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Robust post-processing time
frequency technology and its
application to mechanical fault
diagnosis

Junbo Long?, Changshou Deng®*’ & Haibin Wang?

Post-processing synchrosqueezing transform and synchroextracting transform methods can improve
TFR resolution for fault diagnosis. The normal and fault signal can be described by infinite variance
process, and 1<a =2, even the background noise belongs to the process under complex conditions.
The effect of traditional SST and SET methods is greatly reduced and even lost in infinite variance
process environment. Several robust post-processing methods are proposed including FSET, FSSET,
FSOSET and FMSST technology employing infinite variance process statistical model and FLOS, and
their mathematical derivation are completed in this paper. The proposed methods are compared
with the conventional methods, and the results show that the proposed methods achieve better
results than the existing methods. In addition, the new methods are applied to diagnose the bearing
outer race DE signals polluted by infinite variance process, the result demonstrates that they have
performance advantages. Finally, the characteristics, shortcomings and application scenarios of the
improved algorithms are summarized.

Keywords Infinite variance process, Synchrosqueezing extracting, Fuzzy energy, Feature extraction, Multi-
synchrosqueezing

Abbreviations

SST Synchrosqueezing transform

SET Synchroextracting transform

TFR Time-frequency representation

FSET Fractional low order synchroextracting transform

FSSET Fractional low order synchrosqueezing extracting transform

FSOSET  Fractional low order second-order synchroextracting transform
FMSST  Fractional low order multi-synchrosqueezing transform

FLOS Fractional low order statistics

TF Time-frequency

FSTFT  Fractional lower order short-time Fourier transform

FWVD  Fractional lower order Wigner-Ville distribution

FSST Fractional lower order synchrosqueezing transform
FST Fractional lower order S transform
PDF Probability density function

Mechanical bearing is an important part of rotating machinery, and the failure of bearing is one of the main
causes of mechanical damage. Therefore, real-time supervision of the rotating machinery equipment is an impor-
tant means to ensure labor and production, which has become a current research hotspot'~. Time-frequency
representation can accurately reflect the three-dimensional relationship between frequency, time and amplitude,
and which is an effective tool for analyzing the vibration signals*.

The energy aggregation of TFR will directly affect the performance of mechanical bearing fault feature extrac-
tion. Due to Cross term interference effect and Heisenberg’s uncertainty principle, the classical TFR cannot
achieve concentration in both time and frequency domains including STFT, CWT, and WVD technologies, and
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so on. Therefore, the synchrosqueezing and synchroextracting transform TFR methods have been proposed one
after another including synchrosqueezing transform’, synchrosqueezed wavelet transform?®, synchroextracting
transform’, synchrosqueezing S transform®, and so on. The proposed methods can further improve the energy
concentration of TFR, which have been widely used in various fields'*'2. In order to obtain a more accurate
TFR with a higher time-frequency concentration, above methods are extended to second-order or higher-
order domains including second order multi-synchrosqueezing'?, second order transient extracting transform',
second-order synchroextracting transform'®, high-order synchrosqueezing transform'®, high-order synchroex-
tracting transform'?, and so on. Moreover, a synchrosqueezing extracting transform time-frequency analysis
method combining synchrosqueezing and extracting transform was proposed to get a more concentrated TFR'S,
which has been applied to analyze the bearing vibration signals under variable speed conditions. Compared
with the SST method, RM is a method that reallocates both time and frequency of STFT TF results, which can
improve the readability of TF representation'®. The RM technique first calculates the new reallocation of each
TF point based on the TF phase information. Then, the TF representation is integrated in the TF direction by a
two-dimensional reassignment operation. RM technique shows that post-processing process of the traditional
TF methods is an effective way to obtain clearer TF results. However, RM results cannot be used for time series
signal reconstruction. In addition, aiming at the strong time-varying non-stationary signals, Chen et al. combined
the iterative idea of second-order instantaneous frequency estimation and multiple synchronous compression
transform to approximate the real instantaneous frequency trajectory, and proposed a second-order multi-
synchronous compression transform, which has good performance in terms of signal time-frequency energy
concentration and noise robustness®’. Employing iterative reassignment technology, MSST improves the energy
concentration of TF representation by applying multiple SST operation processes, which provides a better way
for strong time-varying multi-component signals. Hence, MSST has good ability in TF energy concentration
and noise signal suppression. In addition, for strong time-varying signals, Yu et al. proposed a new technique
combining demodulation technology and synchronous extraction transform, which can accurately capture the
rapidly changing dynamic information of the signals®'. Ying et al. proposed a novel angle-time double-layer
decomposition structure termed order-frequency Holo-Hilbert spectral analysis, the method is applied to the
fault feature demodulation of variable vibration signals, which has higher fault recognition rate and stronger
anti-noise ability??. The linear class STFT time-frequency method is limited by the Heisenberg-Gabor inequality,
and the continuous wavelet transform (CWT) time-frequency method cannot obtain good resolution at the same
time and frequency of the fault signal. Bilinear class WVD time-frequency method and its improved algorithm
have better time-frequency resolution, but it is inevitably subject to cross term interference. Parametric model
class methods have no cross term in time-frequency domain, but the calculation is large and the resolution
is not high. Synchrosqueezing and synchroextracting class time-frequency method has high time-frequency
concentration, but some algorithms are degraded seriously in the face of strong pulse process noise.

In a sense, the development of bearing fault signal analysis can be summarized by three “non” words including
non-Gaussian, non-stationary and nonlinear. Literature?*-?” confirmed that PDF of most fault vibration signals
has a certain trailing, which belongs to infinite variance process, and even the noise in the signal is also infinite
variance process. The infinite variance process signal or noise have no finite second or higher order moments,
and the above mentioned TFR methods based on Gaussian hypothesis may produce large error and even fail in
the pulse process conditions. Hence, it is urgent to seek new solutions for the particular case.

For stable distributed pulse processes, some methods based on fractional lower order statistics have been
proposed including fractional lower order linear chirplet transform, fractional lower order short-time Fourier
transform TFR, fractional lower order Wigner-Ville distribution TFR, fractional lower order synchrosqueezing
transform TFR, fractional lower order S transform TFR, parameter model class TFR methods for mechanical
bearing fault diagnosis in complex environments®®. Most of these methods use the infinite variance process
model and introduce fractional low-order statistics instead of the traditional second-order statistics to improve
the algorithm, which can suppress the infinite variance process noise and achieve good results, but the time—fre-
quency energy concentration of these methods is not too high.

