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Identification of copper 
death‑associated molecular 
clusters and immunological profiles 
for lumbar disc herniation based 
on the machine learning
Haipeng Xu 1,3, Yaheng Jiang 1,3, Ya Wen 1, Qianqian Liu 2, Hong‑Gen Du 1* & Xin Jin 1,3*

Lumbar disc herniation (LDH) is a common clinical spinal disorder, yet its etiology remains unclear. 
We aimed to explore the role of cuproptosis-related genes (CRGs) and identify potential diagnostic 
biomarkers. Our analysis involved interrogating the GSE124272 and GSE150408 datasets for 
differential gene expression profiles associated with CRGs and immune characteristics. Molecular 
clustering was performed on LDH samples, followed by expression and immune infiltration analyses. 
Using the WGCNA algorithm, specific genes within CRG clusters were identified. After selecting the 
most predictive genes from the optimal model, four machine learning models were constructed and 
validated. This study identified nine CRGs associated with copper-regulated cell death. Two copper-
containing molecular clusters linked to death were detected in LDH samples. Elevated expression and 
immune infiltration levels were found in LDH patients, particularly in CRG cluster C2. Utilizing XGB, 
five genes were identified for constructing a diagnostic model, achieving an area under the curve 
values of 0.715. In conclusion, this research provides valuable insights into the association between 
LDH and copper-regulated cell death, alongside proposing a promising predictive model.

Keywords  Lumbar disc herniation, Copper death-associated molecular clusters, Immunological profiles, 
Machine learning

Lumbar disc herniation (LDH) is a common orthopedic condition characterized by back pain, weakness, 
numbness, leg or foot pain, and tingling1,2. These symptoms result from mechanical compression, chemical 
radiculitis, and autoimmune responses. The recurrence rate of LDH ranges from 5 to 25%, posing challenges 
to clinical treatment3. Based on available reports4, LDH affects an estimated 9% of the global population. The 
presence of symptomatic LDH and associated back pain significantly impacts the quality of life of affected 
individuals. While the precise etiology of LDH remains uncertain, clinical observations suggest a close 
association with factors such as gender, age, height, weight, occupation, exercise, trauma, and other medical 
conditions5. LDH is influenced by inflammatory cell infiltration and the release of atypical cytokines, which 
exacerbate inflammation and pain symptoms6. Currently, no effective drug treatment exists for LDH. Therefore, 
understanding the immunological characteristics of LDH is essential for developing effective treatment strategies.

Copper is an essential trace element that plays a pivotal role in a multitude of critical biological processes in 
eukaryotic organisms, including mitochondrial respiration, iron absorption, kinase signaling, autophagy, protein 
quality control, and antioxidant/detoxification mechanisms7. Recent research has unveiled copper death as an 
emerging type of cell demise instigated by copper. Noteworthy genes associated with this phenomenon comprise 
SLC31A1, PDHB, PDHA1, LIPT1, FDX1, DLD, DLST, DBT, LIAS, DLAT, GCSH, ATP7A, and ATP7B8,9. The 
proposed mechanism involves the direct binding of copper ions to key proteins, such as acyl-CoA dehydrogenase, 
which is involved in the tricarboxylic acid (TCA) cycle within mitochondria. This interaction results in the 
depletion of iron-sulfur cluster proteins, ultimately triggering cellular apoptosis. Copper predominantly 
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exists in the form of cytochrome C oxidase (COX) and superoxide dismutase 1 (SOD1) within mitochondria, 
exhibiting a close association with mitochondrial regulation10–12. Furthermore, several studies have indicated 
that copper exerts a substantial influence on the immune regulation mechanism within the human body13. 
Under physiological conditions, the intracellular concentration of copper ions is meticulously regulated through 
active homeostasis mechanisms. However, when the levels of copper ions gradually surpass the threshold, the 
excess ions can induce excessive cellular respiration, leading to cytotoxicity and potentially resulting in a form 
of cell death associated with copper toxicity14. Genetic factors, nutritional imbalances, and liver dysfunction 
are significant contributors to the dysregulation of copper levels in the body, which can have substantial health 
implications. Dyshomeostasis of copper is linked to various pathological conditions, including Menkes disease 
(MD), Wilson’s disease (WD), neurodegenerative diseases, cancer, and cardiovascular disease15. Notably, both 
mitochondrial function and immune regulation mechanisms play crucial roles in the initiation and progression 
of LDH6,16. Consequently, it is plausible to hypothesize that a correlation exists between the onset and progression 
of LDH and copper depletion.

