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Sidelobes and sideband 
minimization in time‑modulated 
array antenna based on chaotic 
exchange nonlinear dandelion 
optimization algorithm
JianHui Li , Yan Liu *, WanRu Zhao , TianNing Zhu , YiBo Wang  & Kui Hu 

Time-modulated array antenna (TMAA) is a new type of array antenna based on time modulation 
technology. By introducing "time" as the fourth dimensional design freedom into the design of 
conventional array antennas in three-dimensional space, the array antenna has time modulation 
characteristics, which better controls the radiation characteristics of the array antenna and achieves 
the best far-field radiation pattern synthesis. This paper designs a Time-modulated linear array 
(TMLA) with low sidelobe level (SLL) and low sideband level (SBL) based on the chaotic exchange 
nonlinear dandelion optimization (CENDO) algorithm. Three optimization methods are studied: 
firstly, determining the optimal on-time (τnn) for each array element; The second is to determine 
the optimal on-time (τnn) and optimal uniform array element spacing (d) for each array element; The 
third is to determine the optimal opening time (ton), closing time (toff), and optimal uniform array 
element spacing (d) for each array element. To achieve simultaneous reduction of sidelobe level and 
suppression of harmonic interference. The same array model contains different harmonic frequency 
radiation. In this article, we only considered two harmonic frequencies, namely the first sideband 
frequency and the second sideband frequency. Because the harmonic of other sideband frequencies 
has a very small impact on the radiation of the fundamental wave, it can be ignored. To demonstrate 
the stronger ability of the CENDO algorithm in optimizing Time-modulated array antennas, and in 
line with the principle of fairness and impartiality, this paper also simulates different Time-modulated 
array models and compares the results of the CENDO algorithm with other published literature. 
It is concluded that this study shows lower SLL and lower SBL in different models. This provides a 
more scientific and accurate explanation of the superiority of the CENDO algorithm compared to 
other algorithms in the field of antenna optimization in electromagnetics. At the same time, this 
also provides great research value and fundamental support for designing high-performance Time-
modulated array antennas in subsequent engineering applications.
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An antenna is a transformer used to propagate electromagnetic waves. According to the IEEE standard 
definition, antennas are described as means of "transmitting or receiving radio waves"1. Fields such as radio 
communication, broadcasting, television, radar, navigation, electronic countermeasures, remote sensing and 
radio astronomy all rely on antennas for their operations. In the new era, due to the expanding business volume 
in the electromagnetic environment, a single antenna is no longer able to meet the required directional gain. To 
enhance the radiation pattern of the antenna2, a lot of research has been conducted on the design and synthesis 
of array antennas, to design array antennas with lower sidelobe level (SLL) and narrower half-power beamwidth 
(HPBW)3. In the early stages of research, people only used traditional analysis methods to model the excitation, 
such as using Taylor polynomials and Chebyshev polynomials to allocate the excitation amplitude4,5, and using 
the conical amplitude distribution of attenuators to determine the excitation amplitude. These methods are 
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often cumbersome and inefficient, and any small design defects may lead to extremely poor results6. Therefore, 
with the deepening of research, more and more swarm intelligence optimization algorithms are being used 
in the field of designing array antennas, and compared to traditional analysis methods, these evolutionary 
algorithms can achieve better antenna radiation characteristics. For example, genetic algorithm (GA)3, differential 
evolution (DE) algorithm2,6,7, particle swarm optimization (PSO) algorithm8,9, comprehensive learning particle 
swarm optimization (CLPSO) algorithm10, chaotic particle swarm optimization (CPSO) algorithm 11, cat swarm 
optimization (CSO) algorithm12, harmony search (HS)13, taboo search (TS)14, cuckoo optimization algorithm 
(COA)15 are widely used to design linear array antenna (LAA), using spider monkey optimization (SMO) 
algorithm16, the firefly algorithm (FFA)17, enhanced firefly algorithm (EFA)18, flower pollination algorithm 
(FPA)19, invasive weed optimization (IWO) algorithm20, and grey wolf optimization (GWO) algorithm21,22 for 
linear array antenna (LAA) design and radiation pattern synthesis. However, using these methods to design 
LAA still has some drawbacks, such as unstable excitation current weights and large dynamic range ratio. It is 
also difficult to simultaneously reduce SLL and improve directionality, so it is not easy to synthesize the optimal 
radiation pattern, as the decrease in SLL results in a decrease in directionality, which conflicts with each other. In 
addition, to achieve beam control in linear array antennas, phased arrays, which are limited to specialist military 
systems, necessitate the use of costly digital phase shifters to optimize the phase of the array elements. In order to 
overcome these limitations and drawbacks, Time-modulated array antennas have emerged, and their advantages 
over traditional array antennas have attracted extensive research from antenna designers in recent years.