To further reduce the impact of pulse process in FSTFT TF domain and improve TF concentration of the
fault signals, several robust SET-based and SST-based TFR methods are proposed including fractional low order
multiple iterations synchrosqueezing transform, fractional low order synchroextracting transform, fractional low
order synchrosqueezing extracting transform, fractional low order second-order synchroextracting transform
and fractional low order multi-synchrosqueezing transform algorithms based on infinite variance process sta-
tistical model and FLOS. By comparing the results of the post-processing SET-based, SST-based TFR methods
and the conventional methods under characteristic index @ = 2 and o = 0.8 conditions, we can know that the
proposed SST, SET, SSET, SOSET and MSST methods have lower IF estimation MSEs and Renyi Entropy, higher
MSNR output in different MSNR and characteristic index «. Especially, when o < 1.6, the advantage of the robust
methods is more obvious. In practical applications, the robust post-processing FSET, FSSET, FSOSET and FMSST
algorithms are applied to demonstrate the TF distributions of the fault signal position relative to load zone cen-
tered at 6:00 data polluted by « infinite variance process (@ < 2), the result shows that the fault characteristic
frequency and main vibration frequency of the fault signal can be clearly revealed in the TF domain. Hence, the
robust methods are feasible and effective for fault diagnosis.

Infinite variance process and fault signals

Infinite variance process

The infinite variance process is also called the « stable distribution process, and which gets its name because it
has no finite second moment, the process can be described by characteristic functions
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¢(t) = exp {jut — y|t|*[1 + jBsign(Hw(r,0)]}, (1)

where «, 8,  and y are the characteristic index, symmetry parameter, position parameter and dispersion coef-
ficient respectively. PDFs of « distribution are shown in Fig. 1 («¢=0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0) when
u =0,y = land B = 0. Figure 1 reveals that the pulse of the infinite variance process decreases with the increase
of the feature index, and the PDF trailing becomes shorter.

Fault signals

The real bearing fault data are from the Case Western Reserve University bearing data center”. The dimensions
of the fault gap is 0.021 inches, the sampling frequency of the collected signal is set as 48000Hz, and the motor
speed is 1774 revolutions per minute (rpm). We apply the characteristic function of infinite variance process in
Eq. (1) to calculate the parameters «, y, i and B of the normal and drive end bearing fault data, the results are
shown in Table 1, and their vibration waveforms are given in Fig. 2 (One second of data is selected as the test
signal). It can be seen that the values of the characteristic index « of the normal and ball fault data in DE and
FE are equal to 2, so which belong to Gaussian distribution in the absence of failure (It can also be generalized
to infinite variance process, @ = 2). However, the values of the characteristic index « of the inner race fault and
outer race position relative to load zone centered at 6:00, orthogonal at 3:00 and opposite at 12:00 all have a
value less than 2, which are lower order infinite variance process (¢ < 2), and their vibration waveforms have
a distinct pulsing character.

PDFs of the bearing normal data and drive end bearing fault data in Table 1 are shown in Fig. 3. It can be seen
that PDFs of the bearing normal signal in DE and FE converge at x = 0.3, and PDFs of the ball data are equal to
0 about at x = 0.4 and x = 0.7. But the bearing inner race and outer race data have long trails, in particular, the
outer race fault signals have not fully converged at x = 4 yet, and their pulse properties are remarkable.
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Figure 1. PDFs of infinite variance process (4 = 0,y = land 8 = 0, «=0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0).

Infinite variance process parameters

Fault type Measurement point | o B y "

DE 2.0 -1 0.0452 | 0.0136
No fault

FE 2.0 0.9365 0.0485 | 0.031

DE 1.8883 | —0.1190 | 0.4030 | 0.0061
Inner race fault

FE 1.7119 |0.1119 0.1241 | 0.0318

DE 2.0 0.3951 0.1208 | 0.0086
Ball fault

FE 2.0 0.3957 0.0587 | 0.0296

DE 1.1559 | -0.0162 |0.1393 |0.0110

Centered at 6:00

FE 1.4784 | —0.0497 | 0.0905 |0.0289

DE 1.4039 |0.0784 0.3544 | 0.0353
Fault position Orthogonal at 3:00

FE 1.5435 | 0.0354 0.1256 | 0.0361

DE 1.1584 | -0.0149 |0.1256 |0.0167

Opposite at 12:00
FE 1.6424 | —-0.0526 | 0.0732 |0.0308

Table 1. Infinite variance process parameters of the fault signals.
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Figure 2. The vibration waveforms. (a) Normal; (b) inner race fault; (c) ball fault; (d) outer race fault at 6:00; (e)
outer race fault at 3:00; (f) outer race fault at 12:00.

Robust post-processing TFR technologies

FSSET method
Principle

For an analytical signal x(7) € L'(R), its FLO short time Fourier transform (FSTFT) with respect to the window

is given by

FLOSTFT, (t,w) = / x<P> (D)h(t — e T dx,

400

2)

—00

where t and 7 is the time parameter, h(t — t)is a differentiable analysis window function. < p > denotes frac-
tional p order moment of x(1), x<P> (t) = |x(0)|P*!/x*(1),0 < p < &t/2.
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Figure 3. PDFs of the vibration signals. (a,b) Normal; (c,d) inner race; (e,f) ball; (g,h) outer race position
relative to load zone centered at 6:00; (i,j) outer race at 3:00; (k,1) outer race at 12:00).

Aimming at « stable distributed environment, according to the concept of SST in Ref.’, FSST can be defined as
+00
FLOSST(t,n) = / FLOSTFT,(t,w) - §[n — @ (t,w)]dw, 3)

—00
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Figure 3. (continued)
+00
FLOSSO = / 5[ — @ (t, ) do, 4)
—00

where fjoO: 8[n — wo(t,w)]dw is called the fractional low-order synchrosqueezing operator (FLOSSO) for
FLOSTFT, (t, w), which uses instantaneous frequency (IF) to gather the FSTFT TF relevant coefficients with the
same frequency, and the TF coeflicients are readjusted to realize SSO of FSTFT time frequency representation
indefinable energy into IF trajectory to improve its TF concentration. Similarly, according to the concept of SET
in Ref.?, we define a FSET as

FLOSET(t,w) = FLOSTFT,(t,w) - 8[w — @ (t, )], (5)

where FLOSTFT,(t, ) is FSTFT in Eq. (2) considered an additional phase shift ¢/ and a modulation operation,
which can be written by

FLOSTFT,(t,w) = &' FLOSTFT, (t, w)