This study presents the first analysis of the differential expression and immune characteristics of cuproptosis-
related genes (CRGs) in individuals with LDH and those without the condition. The primary objective was to 
explore the pathogenesis of LDH and the potential role of copper dysregulation in its development. To accomplish 
this, microarray datasets comprising samples from both LDH and non-LDH individuals were sourced from 
the Gene Expression Omnibus (GEO) database. Patients with LDH were then stratified into two gene clusters 
based on their expression profiles of CRGs, which were hypothesized to be related to copper-mediated cell death 
mechanisms. A thorough examination of the expression differences and the immune cell landscape within these 
clusters was conducted.

Materials and methods
Download and analyze the data of LDH and cuproptosis‑related genes
To conduct an analysis of genes associated with copper-induced cell death in the context of Lumbar Disc 
Herniation (LDH), it is necessary to obtain and examine relevant microarray data. The Gene Expression Omnibus 
(GEO) (www.​ncbi.​nlm.​nih.​gov/​geo) provides access to the required LDH microarray data17. Specifically, the 
datasets GSE124272 and GSE150408, as reported by Wang et al.18, contain transcriptomic data from 8 LDH 
patients and 8 non-LDH patients, and 17 LDH patients and 17 non-LDH patients, respectively. To address 
potential heterogeneity resulting from variations in experimental batches and platforms, the R software package 
“sva” installed on Bioconductor should be utilized (https://​bioco​nduct​or.​org/). The source of the cuproptosis-
related genes (CRGs) is Tsvetkov et al. A total of 20 CRGs were identified19. To address potential heterogeneity 
resulting from variations in experimental batches and platforms, the R software package “sva” installed on 
Bioconductor should be utilized (https://​bioco​nduct​or.​org/). The source of the cuproptosis-related genes (CRGs) 
is Tsvetkov et al. A total of 20 CRGs were identified19. The details of these microarray data are listed in the Table 1.

The criteria of sample collections
For the dataset GSE124272, 8 LDH patients (4 males and 4 females, aged 33–60 years) and 8 controls (4 males 
and 4 females, aged 19–23 years) were recruited. The inclusion criteria for LDH patients were as follows: age 
between 35 and 60 years, severe lower back pain and sciatica within the past 4 weeks, and LDH confirmed by 
magnetic resonance imaging (MRI). The control group consisted of individuals aged 18–25 years with no history 
of lower back pain or sciatica.

The dataset GSE150408 included 17 LDH patients aged 19–54 years (average age of 40 years) and 17 controls 
without LDH, aged 19–30 years (average age of 23 years). Eligible LDH patients experienced sciatica confirmed 
by MRI, demonstrating single-level lumbar disc herniation at the L4/5 or L5/S1 level, resulting in nerve root 
compression. Patients with additional neuropathies, spinal diseases, infections, rheumatism, cardiovascular 
diseases, metabolic diseases, dementia, mental health disorders, a history of surgery, congenital diseases, 
tuberculosis, tumors, pregnancy, lactation, or recent medication use were excluded from the study.

CRGs for correlation and differential expression analysis
The limma software package was employed to filter differential CRGs by comparing the expression values of 
CRGs between LDH and non-LDH samples. The selection criteria for CRGs were based on a log2-fold change 
(FC) greater than 2 or less than -2, and an adjusted p-value of less than 0.05. Bar plots were generated to visualize 

Table 1.   Basic information of gene expression profiling.

GEO accession ID GSE124272 GSE150408

Platform GPL21185 GPL21185

Samples (Total number) Whole blood samples (16) Whole blood samples (34)

Number of cases 8 LDH patients 17 LDH patients

Number of controls 8 contrals 17 contrals

Country China China

Year 2021 2021

Author Yi Wang Yi Wang

http://www.ncbi.nlm.nih.gov/geo
https://bioconductor.org/
https://bioconductor.org/
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these differences, and the correlation coefficients of CRGs expression across the samples were analyzed using 
the “corrplot” R package.

Evaluation of immune cell infiltration
Gene expression data from the datasets GSE124272 and GSE150408 were utilized to evaluate the expression 
levels of 22 immune cell types in each sample using the CIBERSORT algorithm. CIBERSORT is a deconvolution 
algorithm known for its effectiveness in analyzing diverse immune cell subpopulations and quantifying the 
immune cell composition, thereby improving the precision of the analysis20. In this study, the selection of samples 
was based on a significance threshold of P < 0.05.

Correlation analysis between CRGs and immune cells and chromosomes
To further elucidate the association between CRGs and immune cell characteristics related to LDH, we employed 
the “corrplot” R package to examine the correlation coefficients between the expression levels of CRGs and 
the relative proportions of immune cells. Additionally, we utilized the “RCircos” package in R to visualize the 
chromosomal locations of CRGs.

