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Research and engineering
application of layout optimization
for lockbolt structures

In railway wagons considering
multidimensional failure modes
based on MSNSGA-III

Dailin Zhang®?, Xiaofeng Li®?*¢, Qiang Zhang™3, Xinli Han?, Shuai Wang®* & Qiaoyan Ma*

The lockbolt structure is essential in railway wagons, and a scientific lockbolt layout can ensure
uniform load distribution, thereby preventing failure. However, current engineering lacks layout
optimization methods that address multidimensional failure modes. This paper presents a new
lockbolt structure layout optimization method based on submodel, parametric models, and a multi-
strategy integrated NSGA-11l (MSNSGA-II1), adhering to the DVS EFB 3435-2 standard. This method
simultaneously optimizes the number and spacing of lockbolts to prevent tensile, bearing, shear, and
other static failure modes under specified load conditions. The proposed method was applied during
the design phase of a container flatcar. Optimization results indicate that, compared to NSGA-IlI, this
method achieves the best IGD and HV values across multiple complex test functions, demonstrating
superior performance in solving complex Pareto front optimization problems. Additionally, the
optimized lockbolt structure’s safety margins increased by a maximum of 59.81%, passing the full
vehicle strength test and significantly enhancing resistance to multidimensional failure modes. These
results highlight the method'’s significant practical application value in addressing the optimization of
railway wagon lockbolt structures under complex multidimensional failure modes.

Keywords Lockbolt structure failure modes, Layout optimization, DVS EFB 3435-2, MSNSGA-III,
Container flatcar

Lockbolt technology, known as the Huckbolt® after its inventor, represents an alternative to conventional bolted
joints'?. Initially developed for the aerospace industry, lockbolts feature a unique ring groove structure that
provides high preload and shear resistance, excellent corrosion resistance, and environmentally friendly assem-
bly processes. This technology has been successfully adapted for application in railway wagons®?, as illustrated
in Fig. 1. Despite its widespread use, the unique connection mode of lockbolts introduces several problems.
In traditional structural design, the lockbolt position is usually determined by engineering experience, and its
specifications are determined according to the load conditions and relevant standards to ensure the lockbolt
structure’s reliability during rail vehicle operation®. However, the layout of lockbolts critically impacts load dis-
tribution. An optimized layout ensures uniform load distribution, thereby mitigating the risk of failures such as
bearing or shearing’. Moreover, an efficient layout can reduce the number of lockbolts required, consequently
decreasing overall weight and production costs®”. Therefore, the optimization of lockbolt layouts is of significant
importance for structural design and analysis.
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Lockbolts in

Railway Wagons

Figure 1. Lockbolts in railway wagons.

Fastener layout primarily depends on empirical design methods®. However, some researchers have explored
fastener layout optimization using topology optimization and meta-heuristic methods. Zhu et al.? investigated
the load distribution in fastener joints within aircraft structural design. They combined topology optimization
with compliance design to validate the effectiveness of joint load constraint methods and proposed an optimi-
zation scheme for the shear load constraint of multi-fastener joints. Kim et al.’ utilized a genetic algorithm to
optimize the design of double-bolted joints in cylindrical composite structures. They employed bolt spacing,
edge distance, and composite lamination sequence as design variables to enhance the load-carrying capacity
of the double-bolted joints. The optimized design was validated using Progressive Failure Analysis (PFA). Xiao
et al.' combined the Parthenon genetic algorithm (PGA) and the chaotic genetic algorithm (CGA) to propose
the Parthenon chaotic genetic algorithm (PCGA). Addressing the issue of stress concentration at the hole edges
of aerospace load-bearing connection structures, they optimized the layout of non-uniformly arranged bolt
groups using bolt spacing as the design variable. The application of PCGA resulted in a 31.01% reduction in
hole-edge stresses. Shen et al.!! combined parametric modeling with a genetic algorithm to optimize the angular
acceleration of an electronic device. Using the positional coordinates of a single bolt as the design variable, their
approach reduced the angular stress by 20.4%, thereby enhancing overall reliability. Cho et al.'> employed the
response surface method (RSM) for the optimization analysis of bolt-hole edge stresses in composite structures.
Using the positional coordinates of twin bolts as design variables, their approach reduced the maximum Von-
Mises stresses by approximately 16%, thereby enhancing the overall load-supporting capacity of the structure.
Chen et al.”® Chen et al.”® utilized an improved particle swarm optimization algorithm to optimize the overall
stiffness of square components in heavy-duty CNC machine tools. By using process parameters such as preload,
roughness, and other characteristics of the bolt population as design variables, they achieved global stiffness
optimization. Lu et al.'* employed the Gray Wolf algorithm to optimize the bolt layout for nickel steel plate
connectors. Using the positional coordinates of the asymmetric triangular bolt group as design variables, their
optimization reduced the bolt hole circumferential Von-Mises stresses by 24% and the maximum bolt Von-Mises
stresses by 12.5%. Zhou et al.”® constructed a finite element model of bolted joints based on CFRP/Al to analyze
their failure modes. By using the NSGA-III algorithm to optimize the bolt connection layout, they increased the
structural strength by 26.52%.

The above optimization methods primarily focus on determining the specific number of fasteners, utilizing
relative positional coordinates as design variables, and aiming to minimize the Von-Mises stresses of the fasten-
ers or the connected parts as the optimization objective. However, these fastener layout optimization methods
are limited in that they cannot account for the impact of changes in the number of fasteners on the optimization
results. Additionally, these methods typically rely on Von-Mises stress or a single evaluation criterion as the
optimization objective, failing to comprehensively consider various failure modes of the fastener structure, such
as the slipping failure of the lockbolt structure. Consequently, current optimization methods for fastener layouts
still have significant limitations and face challenges in practical engineering applications.