+00
1 .
=— [ X*P>(WH(w — v)e dv,
2
—00

(6)

where X <P~ (v) and H(w — v) are FLO Fourier transform(FLOFT) of the signal and window function, respec-
tively. The Dirac function §[w — @ (¢, w)]in Eq. (5) is called the FLO synchroextracting operator (FLOSEO) for
FLOSTFT,(t, w), and which can be written as

1, w=w(tw)

Sl — @ (tw)] = {0, ki %)
Then Eq. (5) can be expressed as

_ | FLOSTFT,(t,w) o = w (t,w)
FLOSET(t, ) = {0 ot olta) )
FLOSEO in Eq. (5) can locate the energy peak value on IF trajectory based on the characteristics of maximum
peak for some special points in FSTFT TF domain, so as to obtain a new TF coefficient.
When FLOSTFT,(t, ) in Eq. (6) is calculated partial derivative with respect to time, then
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+0o0
O [FLOSTFT,(t, )] = ; ( / x> (D)h(z — e T dr |\
o

+oo +oo
= /x<P>(r)a,[h(r —t)]e =g 4 /x<P>(r)h(r—t)at[e_j‘”(f_t)]dr
—00 —00

= — FLOSTFT" (t, ) + jwFLOSTFT,(t, w),

where FLOSTFT!’/(t, w) = fj;o x<P> (D)W (v — t)e7®T=Ddr, and K (v — t) is the derivative of the window
function h(t — ) with respect to time, then

8:[FLOSTFT,(t,w)] _ —FLOSTETY (t,)

JFLOSTFT.(t,w)  JFLOSTFT,(t,w) (10)
A mono-component non-stationary harmonic signal can be expressed as
s(t) = Ad™", (1)
where A is invariant amplitude of the signal, then
s (1) = AP AP ot _ gt (12)
(Aemty* A
Take the Fourier transform of the Eq. (11), then
SP(v) = 2mAPS (v — w). (13)

By substituting (13) into (6), the frequency domain representation of FLOSTFT,(t, w) can be written as

+00
FLOSTFT,(t,w) = % / SP(VH(w — v)e dv
s

1 +00
= / 2TAPS(v — w)H(w — V) dv]y—ey
T
—00

=APH(w — @)™,

where H(w — v) is the Fourier transform of the window function h(z — t). When Eq. (14) is calculated the partial
derivative with respect to time, we can obtain

8 [FLOSTFT,(t,w)] = 8;[APH(w — )e/™]
=APH(w — wo)d:[¢™"] (15)
= jw FLOSTFT,(t, »).
And two-dimensional (2D) IF estimation can be expressed as

_ 0[FLOSTFT,(t,w)]
"~ JFLOSTFT,(t, )

(16)

If we extend the single frequency point e in Eq. (16) to all IF points (¢, ) in the FSTFT TF domain, then

1.0y = MFLOSTFI (1, 0)]
o (t,w) = .
®) = TIFLOSTFT.(t, w) (17)

By substituting (17) into (3), FSST can be calculated. When p = 1, FSTFT degenerates into STFT, FLOSSO
degenerates into SSO, and FSST changes into SST. Hence, we hold the opinion that FSST is a generalized SST.
By combining Eqgs. (10) and (17), then

—FLOSTFT (t, )

o (t,w) = —
JFLOSTFT,(t,w)

(18)

When substituting (18) into (7), the calculation of FLOSEO can be expressed as
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Sl — o (t,w)] =6

FLOSTFTY (t, )
JFLOSTFT,(t, w)

| FLOSTFT! (tw) _ o (19)
_ ) JFLOSTFT.(tw) —
- FLOSTFTY (t,0) ‘

0, JELOSTFT,(t,w) 75 0

The Dirac function §[w — @ (t, w)] can pinpoint the location of FSTFT TF coeflicients which have the most
energy on the IF trajectories. By substituting (19) into (5), FSET can be gotten. When p = 1, FSTFT degenerates
into STFT, and FLOSEO and FSET degenerate into SEO and SET, respectively. Hence, FSET is a generalized SET.

Next we will discuss the TFR of the FSET and FSST methods. When Eq. (6) is calculated the integral with
respect to frequency, we can obtain

+(?o +00 400
/ FLOSTFT,(t,w)dw = / / P> ()h(r — e 7T Ddrdw
—00 —00 —00 (20)
=27 x~P> (t)h(0).
Then, fractional p order moment of the original signal x(¢) can be written by
1 +o00
P>t = FLOSTFT,(t, w)dw.
x=E7() 2 h(0) / e(t, 0)dw 1)
—00
According to Eq. (12), we can obtain
sP7 (1) = APt = APTH(AT!) = APTL (D). (22)
Hence, the reconstructed original signal x(¢) can be expressed as
+00
1-p
) = FLOSTFT,(t, w)dw.
x(t) 27h(0) e(t, 0)dw (23)
—00

When FLOSTFT,(t, ) in Eq. (23) are replaced by FLOSST in Eq. (3), we can obtain the reconstructed original
signal x () of the FLOSST method

x(t) =

+o00

AT FLOSST(t,n)d

2 h(0) / (& m)dn. (24)
—00

And by using FLOSET in Eq. (5) to substitute FLOSTFT,(t, ®) in Eq. (23), the reconstructed original signal
x(t) employing the FLOSET method is gotten

x(t) =

+00
AT ‘ FLOSET d
t, .
271 (0) / (t, w)dw (25)
—00

Inspired by the FSST, FSET and SSET methods, we replace FLOSTFT,(t,w) in Eq. (5)

with FSST in Eq. (3), then a robust FLO synchrosqueezing extracting transform (FSSET) method can be
gotten

FLOSSET (t,w) = FLOSST (t, w) - 8[w — @ (t, w)]. (26)

The method firstly synchrosqueezes the trajectory of IF in FSTFT the TF domain employing FLOSSO to
improve the TF energy concentration, and then locates the energy peak based on SEO and changes the TF coef-
ficient to improve the TF resolution. Because the advantages of FSST and FSET are combined, the improved
FSSET method will have better performance advantages, which are embodied in more concentrated TFR and
higher TF resolution. When p = 1, FSSET degenerates into SSET, hence, FSSET is a generalized SSET.