TMAA is a new type of array antenna using time modulation technology, which introduces the fourth 
dimension—time in the design of array antenna. It not only reduces system costs and errors but also has greater 
flexibility, and the SLL is greatly reduced, better controlling the radiation characteristics of the array antenna. 
Time-modulated array antennas use high-precision control to periodically turn on and off the radio frequency 
(RF) switches, which is part of the feeding network that connects the adder to the output of the array components. 
This allows the antenna to achieve array weighting. By using uniform or non-uniform excitation to achieve 
adjustable switch configurations, extremely low or ultra-low SLL with improved radiation characteristics can be 
obtained23,24. In addition, time modulation will continue to be applied in fields such as tracking radar systems25, 
path finding26, arrival direction evaluation27, and automatic beam steering28,29. Figure 1 shows the general 
structure of a Time-modulated array antenna. If all element switches are closed, the array behaves as a traditional 
linear array30. On the contrary, it is a Time-modulated array. However, there is a common problem with Time-
modulated array antennas, which is that they generate harmonics or sidebands in multiples of the switching 
frequency31–33. And these unexpected harmonics will waste energy and cause interference to the fundamental 
wave and even other parts of the radio spectrum. Therefore, we need to determine the appropriate time series by 
appropriately opening and closing each array element to suppress harmonic waste and interference and improve 
the performance of the array. More specifically, various evolutionary algorithms are used to optimize time, such 
as genetic algorithm (GA)30, particle swarm optimization (PSO) algorithm34, and differential evolution (DE) 
algorithm35, to determine the optimal time series and obtain the synthesis of patterns with low SLL and low SBL. 
This paper will use the CENDO algorithm to design and optimize the TMLA problem.

The process of the CENDO algorithm is detailed in Section "The CENDO algorithm" of this paper. In 
Section "The theory and design equations of TMLA", the basic structure and theoretical knowledge of TMLA 
are introduced. Then, in Section "Results and discussions", three distinct optimization schemes are utilized to 
design the directional pattern synthesis of a Time-modulated array using the CENDO algorithm, and the results 
are compared with the design results of other algorithms to verify the effectiveness of the CENDO algorithm in 
TMLA synthesis. Finally, the summary of the paper is provided in Section "Summary".

The CENDO algorithm
The CENDO algorithm is an improved swarm intelligence optimization algorithm based on the dandelion 
optimization (DO) algorithm36, inspired by the growth and reproduction process of dandelions. The CENDO 
algorithm has made three improvements on the basis of the DO algorithm: firstly, in the initialization stage, a 
logistic-tent chaotic mapping is introduced to generate the initial population, making the population distribution 
more uniform; The second is the iterative exchange in the rising stage to prevent falling into local optima; The 
third is to introduce nonlinear factors during the landing stage, being able to find the optimal solution more 
accurately enhances the optimization ability.

In the CENDO algorithm, the position of dandelion represents a possible solution to the optimization 
problem, and the growth and reproduction process of dandelion is divided into three stages: ascending, 
descending, and landing. Each stage requires an iteration of dandelion position updates, and finally finds the 
most suitable position for dandelion growth and reproduction, which is the optimal solution in the optimization 
problem. This section mainly introduces the process and specific expressions of the CENDO algorithm. The 
flowchart of the CENDO algorithm is shown in Fig. 2.

Chaos initialization–logistic‑tent mapping
Logistic mapping is a unimodal mapping that is a pseudo random sequence with the advantages of randomness 
and the high sensitivity of initial values unique to chaos37. The logistic mapping divides the mapping independent 
variable interval into reasonable segments, expands the chaotic control parameter area, expands the coverage 
range to the entire control parameter range, and makes the generated sequence distribution more uniform. The 
following is the mathematical expression for logistic mapping:

(1)Xn+1 = Xnµ(1− Xn)
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where Xn represents the result of the iteration, and the range of Xn is (0, 1). μ is a branching parameter used to 
control the chaotic state of the logistic mapping, with a range of (0, 4).

Tent mapping is a segmented linear mapping that has a somewhat excellent autocorrelation, uniform 
probability distribution, and power spectral density38. It produces a chaotic sequence with good distribution 
and randomness. The initial population distribution can be adjusted more uniform based on these features, which 
will help the algorithm find the global ideal value. The mathematical expression for tent mapping is as follows:

where xn refers to the variable of the problem, c is a chaotic parameter. When xn belongs to [0, 1] and c belongs 
to2,4, the system is in a chaotic state.

Tent mapping and logistic mapping are mutually topological conjugate maps. In order to combine the 
advantages of the two, the algorithm used in this paper utilizes the logic tent combination mapping method39, 
which combines the complex chaotic dynamics characteristics of high zero sensitivity and randomness of logistic 
mapping with the stronger autocorrelation, better distribution and randomness of tent mapping. In this way, 
during algorithm initialization, the population is more evenly distributed in the search space, which is beneficial 
for improving the optimization efficiency and solving accuracy of the algorithm. The mathematical expression 
for initialization is as follows:
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Figure 1.   General structure diagram of Time-modulated array.
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where Xn+1 is system variable, β is control parameter with a range of [0, 2], and xn ∈ [0, 1].
In the synthesis application of array antennas, the chaos initialization in the CENDO algorithm can generate 

many chaotic sequences with good randomness, providing a good research model for generating high-quality 
initial populations39. As shown in Fig. 3, we can see that the initial solution is distributed as evenly as possible 
in the solution space.
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Figure 2.   The flowchart of CENDO algorithm.
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Dandelion ascent stage
During the rising stage of dandelion, it is influenced by factors such as wind speed, air humidity, and other 
variables, and is divided into two types: sunny and rainy days. The following describes the optimization iteration 
process and mathematical model of dandelion in these two situations.

Sunny weather condition
In sunny days, dandelions have a better chance of flying to further search areas for exploration, so it is required 
that the step parameter k of the iterative formula in this case be larger, so that more feasible solutions can be 
obtained within a larger search range, and the optimal solution can be found more accurately to avoid falling into 
local optima. The mathematical expression for the evolutionary iteration of dandelion in this case is as follows:

where k is used to adjust the search area of dandelion to obtain different search steps, which is determined by 
Eq. (5). Figure 4 shows the variation curve of k.
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Figure 3.   The population distribution diagram (left) and histogram (right) of the Logistic-tent chaotic 
mapping.
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Figure 4.   The iterative curve graph of k. 
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where q is an adjustment factor determined by the current iteration number t and the maximum iteration number 
T, used to calculate k.