To address the limitations of the aforementioned optimization methods, this paper first establishes the mod-
eling methods, failure modes, and assessment methods for the lockbolt structure through tensile tests, destruc-
tive tests, and the guidelines provided in DVS EFB 3435-2'¢17, Secondly, this paper proposes an MSNSGA-III
combining improved circle chaos mapping, dynamic crossover-mutation calibration strategy, and improved
reference point selection strategy. Then, a new layout optimization method is presented that can simultaneously
optimize the number and spacing of lockbolts while comprehensively evaluating multidimensional failure modes.
This method utilizes submodel parametric modeling and combines the DVS EFB 3435-2 and the MSNSGA-III.
Finally, using the fully lockbolt container flatcar as the research object for engineering application, multi-objective
optimization is conducted to address high-stress areas and hazardous regions that may cause lockbolt structure
failure. This process verifies the feasibility of the proposed layout optimization method and enhances the ability
of the lockbolt structure in the region to resist multidimensional failure modes.
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Modeling and assessment method

Validation of modeling methods

Tensile test

To ensure the accuracy of the numerical simulation results of the lockbolt structure, the modeling method needs
to be verified experimentally. The lockbolt specimen installation process is based on the Chinese standard "Gen-
eral Technical Specification of Riveting Process for Railway Vehicle"® (TB/T 2911-2016). As shown in Fig. 2, the
lockbolt lap joint specimen consists of two plates and one lockbolt. The lockbolt specification is M16 x 50; the
preload force is 85,000 N. The plate’s material is Q450 high-strength weather-resistant steel with a 10 mm thick-
ness. The plate overlap distance is 40 mm, and the clamping distance is 40 mm. The lockbolt and plate materials
are the same as the fully lockbolt container flatcar. The red squares in Fig. 2 indicate the measurement points,
totaling 24 in number. The measurement points are symmetrically positioned on the top and bottom surfaces,
with points 1 to 12 located on the top surface and points 13 to 24 on the bottom surface.

The lockbolt tensile test is based on the Chinese standard "Ring groove rivet Assemblies Specifications"® (GB/T
36993-2018). As shown in Fig. 3, the tests used an SDZ0100 electro-hydraulic servo dynamic and static fatigue
testing machine. At room temperature, the quasi-static tensile test was carried out at a tensile rate of 1000N-min,
and three groups of M16 lap joint specimens were subjected to quasi-static tensile tests. The average value of
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Figure 3. Equipment for tension test of the lockbolt structure.
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load-strain data of the measurement points was taken as the test results. The load-strain (F — &) curves of each
measurement point in the tensile test are shown in Fig. 6.

Modeling method research

This paper refers to the Beam & Coupling elements connection mode in the simplified modeling method
of bolt structure and applies it to the finite element modeling of lockbolt structure. To ensure the calculation
accuracy, the finite element model of the lockbolt structure was established by using the 4-node shell element
S4 in ABAQUS/Standard. The basic mesh size of both plates is 4 mm. All measurement points’ locations are the
shell elements’ nodes.

According to the Chinese Standards TB/T 2911-2016'%, and International Standard DIN EN ISO 898-1%* to
determine the material parameters of M16 lockbolt: E = 450MPa, 0y, = 640MPa, 6,,, = 800MPa. In numerical
simulations, the lockbolt constitutive model is modeled using a bilinear isotropic material model based on the
above parameters. Figure 4 shows the Q450 constitutive model obtained from test measurements. Real stress
and real strain consider the actual changing dimensions of the material during deformation, whereas nominal
stress and nominal strain are based on the original, unchanging dimensions of the material. Considering the large
deformation of the specimen, the real stress oy and the real strain &y, are used in the numerical simulation,
and their relationships with the nominal stress oNom and the nominal strain exom are as follows.

120,21

OTrue = ONom (1 + €Nom) (1)

&True = In(1 + &Nom) ()

The finite element model of the specimen is shown in Fig. 5. During the test, the testing machine clamped
the specimen. To simplify the model, it was assumed that the clamping regions at both ends of the plate were
rigid. Two reference points, RP-1 and RP-2 were defined at the centroid positions of the clamping regions of
the two plates and coupled with the rigid region. Rigid constraints are applied to both reference points, where
the displacement along the tensile direction is allowed at RP-2, and the same load as in the tensile test is loaded
on PR-2. Numerical simulations were conducted using kinematic coupling and distributing coupling elements,
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Figure 4. Q450 constitutive model.
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Figure 5. Finite element model of lockbolt lap joint specimen.
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Figure 6. Numerical simulation and tensile test results.
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respectively. Kinematic coupling is a constraint mechanism wherein the motion of slave nodes is entirely gov-
erned by a master node, ensuring that the relative displacement between the slave nodes and the master node
remains constant. Conversely, distributing coupling involves the application of distributed forces or displacements
from the master node to the slave nodes, permitting some degree of relative movement among the slave nodes
while ensuring their average motion is influenced by the master node.
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Verification of test and numerical simulation results

Figure 6a—d shows the strain results from the numerical simulation and tensile test, while Fig. 6e presents the
strain error between these two methods. Based on the finite element model with Distributed Coupling, the load-
strain curves at the measurement points around the edge of the lockbolt holes (measurement points 5, 6, 7, 17,
19, and 20) show significant deviations from the test data, with a root mean square error of 3.37e—4. In contrast,
the numerical simulation results obtained using the finite element model based on Kinematic Coupling demon-
strate good agreement with the test data, exhibiting an average deviation of 3% for 24 measurement points and
a root mean square error of 6.23e—5. The experimental results fully validate the validity and accuracy of using
the Beam & Kinematic Coupling elements for simulating the lockbolt structure.

Typical failure modes and assessment method

Typical failure modes

Many scholars have conducted in-depth and comprehensive analyses of the failure modes of fastener
structures?-2%, and other scholars have systematically generalized and summarized the failure modes of fas-
tener structures. In this paper, combining the research results of many scholars, destructive tests were conducted
for different lockbolt structures, and six typical failure modes were identified (Fig. 7), including tension failure,
bearing failure, shear failure, slipping failure, the shank shear failure, and shank tension failure.

The failure mode analysis has several limitations and assumptions. First, the representativeness of the data
samples is insufficient, and the complexity of environmental factors such as temperature, humidity, and corrosion
affecting the lockbolt structure has not been fully considered. Additionally, the simplification of experimental
conditions and the use of specific materials limit the comprehensiveness of the analysis. The study assumes that
the lockbolt structure operates under design conditions, each failure mode is independent, materials are uniform
and isotropic, and the structure is regularly maintained and defect-free. However, in practical applications, fac-
tors such as overload, interactions between failure modes, material heterogeneity, and inadequate maintenance
can all affect failure modes. These limitations and assumptions need further validation and improvement in
future research.

Assessment method
The DVS EFB 3435-2 is introduced to evaluate the six typical failure modes of the lockbolt structure. In the field
of mechanical and rolling stock engineering in Germany, approximately 68% of removable joints are designed
and evaluated with reference to VDI 2230*”%, which has been used worldwide for 40 years as a guideline for the
design and evaluation of high-strength bolts®. This standard provides a systematic specification for the strength
assessment method of lockbolts, considering factors such as the connection form between the lockbolt and the
clamped part, dimensions, and friction coefficients. Compared to traditional assessment methods, it offers a
comprehensive evaluation of multiple failure modes of the lockbolt structure It is widely used in regions such
as ships and rolling stock.