Unsupervised clustering and gene set variance analysis of LDH patients
Initially, an unsupervised clustering analysis was conducted using the ConsensusClusterPlus software package21. 
The k-means algorithm was employed to partition all LDH samples into distinct clusters, with 1000 iterations 
performed. Subsequently, a comprehensive assessment of the maximum cluster number (k = 9) and the optimal 
cluster number was accomplished by integrating cumulative distribution function (CDF) curves, consistency 
matrices, and clustering consistency scores. Furthermore, the suitability of these genes for sample representation 
was evaluated through the utilization of a combination of PCA and t-distributed stochastic neighbor embedding 
(tSNE)22,23.

Re‑consensus clustering based on the cross‑genic clustering of CRGs
Using the genes acquired from unsupervised clustering of LDH patients, we employed the ConsensusClusterPlus 
and limma packages to reclassify LDH patients and discern distinct subgroups. Subsequently, we conducted 
an analysis on inter-cluster gene expression and immune features. To examine the expression differences of 
cuproptosis-related genes (CRGs) between the CRG cluster and other gene clusters, we utilized the ggpubr and 
reshape2 packages for the analysis.

Weighted gene co‑expression network analysis
The utilization of the Weighted Gene Co-expression Network Analysis (WGCNA) method facilitates the 
examination of gene sets’ expression. In this particular investigation, the WGCNA R package was employed at 
various stages to establish and partition diverse gene networks into modules24. Initially, the most suitable soft 
threshold was determined to construct a weighted adjacency matrix. The module characteristic genes epitomize 
the comprehensive gene expression profiles within each module. The association between modules and disease 
status is conveyed through the module significance (MS), whereas the gene significance (GS) is delineated as the 
correlation between genes and clinical phenotypes25.

Gene set variation analysis (GSVA)
To further investigate the variation process of LDH in biological processes, we employed the GSVA package 
to conduct enrichment analysis. GSVA is a frequently utilized nonparametric and unsupervised method for 
estimating changes in pathway and biological process activity within expression data sets26. For our analysis, we 
acquired the “c2.cp.kegg.v6.2-symbols” and “c5.go.symbols” gene sets from the MSigDB database, which were 
subsequently utilized in the GSVA analysis. Generally, a corrected P-value of less than 0.05 (adjusted for the 
false discovery rate, FDR) is considered statistically significant and serves as the criterion for gene selection.

Functional enrichment analysis
The genes originating from the target modules were isolated from the network in order to conduct enrichment 
analysis, thereby facilitating a deeper exploration of the functions associated with each module. The enrichment 
analysis employed Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways27–29, employing a threshold of p value < 0.05 and an enrichment gene count > 2 to ascertain the outcomes 
of enrichment.

Constructing prediction models based on various machine learning methods
The Random Forest model (RF) is an ensemble machine learning technique that employs multiple autonomous 
decision trees for the purpose of classification or regression30. The Support Vector Machine model (SVM) is 
capable of generating a hyperplane with maximum margin in the feature space, thereby effectively discerning 
data points31. The Generalized Linear Model (GLM) is an extension of the multivariate linear regression model, 
enabling a more effective and flexible assessment of the association between normally distributed dependent 
features and categorical or continuous independent features32. The eXtreme Gradient Boosting (XGB) technique 
is a collection of ensemble trees that utilizes gradient boosting. It incorporates a robust algorithm that takes into 
account both classification error and model complexity33. In this study, we developed machine learning models 
using two distinct CRG clusters (RD, SVM, GLM, and XGB) through the utilization of the “caret” package in 
the R programming language. All models were executed with default parameters and assessed using fivefold 
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cross-validation. To gain insights into the models’ performance and interpretability, we employed the “DALEX” 
package in R to explain the four machine learning models and visualize their residual distribution and feature 
importance. The “pROC” package was employed to visually represent the area under the Receiver Operating 
Characteristic (ROC) curve (AUC). Ultimately, the optimal machine learning model was identified, and the top 
five genes were chosen as predictive variables for LDH.

Construction and validation of modal graph models
Construct a column line graph model utilizing the predictive genes derived from XGB and assess the LDH cluster 
employing the R package “rms”34. Each predictive variable is allocated a score, and the predictive capability of 
the Nomo model is evaluated through calibration curves and decision curve analysis (DCA).