According to the reconstruction process of the FSET and FSST methods in Eq. (20)-(25), similarly, the TF
reconstruction formula of the FSSET method can be written as

A

+o00
1-p
x(t) = ) / FLOSSET (t, w)dw. (27)

2

Application review
In this section, the proposed FSST, FSET and FSSET methods are applied to demonstrate their performance. The
mixed signal contaminated by v(¢) (Gaussian or infinite variance process noise) is defined as

Scientific Reports |

(2024) 14:20456 | https://doi.org/10.1038/s41598-024-70347-0 nature portfolio



www.nature.com/scientificreports/

y(t) = sin [27(50t + 20sint)] + sin [27£(2 + 9t)] + n(t)

— () + x2(8) + n(t) = (1) + (D), (28)

where, n(t) is infinite variance process noise, and when o = 2, SNR can be used in Eq. (26). However, when
« < 2, which has no finite second moment and its variance is meaningless, then SNR is inapplicable. Hence, we
can use the mixed signal noise ratio (MSNR) to replace SNR, and MSNR can be expressed as

MSNR = 10log,(c2/y), (29)

where oy is variance of the signal x(¢), and y is dispersion coefficient of « infinite variance process noise. The
existing SST, SET and SSET methods and improved FSST, FSET and FSSET methods are compared to display
TFR of the signal x(f) in infinite variance process noise of the parameters « = 2, SNR = 8 dB and o = 0.8,
MSNR = 16 dB, respectively, the results are given in Figs. 4 and 5.

In this simulation, we select x; (t) in Eq. (28) as the test signal. The mixed mean square error (MSE) is defined
in Eq. (30), where, K is the number of Monte-Carlo experiment, IF(t) is the real instantaneous frequency (IF),
and IF(t) is the estimated IF based on ridges extraction and signal reconstruction employing the STFT, SST, SET,
SSET, FSTFT, FSST, ESET or FSSET methods.

1 &L
MSE:lologlo{KZ[IF(t)—IF(t)]z . (30)

k=1

In order to further verify TFR performance of the existing and improved methods, let K = 20, « = 0.8,
p = 0.2, we conduct the following experiments with the analyzed signals x; (f) contaminated by infinite vari-
ance process noise at various GSNR(4 dB-22 dB). The Renyi Entropy, mixed MSEs of IF and MSNR—output
comparisons are given in Fig. 6. And let MSNR = 16 dB, p = 0.2, K = 20, when « changes from 0.2 to 2, we
apply the methods to compare in different «, the simulation results are shown in Fig. 7.

Remarks

Figure 4a,c,e,g are STFT, SST, SET and SSET methods TER of the signal x(¢) in infinite variance process noise
environment (o = 2, SNR = 8 dB), respectively. And FSTFT, FSST, FSET and FSSET methods TFR are shown
in Fig. 4b,d,f,h, respectively. It is shown that both the existing methods and the improved methods can give TF
distribution of the signal x(¢) well. However, the STFT, SST, S ET and SSET methods fail under infinite variance
process noise environment (o = 0.8, SNR = 16 dB), as shown in Fig. 5a,c,e,g. But the improved FSTFT, FSST,
FSET and FSSET methods in Fig. 5b,d,f,h, can still better demonstrate TFR of the signal x(t). Hence, the pro-
posed methods have wider applicability and better performance than the exiting methods, and they are robust.

Renyi Entropy, mixed MSEs of IF and MSNR—output comparisons of the STFT, SST, SET, SSET, FSTFT, FSST,
FSET and FSSET methods are given in Fig. 6 in different MSNR (o = 0.8, K = 20, p = 0.2). The result show that
improved FSTFT, FSST, FSET and FSSET methods exhibits relatively high quality in Gaussian (o« = 2) and o
stable distributed noise (o < 2) environments compared with existing methods. Among them, FSSET method
has the best Renyi entropy in Fig. 6a, FSST method has the lowest mixed MSEs in Fig. 6b, and MSNR—output
of FSTFT method is optimal in Fig. 6c.

Renyi entropy and mixed MSEs of IF comparisons of the STFT, SST, SET, SSET, FSTFT, FSST, FSET and FSSET
methods are shown in Fig. 7 under different « (MSNR = 16 dB, K = 20, p = 0.2). By stabilizing the sensitivity
of distributed noise parameters to these algorithms, the simulation of the difference between signals and the
signal to noise ratio output measurement is restored. It can be seen that Renyi entropy of the FSSET method is
least affected by the coeflicient «, and the Renyi entropy of FSST and FSET methods is lower than that of the
existing methods. FSST has the most consistent performance of ridges extraction and signal reconstruction.

Aiming at different MSNR and infinite variance process noise parameters, the improved algorithms are supe-
rior to the existing ones in terms of algorithm sensitivity, signal reconstruction and MSNR output measurement.
FSST has the best reversibility and the highest quality of ridge estimation and signal reconstruction. Although
FLOSECT has the best TF energy concentration, with the best Renyi Entropy value, it produces TF images with
blurred and riven breaks because SECT removes many coeficients critical to characterizing m-D modes. There-
fore, it is inferior to FSST algorithm in ridge estimation and signal reconstruction quality.

FSOSET method
Principle
According to definition of the GMLC signal model in Ref.'%, at every moment, FLO Gaussian modulated linear
chirp model of the analyzed signal x(¢) can be defined as
P> APt
T A et—10)?/2T2 y—jo (1) 31)
=A(t) -V = AP x(),

() = [A(t) : ef“’(”] )

where A(t) = A - e_(t_tO)z/ZTz, A(t) = AP . e (=102 _ pp=1. A(t), and ¢(t) = a + bt + ct>. When X(t) is
calculated the partial derivative with respect to time ¢, then
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Figure 4. TER of the signal x(¢) in infinite variance process noise environment (¢ = 2, SNR = 8 dB). (a) STFT
method; (b) FSTFT method; (c) SST method; (d) FSST method; (e) SET method; (f) FSET method; (g) SSET
method; (h) FSSET method.
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9 [x(1)] = 0;[AP - e*(ffto)z/ZTzejgo(t)]
Z 9 [AP . 2T o) | ap | m -0 217 e

_ t—to . (32)
=AP7 x(t) - {— 7 —|—](b—|—2ct)}
=x@) - [p+qt],
where p = % +jb,q = — 4 +j2¢, and p + gt can be called as the instantaneous complex frequency, when we
extract its imaginary part, then
M+t =M | (22 o) + (== +j2c ) ¢
= = = c
pP+q 2 T 2 T (33)

=b+2ct = d(p(t)) = ¢'(t).

Because FLOSTFT, (¢, w)in Eq. (6) is FLOSTFTy (¢, ®) considered an additional phase shift ¢!, and its partial
derivative with respect to time ¢ can be expressed as

+00
3 [FLOSTFT,(t, w)] = & ( / x<P> (D)h(z — t)e 7°T Vg
oo

+00

= /x<P>(r)82[h(r — H]e T dr (34)

+00
= / O (x~P~ (r +t))h(r)e_j‘”d7:.