GLIENKE!" et al. and SCHWARZ? et al. have demonstrated the accuracy of the DVS EFB 3435-2 standard.
In addition, some scholars have already used DVS-EFB 3435-2 in the railway industry®. The DVS EFB 3435-2
assessment process based on the finite element method is shown in Fig. 8.

Figure 7. Typical failure modes of the lockbolt structure.
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Figure 8. Assessment process of the DVS EFB 3435-2 based on the finite element method.

As shown in Fig. 8, the DVS EFB 3435-2 standard defines six safety margins, which correspond to one or
more of the typical failure modes, and these safety margins can be used to effectively predict and assess the typi-
cal failure behavior of the lockbolt structure under different load conditions. Therefore, this paper assesses the
failure behavior of the lockbolt structure using Sr,Sp,Sg,S4,and Sy of DVS EFB 3435-2. These safety margins are
calculated as follows:

(1) Safety margin against exceeding the yield point Sp:

The safety margin against exceeding the yield point Sr is used to assess the tensile safety of the lockbolt struc-
ture. The aim is to ensure that the lockbolt structure works safely and reliably under actual operating conditions,
i.e., the maximum bolt load Fsax does not exceed the tensile strength of the bolt Ry, which corresponds to the
shank tension failure (Fig. 7f). The expression is as follows:

Fsmax = Fp + @nFAmax—AFvi, (3)
o _ Fs max (4)
Z max AS
R
Sp=—M - 12 (5)
07 max

where F is the assembly preload; ®,, is the load factor; F4 max is the axial load; AF,,/ is the change in the
preload as a result of a temperature different from room temperature; 07 max is the tensile stress in the lockbolt
in the working state; Ag is the stress cross-section of the lockbolt thread, ds = d3; Ry is the tensile strength of
the lockbolt.

(2) Safety margin against surface pressure Sp:

Safety margin against surface pressure Sp is used to assess the safety of the contact stresses on the surfaces of
the clamped parts of the lockbolt structure and to ensure that the surfaces of the clamped parts are not subject
to problems such as compression collapse, which corresponds to the bearing failure (Fig. 7b). The expression
is as follows:

Ppmax = (Fm + Fsamax — AFVth)/Apmin (6)
Ppmax = (Fm — AFVth)/APmin (7)

Pg
Sp=—2—>10 8
pM/Bmax ( )

where: Fsg max is the maximum axial additional bolt load; Ap min is the minimum of the bolt head or nut bearing
area;Ppr/B max is the surface pressure in assembled state and working state; Pg is the limiting surface pressure.
(3) Safety margin against slipping Sg:
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Safety margin against slipping S is used to assess the slip phenomenon of the clamped parts of the lockbolt
structures under transverse loading, which corresponds to the slipping failure (Fig. 7d). The expression is as

follows:
FQmax
Fgerf = Fkog = ———— 9
of Q qgr * T min ©)
Fyu
Fxrmin = ? - (1 - qDrL)FAmax — Fz — AFyy, (10)
A
F .
Sg = —XRmin 5 (11)
FKerf

where: FQmax is the transverse load; gr is the number of force-transmitting inner interfaces involved in pos-
sible slipping/shearing of the bolt; (41 min is the coefficient of friction at the interface; o4 is the tightening factor,
as = 1.05.

(4) Safety margin against shearing Sa:

Safety margin against shearing Sy is used to assess the safety of a lockbolt structure under transverse load-
ing FQmax- to ensure that the lockbolt does not suffer shank shear failure (Fig. 7e). The expression is as follows:

4 B
FQzulSZTB’Arzf'dz' - Rym (12)
4 Ry
F
Sq= -2 o 125 (13)
Qmax

where: A; is the shearing area during transverse loading; 7g/Ry is the shear strength ratio; d; is the diameter of
the shearing cross-section, d; = d.

(5) Safety margin against breaing pressure Sy:

Safety margin against breaing pressure Sy, is used to assess the reliability of the lockbolt structure under
transverse loading, to ensure that the clamped parts do not suffer from tension failure and shear out failure
(Fig. 7a,c). The expression is as follows:

FQaur = h - dr - Rpoop (14)

Fouur
SL=—"—>1.0 15
Foma (15)

where: h is the thickness of the clamped parts; Rpo2p is the 0.2% proof stress of the clamped parts.

Layout optimization method

Parametric model of the lockbolt structure

A parametric model is a method in finite element analysis where the geometry of the model is controlled by a
set of parameters, allowing for flexible adjustments and optimization of the design. This paper utilizes Pycharm
Professional 2023 and Python 3.11 for the secondary development of ABAQUS 2021, establishes a parametric
modeling and automated solution process for the general-purpose lockbolt lap structures shown in Fig. 9a. Fig-
ure 9b shows the main parameters to be determined for the parametric model, where p is the lockbolt spacing,

h

_--_ (o
©

(a) (b)

Figure 9. Parametric model.
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qis the number of lockbolts, [ is the specification of the clamped parts, and e is the distance of the lockbolt from
the edges of the clamped parts.

The parametric modeling and solution automation process is shown in Fig. 10a,b,c, which is mainly composed
of a user definition and input module, a Python driver module, and an ABAQUS output module. After defin-
ing the input parameters, Python can drive the ABAQUS/Standard program based on specified parameters to
execute steps such as component modeling, component assembly, coupling, meshing, load, and solution, where
the lockbolt structure is meshing using the Beam & Kinematic Coupling element in Section "Verification of Test
and Numerical Simulation Results". After the solution is completed, Python automatically extracts the Beam
element loads F,, Fy, Fz, My, My, and M, in the ABAQUS result file (.odb) and calculates the Sg, Sp, Sg, Sa, and
Sy, of the lockbolt based on the DVS EFB 3435-2. Furthermore, mesh refinement is conducted during meshing,
particularly focusing on the stress concentration region around the hole. This automated procedure enhances
the efficiency of the parametric modeling solution and optimization analysis for the lockbolt structure.

MSNSGA-III

A genetic algorithm is an optimization technique inspired by natural selection and genetics, used to find optimal
or near-optimal solutions to complex problems. It starts by generating an initial population of random solutions,
followed by evaluating each solution based on a fitness function that measures its quality. The best solutions are
selected to reproduce, combining parts of two parent solutions to create new ones, a process known as crossover.
Additionally, some parts of the new solutions are randomly modified to maintain diversity, known as mutation.
This process of evaluation, selection, crossover, and mutation is repeated over several generations until an opti-
mal solution is found or a stopping condition is met. Genetic algorithms are advantageous due to their global
search capability, flexibility in application to various problems, and parallelism, allowing for the simultaneous
processing of multiple solutions, thus improving efficiency. NSGA-III is a multi-objective genetic algorithm based
on the second generation of non-dominated sorting genetic algorithm NSGA-II %, which introduces reference
points to transform large-scale problems into uniformly distributed trade-off solution sets. Although it reduces
the complexity of NSGA-II and improves the computational efficiency of large-scale optimization problems, it
still suffers from the issues of poor utilization of decision-making information in the population space, difficulty
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in determining the division of the reference points, and over-focusing on the local optimum. To address these
drawbacks, this paper proposes the MSNSGA-III (Multi-Strategies) with the following improvement strategies.