Results
Identification and immune infiltration analysis of CRGs
By conducting an analysis of the GSE124272 and GSE150408 datasets, we examined the expression patterns of 
14 CRGs in both LDH and non-LDH control groups. The findings revealed that 9 CRGs exhibited significant 
involvement in the differential expression associated with copper-induced cell death. Specifically, NLRP3, ATP7B, 
ATP7A, and MTF1 demonstrated significantly higher expression levels in LDH compared to non-LDH samples, 
whereas LIPT1, DLAT, PDHA1, GCSH, and DLST exhibited significantly lower expression levels in LDH relative 
to non-LDH samples (as depicted in Fig. 1A,B). Subsequently, we proceeded to examine the chromosomal 
positions of the 14 CRGs, as shown in Fig. 1C. Notably, a strong correlation was observed among 9 of these 
CRGs, prompting us to further investigate the relationship between variations in CRGs expression and their 
involvement in the development of LDH disease, as illustrated in Fig. 1D,E. Moreover, we conducted an analysis 
of immune infiltration in both LDH and non-LDH samples, as presented in Fig. 2. The findings revealed that 
LDH patients exhibited elevated levels of plasma cells, neutrophils, and monocytes, while the expression of γδ 
T cells was comparatively lower, as shown in Fig. 2A,B. This finding suggests a strong association between the 
development of LDH and the immune system. Subsequently, we performed an analysis of immune infiltration on 
these 9 CRGs that were differentially expressed. For example, PDHB demonstrated a notable positive correlation 
with monocytes, while displaying a significant negative correlation with activated mast cells and purified CD4 T 

Figure 1.   Correlation analysis of LDH and CRGs: (A) Boxplots showing the expression of 14 CRGs in LDH 
and non-LDH samples. (B) Heatmap presenting the differentially expressed CRGs. (C) Chromosomal locations 
of these 14 CRGs. (D) Correlation analysis of the 9 differentially expressed CRGs. (E) Circular plot depicting 
the correlation analysis results of the 9 differentially expressed CRGs, with red and green indicating positive and 
negative correlations, respectively. The size of the circles represents the magnitude of the correlation coefficients.
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cells. Similarly, NLRP3 displayed a significant positive correlation with neutrophils, but exhibited a significant 
negative correlation with activated CD4 memory T cells and monocytes. MTF1 exhibited a noteworthy positive 
association with monocytes and a positive association with purified CD4 T cells. LIPT1 displayed a positive 
association with resting mast cells and monocytes, while exhibiting a negative association with M0 macrophages, 
activated mast cells, and purified CD4 T cells (refer to Fig. 2C for detailed findings). These findings suggest that 
these CRGs potentially exert a crucial influence on LDH regulation and immune infiltration.

Unsupervised clustering identification and analysis of LDH
To analyze the expression of LDH and CRGs, we used a consensus clustering algorithm to group all LDH 
samples with 9 types of CRGs expression profiles. At k = 2, the observation of the maximum number of clusters 
is depicted in Fig. 3A. Subsequently, as the value of k increased to 4, a gradual decrease in the cumulative 
distribution function (CDF) values was observed, as illustrated in Figs. 3B–D. The 25 LDH samples were then 
categorized into two distinct groups, namely Cluster 1 (n = 17) and Cluster 2 (n = 8). Further analysis through 
principal component analysis (PCA) of these two clusters demonstrated significant dissimilarities between them, 
as depicted in Fig. 3E.

CRG cluster expression profile and immune infiltration characteristics
To examine the distinctive features of CRG clusters, we conducted an analysis on the differential expression of 9 
CRGs between CRG cluster C1 and CRG cluster C2 (Fig. 4A). CRG cluster C1 exhibited elevated expression levels 
of LIPT1, DLAT, PDHB, DLST, and GCSH, whereas CRG cluster C2 displayed heightened expression levels of 
NLRP3, ATP7B, and MTF1 (Fig. 4B). Furthermore, we also examined the immune infiltration in CRG cluster C1 
and CRG cluster C2 (Fig. 4C). The findings indicate that gene cluster C1 exhibited elevated levels of Macrophages 
M0, whereas CRG cluster C2 demonstrated heightened expression in T cells CD4 naive, Macrophages M0, Mast 
cells activated, and Neutrophils (Fig. 4D). In conclusion, the association between CRG cluster C2 and LDH may 
surpass that of CRGcluster C1.