—00

According to Eq. (32), we can obtain 8;[x <P~ (t + )] = X%(t + t) - [p + q(tr + t)], then

+00
0;[FLOSTFT,(t,w)] = / (}(f +1)-(p+q(t+ T)))h(‘[)e_jwrdt
+00 4 +oo | (35)
= / (X + 1 - (p+qt)h(v)e T dr + / x(T + 1) - qrh(z)e " d

= (p + qt)FLOSTFT,(t,w) + q - FLOSTFT™(t, w),

where FLOSTFT (t, ) is the FSTFT result employing the analytic window function th(t). By combining Egs.
(9) and (35), we get

—FLOSTFTY (t, ) + joFLOSTFT,(t, ) = (p + qt) FLOSTFT,(t,w) 4 q - FLOSTFT"(t,w). ~ (36)
Then
FLOSTFT! (t,) = (jo — p — qt)FLOSTFT,(t,w) — q - FLOSTFT™'t, ). (37)
The derivative of both sides of Eq. (37) with respect to time ¢ is obtained

FLOSTFT" (t,w) = (jw — p — qt)FLOSTFT" (t,w) — q - FLOSTFT™ (t, ), (38)

where FLOSTFT!" (t, w) represents FSTFT result using the analytic window function dzd’jg” ,and FLOSTFT™ (t, w)
is a FSTFT result with the analytic window function 7 (3;4(t)). By solving Egs. (37) and (38), we can obtain

ot FLOSTFT!" (t, ) - FLOSTFT!(t, w) — FLOSTFTY (t,w) - FLOSTFT (t, )
= 7 7 —Jjw
P4t = ELOSTFT.(t,) - FLOSTFT' (t,w) — FLOSTFT®(t,) - FLOSTFT" (t,) *

(39)

By substituting Eq. (39) into Eq. (33), then FLO second-order synchroextracting operator (FLOSOSEO) can
be written by Eq. (40), which can realize the extraction of second order IF.

@, (t, w) =IM(p + qt)

FLOSTFT!" (t, ) - FLOSTFT!(t,w) — FLOSTFTY (t,w) - FLOSTFT (t, ) (40)
% % — .
FLOSTFT,(t, ) - FLOSTFT* (t,w) — FLOSTFT!(t, ) - FLOSTFTY (t, )

=IM[

By employing @ (¢, ®) to replace @ (¢, w) in Eq. (5), FLO second-order synchroextracting transform (FSO-
SET) can be defined as
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FLOSOSET (t,w) = FLOSTFT,(t, w) - §[w — w2 (t, w)]. (41)

When p = 1, FSTFT degenerates into STFT, and FSOSET degenerate into SET2. Therefore, we can draw a
conclusion that FSOSET is a generalized SET2. The reconstructed original signal x(¢) of the FLOSOSET method
can be written as

A JrcX>FLOSOSET d
—00

Application review
In this section, we select x(t) as the test signal. Firstly, we will discuss the performances of the FLOSOSET and
SET2 methods. The existing SET2 method and the improved FSOSET (p = 0.2) method to demonstrate TFR
of the signal x(¢) in Eq. (28) in infinite variance process noise environment (o« = 2, SNR = 8 dB) and infinite
variance process noise environment (o = 0.8, MSNR = 16 dB), the results are given in Figs. 8 and 9, respectively.
In order to further verify TFR performance of the existing SOSET and improved FSOSET methods, let
K =10, = 0.8, p = 0.2, we conduct the following experiments with the analyzed signals x; (#) contaminated
by infinite variance process noise at various GSNR (4-22 dB). The Renyi Entropy, mixed MSEs of IF and MSNR
—output comparisons are given in Fig. 10. And let MSNR = 16 dB, p = 0.2, K = 10, when « changes from 0.2
to 2, we apply the methods to compare in different o, the simulation results are shown in Fig. 11.

Remarks

Figure 9a,b are SOSET and FSOSET methods TFR of the signal x(¢) under infinite variance process noise envi-
ronment (o = 2, SNR = 8 dB), respectively. The TF distribution of SOSET and FSOSET methods are shown in
Fig. 10a,b, respectively. It can be seen that both methods have good TF performance in infinite variance process
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Figure 8. TER of the signal x(¢) in infinite variance process noise environment (@ = 2, SNR = 8 dB). (a)
SOSET method; (b) FSOSET method.
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Figure 9. TER of the signal x(t) in infinite variance process noise environment (¢ = 0.8, MSNR = 16 dB). (a)
SOSET method; (b) FSOSET method.
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noise environment. However, the SOSET method fail under infinite variance process noise environment (o = 0.8,
SNR = 16 dB), but the improved FSOSET method still works well. Hence, the FSOSET method have wider
applicability and better performance than the SOSET method, and they are robust.

Combined with ridge extraction techniques, Fig. 10 show that Renyi Entropy, mixed MSEs of IF and MSNR
—output comparisons of the SET, FSET, SOSET and FSOSET methods in different MSNR (« = 0.8), respec-
tively. We can see that FSOSET method has the smallest reconstruction error of transient signal and the strong-
est noise suppression ability. However, its Renyi Entropy is inferior to that of SOSET method. The proposed
FSOSET method shows the advantages of TF reconstruction and the ability of noise suppression in different o
(MSNR = 16 dB), as show in Fig. 11, in particular, when « > 1, its advantages are more obvious.

FMSST method

Principle

According to FSST formula in Eq. (3) and the MSST method, we also make iterative improvements on it, so
it can be called FLO multi-synchrosqueezing transform (FMSST), the first iteration of FMSST of the analyzed
signal x(t) can be written by

400
FLOMSST (t,n) = / FLOSST (t,n) - 8[n — o (t, w)]dw. (43)
—00
By substituting Eq. (3) into Eq. (43), then
+00
FLOMSST (t,n) = / FLOSST (t,v) - 8[n — w (¢, v)]dv

—00

+o00
/ FLOSTFT,(t,w)8[n — w (t, w (t,w))]dw.

—00

The FMSST method uses IF estimation function @ (¢, @ (t, w)) to redistribute and centralize the fuzzy energy
in the FSTFT TF domain, which is the first iteration of the IF estimation function @ (¢, w) employing FSST. If
we carry out the second iteration, then

+00
FLOMSST, (t, 1) = / FLOMSST; (t,v) - 8[n — @ (£, v)]dv

+00
= /FLOSTFTe(t,a))S[n —ot, ot o(t,w)))ldo.