Improved circle Chaos mapping population initialization

Population initialization refers to generating a set of random initial solutions at the start of a genetic algorithm
to provide a starting point for the optimization process. Random generation of traditional NSGA-III populations
tends to cluster the initial populations, which leads to uneven distribution of populations and thus affects the
subsequent optimization results. This paper introduces a chaotic mapping initialization population method for
this problem. The chaotic mapping randomness and traversal can ensure the dispersion and uniformity of the
initial population. The standard chaotic mappings include Logistic, circle, and Sine chaotic mapping®**!. Wu
et al. improved the circle chaotic mapping method to obtain a more uniformly distributed initial population with
high coverage of chaotic values®?. To get a more excellent initial population, this paper carries out population
initialization based on the improved circle chaotic mapping with the expression:

x;' = Id; + (ud; — zd,»)z;'

(16)

. . T . .
z]?+1 = mod (,0 . z; +0-u— sin(p - rrz;), 1)
where: x! is the position of the iy, individual in the j, dimension; ud; is the upper limit in the jy, dimension; Id; is
the lower limit in the jy, dimension; z; is the chaos parameter of the iy, individual in the jy, dimensional, initial
value is rand(); u = 0.2;1 = 0.5;0 = 5.14;0 = 1.75.

Dynamic crossover-mutation calibration strategy

In genetic algorithms, crossover and mutation involve combining parts of two parent solutions to create new
solutions and randomly altering some parts of these new solutions to maintain diversity. Using fixed crossover
and mutation probabilities will lead to slower genetic algorithm convergence and fall into the local optimum,
resulting in subpar search outcomes®. The traditional NSGA-III algorithm sets the crossover and mutation
probabilities as constant values, which may destroy the excellent individuals in the process of evolution and
cause the phenomenon of population "degradation"*. Therefore, to address the above problems, this paper
proposes a dynamic crossover and mutation calibration strategy: before the simulated binary crossover (SBX)
and polynomial mutation (PM), their probabilities for crossover p. and mutation p,, are dynamically calibrated
by multidimensional adaptation Fit. The specific formulas are as follows (Fig. 11):
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pe = { PV Fityun ity it = Filavg
P2 Fit' > Fityyg

Fitpax—Fit* 1ok _ 1
P = P3 Tty Tty Tt = Fitavg

P4 Fit* > Fityyg
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/_A\F:xtract Probability of cross-mutation for

Sseoe individuals A and B

!

]

[
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|\
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I n
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Figure 11. Flowchart of the dynamic crossover-mutation calibration strategy.
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D
>~ Normalize(fit; ;)
.=l (19)
Fit; =
D

where: Fitmin is the minimum multidimensional fitness in the population; Fit,y, is the average multidimensional
fitness in the population; Fit’ is the smaller multidimensional fitness of the two individuals in the crossover; Fit*
is the smaller multidimensional fitness of the individual to be mutated; fit;;is the fitness of the iy, individual in
the jy, dimension; p1, pa, p3, and p4 is the const.

Improved reference point selection strategy

In genetic algorithms, reference point selection strategies are used in multi-objective optimization to guide the
population towards optimal solutions. These strategies select representative reference points based on theoreti-
cal models, historical data, or problem-specific criteria to enhance the algorithm’s convergence and maintain
diversity. The conventional NSGA-III employs the boundary-crossing construction weight method for reference
point selection. This strategy effectively addresses issues with uniformly continuous Pareto fronts like DTLZ1,
UF8, WFGL, etc. However, it is less effective in solving problems featuring discontinuous or inaccessible real
Pareto fronts. This limitation becomes apparent when optimizing the lockbolt structure where the true Pareto
front surface cannot be obtained (The true Pareto front refers to the set of all optimal solutions that are not domi-
nated by any other solution in multi-objective optimization.). To address the above issues, this study proposes
an improved reference point selection strategy based on the reference point selection strategy®. This strategy
discerns the evolutionary stage of the population through the quartile distribution feature information of the
population in the decision space. Then, it selects the reference point on the hyperplane through the distribution
feature of the population in the objective space (The objective space is the set of all objective function values,
representing how solutions perform on multiple objectives.).

Entropy reduction refers to the process of selecting split points to decrease the uncertainty or entropy of a
dataset, making the data purer. During population evolution, the population changes from disorder to order and
gradually converges, which is the course of entropy reduction. Hence, the entropy reduction Ae’ and threshold
Ay of two neighboring generations can characterize the population’s evolutionary stage Smode> as depicted in
Egs. (20) and (21). If | Aét | > Ap, it indicates that the population has entered a state of positive evolution Sexplodes
the algorithm performs "Explode" behavior, and the population gradually explodes in the search space (The search
space contains all possible solutions, which is the set of all potential solutions.). If } Ae! } < Ap, it indicates that
the population exits the positive evolutionary stage Sexplode and enters the negative evolutionary stage Sexplore, it
means that the algorithm performs "Explore" behavior. The population stops exploding and converges gradually
in the search space.

n n
e =— Z inf; - 1ginf; — Z Amid! -1g Amid! (20)

i=1 i=1
p==Dinf -ginf —Dinf + ) 1g (7 + e

where: ¢ is the current evolutionary number of the population; e; is the entropy value; inf; is the standardized
interquartile difference of the population; Amid’ is the standardized median difference of the populations; inf
is the standardized interquartile difference for a uniformly distributed population, inf = 0.5; D is the dimension
of the decision space; N is the population size.

As the population evolves, individuals tend to be associated with the reference line through the true Pareto
front. Therefore, the traditional reference point selection strategy can be improved by counting the number of
associations between the reference points and the individuals in the population in each generation to assess the
importance of the reference points. Hence, the reference points with more associations with the individuals can
be retained more. The process of the improved reference point selection strategy is as follows:

(1) The set of reference points Z with each dimension divided into p is selected according to the population
size N, The number of reference points in Z is Hp, H, satisfies:H, > 1.2N and H,_; < 1.2N .

(2) Determine the evolutionary stage Spode based on entropy reduction Ae’ and the threshold Au between
neighboring generations.