Figure 2.   Analysis of LDH and CRG immune cell infiltrations. (A) Relative expression of LDH and non-LDH 
in 22 infiltrating immune cells. (B) Boxplot illustrating the differences in immune cell infiltrations between LDH 
and non-LDH. (C) Correlation analysis of the 9 differentially expressed CRGs with the infiltrating immune cells.
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GSVA analysis reveals the biological function of CRGs clusters in LDH
The GSVA method is a non-parametric, unsupervised approach commonly employed to evaluate gene set 
enrichment in gene expression microarray and RNA-sequencing (RNA-seq) data35. This versatile method has 
been utilized in various studies investigating gene mechanisms related to survival outcomes, including those 
focused on breast cancer, colon cancer, bladder cancer, and other malignancies36. In our study, we performed 
GSVA enrichment analysis for KEGG and GO to explore the biological characteristics of different clusters. 
The results of GSVA KEGG enrichment indicated the widespread involvement of pathways such as oxidative 
phosphorylation, butanoate metabolism, p53 signaling pathway, protein export, and MAPK signaling pathway in 
the pathogenesis of LDH (Fig. 5A). The GSVA GO enrichment analysis demonstrated the presence of processes 
like chemokine (C-X3-C motif) binding, snRNA catabolic process, transcription export complex 2, ribosomal 
small subunit binding, and other related processes (Fig. 5B). These results indicate the significant involvement 
of immune response mechanisms in LDH.

Co‑expression network construction of the CRGs molecular cluster
The WGCNA algorithm was employed to analyze the gene modules closely associated with CRG cluster. Initially, 
sample clustering was conducted using the Pearson correlation coefficient, and a sample clustering tree was 
constructed (Fig. 6A) after eliminating evident outliers. Subsequently, four modules were identified using the 
dynamic tree-cut method, as illustrated in Fig. 6B. An unweighted network (Fig. 6C) was then established based 
on the criterion of R2 = 0.9. Upon linking the modules with phenotypic traits, a strong correlation was observed 
in the disease states (Cluster1 and Cluster2) traits, as depicted in Fig. 6D. The blue module, turquoise module, 
brown module, and yellow module were chosen for further analysis based on the criterion of clinical significance 
(p < 0.05). Upon analyzing the relationships between modules and clinical features, it was found that the genes 
in the ME Blue module exhibited a significantly high correlation of 0.66. The correlation analysis between genes 
in the ME Blue module and Cluster2 is depicted in Fig. 6E. Consequently, the ME Blue module was selected for 
subsequent analysis.

Figure 3.   Identification of LDH copper death-associated gene molecular clusters. (A) Consensus clustering 
matrix, k = 2. (B–D) Representative cumulative distribution function (CDF) curve, CDF incremental area curve, 
and consensus clustering score. (E) Visualization analysis of two clustering distributions.
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Figure 4.   Expression and immune profiling analysis between two molecular clusters. (A) Heatmap of the 
expression of 9 CRGs between the two molecular clusters. (B) Boxplot of the expression of 9 CRGs between the 
two molecular clusters. (C) Relative abundance of the two molecular clusters in 22 infiltrating immune cells. (D) 
Boxplot of immune infiltration between the two molecular clusters.

Figure 5.   GSVA analysis reveals the biological function of CRGs clusters in LDH. (A) GSVA for KEGG 
pathways analysis. (B) GSVA for biological processes analysis.
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Functional analysis of the key module
We performed GO and KEGG enrichment analysis on the key modules of LDH and pathway annotation of genes 
within these modules to uncover the potential molecular biological processes associated with LDH. Regarding 
the key clinical modules associated with Lumbar Disc Herniation (LDH), the Gene Ontology (GO) terms in 
molecular function (MF) indicated significant enrichment in areas such as “structural constituent of ribosome,” 
“peptide binding,” and “amide binding.” In terms of cellular components, the genes were predominantly 
enriched in “ribosome,” “cytosolic ribosome,” “ribosomal subunit,” and “large ribosomal subunit.” In relation 
to biological processes, the genes exhibited significant enrichment in various aspects including “cytoplasmic 

Figure 6.   Weighted network analysis between two molecular clusters. (A) Dendrogram of co-expression 
modules. Different colors represent the determination of soft threshold power for different co-expression 
modules. (B) Detection of co-expression clusters with corresponding color distribution using dendrogram and 
module-feature relationship graph. (C) Determination of soft threshold power. (D) Correlation analysis between 
module feature genes and clinical states. (E) Scatter plot of differentially significant genes in the MEblue module 
and Cluster 2.
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translation,” “monosaccharide biosynthetic process,” “DNA damage response,” and “signal transduction by p53 
class” (Fig. 7A,B). Additionally, the KEGG terms demonstrated enrichment in pathways such as “ribosome,” 
“pentose phosphate pathway,” “oxidative phosphorylation,” “coronavirus disease-COVID-19,” and “diabetic 
cardiomyopathy” (Fig. 7C-D). It is noteworthy that the enrichment in “coronavirus disease-COVID-19” and 
“diabetic cardiomyopathy” may not be directly related to LDH and could be due to the broad nature of the gene 
sets involved.

