR2a+1)
E 2
[ 1— R
Fgty T4 }
qZNZq
8:(€,R) = — (2b 4 a*b + a’b(—4 + b?) — a®(—1 + b?) + a(—2 + 3b?)) {7 +2q(1 —q)
F'2a+1)
N a- )2}
T+ 1) Ek
(73)

Lastly, it can be continued to the following series:

£E,R) =) 58 =N +fEN) +HEN) +--,

1=0
£(£,8) =ae + e (b + (b? — 1)a) (1 —g+ qixq) — 5 (@°b% — a’b(=3 + b?) + b(—2 + b?)
'g+1)
2N2q Rd
24 b)) | - gl —g)—— 4 (1— 2}
a( + )){F(Zq+1)+ a( q)r(q+1)+( |+

g(&,X) =Zgz(E,N) =gER) +86EN) +8EN+--,
1=0

a
g(&,R) =be? + e (a + (a> — 1)b) (1 —a+ L) —e¥(2b+a*b 4+ a’b(—4 4+ b%) —a3(—1 + b?)
T(q+1)
ZRZq Nd
2432 | 21— ) 1—2}
+a( +3b))[r(2q+1)+ a( q)r(q+1)+( | +

(75)

Physical interpretation of results

The approximate analytical solution for the FKE equation and FMT model is presented in this part of the article.
Here, we use NTDM to solve complex nonlinear issues that arise in quantum field theory. The method’s appli-
cability is demonstrated by the numerical findings, and its accuracy is evaluated by comparing it to exact and
numerical solutions found in the literature. The outcomes of applying our strategy demonstrate good perfor-
mance and simple results implementation. Tables 1 and 2 present the evaluation of the error. The comparison
demonstrates that our results are more precise than those obtained using the literature’s techniques. We compare
the absolute errors of our method with the existing q-HATM results, which are shown in Table 2. These tables
demonstrate that the existing method provides a good approximation solution for the given problems. In reality,
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8 & Re(Exact Solution) Re(NDM(cr Solution) Re(NDMpc Solution) Re(Error by NDMcr) g‘gﬁ;:z;)y
0.2 1.0234574450 1.0236514600 1.0236514600 1.9401418410E-04 1.9401418410E-04
0.4 0.9618394838 0.9620218174 0.9620218174 1.8233362610E-04 1.8233362610E-04
0.001 0.6 0.8618760180 0.8620394017 0.8620394017 1.6338370930E—-04 1.6338370930E—-04
0.8 0.7275522751 0.7276901954 0.7276901954 1.3792029620E-04 1.3792029620E-04
1 0.5642233190 0.5643302774 0.5643302774 1.0695840740E—04 1.0695840740E—04
0.2 1.0234562830 1.0238450500 1.0238450500 3.8876672930E-04 3.8876672930E-04
0.4 0.9618383924 0.9622037527 0.9622037527 3.6536031900E-04 3.6536031900E-04
0.002 0.6 0.8618750400 0.8622024286 0.8622024286 3.2738856400E-04 3.2738856400E-04
0.8 0.7275514495 0.7278278144 0.7278278144 2.7636494640E-04 2.7636494640E-04
1 0.5642226787 0.5644370022 0.5644370022 2.1432351590E-04 2.1432351590E-04
0.2 1.0234543470 1.0240386040 1.0240386040 5.8425663510E-04 5.8425663510E-04
0.4 0.9618365724 0.9623856536 0.9623856536 5.4908117860E—-04 5.4908117860E—-04
0.003 0.6 0.8618734091 0.8623654246 0.8623654246 4.9201546410E-04 4.9201546410E-04
0.8 0.7275500728 0.7279654075 0.7279654075 4.1533465070E-04 4.1533465070E-04
1 0.5642216111 0.5645437068 0.5645437068 3.2209572580E-04 3.2209572580E-04
0.2 1.0234516360 1.0242321210 1.0242321210 7.8048490190E-04 7.8048490190E-04
0.4 0.9618340247 0.9625675200 0.9625675200 7.3349530500E-04 7.3349530500E-04
0.004 0.6 0.8618711262 0.8625283897 0.8625283897 6.5726350950E-04 6.5726350950E-04
0.8 0.7275481457 0.7281029744 0.7281029744 5.5482870910E-04 5.5482870910E-04
1 0.5642201166 0.5646503912 0.5646503912 4.3027463670E-04 4.3027463670E-04
0.2 1.0234481510 1.0244256020 1.0244256020 9.7745052980E-04 9.7745052980E-04
0.4 0.9618307494 0.9627493520 0.9627493520 9.1860259820E-04 9.1860259820E-04
0.005 0.6 0.8618681913 0.8626913240 0.8626913240 8.2313270020E-04 8.2313270020E-04
0.8 0.7275456682 0.7282405153 0.7282405153 6.9484712160E-04 6.9484712160E-04
1 0.5642181953 0.5647570554 0.5647570554 5.3886014880E-04 5.3886014880E-04

Table 1. Numerical analysis among the real part of the accurate and our method solutions.