(3) When the population is in the "Explode" stage, Syode = Sexplode> counting the sum of the number of associ-
ated individuals per generation Zg,m in the set of reference points Z .

(4)  When the population is in the "Explore” stage, Smode = Sexplore> Select the N reference points with the highest
number of associations to create a new set of reference points, denoted as Z,,.

Algorithmic process
Combining the above circle chaotic mapping population initialization, dynamic crossover mutation calibration

strategy, and the improved reference point selection strategy, the specific steps of the MSNSGA-III algorithm
are as follows (annotations indicate the position and Eq. of strategies):
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Input: N,D,T //Population size, problem dimensions, and maximum number of iterations
Output: P,

R A A

-
e

11:
12:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:

Z =Reference points generation (N, D)
P, = Circle initialization of population (~)  //Circle chaotic mapping population initialization Eq.(16)
M, = Threshold generation(D,N) //Calculate thresholds of the evolutionary stage Eq.(21)
S, = Sexp]ode
Z,.» = Initialization (null) ~ //Initialize the total number of reference set history associations
1=0
while 7 <T:
O, = Genetic operatio (P)n //Dynamic crossover-mutation calibration strategies Eq.(17)(18)(19)
R=FvQ,
(£, F,...) = Non-dominated sort (R,)
if S, S

mode — explode *

//The initial evolutionary stage is "Explode"

mode

//Evolutionary stage is "Explode"

Z,,.,=Updata (Z) //Update the total number of historical associations for the reference set
=S

elif S, explore - /Evolutionary stage is "Explore"

mode
Z =Updata (Z,,N) //Update reference points
§,=0,i=1
while |S,|< N :
S =8 UF,i=i+]
F=F,
if [S]|=N:
Ba=5,
break
else:
Normalize = (.S,)
[(s).d (s) ] = Association operation (S,,Z)
K=N-|F
P

t+1

il

= Niche preservation operation (K, p,n,d,Z,F,,P,)
t=t+1

S o = Updata(S,.,.) //Updated evolutionary stages Eq.(20)(21)

return P

Algorithm. MSNSGA-IIT

Performance verification and analysis

In evolutionary algorithms and optimization problems, test functions are standardized problems used to evaluate
algorithm performance. They provide consistent and repeatable benchmarks to help researchers validate and
compare the effectiveness and robustness of different algorithms. To validate the efficacy of the MSNSGA-III,
the DTLZ1, DTLZ2, DTLZ4, DTLZ5, DTLZ6, and DTLZ7 functions from the DTLZ?® test set are chosen for
experimentation and compared with the NSGA-III. To ensure the fairness of the evaluation, the population
size is N = 100, and the maximum generations is Gmax = 30 of the two algorithms. The crossover probability
is 0.8, and the mutation probability is 0.1 of the NSGA-IIL. The test platform is PlateEMO 4.5*” of MATLAB
R2023b. Inverted generation distance (IGD) * and Hype volume (HV) *°, which can reflect the convergence
and distribution of the algorithm, are used as primary performance evaluation metrics to gauge the algorithms’
effectiveness. The IGD indicator calculates the average distance from reference points to the nearest solution.
Reference points far from all solutions have a larger IGD, thus reflecting both the convergence and diversity of
the solution set. The HV indicator calculates the sum of the hypervolume formed by all nondominated solu-
tions and the Nadir Point. For the same test function, each algorithm runs independently 30 times to calculate
the average and standard deviation of the results. The non-parametric Wilcoxon rank-sum test compares the
two algorithms with a significance level set at 5%. In Table 1, the symbol "+" indicates that the MSNSGA-IIT is
significantly better than other algorithms, "-" indicates significant inferiority to different algorithms, and "="
indicates no difference between the two algorithms.

From the comparison results in Table 1, the MSNSGA-III algorithm achieved the optimal IGD and HV on
all 6 test functions. This indicates that the MSNSGA-III algorithm exhibits the best performance in terms of
convergence and diversity on the five test functions. This paper uses box plots to represent the statistical results
of the two algorithms on various test functions. The outer upper and lower limits of the box plot represent the
maximum and minimum of the samples, the inner upper and lower boundaries represent the upper and lower
quartiles, the central red line within the box represents the median, the central blue dashed line represents the
mean, and the red dots represent outliers. The box plots for the IGD and HV indicators (Figs. 12, 13) further
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Test Function M | D | Metrics | MSNSGA-III NSGA-III

IGD 3.2570e-01(1.916e—01) + | 3.9852e—01(2.928e-01)
DLTZ1 4 13

HV 3.2084e-01(3.351e—01) + | 3.2673e—01(3.521e-01)

IGD 1.2848e-01(1.456e-03)+ | 1.4118e—01(3.080e—04)
DLTZ2 4 13

HV 7.2513e-01(4.450e—03) + | 6.8325e—01(2.021e-03)

IGD 2.2041e-01(1.361e-01)+ | 2.4312e-01(1.478e-01)
DLTZ4 4 13

HV 6.7899e-01(7.395e-02) + | 6.3334e-01(7.261e—02)

IGD 5.8220e-02(1.004e—02) + | 6.6119e—02(1.215e-02)
DLTZ5 4 13

HV 1.3447e-01(5.339e-03) + | 1.2735e-01(5.356e—03)

IGD 4.5909e-01(3.937e-01)+ | 4.8814e—01(4.410e—01)
DLTZ6 4 13

HV 3.1342e-02(4.148e—02) + | 2.9201e—02(4.065e—02)

IGD 1.9929e-01(2.046e—02) + | 2.2189e—01(1.365e—-02)
DTLZ7 4 13

HV 2.5397e-01(8.075e—-03) + | 2.4567e—01(8.168e—03)

Table 1. IGD metrics and HV metrics of each algorithm with 6 test functions.
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Figure 12. Box plots of IGD metrics for MSNSGA-IIT and NSGA-III on 6 test functions.
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Figure 13. Box plots of HV metrics for MSNSGA-IIT and NSGA-III on 6 test functions.

demonstrate the advantages of the MSNSGA-III in terms of mean, median, quartiles, and outliers. This indicates
that the MSNSGA-III is more stable and robust than the NSGA-III. This conclusion further demonstrates the
effectiveness of the circle chaotic mapping, dynamic crossover-mutation calibration strategy, and the improved
reference point selection strategy.

Optimization model
Design variables are parameters in the optimization process that can be adjusted and modified to influence
and improve the performance of a design. For a lockbolt structure, as shown in Fig. 9a, the design variables are
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defined as follows: the number and space of lockbolts along the length direction of the plate is g; and p;, And
the number and space of lockbolts along the width direction of the plate is g, and p», as specifically shown in
Fig. 9b and Eq. (22).