Rainy weather condition
In rainy days, it is difficult for dandelions to fly further for breeding. They only need to be developed in small 
neighborhoods near them. In this case, the step parameter α value requiring an iterative formula is relatively 
small, to more accurately find the most suitable optimal solution within the nearby small neighborhood range. 
The mathematical expression for the evolutionary iteration of dandelion is as follows:

where α is an adaptive parameter used to modify the search step length, Fig. 5 shows the variation curve of α, 
its mathematical expression is as follows:

In this case, dandelion propagates in a spiral pattern, where vx and vy are the two parts of the force generated 
by the formed vortex. The mathematical expression is as follows:

In Eq. (8), θ is a random number between [− π, π]. r represents the rising vortex distance.
where lnY denotes a lognormal distribution subject to µ = 0 and σ 2 = 1, and its mathematical formula is as 

follows:

In Eq. (9), y represents the standard normal distribution N (0, 1).
where Xs represents a position in the randomly selected search space during the iteration process, and Eq. (10) 

provides its mathematical expression.

In Eq. (10), rand generates a random matrix with 1 row Dim (dimension of the problem) column between 0 
and 1. LB and UB represent the lower and upper bounds of the problem. The mathematical expressions for LB 
and UB are as follows:
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Figure 5.   The iterative curve graph of α. 
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Dandelion descent stage
After the ascent stage is completed, the dandelion iteration enters the descent stage, during which the dandelion 
needs to use the average information of the ascent stage for iteration. The mathematical expression for this stage 
is as follows:

where βt is a random number from the standard normal distribution, representing Brownian motion40, used to 
describe the trajectory of dandelions. Figure 6 depicts the trajectory of Brownian motion of dandelions. Xmean_t 
represents the average information of the rising stage, and its mathematical expression is as follows:

Dandelion landing stage
After the descent stage is completed, the dandelion begins to enter the landing stage. As the iteration progresses, 
the location information of dandelions is constantly updated. Due to the δ parameter continuing to increase, the 
search range in their neighborhood gradually narrows, which can effectively avoid crossing the optimal value 
and thus gradually approach the optimal position. Ultimately, the global optimal solution can be found. The 
mathematical expression of dandelion at this stage is as follows:

where Xelite represents the optimal position of dandelion in the current iteration. Levy ( � ) represents the Levy 
flight function41, whose mathematical expression is given by Eq. (15). During this process, the Levy flight function 
allows dandelions to land in more distant places with a greater probability for neighborhood search, which helps 
the CENDO algorithm avoid local optima.

The parameters of the Levy flight function are set as follows, where the β value in the Eq. (15) is set to 1.536, 
s is set to 0.0136, w and tr are random values between [0, 1]36. The Eq. (16) gives a mathematical expression of 
σ . This setting can enable the CENDO algorithm to quickly converge to the global optimal solution, achieving 
dynamic control and balance throughout the entire convergence process.

In Eq. (14), δ parameter is a nonlinear growth factor added from [0, 2] to control the current position 
information of dandelion. Its mathematical expression is given by Eq. (17). Figure 7 describes the change curve 
of δ.
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Figure 6.   Iterative trajectory of dandelion in descent stage.
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Based on Fig. 7, we can see that its value shows a slow increasing trend. In the early stage of the iteration, the 
increase is slow, and its value is relatively small, so its neighborhood search range is relatively large and can search 
for the optimal value range faster; In the middle and later stages of the iteration, the increase is rapid, and its value 
is relatively large, so the search neighborhood is quickly reduced, which can more accurately find the optimal 
value. Therefore, this helps the CENDO algorithm find the best solution in a faster and more accurate way.

The theory and design equations of TMLA
This section describes the relevant theoretical knowledge of Time-modulated linear arrays (including symmetric 
and asymmetric Time-modulated arrays) and the corresponding mathematical model expressions under different 
time schemes. Figure 8 shows the model diagram of TMLA, which is connected to isotropic array elements using 
high-speed RF switches and placed along the x-axis.

Symmetric time‑modulation array
Figure 9 shows a typical structure of a linear array consisting of 2N isotropic sources arranged symmetrically and 
equidistant along the x-axis. The mathematical expression for the corresponding array factor of this traditional 
linear array antenna is as follows:

where In and φn represent the excitation amplitude and phase, respectively. k is the propagation constant (k = 2π/λ, 
with λ being the wavelength), θ represents the angle of the incident electromagnetic wave, d represents the 
distance between each array element, and N is the number of array elements.

If each array element is connected to a high-speed RF switch and these elements periodically change direction 
at a predetermined turn on-time, combined with the concept of time modulation, modify the expression of the 
array factor in Eq. (18) as follows42:

In a Time-modulated array, each antenna is controlled by a switch, and the periodic switch on-time function 
Un(t) is given by Eq. (20).