When we continue the iterative calculation, then the N times iteration FMSST calculation of the analyzed
signal x(¢) can be written as

+o0

FLOMSSTN(t,n) = / FLOMSSTN_1(t,v) - 8[n — @ (t,v)]dv
—00
+0o0 (46)
= / FLOSTFT,(t,w) - 8[n — wn/(t, w)]dw,

where wy (t, w) denotes IF estimation function of the N times iteration, and @ (t, w) = @ (t, @ (t, ®)),
s (tw) =t ot o)) o3te) =o ot ol ot o))),..., oNE o).

Next, we will discuss the calculation of IF estimation function wy (¢, w). According to the Taylor expansion,
@(t)in Eq. (31) can be expanded at the time point ¢, then

(1) = x<P7 (1) = A(t) - e]'[w(f)“'(ﬁ’(f)(f—t)+0-5<ﬂ”(f)(f—f)2]. (47)

According to Eq. (6), we can obtain
+00
FLOSTFT,(t,w) = / x<P> (D)h(zr — e 7T Dy
—00
400
/ A®) - ej[w(t)+<p’(t)(r_z)+o.5w”(t)(r_t)2]h(t — pe TN g,

—00
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A Gaussian window function can be written by

2

h(t) = (ro?) "4 . e 302 (49)

By substituting h(t — t) into Eq. (48), then

+00
—p?
FLOSTFT,(t, ) = / (o)t A(p) - IO OE0+050 O] =58 o0 gy
—00
_ lo—g/0)1? (50)
_ 2 =L o e 1 A0
=(mo”)"1-A(t)e - ¢ o .

o e ®

By substituting Eq. (50) into Eq. (16), then IF estimation of the analyzed signal x(t) can be expressed as
(p//(t)z (p”(t)

(1/0)* +¢" () (1/0)* +¢"()?

Because the result of Eq. (51) is a complex number, we use the real part of Eq. (51) for the actual calculation,
in that way

w(tw) =¢' )+ [w—¢' ()] —j [ —¢'(t)]. (51)

<p//(t)Z
(1/0)? + ¢ (1)

When N = 1, the corresponding IF estimation function of the first time iteration @ (t, w) = @ (t, w (¢, w))
can be written by

@ (t,w) 2 IM(w (t,w) = ¢ (t) + [w — ¢’ ()]. (52)

(p//(t)z

o2+ g2 7O~ o' ()]

i (ho) =o(oto) =¢ @)+

w//(t)z (53)
— N 2 )
ACR vt CRt )
And
o (tw) =w (o (o () = ¢ (t) + Lﬂz[w(l‘ @ (t,w)) — ¢ ()]
2 bt T Wy +grap TN T8
3 (54)
—g')+ {Lﬂz} [ — ¢/ 0]
Y (1/0)7 + ¢/ (1)? v
Hence, IF estimation function of the N times iteration wy (¢, @) can be written as
- W//(t)z N+1 )
aon(Lw) = ¢ (t) + {m} [w — @ (D] (55)

By substituting Eq. (55) into Eq. (46), we can get the N times iteration FMSST calculation of the analyzed
signal x(1).

Compared with RM method, the FMSST method only redistributes the TFR in the frequency direction, so no
data information should be lost theoretically, and which can reconstruct the original signal x(f) more perfectly,
the reconstruction process is as follows:

FLOMSSTn(t,n) in Eq. (46) takes the integral with respect to frequency 7, then
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+00 +00 400

/ FLOMSSTN (t,n)dn = / / FLOMSSTN—-1(t,v) - §[n — @ (t,v)]dvdn
—00 00 —00

+00
/ FLOMSSTN_1(t,v)dv

—00

+0o0
/ FLOMSST, (¢, v)dv
—00
400
=2 / x“P=(Dh(t — )8(r — t)dt
—00

=27h(0)AP~ - x(7).

According to Eq. (56), the reconstructed original signal x(¢) employing the FMSST method can be expressed
as

+00
arr
)= —— FLOMSSTN (t, w)dw.
50 = o / Nt w)do (57)
—00

Application review
In this section, y(t) in Eq. (28) is used as the test signal. Firstly, the performances of the Nth iteration MSST and
FMSST methods are studied. The existing methods and the improved methods are applied to demonstrate TFR
of the signal x(¢) under infinite variance process noise environment (o = 2, SNR = 8 dB) and infinite variance
process noise environment (o = 0.8, MSNR = 16 dB), the TF results are shown in Figs. 12 and 13, respectively.
In order to further verify TFR performance of the existing Nth iteration MSST and improved FMSST meth-
ods, we let K = 10, « = 0.8, p = 0.2, and have done the following experiments with the analyzed signals x; (¢)
contaminated by infinite variance process noise under different GSNR (4 dB-22 dB), the Renyi Entropy, mixed
MSEs of IFs and MSNR—output comparisons are shown in Fig. 14. Moreover, we let MSNR = 16dB, p = 0.2,
K = 10, and repeat the above simulation experiment for the Nth iteration MSST and FMSST methods under
different « (0.2-2), the simulation results are given in Fig. 15.

Remarks

Figure 11a,c,e are the 1st, 2nd and 8th order MSST methods TFR of the signal x(#) under infinite variance process
noise conditions (¢ = 2, SNR = 8 dB), respectively. And the 1st, 2nd and 8th order FMSST methods TF distribu-
tions of the signal x(¢) are shown in Fig. 11b,d.f, respectively. It can be seen from Fig. 10 that the methods can give
their TFRs very well in infinite variance process noise environment. However, the 1st, 2nd and 8th order MSST
methods fail in infinite variance process noise conditions (o« = 0.8, SNR = 16 dB), as shown in Fig. 12a,c,e, but
the improved Nth iteration FMSST methods in Fig. 12b,d,f still have good results.

Figure 13a-c are Renyi Entropy, mixed MSEs of IF and MSNR—output comparisons of the Nth iteration
MSST and FMSST methods employing the ridge extraction techniques under infinite variance process noise
(o = 0.8) and different MSNR (4-22 dB), respectively. It can be seen from Fig. 13 that the improved Nth itera-
tion FMSST methods are better than the corresponding Nth iteration MSST methods in Renyi Entropy, mixed
of IF and output. The 8th iteration FMSST method has the smallest Renyi Entropy, the 2th iteration FMSST
method has the fastest convergence of IF reconstruction error of transient signal, and their MSNR—output is
almost equivalent. Hence, the improved iteration FMSST methods have stronger noise suppression ability than
the exiting methods.