The optimization objective is the specific goal that an optimization process aims to achieve. For the six failure
modes of the lockbolt structure: tension failure, bearing failure, shear out failure, slipping failure, shank shear
failure, and shank tension failure, this method defines the optimization objective: the parametric model Fpy
outputs a set of minimum safety margins, including against exceeding the yield point Sg min, surface pressure
SP min> slipping SG min> shearing S min, and breaing pressure Sy, min. The optimization objectives are selected to
reinforce the lockbolt structure’s capacity to withstand multidimensional failure modes.

The objective function is a mathematical expression that quantitatively represents the optimization objective,
guiding the optimization process by evaluating the performance of different design variables. Objective function:
the squared error between the minimum Smin and tolerable safety margin [S], as shown in Egs. (23) and (24). This
objective function is used to measure the difference between Spin and [S], rapidly converging as Smin approaches
[S], which [S] can be adjusted according to different industries and standards. The definition of this objective
function is based on the following factors: the number of lockbolts is positively correlated with the minimum
margins, and defining the objective function to approach infinity would result in a significant increase in the
total number of lockbolts in the optimization results. Excessive lockbolt holes can lead to stress concentration
in the clamped parts, causing fatigue issues*>*!. Additionally, an excessive number of lockbolt holes can increase
production costs. Therefore, to align the optimized results with actual engineering requirements and avoid over-
design or under-design, the objective function is defined as the square error between Spin and [S].

Constraints are limitations or conditions imposed on the optimization process, defining the feasible region
within which the solution must lie. Constraints: for structures with multiple fasteners, inadequate fastener spac-
ing, and edge distances can decrease fatigue life’’. Therefore, it is essential to consider the minimum allowable dis-
tances of fastener spacing p and edge e during the optimization process. Different countries, regions, or industries
have specific and varying requirements for the minimum allowable distances of fasteners in steel structures* .
The DIN EN 1993-1-3* and DIN EN 1993-1-8 are used to determine e > 1.5dj, and p > 2.2dj,. Additionally,
it is necessary to ensure that the clamped parts ovon.Mises 40 not exceed the allowable stress [oyon.Mises] during
the optimization process, as shown specifically in Eq. (25) and (26).

The expression of this optimization method is as follows:

Find:

q1>92>P1, P2 (22)
Minimize:
(SFmin — [SF])?
(Spmin — [Sp])*
(SG min — [Sc])* (23)
(Samin — [Sa])?
(S min — [SL])?

f1(q1,92,p1,p2
£(q1,92,p1,p2

( ) =
( ) =
f3(q1, 92, 15 p2)
( )
( ) =

f4(q1, 92, p1, p2
f5(q1,92,p1,p2

where:

SFmin = Fpm (91,92, p1,p2) [SF1 =12
Spmin = Fpm (91,92, p1,p2) [Sp] = 1.0
SGmin = Fpm (g1, 92, p1,p2) [S 1.2
Samin = Fpa (91,92, p1,p2) [Sa
SLmin = Fev (q15 92, p15p2) [S

(24)

Subject to:

D) =15d, —e <0 (25)

{ Q1(x) =15d, —e; <0
J &l (x) = ovon-Mises — [OVon-Mises] < 0

where:

OVon-Mises — FPM(QlaQZ:Pl:PZ)
e1=05-(b—k—(qu—1)p1) (26)
e; =0.5- (ll — (q2 — 1)p2)

With bounds:
1 < g1 (integer)
1 < g, (integer)
2.2 - dy < p; (integer)
2.2 - dy < p, (integer)

27)
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The layout optimization process of the lockbolt structure combining the submodel method, parametric mod-
eling method, DVS EFB 3435-2, and the MSNSGA-III is shown in Fig. 14. The specific steps are as follows:

(1)Conduct finite element analysis on the overall engineering model according to load conditions. Utilize
DVS EFB 3435-2 to identify regions with inadequate safety margins or high stresses for optimization.

(2)Extract the displacements of the boundary nodes of the identified region and construct a submodel.

(3)The parametric modeling solution method outlined in Section "Parametric Model of the Lockbolt Struc-
ture" is used to parameterize the submodel of the optimized regions, allowing for the consideration of various
parameter combinations during optimization to achieve the optimal layout solution.

(4)Set the parameters of optimization and constraint to establish the optimization model.

(5)Based on advanced production experience, determine the number and spacing of temporary lockbolts
to establish a group of high-quality individual samples. Introduce these high-quality individuals into the initial
population, generated using improved circle chaotic mapping. Each initial individual undergoes interference
checks and repair operations in conjunction with constraint parameters.

(6)Perform optimization using the MSNSGA-III algorithm presented in Section "MSNSGA-III".

(7)Select the optimal solution based on the design variables and optimization objectives from the optimiza-
tion results.

Engineering applications
Submodel and parametric model of the flatcar
This paper proposed lockbolt structure layout optimization method has been applied in the design stage of the
fully lockbolt structure container flatcars produced by CRRC Qigihar Rolling Stock Co., Ltd. The prototype of
the fully lockbolt container flatcar, along with its geometric model and finite element model, is shown in Fig. 15.
The flatcar is primarily composed of main beams, side beams, a bottom plate, a floor, and a container locking
device. The material used is Q450 high-strength weather-resistant steel (material parameters are shown in Fig. 4).
The finite element model of the flatcar is constructed using shell elements and solid elements, while the lockbolt
structure is modeled using Beam & Kinematic Coupling elements as described in section "Verification of Test
and Numerical Simulation Results". The model consists of a total of 4,398,878 elements and 1,798,706 nodes.
According to the Chinese standard "Strength Design and Test Accreditation Specification for Rolling Stock-Car
body" TB/T 3550.2*, the combined load conditions are set: the self-weight of the flatcar is 22.4t; mass points of
9t are applied to each of the 8 locking seats of the body to simulate the payload weight of 72t; the torsional load
40kN-m is applied at the body side bearing; the tensile load 1920kN is applied at the front and rear body bolster,
and the lateral force is applied in the form of a lateral acceleration of 0.1g. All loads are applied simultaneously.
Constrain is applied at the center plate. The calculation results of Von-Mises stress under combination load

ah
£ 3ABAQUS

|
I I I @ Python I I &\ MATLAB: MSNSGA-III ’
|

Input parameters of the algorithm
N,D,T

|
Bulid parametric model
) e (Submodel)

( Start
v

Build integral finite element model
&Strength analysis based on
relevant industry standards

Improved Circle chaos strategy Engineering experience
&lnitialization population &Robust population

R - NO
Parametric model validation

v

YES

v

Find the key area
&Model cutting

|
|
:
| 7
:
|
|
|

Generate Parent population
&Enter hybridization pool

eaching the maximum
evolution generation

v

Build submodel

!