Construction and evaluation of machine learning models
To enhance the identification of genes possessing significant diagnostic potential, we developed four machine 
learning models, namely RF, SVM, GLM, and XGB, utilizing the MEblue module hub genes. The “DALEX” 

Figure 7.   Key module function analysis results. (A–B) Gene Ontology (GO) enrichment analysis. (C–D) Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. BP: Biological process; CC: Cell component; 
MF: Molecular function.
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package was employed to compare these models and evaluate the residual distribution of each. The findings 
indicated that the XGB model exhibited the lowest residual value (Fig. 8A,B).Based on the outcomes of fivefold 
cross-validation, we generated ROC curves for the four models to comprehensively assess their discriminatory 
performance. The AUC values for these models were as follows: RF: AUC = 0.694; SVM: AUC = 0.714; XGB: 
AUC = 0.715; GLM: AUC = 0.571. Subsequently, we ranked the top 10 significant genes for each model based on 
the root mean square error (RMSE) (Fig. 8C). In summary, our findings indicate that the XGB model exhibits 
superior ability in distinguishing between different patient groups. The XGB model successfully identified five 
genes (CKS2, LRG1, RAB43, DYSF, and G6PD) as significant predictors for subsequent analysis. To further assess 
the predictive performance of the XGB model, we generated a bar-line plot (Fig. 9A). Additionally, we employed 
a combination of the calibration curve and decision curve analysis (DCA) to evaluate the prediction accuracy 
of the constructed line plot model. Notably, the calibration curve demonstrated minimal discrepancy between 
the observed and predicted risks of LDH clustering (Fig. 9B–C).

Discussion
Lumbar intervertebral disc herniation (LDH) is a prevalent musculoskeletal disorder that leads to low back pain, 
productivity loss, and disability, imposing substantial socioeconomic burdens37,38. Given the multitude of high-
risk factors implicated, the pathogenesis of lumbar disc herniation is notably intricate39. Consequently, timely 
and precise diagnosis, treatment, and management are of paramount importance for effective management of 

Figure 8.   Shows the construction and evaluation of RF, SVM, GLM, and XGB machine learning models. (A) 
Box plots of residuals for the four machine learning models are displayed. The red dots represent the root mean 
square error (RMSE) of the residuals. (B) ROC curves of the four machine learning models based on a fivefold 
cross-validation using the test dataset. (C) Important functions of the four machine learning models.
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LDH. In recent decades, considerable advancements have been achieved in the symptomatic alleviation and 
mitigation of this condition40. The present study reveals that6 the observed instances of copper-dependent cell 
death are predominantly attributed to the accumulation of lipid acylation-related proteins, depletion of iron-
sulfur cluster proteins, and a range of additional stress responses. These cascading events ultimately culminate 
in cellular demise and exhibit diverse connections with LDH16. However, there is currently a dearth of research 
investigating the precise mechanisms and impacts of copper in the modulation of cell death in diverse diseases. 
Consequently, the objective of this study is to elucidate the correlation between CRGs and LDH phenotype, 
examine their distinct functions in the immune microenvironment, and employ CRGs to forecast LDH subtypes.

This study presents a comprehensive analysis of differentially expressed CRGs in patients with LDH and 
healthy controls, marking the first investigation of its kind. The findings reveal the identification of nine distinct 
CRGs that exhibit differential expression. Notably, NLRP3, ATP7B, ATP7A, and MTF1 demonstrate significant 
upregulation in LDH compared to non-LDH levels, while LIPT1, DLAT, PDHA1, GCSH, and DLST exhibit 
significant downregulation in LDH compared to non-LDH levels. These results suggest a strong correlation 
between CRGs and the onset and progression of LDH. Following this, we conducted an immune infiltration 
analysis on samples from individuals with LDH and those without LDH. The findings revealed elevated levels 
of plasma cells, neutrophils, and monocytes infiltrating LDH patients, whereas the expression of γδT cells was 
diminished. This suggests a significant association between the progression of LDH and the immune system. 
Based on this, we proceeded to examine the correlation between CRGs and expounded upon the connection 
between CRGs and LDH. In CRG cluster C2, the genes LIPT1, DLAT, PDHB, DLST, and GCSH exhibited elevated 
expression levels, whereas in CRG cluster C1, NLRP3, ATP7B, and MTF1 displayed high expression levels. 
Cluster C1 demonstrated higher levels of macrophages M0, while CRGcluster C2 exhibited increased expression 
in CD4 naive T cells, activated macrophages M0, activated mast cells, and neutrophils. Our GSVA analysis 
revealed that the CRGclustes associated with cell death play a role in the regulation of immune response in LDH. 
This study employed the WGCNA algorithm to analyze the gene modules closely associated with CRG cluster, 