Figure 14 shows Renyi Entropy and mixed MSEs of IF of the Nth iteration MSST and FMSST methods
employing the ridge extraction techniques under infinite variance process noise (MSNR = 16 dB) and different
o (0.2-2), respectively. It can be seen that the robust post-processing TFR methods have obvious advantages
of TF reconstruction and the ability of noise suppression when a < 1.6, and when o > 1.6, they have almost
the same Mixed MSEs of IF. Therefore, the Nth iteration FMSST method is more suitable for different complex
environments and has better TF energy aggregation than the MSST method.

Application simulations

In this section, the test signal uses the bearing outer ring DE fault position relative to the center of the load zone
at 6:00, the signal length is 0.2 s, then N = 2400. The conventional SET, SSET, SOSET and Nth iteration MSST
methods, the improved FSET, FSSET, FSOSET and Nth iteration FMSST methods have been used to extract the
fault feature of the DE fault signals polluted by infinite variance process noise. The results are shown in Figs. 16
and 17.
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Figure 12. TFR of the signal x(¢) in infinite variance process noise environment (¢ = 0.8, SNR = 8 dB). (a)
The 1st order MSST method. (b) The 1st order FMSST method. (c) The 2nd order MSST method. (d) The 2nd
order FMSST method. (e) The 8th order MSST method. (f) The 8th order FMSST method.

SET and FLOSET (p = 0.8) of the outer race DE fault position relative to load zone centered at 6:00 data
polluted by infinite variance process noise(o = 2, SNR = 5 dB) are given in Fig. 16a,b, respectively. Figure 16¢,d
are the SSET and FSSET, respectively. SOSET and FSOSET TF distributions are in Fig. 16e,f. Figure 16g,h respec-
tively are the 1st iteration MSST and FMSST method. The 8th iteration MSST and FMSST method are shown in
Fig. 16i,j. The results show that both the proposed robust synchronous compression and synchronous extrac-
tion transform TFR method and the traditional method can extract and diagnose the signal polluted by « stable
distributed noise (o = 2), and the transient harmonic vibration frequency of the DE fault signal of the bearing
outer ring changes regularly. The fault vibration frequency ranges from 0 to 4000 Hz and is concentrated in the
vicinity of 600 Hz, 2800 Hz, and 3500 Hz. The time between the vibration pulses A, B, C, D, E, and F is about 33
ms, so the characteristic frequency can be calculated to be about 30Hz.
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Figure 13. TFRs of the signal x(¢) under infinite variance process noise environment (o = 0.8,

MSNR = 16 dB). (a) The 1st order MSST method. (b) The 1st order FMSST method. (c) The 2nd order
MSST method. (d) The 2nd order FMSST method. (e) The 8th order MSST method. (f) The 8th order FMSST
method).

Figure 17 shows from a to j: SET, FSET, SSET FSSET, SOSET, FSOSET, the 1st iteration MSST, the 1st iteration
FMSST, the 8th iteration MSST and the 8th iteration FMSST methods of the bearing outer race DE fault position
relative to load zone centered at 6:00 signals polluted by infinite variance process noise (¢ = 0.8, MSNR = 18 dB,
p = 0.2). The result of the fault diagnosis demonstrates that the existing synchrosqueezing and synchroextracting
transform TFR methods can not work under infinite variance process environment, as shown in Fig. 17a,c,e,g,i.
Hence, the traditional synchrosqueezing and synchroextracting methods are invalid. However, the fault diagnosis
demonstrates that the improved synchrosqueezing and synchroextracting methods can successfully diagnose
of the outer race DE fault position relative to load zone centered at 6:00 data contaminated by infinite variance
process noise well in low MSNR, as shown in Fig. 17b,d,f,h,j. The results above indicate that the improved syn-
chrosqueezing and synchroextracting TFR methods have better performance than the exiting methods, which
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Figure 16. TFRs of the outer race DE fault signal polluted by infinite variance process noise (a = 2,
SNR = 5 dB, p = 0.8). (a) SET method. (b) FLOSET method. (c) SSET method. (d) FLOSSET method. (e)
SOSET method. (f) FSOSET method. (g) The 1st iteration FMSST method. (h) The 1st iteration FMSST method.
(i) The 8th iteration MSST method. (j) The 8th iteration FMSST method).
are robust, and they can be effectively applied to the bearing fault diagnosis of the rotor system in complex and
harsh environment.
To prove the validity of the improved synchrosqueezing and synchroextracting TFR methods in bearing
fault diagnosis and further verify their performance, we have done the following experiments (K = 10, p = 0.4)
with the bearing outer race DE fault position relative to load zone centered at 6:00 data contaminated by infinite
variance process noise (¢ = 1.0) under different GSNR (4-22 dB), the Renyi Entropy, mixed MSEs of IFs com-
bined with ridge extraction techniques and MSNR—output comparisons are shown in Fig. 18. Moreover, we let
MSNR = 18 dB, p = 0.4, K = 10, and repeat the above the Renyi Entropy and mixed MSEs of IFs experiment
for the improved synchrosqueezing and synchroextracting methods under different o (0.2-2), Fig. 19 shows
that the result.
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Figure 16. (continued)

Figure 18 shows that Renyi entropy, mixed MSEs of IF employing ridge extraction techniques and MSNR—
output comparisons results of FSTFT time frequency representation, FSST time frequency representation, FSST2,
FSET, FSSET, FSOSET, the 1st iteration FMSST and the 8th iteration FMSST methods of the bearing outer race
DE fault position relative to load zone centered at 6:00 data contaminated by infinite variance process noise in
different MSNR (a = 1.0), respectively. It is clear that the FSTFT method has maximal Renyi entropy, and Renyi
entropy of the 8th iteration FMSST method is the smallest. The FSST2 method has the smallest reconstruction
error of the bearing outer race signal and the strongest noise suppression ability. The FSET and FSSET methods
are limited by kernel function, and which are not effective in extracting fast-changing fault signals, resulting in
large mixed MSEs of IFs reconstruction.

Figure 19 shows Renyi entropy of the 8th iteration FMSST method is optimal when characteristic index o
changes from 0.2 to 2 and MSNR keeps in 18dB. When « > 0.8, FSST, FSST2, FOSTFT, FMSST and FMSST8
employing the ridge extraction techniques have almost the same mixed MSEs of IF, hence, which have wider
applicability and better performance than the others, and they have good toughness.

The features, deficiencies and application scenarios of the robust synchrosqueezing and synchroextracting
TFR methods have been summarized in Table 2. The FSST method aims to improve the TF energy concentra-
tion by squeezing the fault signals’ fuzzy energy in the FSTFT TF domain to IFs trajectory, the specific process
is to apply IFs to gather the FSTFT TF points with the same frequency. Although the energy concentration of
FSTFT time frequency representation can be improved, noise may be increased into the TFR of the fault signals
during the squeezing process. Hence, the noise suppression ability of the FSST method is poor, and which has
poor processing effect for strong time-varying signals.