. | Adaptive crossover and Mutation Niche preservation operation
Parametric model solving . N A
. adjustment strategy Reference-based offspring generation
calculations S A
___________ &Generate offspring population 1=1+1
y \ ?
Recombination Update Evolutionary modeS_,

Whether the boundary
conditions are correct

! i

Input parameters: . .
/ PR Association operation

3 . Optimization completed I Non-dominated sorting based on Smote = Seupiore .
Determine parameters of submodel |~ P Hon comp | s — ' Update reference points setZ
Output optimization results results i
( Tinish ) | Lvolutionary mode St o > Update reference points!

|

|

|

|

|

|

|

|

|

|

|

|

|

| [[RSESERR Y — S

Submodel boundary interpolation | N
&Submodel x:alidati};n | & RS EFB 34338 -‘

| [S—————p——
|

|

|

|

|

|

|

|

|

|

|

|

Figure 14. Layout optimization process of the lockbolt structure.
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Figure 15. The fully lockbolt container flatcar (loaded with two containers).

conditions are shown in Fig. 16. The region where the main beam is connected to the floor is a stress concentra-
tion region. After calculation, the minimum safety margins of the lockbolts group in this region are shown in
Table 3, where the safety margin against slipping Sg min is below the specified tolerable margin of 1.2; the safety
margin against surface pressure Sp min is below the specified tolerable margin of 1.0.

This region is selected for further optimization analysis using the proposed layout optimization method for
the lockbolt structure. First, as shown in Fig. 17a,b, the flatcar model is trimmed to identify the boundary nodes
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Figure 16. The Von-Mises stress cloud of flatcar under combination load conditions.
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Figure 17. Submodel, Boundary selection, Boundary displacement interpolation, and Parametric model.
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of the submodel. Figure 17¢ and 16d display the boundary displacements, with the X-axis representing the
sequence of nodes and the Y-axis showing the displacements U or rotational displacements Ug. These boundary
node displacements are extracted and linearly interpolated, and the interpolated displacements are then used
as boundary conditions for the parametric model. Finally, the submodel method and techniques described in
Section "Parametric model of the lockbolt structure" are applied to establish the parametric model. To ensure the
parametric model’s results are accurate, the boundary should be truncated far from the stress concentration areas.
Figure 17e illustrates the boundary conditions of the parametric model, while Fig. 17f presents the Von-Mises
stress results for the parametric model with the specified input parameter q; = 2,q> = 2,p; = 117,p, = 67.

Layout optimization results
In the optimization process, the population size N = 100, and the number of generations Gmax = 30. Figure 18
shows the relationship between the optimization objective and the generations, whose coordinates are the safety
margins, the generations, and the use of the standardized optimization objective [S] / S. Our analysis reveals
that the population evolves and continues to optimize as the number of generations gradually increases. The
optimization objective S finally converges to a tolerable safety margin [S]. The optimization process shows a good
trend in agreement with the expected design, highlighting the significant effect of the method. Further analysis
of the relationship between the minimum objective functions for Paradigm Normalization and the generations
(Fig. 19) shows that the minimum objective functions continue to decrease. After 21 generations, the minimum
of each objective function no longer decreases significantly, and the algorithm approximates the true Pareto
optimal solution of the optimization problem.

Figure 20a,b demonstrate the distribution of design variables of the initial populations and Pareto solutions.
The horizontal and vertical coordinates correspond to p; and p;, with the color of the molecules corresponding
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Figure 18. The relationship between the optimization objectives and the generations.

I
>

e
o

<
=~

I
o

e
=

Minimum of Objective functions
o
w

I
o

5 10 15 20 25 30
Generation

Figure 19. The relationship between the objective functions and the generations.

Scientific Reports |

(2024) 14:19557 | https://doi.org/10.1038/s41598-024-70424-4 nature portfolio



www.nature.com/scientificreports/

100
80

P2
60

40

120 T 5 mé

O Oso 1 s @ 100 f l

" o q1

/1] ‘o

o (© ) 14 . P2 80 + Population I ~ Population2  Population 3 13
d:» 5.0 ® 3
L “ o d
i ) ® 40 60 | ]
" Y ’ s
K S [ B _gu8®® / SSUSSsERR
| & ® 30 ,,‘,——-,e}/ FRSOSSL-——
S 0o
.. o @Y @
1 I 1 1 L 2 [ ] 20 1 1 L 2
40 60 80 100 50 55
P1 D1

(d)

Figure 20. Distribution of design variables and optimization objectives of the initial populations and Pareto
solutions.

to g2, and the size of the molecules corresponding to q;. The design variables of the initial populations exhibit
a disordered and discrete distribution state without a clear clustering trend. The design variables of the Pareto
solutions exhibit a significant clustering distribution towards three distribution characteristics (as shown in
Table 2). Figure 20c,d respectively demonstrate the distribution of optimization objectives of the initial popula-
tions and Pareto solutions. The horizontal axis represents the safety margins S, and the vertical axis represents
the standardized optimization objective [S]/S. Each line on the Fig. 20c,d corresponds to an individual. Each
optimization objective’s range significantly decreases through box plot comparison, approaching the tolerable
safety margins[S]. Statistical analysis further validated these findings. A paired T-test was conducted to compare
the optimization objectives before and after the optimization process. The results showed that the maximum
p-value for the safety margins (Sp) was 4.8e—2, which is less than 0.05. This confirms that the optimization
effectively narrowed the range and improved the overall safety margins. Additionally, an ANOVA test revealed
significant differences in safety margins before and after optimization.

In this paper, considering the manufacturing cost, the design parameters that satisfy the requirements of
tolerable safety margin, and the minimum total number of lockbolts in the Pareto solution are selected as the
optimization results. The optimal design variables q; = 3,92 = 2, p; = 57, p» = 117 and optimization objec-
tives SEmin = 1.306, Sp min = 1.050, SG min = 1.202, S4 min = 4.525and S} min = 115.698 were determined based
on Fig. 20b,d. To validate the optimization results and the accuracy of the parametric model, we verified the

Population | Distribution characteristics

1 q1 =7,92 = 2,p1 € [46,50],p, € [107,117]

2 q1 € [6,7],q2 € [3,4],p1 € [53,58], p2 € [38,49]
3 q1 € (3,4],q2 = 2,p1 € [57,58],p2 € [109,117]

Table 2. Distribution characteristics of different populations.
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SFmin | SPmin $G min SAmin SLmin
Original finite element model 1.393 0.964 1.009 3.189 81.814
Parametric model 1.306 1.050 1.202 4.525 115.698
Optimized finite element model 1.359 1.153 1.234 5.043 130.752
Error +3.89% | +8.93% +2.59% +10.27% | +11.51%
Rate of change —2.44% | +19.60% |+22.29% |+58.13% |+59.81%

Table 3. Comparison results of the minimum of the margins before and after optimization.

calculated results. As shown in Table 3, we optimized the original finite element model using the optimal design
variables and analyzed the error between the parametric model and the optimized finite element model, with a
maximum error of 11.51%, which meets engineering requirements. Additionally, we compared the minimum
safety margins of the lockbolts among the original finite element model, the parametric model, and the optimized
finite element model. After optimization, Sp min is improved by 19.60%, SG min by 22.29%, SA min by 58.13%, and
SL min by 59.81%. The safety margins have been significantly improved and all exceeded the tolerable safety mar-
gins [S]. Applying these optimization results, the prototype container flatcar passed the strength tests, and the
lockbolt structure did not exhibit the failure modes described in Section "Typical failure modes".