TMLA operates at the fundamental frequency of f0, with a fundamental frequency period of T0 (T0 = 1/f0). 
The time series function Un(t) is periodic, and the modulation frequency fp is much smaller than f0 (i.e., fp <  < f0 
and Tp >  > T0, where Tp represents the modulation period). Now, instead of simultaneously exciting all elements, 
each element is "turned on" for a fixed duration of τm with a pulse repetition rate of fp = 1/Tp; Tp is the pulse 
repetition period within the range of τm ≤ Tp > T0, and the on-time of each antenna in TMLA is τn (0 ≤ τn ≤ Tp). 
Due to the periodicity of the function Un(t), its periodic behavior can be expressed in the frequency domain as 
the following mathematical expression42.
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Figure 7.   The iterative curve graph of δ. 
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where, the mathematical expression for bmn is as follows:

Equation (22) shows the complex excitation coefficient of the mth harmonic. Among them, m = 0 represents 
the fundamental wave, and the center frequency (f0); m =  ± 1 represents the first harmonic, the first sideband 
frequency (f0 + fp); m =  ± 2 represents the second harmonic, the second sideband frequency (f0 + 2fp). And so on, 
m =  ± 3, …, ± ∞, represents higher-order harmonics.
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By substituting Eqs. (21) and (22) into Eq. (19), the array factor of the Time-modulated array can be rewritten 
as Eq. (23).

The expression of Eq. (23) includes mth harmonic frequency component (mfp), which is the sum of infinite 
harmonic frequency modes. It is worth noting that the mathematical expression of the array factor for the mth 
order sideband component can be written as follows43:

From Eq. (24), we can also represent the array factor of the fundamental wave, the array factor of the first 
positive harmonic, and the array factor of the second positive harmonic, respectively. Their mathematical 
expression is as follows:

Considering the uniform static excitation amplitude and phase, i.e. In = 1, φn = 0; The array factor expressions 
for fundamental wave, first harmonic, and second harmonic can be simplified as follows:

The above three expressions provide a method for calculating the array factor of a symmetric Time-
modulation array at the fundamental frequency (f0), the first harmonic frequency (f0 ± fp), and the second 
harmonic frequency (f0 ± 2fp), which can be used for synthesizing the desired radiation pattern.

Asymmetric time‑modulation array
The theoretical knowledge of asymmetric Time-modulation arrays is basically the same as that of symmetric 
Time-modulation arrays, except that the array factor expressions of the fundamental wave and each harmonic 
are different. In an asymmetric Time-modulation array, the fundamental wave, as well as the array factors of the 
first and second positive harmonics, are expressed as follows:

Similarly, Eqs. (31), (32), and (33) can be used to achieve pattern synthesis of asymmetric time modulated 
arrays.
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Different time optimization schemes
In the optimization design of TMLA, we can optimize the on-time (τn), it is also possible to optimize both the 
opening time (t1) and closing time (t2) simultaneously. The array factor expressions for each harmonic under 
different time optimization strategies are different. Below, an asymmetric time modulation array will be used to 
explain the above two schemes separately.

Switch configuration 1
Each switch is simultaneously on at 0 times, with only on-time (τn). The definition of the time series function 
Un(t) in this scheme can be used as shown in Fig. 10. The on-time of each array element within the modulation 
period (Tp) is τn. The mathematical expression for Un(t) under this scheme is provided by Eq. (20).

Similarly, we can also obtain the array factor expressions for the fundamental wave, first harmonic, and second 
harmonic in this case, which are given by Eqs. (31), (32), and (33), respectively.

In order to solve the comparability between data indicators and improve the optimization speed of the 
algorithm in subsequent simulations, we normalized the on-time (τn) of each array element. So, Eqs. (31), (32), 
and (33) are adjusted as follows:

where, τnn (τnn = τn/Tp) represents the normalized on-time. It is also one of the optimization variables in the 
experimental simulation part.

Switch configuration 2
Each switch is turned on and off at different times, with both opening time (t1) and closing time (t2). The 
definition of the time series function Un(t) in this scheme is different, as shown in Fig. 11. The on-time of each 
array element within the modulation period (Tp) is still τn. The difference is that each switch is not uniformly 
turned on at the "0" times, requiring them to be turned on and off at different times to optimize the opening 
time (t1) and closing time (t2) of each array element. The mathematical expression for Un(t) under this scheme 
is as follows:

Based on the time series function under this scheme, we can derive that its Fourier excitation coefficient is 
adjusted from Eq. (22) to Eq. (38)44. So, in this case, the array factors of the fundamental wave, first harmonic, 
and second harmonic also need to be changed accordingly, and their expressions are given by Eqs. (39), (40), 
and (41), respectively.
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Figure 10.   Time series diagram for switch configuration 1.
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Similarly, the opening time (t1) and closing time (t2) of each array element are also required to be normalized. 
Therefore, Eqs. (39), (40), and (41) are rewritten as follows:

where, ton (ton = t1/Tp) and toff (toff = t2/Tp) represent the normalized opening time and closing time, respectively. 
Under this scheme, each array element can generate different time combinations to achieve the desired TMLA 
pattern synthesis.