In order to further verify the effectiveness of the improved method, we selected the bearing outer race fault
data of Jiangnan University®. The sampling frequency of the data was 50 kHz, and the data of N=5000 was taken
as the test signal, so the time was 0.1 s and the bearing speed was 800 rpm/min. We applied the FSST, FSET,
FSSET, FSOSET, the 1st iteration FMSST and the 8th iteration FMSST methods to demonstrate the TFRs of the
pulse components under variable speed conditions, the simulation results are shown in Fig. 20. It can be seen
that the TFRs can extract the pulse features at the same time interval, and the time interval of these continuous
pulses A, B, C, D, E, F and G is about 14.28 ms, then the characteristic frequency can be calculated to be about
70 Hz. In summary, the proposed fractional low-order time-frequency techniques can effectively extract pulse
characteristics of mechanical fault bearing signals in time-frequency domain under variable speed conditions,
and accurately obtain the information closely related to the fault characteristics.
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Figure 17. TFRs of the outer race DE fault signal polluted by infinite variance process noise (o = 0.8,

MSNR = 18 dB, p = 0.2). (a) SET method. (b) FSET method. (c) SSET method. (d) FSSET method. (e) SOSET
method. (f) FSOSET method. (g) The st iteration MSST method. (h) The 1st iteration FMSST method. (i) The
8th iteration MSST method. (j) The 8th iteration FMSST method).
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Figure 17. (continued)

The FSET method aims at the characteristics that some special points in FSTFT time frequency representation
have the largest peak value, the energy peak on IF trajectory can be accurately located employing synchronous
extraction operation (SEO), and new TF coefficient is obtained. The FSET method has good noise robustness,
but limited by the kernel function, the extraction effect of TF is not good for the fast-changing fault signal, and
the energy concentration is not high.

FSSET is a method based on the FSST and FSET, which uses FSST instead of FSTFT time frequency rep-
resentation to extract the peak value of IF energy, and finally determines new TF coeflicients. FSSET method
has higher TF energy concentration and TF resolution than FSST and FSET, which has the advantages of both
methods, good noise suppression ability (strong noise robustness) and fast algorithm speed (short algorithm
time). FSSET removes many coefficients that are critical to characterizing m-D patterns, which produce blurred
and ridged TF images. The FSST, FSET and FSSET methods are based on the Dirac signal model.

The FSOSET method is a FSTFT TF post-processing technology based on FGMLC model, which applies
second-order synchronous extraction operation (FSOSEO) instead of FSEO to synchronize TFR of the fault
signals, it further improves the energy concentration of TFR and reduces the reconstruction error. The FSOSET
method can show time-varying non-stationary fault signals more accurately. FSOSET can have more focused
TF images, better reversibility of TF representation, and stronger noise suppression (strong noise robustness).
The Renyi entropy of the FSOSET method is inferior to that of the SOSET method.

FMSST method is based on FSST, and adopts iterative reassignment process to gradually concentrate fuzzy
energy in the TF domain, thereby improving the energy concentration of TFR, while maintaining the TF recon-
struction ability of the bearing fault signal. The FMSST method is suitable for the strong time-varying fault
signals with less computation, and which can be applied to real-time signal processing. By employing iteratively
multiple FSSO operations, the fuzzy energy in the FSST TF domain is gradually concentrated.

In practical application, we can choose the method suitable for fault diagnosis analysis according to the
advantages and disadvantages of the algorithm and the characteristics of the fault signal itself, and we can also
synthesize several methods for joint fault diagnosis.

Conclusions

In this paper, infinite variance process statistical model has been used to describe the normal signal, DE fault
vibration signal, and environmental noise. The characteristic index « of the inner race and outer race fault signal
in DE and FE is less than 2. Aiming at degradation of the exiting methods in infinite variance process environ-
ment, several robust post-processing synchrosqueezing and synchroextracting TFR technologies were proposed
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Methods Features Deficiencies Application scenarios
ESTET Low cqmputatlonal complexity and balanced TF ?Ihe overall time-frequency aggregation of the signal Preliminary analysis for fault signal
resolution is low
It can improve the energy concentration of FSTFT The processing effect of strong time-varying fault
ESST time frequency representation through the syn- Poor noise suppression ability - . ¢
. signal is poor as post-processing method
chrosqueezing process
The energy concentration of FSTFT time frequen;y . - . TF extraction effect and the energy concentration of
FSET representation is improved by the synchroextracting | Good noise robustness but limited by kernel function fault sienal desirabili
process ault signal are undesirability
FSSET It has higher TF energy concentration and TF resolu- It has the advantages of both FSST and FSET methods Fault signal TF images with blurred and ridged frac-
tion than FSST and FSET tures are produced
FSOSET Replace synchroextraptmg operation with second- Strong noise suppression ability It has a more cochqtrated TF image of fault signals
order synchroextracting operation and better reversibility
. . . . Less computation, improving the energy concentration | .. . . . .
FMSST By iterating FSSO operations several times, FSSO fuzzy of TFR while maintaining the signal TF reconstruction It is suitable for strong time-varying fault signals, and

energy in TF domain is gradually concentrated

capability

can be applied to real time fault analysis

Table 2. The comparison of various robust synchrosqueezing and synchroextracting transform TFR methods.

including FSST, FSET, FSSET, FSOSET and FMSST algorithms. The robust post-processing TFR technologies
have wider applicability and better signal TF aggregation than the conventional technologies. FSST method is to
adjust the TF coefficient of IF to improve its TF concentration. The FSET method can accurately locate the energy
peak of IF trajectory to obtain new TF coefficients. The FSSET method extracts the IF energy peak from the FSST
TF domain to determine the new TF coefficient. The FSOSET algorithm uses second-order synchronous extrac-
tion operation to extract synchronously in FSTFT TF domain, which has good TF reversibility and strong noise
robustness. The FMSST method uses iterative reassignment technique to gradually concentrate fuzzy energy.
The robust post-processing time frequency technologies have smaller Renyi Entropy and mixed MSE of IF, and
larger MSNR-output. In the actual fault analysis and diagnosis, the suitable method can be selected based on the
characteristics and advantages of the above the robust post-processing TFR technologies, and even a variety of
technologies can be jointly discussed to obtain better diagnosis results. The improved post-processing algorithm
in this paper adopts a fixed parameter P and has certain application limitations. In the next step, we will study
the adaptive improvement of these algorithms.
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