These results demonstrate the engineering significance of the proposed lockbolt structure layout optimiza-
tion method. By optimizing the number and spacing of rivets under specific load conditions, the reliability of
the lockbolt structure is significantly enhanced, thereby preventing potential failures.

Sensitivity analysis

To further analyze the sensitivity of the design variables on optimization objectives, this study employs Latin
Hypercube Sampling (LHS) to perform multiple samplings of the design variables q;, 2, p1 and p,. Considering
their interactions, we use the SOBOL method for second-order sensitivity analysis to quantitatively evaluate the
impact of different variable interactions on the optimization results. The results of the second-order sensitivity
analysis are shown in Fig. 21, where each subplot represents an optimization objective. The color blocks in the
subplots illustrate the second-order sensitivity of each design variable considering interactions, with the color
scale indicating the strength of the sensitivity.

By comparing the second-order sensitivity results of different optimization objectives, it can be observed that
the second-order sensitivities of the design variables show significant differences under different optimization
objectives. Some variable combinations exhibit significant second-order sensitivities for specific objectives. For
instance, the positive interaction between q; and g, for Sp is significant, as is the positive interaction between g;
and p for Sg. The negative interaction between g, and p; for Sg, Sa, and Sy, is significant. Since both S4 and S, are
calculated through the transverse load Fg max (Eq. (13) and Eq. (15)), their second-order sensitivity distributions
are highly consistent. In summary, the interactions of various variables have a significant impact on the optimiza-
tion results. Considering these interactions can lead to more reliable and efficient optimization.

Discussions

Despite the significant advantages of the MSNSGA-III algorithm in multi-objective optimization problems, it
has some weaknesses. Firstly, the algorithm may face performance bottlenecks when handling high-dimensional
problems. As the number of objectives increases, the complexity of the search space rises sharply, leading to
slower convergence rates. Additionally, since the algorithm relies on a dynamic crossover mutation calibration
strategy, the initial parameter settings significantly impact the results. These parameters may require multiple
adjustments for different problems, increasing the difficulty and time cost of using the algorithm.

The current layout optimization method mainly focuses on optimizing the lockbolt structure for six static
failure modes, without considering fatigue failure. This limitation implies that the optimization results may not
be ideal for long-term use or under dynamic load conditions.

Future research will include incorporating fatigue failure modes into the existing layout optimization method
to develop a more comprehensive optimization model, improving the reliability of optimization results for long-
term use and dynamic load conditions; combining deep learning with dimensionality reduction techniques
such as Principal Component Analysis (PCA) to reduce the complexity of the search space and overcome the
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Figure 21. Second-order sensitivity of design variables for different optimization objectives.
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algorithm’s performance bottlenecks in high-dimensional problems; and testing and validating the layout opti-
mization method in industries such as construction and shipbuilding, where lockbolt structures are widely used,
to evaluate its practical application value.

Conclusions

(1) Combined with the tensile test of the lockbolt structure, the Beam & Coupling elements are used to study
the simplified modeling method. The results show that the finite element model constructed based on
Distributed Coupling has significant deviations at the measurement points around the edge of the lock-
bolt holes, whereas the model constructed based on Kinematic Coupling exhibits good consistency. The
numerical simulation agrees with the experimental results, with an average deviation of 3% and a root
mean square error of 6.23e—5. This modeling method can effectively simulate the mechanical behavior of
the lockbolt structure, providing a reliable and simplified modeling solution for the numerical simulation
of lockbolt structures in engineering applications.

(2) Many destructive tests have been carried out on a variety of lockbolt structures, and six typical failure modes
of lockbolt structures have been identified: tension failure, bearing failure, shear failure, slipping failure,
shank shear failure, and shank tension failure.

(3) The MSNSGA-III algorithm is proposed by introducing several key innovations: improved circle chaotic
mapping for population initialization, a dynamic crossover mutation calibration strategy, and an improved
reference point selection strategy. These improvements address deficiencies in NSGA-III, such as uneven
distribution of initial populations, premature convergence to local optima, and poor utilization of decision-
making information within the population space. Specifically, the improved circle chaotic mapping ensures
a more uniform and dispersed initial population, the dynamic crossover mutation calibration strategy
enhances convergence and prevents degradation, and the improved reference point selection strategy
effectively guides the population in complex optimization scenarios. Experiments show that MSNSGA-III
achieves optimal IGD and HV metrics across all six test functions, demonstrating superior convergence
and distribution in feasible regions. It excels in handling complex Pareto fronts and challenging optimiza-
tion problems, marking a significant advancement over NSGA-IIT algorithm .

(4) This paper proposes a new layout optimization method using submodel technology, parametric modeling,
DVS EFB 3435-2, and MSNSGA-III. This method can simultaneously optimize the number and spacing of
lockbolts, comprehensively evaluate multiple failure modes of the lockbolt structure, and has been verified
through engineering application. The results show that after increasing the number of lockbolts from1 x 4
to 2 x 3 and adjusting the spacing of lockbolts from 50 to 57mm and 117mm, the minimum safety margins
in the selected region exceeded the tolerable safety margins [S]. Specifically, Sp min improved by 19.60%,
SG min by 22.29%, S min by 58.13%, and St min by 59.81%. These improvements significantly enhanced the
ability of the selected region of lockbolt structures to resist multidimensional failure modes. It provides a
feasible idea for optimizing railway wagon locking structure layout and has important engineering applica-
tion value.

Data availability

The results provided in this paper are generated by MATLAB and Python codes developed by the authors. The
codes can be available upon request by contacting the corresponding author via email. The container flatcar
geometric and finite element models provided in this paper are unavailable due to confidentiality reasons. All
authors consent to the publication of this manuscript.
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