Optimization objective function of time‑modulation array
Any optimization problem needs to be transformed into a mathematical model for solving, which requires 
first determining the optimization objective of the problem, establishing the objective function, and then using 
optimization algorithms to optimize it. In the study of Time-modulated array in this paper, our optimization 
objective is to suppress both SLL and SBL to achieve high directional radiation patterns. The SBL considered in 
this paper is the first harmonic sideband level (SBL1) and the second harmonic sideband level (SBL2), because 
as the harmonic frequency increases, the radiated power becomes very small or negligible. Therefore, the 
mathematical expression for the objective function (fitness function) is as follows:

where g denotes the gth number of generation evaluation. SLLmax is the maximum sidelobe level at the center 
frequency of the fundamental wave; SBL1_max is the maximum sideband level at the first sideband frequency; 
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Figure 11.   Time series diagram for switch configuration 2.
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SBL2_max is the maximum sideband level at the second sideband frequency. w0, w1, and w2 are the weighting factors 
for the fundamental wave, first harmonic, and second harmonic, respectively, representing the contribution of 
different terms to the fitness function. If the SLL of the fundamental wave is difficult to reduce relative to the 
first and second harmonics, it is necessary to increase the weight of the fundamental wave appropriately, i.e., 
increasing w0. Similarly, other harmonics operate in the same way. The range of weighting factors is [0, 1] and 
w0 + w1 + w2 = 1. The above Eq. (42) is applied as the objective function of the Time-modulation array in the 
antenna model simulation optimization in Section "Results and discussions" of this paper.

Results and discussions
This section provides three optimization schemes to minimize SLL and SBL as much as possible. The three 
schemes correspond to simulation examples of four Time-modulated array models, and the optimization results 
of the CENDO algorithm and other algorithms are discussed to illustrate that the method for synthesizing the 
optimal TMLA pattern is to use the CENDO algorithm.

The optimal on‑time (τnn)
Case-1: the Time-modulated array model is a symmetric 32 element array, where the uniform excitation 
amplitude, In = 1, and the spacing between elements, d = 0.5λ. The optimal radiation pattern is generated by 
optimizing only the on-time (τn) of each array element. Table 1 presents the simulation results of the SLL reduced 
by different algorithms, the SBL1, the first null beamwidth (FNBW), and computational times. Table 2 shows 
the optimal on-time (τnn) for each array element obtained through different algorithms. The fundamental wave 
radiation pattern and first harmonic radiation pattern obtained through the DE45, teaching–learning-based 
optimization (TLBO)45, quantum particle swarm optimization (QPSO)45, DO, and CENDO algorithms are 
shown in Figs. 12a, b), respectively. The population size of each algorithm is set to 96. The maximum number 
of iterations is set to 1000.

From Table 1, it can be seen that the optimal SLL values obtained using DE45, TLBO45, QPSO45, and DO 
algorithms are − 20.00 dB, − 19.51 dB, − 19.44 dB, and − 21.53 dB, respectively. The SBL1 was suppressed 
to − 27.91 dB, − 27.41 dB, − 22.92 dB, and − 34.38 dB, respectively. The SLL using the CENDO algorithm is 
suppressed to − 22.78 dB, which is 2.78 dB, 3.27 dB, 3.34 dB, and 1.25 dB lower than the above four algorithms, 
respectively; SBL1 is suppressed to -37.15 dB, which is 9.24 dB, 9.74 dB, 14.23 dB, and 2.77 dB lower than the 
above four algorithms, respectively. The FNBW obtained using CENDO, DE45, and TLBO45 algorithms are 9.8°, 
9.6°, and 10.0° respectively (with a specified main lobe range of 10° and no broadening), indicating stronger 
array directionality. The FNBW obtained using QPSO45 and DO algorithms has been widened by 0.2° and 
0.4°, respectively, resulting in weaker array directionality. Regarding the computational times for algorithm 
optimization, we can also conclude that using the CENDO algorithm to optimize the model takes 376.3 s, which 
is much faster than other algorithms compared to it, greatly improving optimization efficiency. All comparison 
results indicate that the CENDO algorithm is superior to DE45, TLBO45, QPSO45, and DO algorithms in 
symmetric TMLA optimization design.

Table 1.   Compare the results based on the CENDO algorithm with those of other algorithms designed with a 
32 element TMLA. Significant values are in [bold].

Algorithms DE TLBO QPSO DO CENDO

SLL (dB)  − 20.00  − 19.51  − 19.44  − 21.53  − 22.78

SBL1 (dB)  − 27.91  − 27.41  − 22.92  − 34.38  − 37.15

FNBW (deg) 9.6 10.0 10.2 10.4 9.8

Computational times (s) 705.8 704.1 709.2 391.1 376.3

Table 2.   The connection time of each array element obtained using different algorithms. Significant values are 
in [bold].

Algorithms Optimal on − time (τnn)

DE
1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.949

0.901 0.926 0.823 0.020 0.013 0.988 0.095 0.403

TLBO
1.000 1.000 1.000 0.944 0.936 0.824 0.809 0.751

0.667 0.454 0.606 0.321 0.288 0.314 0.282 0.247

QPSO
1.000 0.999 0.999 0.995 0.985 0.980 0.668 0.947

0.216 0.861 0.872 0.926 0.256 0.068 0.275 0.070

DO
0.419 1.000 1.000 1.000 0.983 0.916 1.000 0.858

1.000 0.292 0.528 0.569 0.199 0.282 0.422 0.434

CENDO
0.319 0.998 1.000 1.000 0.931 0.904 0.671 0.625

0.614 0.650 0.587 0.558 0.444 0.484 0.272 0.295
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The optimal on‑time (τnn) and spacing (d)
This section mainly presents simulation examples of two models, Case-2 and Case-3. The Time-modulation array 
models of both examples are asymmetric 16 element arrays, where the excitation amplitude is still uniform, i.e. 
In = 1. By optimizing the optimal on-time (τnn) of each element and the optimal uniform spacing (d) between 
elements, the optimal radiation pattern synthesis of the TLMA model can be achieved. In Case-2, the population 
size of each algorithm is set to 100, and the maximum number of iterations is set to 300. In Case-3, the population 
size and maximum number of iterations for each algorithm are set to 120 and 100, respectively.