Figure 9.   Validation analysis of XGB predicted genes. (A) Nomogram model for predicting RA risk based on 5 
genes in XGB. (B) Construction of calibration curve. (C) Construction of DCA.
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aiming to deepen the understanding of its biological role in LDH. Four gene modules, namely the blue module, 
turquoise module, brown module, and yellow module, were identified. Notably, the ME Blue module exhibited 
the highest gene significance, warranting additional investigation. The GO enrichment analysis demonstrated 
that genes within the blue module exhibited enrichment in various terms, including structural constituent of 
ribosome, peptide binding, amide binding, ribosome, cytosolic ribosome, ribosomal subunit, large ribosomal 
subunit, cytoplasmic translation, monosaccharide biosynthetic, among others (Fig. 7A). Moreover, based on 
the findings of the KEGG enrichment analysis, it was observed that genes within the blue module exhibited 
significant enrichment in various biological processes, including ribosome biogenesis, the pentose phosphate 
pathway, oxidative phosphorylation, as well as diseases such as coronavirus disease (COVID-19) and diabetic 
cardiomyopathy. Additionally, the pentose phosphate pathway was identified as another notable enrichment 
within this module (Fig. 7B).

In recent times, machine learning (ML) has gained significant traction in the clinical domain and is 
recognized as a crucial instrument in healthcare41. In contrast to conventional statistical models, the extensive 
analysis facilitated by machine learning guarantees the resilience of models and enhances prediction accuracy 
through iterative algorithms42,43. This study undertakes a comparative evaluation of the predictive capabilities of 
four machine learning models (RF, SVM, GLM, and XGB). These models are constructed based on 61 genes that 
exhibit a close association with the CRG cluster within the MEblue module of the GSE124272 and GSE150408 
datasets. The XGBoost-based prediction model was developed and yielded the most accurate predictive outcome, 
with an AUC value of 0.715. Consequently, a total of five significant predictive genes (CKS2, LRG1, RAB43, 
DYSF, and G6PD) were identified through the utilization of XGB. CKS2, specifically, is a small, highly conserved 
cyclin-dependent kinase (CDK) interaction protein (10 kDa). As a crucial member of the CKS family, CKS2 
plays a pivotal role in human embryogenesis, regulation of the cell cycle, somatic cell division, and apoptosis 
regulation. Moreover, CKS2 exhibits abnormal expression in various malignant tumor tissues and is closely linked 
to the biological characteristics of tumor initiation, progression, and metastasis44. Prior research has extensively 
examined CKS2, indicating its ability to augment the expression of cell cycle proteins, namely cyclin A, cyclin 
B1, and CDK1, thereby facilitating the proliferation of cancer cells. Moreover, multiple investigations have 
underscored the significance of CKS2 in preserving the functionality of hematopoietic stem cells45. Furthermore, 
evidence suggests that46 CKS2 might contribute to the advancement of rheumatoid arthritis. Nonetheless, the 
precise role and underlying mechanisms of CKS2 remain elusive. The findings of our research indicate that CKS2 
could potentially serve as a novel functional regulator in the progression of LDH.

Leucine-rich α-2 glycoprotein 1 (LRG1) is a secreted member of the leucine-rich repeat (LRR) protein 
family, which has been identified as a pattern recognition system in the innate immune system. It is capable 
of recognizing motifs and engaging in protein–protein interactions, thereby contributing to various biological 
processes47. Notably, LRG1 has been found to be significantly upregulated in cancer and diabetes, indicating 
its potential involvement in these pathologies. Moreover, LRG1 exhibits multifunctionality as a pathogenic 
signaling molecule, with notable expression in a range of diseases including infection, cardiovascular, renal, 
pulmonary, neural, and autoimmune disorders. While the correlation between LRG1 levels and diseases does not 
establish causality, substantial evidence exists indicating that heightened levels or aberrant expression of LRG1 
actively contribute to pathological alterations in various diseases48. Prior studies have identified49 serum LRG1 
as a significant diagnostic indicator for monitoring autoimmune conditions such as lupus nephritis, psoriasis, 
rheumatoid arthritis, and vasculitis50–53. Research conducted by Codina R et al. has indicated that54 LRG1 
functions as an acute-phase protein, exhibiting a swift rise in serum levels following microbial infection and other 
inflammatory triggers. Furthermore, LRG1 plays a crucial role in facilitating immune cell participation at sites 
of inflammation, promoting the extravasation and activation of neutrophils, and augmenting the differentiation 
of naïve CD4pos T cells into pro-inflammatory Th17 lymphocytes49. The aforementioned findings contribute 
to the existing body of evidence that establishes a correlation between the overexpression of LRG1 and various 
inflammatory conditions. To summarize, LRG1 assumes a significant role in immune cell signaling, immune 
responses, and the inflammatory process.