3 Re(Q-HATM) atq =1 | Re(NDMcp)atg =1 | Re(NDMypc)atg =1
0.5 |0.018889298 2.0565933520x 10792 | 2.0565933520x 10~
1.0 | 0.019604999 1.2661852950x 1072 | 1.2661852950x 1002
1.5 | 0.020719973 1.6577091000x 10~ | 1.6577091000x 10~ %3
2.0 |0.022237318 9.7522997860x 107%% | 9.7522997860x 10~
2.5 | 0.024161270 1.8774605500x 1072 | 1.8774605500% 1002
3.0 | 0.026497236 2.3200233780x 1072 | 2.3200233780x 10~
3.5 |0.029251865 2.1945634370x 10702 | 2.1945634370x 10702
4.0 |0.032433119 1.5317979090x 1072 | 1.5317979090x 102
45 | 0.036050374 4.9399482760x107%% | 4.9399482760x 10703
5.0 | 0.040114530 6.6475542990x107% | 6.6475542990x 1070

Table 2. The absolute error comparison among q-Homotopy analysis transform method (q-HATM) and our
method.

the outcomes displayed in these tables support the effectiveness of the suggested strategy. Tables indicate that the
provided approach appears to be more accurate. We also show that the repetitions improve the NTDM findings,
giving them access to the numerical solutions. We used MAPLE 15 to display the numerical analysis as graphs.
The real part for the obtained results and the nature of the imaginary part in contour plots have been immersed
in Fig. 1 atg = 1 for the FKE equation. Fig. 2 displays the 2-dimensional behaviour of the NTDM result for Eq.
(41) of the real and imagionary part with various values of fractional order g. When examining the nonlinear
Schrodinger equation counterpart, these kinds of studies can impact researchers’ capacity to investigate physical
phenomena of the single humped self-localized soliton type solution of the FKE equation. The FKE equation
self-localized soliton system is more sensitive than the nonlinear Schrédinger equation; that is, its saturation
efficiency is produced with a broadening contour that can be assessed using a mainlobe thickness. This is to be
expected as the quintic nonlinear component in the FKE causes complex physical nonlinearity in the outputs.
We use NTDM to help us find the solution to the coupled fractional nonlinear differential equations that describe
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Figure 1. Graphical depicts of the approximate solution for example 1 in 3D with respect to contour fora = 1,
and g = 1. (a) Real surface, (b) Real contour, (c) Imaginary surface and (d) Imaginary contour.

- q=1 - q=1

—  q=0.75 ~  q=0.75
— =0.50 — q=0.50
— q=0.25 —  q=0.25

Figure 2. Graphical depicts of the approximate solution for example 1 in 2D at various g orders (a) Real part,
(b) Imaginary part.
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the massive Thirring model. In particular, the model’s complexity is rather great, and it’s crucial to look at how
its physical interpretation with matching parameters is captured. Plotting the nature of the imaginary part in
contour plots and surfaces real part for the fractional-order MR model findings is carried out at g = 1in Figs. 3
and 4. The 2-dimensional representation of exact and approximate solutions for the real and imagionary part of
Eq. (58) at various fractional order g is depicted in Figs. 5 and 6. As we can see, the projected system is heavily
dependent on the scheme’s and the fractional operator’s available parameters. More specifically, some interesting
and realistic outcomes can be aided by the imaginary part’s nature in the form of counterplots.

Conclusion

In this work, we used FNDM to obtain the solution for the projected nonlinear complex system that serves as an
example of the enormous Thirring model that arises in quantum field theory and the fractional Kundu-Eckhaus
equation. In particular, the projected system’s more intriguing effects are understood by providing coupled and
counter surfaces. The proposed solution approach allows us to locate the solution for nonlinear models related
with complex functions without perturbation or dissertation. The novelty of the scheme under consideration is
cleared away to study coupled systems. The obtained plots help us comprehend the effects of the projected model
by demonstrating the large differences that occur with even a slight alteration in the system’s order. As the cur-
rent study shows, the system under consideration is highly dependent on time and equivalent effects with frac-
tional order. In addition, it can assist in solving many classes of coupled nonlinear and complicated differential

Figure 3. Graphical depicts of the approximate solution for f (£, X) of example 2 in 3D with respect to contour
fora = 1.3,b = land g = 1. (a) Real surface, (b) Real contour, (c) Imaginary surface and (d) Imaginary
contour.
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Figure 4. Graphical depicts of the approximate solution for g(&, R) of example 2 in 3D with respect to contour
fora = 1.3,b = 1and g = 1. (a) Real surface, (b) Real contour, (c) Imaginary surface and (d) Imaginary
contour.

- q=1 —  g=1

— q=0.75 —  q=0.75
~ q=0.50 —  q=0.50
—  q=0.25 ~  q=0.25

Figure 5. Graphical depicts of the approximate solution for f (&, R) of example 2 in 2D at various g orders (a)
Real part, (b) Imaginary part.
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Figure 6. Graphical depicts of the approximate solution for g(£, X) of example 2 in 2D at various g orders (a)
Real part, (b) Imaginary part.

equations. Our findings demonstrate the superior performance of this method in locating the analytical solution
for the coupled fractional Massive Thirring and fractional Kundu-Eckhaus equations. Lastly, the algorithm under
consideration provides results which are interesting, therefore it can be used to study and investigate a variety
of complex phenomena. The non-local and non-singular kernel characteristics of the suggested derivatives are
essential for describing the key components and dynamic behaviour of complex issues. Thus, academics can
address a variety of dynamically complex issues by employing the CF and ABC derivatives. As a future research
direction, readers might combine hybrid approaches with our suggested schemes to achieve better results. We
expect that further fractional differential issues in science and engineering can be quickly and effectively solved
using this approach in the future.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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