Case-2: the optimal on-time (τnn) and optimal uniform spacing (d) of each array element obtained by different 
algorithms are given in Table 3. Table 4 shows the corresponding simulation results obtained by different 
algorithms on SLL, FNBW, and computational times. Figure 13 shows the radiation patterns of the fundamental 
wave, first harmonic, and second harmonic obtained through the CENDO algorithm. The comparison chart 
of SLL for different algorithms is described in Fig. 14. By analyzing the experimental results in Table 4, we can 
conclude that the maximum SLL obtained through the CENDO algorithm is 7.58 dB, 5.44 dB, 4.67 dB, 3.63 dB, 
2.79 dB, and 0.32 dB smaller than the maximum SLL obtained through CSO algorithm46, FFA46, honeybee 
mating optimization (HBMO) algorithm46, bat algorithm (BAT)46, GWO algorithm46, and whale optimization 
algorithm (WOA)46, respectively. Moreover, we can visually see from Fig. 14 that the maximum SLL obtained by 
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Figure 12.   The radiation pattern obtained using different algorithms in Case-1.

Table 3.   The optimal on-time and optimal uniform array spacing for 16 element TMLA design. Significant 
values are in [bold].

Algorithms Optimal on-time (τnn)
Optimal uniform spacing 
(d)

CSO
0.1839 0.2277 0.4267 0.5826 0.6491 0.8676 0.9474 0.9806 0.8042λ

0.9640 0.9059 0.7921 0.6613 0.4913 0.3703 0.2390 0.1193

FFA
0.1266 0.2584 0.4095 0.5514 0.7018 0.8372 0.9481 0.9702 0.8323λ

0.9863 0.8967 0.7887 0.6495 0.4959 0.3267 0.1934 0.1758

HBMO
0.1369 0.2558 0.3685 0.5146 0.6795 0.8114 0.8791 0.9507 0.8398λ

0.9125 0.8691 0.7443 0.5859 0.4759 0.2938 0.2013 0.1147

BAT
0.1010 0.1456 0.2951 0.4083 0.5873 0.7295 0.8591 0.9597 0.8624λ

0.9735 0.9724 0.8572 0.7472 0.5807 0.3994 0.2943 0.1589

GWO
0.1127 0.2018 0.3023 0.4628 0.6057 0.7362 0.8685 0.9246 0.8701λ

0.9384 0.8850 0.7937 0.6570 0.4831 0.3510 0.1992 0.1318

WOA
0.1172 0.2172 0.3485 0.5194 0.6790 0.8399 0.9527 1.0000 0.8882λ

0.9951 0.9138 0.7825 0.6345 0.4535 0.3030 0.1671 0.0987

DO
0.1022 0.1862 0.3074 0.4655 0.6352 0.7944 0.9182 0.9978 0.8899λ

1.0000 0.9642 0.8468 0.6940 0.5341 0.3776 0.2200 0.1342

CENDO
0.0997 0.1834 0.3265 0.4744 0.6504 0.8014 0.9353 0.9961 0.8879λ

0.9993 0.9288 0.8180 0.6546 0.4927 0.3151 0.1934 0.1054
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the CENDO algorithm is lower. In addition, the FNBW obtained by the CENDO algorithm is 14.76°, which does 
not increase compared to the FNBW obtained by other algorithms. Obviously, the use of CENDO algorithm has 
a more significant effect in designing optimized Time-modulation array.

Case-3: this example uses six algorithms, PSO algorithm47, real coded genetic algorithm (RGA)47, DE 
algorithm47, differential evolution with wavelet mutation (DEWM) algorithm47, DO algorithm, and CENDO 
algorithm, to simulate and optimize an asymmetric 16 element Time-modulation array. The optimal fundamental 
wave radiation pattern, first harmonic radiation pattern, and second harmonic radiation pattern of different 
algorithms under this model are obtained, which are shown in Fig. 15, 16a, b, respectively. Table 5 shows 
the optimal on-time (τnn) and optimal uniform spacing (d) of the array elements obtained through different 
algorithms. Table 6 provides various performance parameter results optimized by different algorithms.

Table 4.   Simulation results of SLL and FNBW obtained by different algorithms. Significant values are in 
[bold].

Algorithms CSO FFA HBMO BAT GWO WOA DO CENDO

SLL (dB)  − 33.02  − 35.16  − 35.93  − 36.97  − 37.81  − 40.28  − 38.66  − 40.60

FNBW (deg) 14.76 14.76 14.76 14.76 14.76 14.76 14.62 14.76

Computational times (s) – – – – – – 77.6 76.2
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Figure 13.   Radiation pattern obtained by CENDO algorithm.

Figure 14.   Comparison of fundamental wave radiation patterns under different algorithms.
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Figure 15.   Comparison of fundamental wave radiation patterns using different algorithms.
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Figure 16.   Radiation pattern obtained by 6 algorithms: (a) first harmonic, (b) second harmonic.

Table 5.   The optimal on-time and optimal uniform spacing of 16 element arrays obtained by different 
algorithms. Significant values are in [bold].