Ras-related GTP-binding protein 43 (RAB43) is a constituent of the Ras superfamily, predominantly 
localized within the endoplasmic reticulum and Golgi apparatus. It serves as a pivotal regulatory element in 
membrane transport, vesicle mobility, signal transduction, and tethering occurrences55. Prior investigations 
have demonstrated56 the involvement of RAB43 in the modulation of diverse signal transduction pathways 
linked to cellular invasion, apoptosis, and immune response. In their study, Li et al. made the discovery that an 
elevated expression of RAB43 is indicative of a poor prognosis and is associated with the occurrence of epithelial-
mesenchymal transition in glioblastoma57. The Rab43 GTPase plays a critical role in facilitating the post-synaptic 
transport and neuron-specific sorting of G protein-coupled receptors58. Another research investigation has 
provided evidence that the administration of HMGB1 can impede the forward transport of CD91, which is 
regulated by Rab43, from the endoplasmic reticulum to the cell surface. This inhibition subsequently suppresses 
BMDM-mediated phagocytosis and delays the resolution of inflammation59. Notably, both the endoplasmic 
reticulum and immune response play pivotal roles in the pathogenesis of LDH and are intricately linked to 
Ras-related GTP-binding protein 43 (RAB43)60. Consequently, it is hypothesized that RAB43 may be closely 
associated with LDH by modulating various signal transduction pathways implicated in the endoplasmic 
reticulum and immune response.

Dysferlin, also known as Dysferlin or DYSF, is a transmembrane glycoprotein belonging to the ferlin family. 
It is predominantly found in skeletal muscle and cardiac tissue, where it is situated on the plasma membrane. 
Dysferlin interacts with Caveolin 3 (Cav3) and Mitsgumin 53 (MG53), key components of the membrane repair 
system, and is essential for vesicle fusion during the process of plasma membrane repair61. In the absence of 
Dysferlin, muscle tissues exhibit inflammatory foci, infiltration of monocytes, and heightened activation of 
the NFκB signaling pathway62. The dysregulation of DYSF expression has been found to be closely linked to 
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various hereditary muscle diseases and autoimmune disorders. In a study conducted by Xiao et al.63,64, the 
significant role of DYSF in the progression of two subgroups of idiopathic inflammatory myopathies (IIM), 
namely dermatomyositis (DM) and polymyositis (PM), was reported. In addition, DYSF is one of the cuproptosis-
related asthma diagnostic genes65. Dysferlin has the potential to regulate LDH by influencing the secretion of 
multiple inflammatory factors and the metabolism of mononuclear cells. This suggests that dysferlin could play 
a role in the immune response and cellular processes associated with LDH.

The primary role of Glucose-6-phosphate dehydrogenase (G6PD) is to facilitate the production of ribose 
and the reducing equivalent nicotinamide adenine dinucleotide phosphate (NADPH) via the pentose phosphate 
pathway (PPP)66. Plays a critical role in the synthesis of various biomolecules, including nucleic acids and fatty 
acids. Inadequate G6PD activity can result in hindered cell growth and increased mortality rates. Profound G6PD 
deficiency can impede embryonic development and hinder the growth of organisms. The present study reveals 
that alterations in G6PD activity are linked to autophagy, insulin resistance, infection, inflammation, and the 
pathophysiology of diabetes, and hypertension. Furthermore, abnormal activation of G6PD in various types of 
cancer results in increased cell proliferation and improved adaptability67. Moreover, G6PD may play a role in 
viral replication and the regulation of vascular smooth muscle function68. G6PD represents a newly identified 
gene signature linked to cuproptosis, with significant implications for the prognosis, clinical management, and 
potential immunotherapeutic strategies in hepatocellular carcinoma69. Notably, our findings demonstrate that 
G6PD exhibits a heightened diagnostic significance.

This study represents the initial exploration of the role of CRGs in LDH, drawing upon existing knowledge. 
Although promising findings have been obtained, it is crucial to acknowledge the limitations inherent in our 
research, which primarily relies on bioinformatics analysis. To establish a more robust understanding of the 
relationship between candidate genes implicated in copper-induced cell death and LDH, future investigations 
should encompass more extensive clinical or experimental studies.

Conclusions
In summary, our study represents the discriminatory potential of CRGs in LDH. Models constructed using 
machine learning methods and five genes (CKS2, LRG1, RAB43, DYSF, and G6PD) demonstrated strong 
predictive capabilities. These results offer insights into the pathogenesis and therapeutic research of LDH moving 
forward.

Data availability
The data can be found in the GEO database. Further inquiries can be directed to the corresponding author.
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