Algorithms Optimal on-time (τnn) Optimal uniform spacing (d)

PSO
0.0900 0.2642 0.3456 0.5186 0.6533 0.8642 0.9426 0.9984

0.8336λ
0.9892 0.9453 0.8056 0.6587 0.5481 0.3319 0.2256 0.1243

RGA​
0.1497 0.2411 0.3701 0.5594 0.6949 0.8491 0.9326 0.9995

0.8151λ
0.9970 0.9291 0.8031 0.6616 0.5036 0.3627 0.2299 0.1189

DE
0.0946 0.2128 0.3283 0.4896 0.6569 0.7894 0.8892 0.9994

0.8399λ
0.9807 0.9279 0.8676 0.6826 0.4946 0.3880 0.2183 0.1514

DEWM
0.0875 0.1716 0.2983 0.4442 0.6064 0.7576 0.8831 0.9474

0.8886λ
0.9586 0.8971 0.7924 0.6454 0.4856 0.3235 0.1919 0.1189

DO
0.1110 0.2079 0.3317 0.4902 0.6571 0.8030 0.9300 0.9985

0.8877λ
0.9999 0.9500 0.8418 0.6877 0.5275 0.3590 0.2242 0.1370

CENDO
0.0989 0.1853 0.3178 0.4758 0.6541 0.8093 0.9280 0.9988

0.8878λ
0.9991 0.9359 0.8127 0.6520 0.4881 0.3240 0.1885 0.1043
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The SLL, SBL1, SBL2, and FNBW obtained using the CENDO algorithm are − 40.50 dB, − 12.70 dB, − 17.55 dB, 
and 15.12°, respectively. The PSO algorithm47, RGA​47, DE algorithm47, DEWM algorithm47, and DO algorithm 
are used to obtain SLL values of -35.21 dB, -34.89 dB, -36.23 dB, − 40.41 dB, and -38.03 dB, which are 5.29 dB, 
5.61 dB, 4.27 dB, 0.09 dB, and 2.47 dB higher than the SLL values obtained by the CENDO algorithm, respectively. 
For SBL1, their values reached − 12.68 dB, − 12.57 dB, − 12.44 dB, − 12.61 dB, and -12.70 dB, respectively, which 
are 0.02 dB, 0.13 dB, 0.26 dB, 0.09 dB, and 0 dB higher than the SBL1 obtained by the CENDO algorithm. 
For SBL2, their values reached − 17.99 dB, − 17.54 dB, − 17.46 dB, − 17.43 dB, and − 17.55 dB, respectively, 
while the SBL2 obtained by the CENDO algorithm is 0.01 dB, 0.09 dB, 0.12 dB, and 0 dB lower than that of 
RGA​47, DE algorithm47, DEWM algorithm47, and DO algorithm. For FNBW, the main lobe width of the array 
obtained by each algorithm is basically around 15°, and the FNBW values obtained by CENDO algorithm, PSO 
algorithm47, RGA​47, DE algorithm47, and DEWM algorithm47 are the same, all at 15.12°. So, the concentration 
of main lobe radiation energy is basically similar, and the directionality of the array is basically the same. 
For the computational times for algorithm optimization, we can conclude that the computational time for 
CENDO algorithm optimization of this model is not significantly different from that of DO algorithm and can 
be approximately equal. Based on the above analysis, the CENDO algorithm shows better results in SLL and SBL 
compared to other algorithms, therefore, it has strong superiority in pattern synthesis of Time-modulated array.

The optimal opening time (ton), closing time (toff), and spacing (d)
Case-4: this example describes a third optimization scheme to reduce the SLL and SBL of TMLA. By combining 
the optimal opening time (ton), closing time (toff), and uniform spacing (d) of each component, the optimal 
radiation pattern of the Time-modulated array model in this case is obtained. Among them, the excitation 
amplitude is considered uniform, i.e. In = 1, and the comparison algorithms involved include CNEDO algorithm, 
DO algorithm, PSO algorithm48, NPSO algorithm48, and NPSOWM algorithm48. The population size of each 
algorithm is set to 100, and the maximum number of iterations is set to 300. Conduct experimental simulation 
based on the above conditions.

The comparison of the optimal fundamental wave radiation pattern, first harmonic radiation pattern, and 
second harmonic radiation pattern of NPSOWM48, DO, and CENDO algorithms is shown in Figs. 17 and 18a, b, 
respectively. Table 7 provides the values of SLL, SBL1, SBL2, FNBW, and computational times for arrays obtained 
by different algorithms. The optimal opening time (ton), closing time (toff), and optimal uniform spacing (d) of 
each array element optimized by NPSOWM48, DO, and CENDO algorithms are given in Table 8. Figure 19 
provides a visual representation of the normalized time series of CENDO algorithm in this case. From the 

Table 6.   Various performance parameter values of 16 element arrays obtained under 6 algorithms. Significant 
values are in [bold].

Algorithms PSO RGA​ DE DEWM DO CENDO

SLL (dB)  − 35.21  − 34.89  − 36.23  − 40.41  − 38.03  − 40.50

SBL1 (dB)  − 12.68  − 12.57  − 12.44  − 12.61  − 12.70  − 12.70

SBL2 (dB)  − 17.99  − 17.54  − 17.46  − 17.43  − 17.55  − 17.55

FNBW (deg) 15.12 15.12 15.12 15.12 14.40 15.12

Computational times (s)  ~   ~   ~   ~  30.9 30.1
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Figure 17.   Fundamental wave radiation pattern obtained using NPSOWM, DO, and CENDO algorithms.
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radiation pattern, it can be intuitively seen that the SLL and SBL obtained using the CENDO algorithm are 
significantly reduced compared to other algorithms. According to the data results in Table 7, regarding the 
computational times for algorithm optimization, using the DO algorithm to optimize the model takes 76.2 s, 
while using the CENDO algorithm to optimize the model takes 70.7 s, which is 5.5 s faster than it. Therefore, the 
CENDO algorithm takes less time and has higher optimization efficiency. The FNBW obtained by optimizing 
the Time-modulated array model through the above five algorithms is basically the same, with a main lobe width 
between 14.7° and 14.8°. The use of CENDO algorithm can reduce SLL to -31.72 dB, which is 4.78 dB, 4.13 dB, 
0.68 dB, and 0.56 dB lower than the SLL obtained using PSO48, NPSO48, NPSOWM48, and DO algorithms, 
respectively. The values of SBL1 and SBL2 obtained using the CNEDO algorithm are − 19.06 dB and − 21.68 dB, 
respectively. For SBL1, the values obtained using the CENDO algorithm are 0.76 dB, 0.81 dB, 0.91 dB, and 0.74 dB 
lower than those obtained using the PSO48, NPSO48, NPSOWM48, and DO algorithms, respectively; For SBL2, 
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Figure 18.   First and second harmonic radiation patterns obtained using NPSOWM, DO, and CENDO 
algorithms: (a) first harmonic, (b) second harmonic.

Table 7.   Results of array performance parameters obtained using different optimization algorithms for Case-
4. Significant values are in [bold].

Algorithms PSO NPSO NPSOWM DO CENDO

SLL (dB)  − 26.94  − 27.59  − 31.04  − 31.16  − 31.72

SBL1 (dB)  − 18.30  − 18.25  − 18.15  − 18.32  − 19.06

SBL2 (dB)  − 22.00  − 21.22  − 21.02  − 21.27  − 21.68

FNBW (deg) 14.76 14.76 14.76 14.80 14.80

Computational times (s)  ~   ~   ~  76.2 70.7

Table 8.   Optimal time series and uniform spacing optimized using NPSOWM, DO, and CENDO algorithms. 
Significant values are in [bold].

Algorithms Optimal time series (ton and toff) optimal uniform spacing (d)

NPSOWM
ton

0.92
0.00

0.69
0.00

0.31
0.00

0.00
0.20

0.18
0.00

0.00
0.34

0.00
0.71

0.00
0.94

0.8692λ
toff

1.00
1.00

0.85
0.92

0.60
0.81

0.42
0.90

0.90
0.39

0.85
0.60

0.94
0.85

1.00
1.00

DO
ton

0.07
0.00

0.02
0.03

0.24
0.13

0.32
0.23

0.03
0.06

0.01
0.64

0.04
0.09

0.00
0.07

0.8876λ
toff

0.08
1.00

0.17
1.00

0.50
1.00

0.75
0.96

0.75
0.48

0.82
0.96

1.00
0.30

1.00
0.17

CENDO
ton

0.79
0.01

0.01
0.02

0.47
0.01

0.45
0.13

0.01
0.62

0.02
0.46

0.02
0.00

0.00
0.00

0.8888λ
toff

0.95
1.00

0.18
0.92

0.83
0.87

1.00
0.72

0.79
0.98

0.90
0.74

1.00
0.12

1.00
0.06
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the values obtained using the CENDO algorithm are 0.46 dB, 0.66 dB, and 0.41 dB lower than those obtained 
using the NPSO48, NPSOWM48, and DO algorithms, respectively. To sum up, the results based on the CENDO 
algorithm are superior to those based on PSO48, NPSO48, NPSOWM48, and DO algorithms in reducing the SLL 
and SBL of Time-modulated array. This algorithm can better optimize the TMLA model and obtain the desired 
radiation pattern.

Summary
Compared with LAA, TMLA provides a simpler feed network configuration and precisely controls the radiation 
mode through high-speed RF switches, better achieving ultra-low SLL. This paper introduces an effective design 
algorithm that simultaneously reduces the SLL and SBL of TMLA, that is, using the CENDO algorithm to design 
and optimize the time series of TMLA models or a combination of time series and uniform array spacing to 
achieve the research of TMLA pattern synthesis problem. To objectively analyze and compare the superiority of 
the algorithms used, this paper compares the CENDO algorithm with different popular evolutionary algorithms 
such as DE algorithm, PSO algorithm, WOA algorithm, etc. through four simulation examples. They are applied 
to the optimization design of different Time-modulated array models, and a comprehensive analysis and 
discussion are conducted from the aspects of radiation pattern, SLL, SBL, and FNBW. The simulation results 
show that for the above four examples, while keeping the main lobe width unchanged, the radiation pattern of 
TMLA optimized by the CENDO algorithm with the best time series and the best uniform array spacing has a 
significant reduction in both SLL and SBL, which verifies that the CENDO algorithm has better optimization 
performance compared to other optimization algorithms, This also indicates that the CENDO algorithm is an 
effective method for solving the TMLA pattern synthesis problem. Due to its ability to achieve better optimization 
characteristics, the CENDO algorithm is expected to be applied in a wide range of other electromagnetic fields.

Data availability
All data generated or analyzed during this study are included in this possible article. For the other algorithms in 
this study, the data were taken from the cited references to compare these data with the results obtained by the 
CENDO algorithm in this study, and to compare the superior performance of the CENDO algorithm.
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Figure 19.   Normalized time series graph of 16 element TMLA obtained through CENDO algorithm in Case-4.
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