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Research and engineering 
application of layout optimization 
for lockbolt structures 
in railway wagons considering 
multidimensional failure modes 
based on MSNSGA‑III
Dailin Zhang  1, Xiaofeng Li  2*, Qiang Zhang 1,3, Xinli Han 1, Shuai Wang  1,3 & Qiaoyan Ma 4

The lockbolt structure is essential in railway wagons, and a scientific lockbolt layout can ensure 
uniform load distribution, thereby preventing failure. However, current engineering lacks layout 
optimization methods that address multidimensional failure modes. This paper presents a new 
lockbolt structure layout optimization method based on submodel, parametric models, and a multi-
strategy integrated NSGA-III (MSNSGA-III), adhering to the DVS EFB 3435-2 standard. This method 
simultaneously optimizes the number and spacing of lockbolts to prevent tensile, bearing, shear, and 
other static failure modes under specified load conditions. The proposed method was applied during 
the design phase of a container flatcar. Optimization results indicate that, compared to NSGA-III, this 
method achieves the best IGD and HV values across multiple complex test functions, demonstrating 
superior performance in solving complex Pareto front optimization problems. Additionally, the 
optimized lockbolt structure’s safety margins increased by a maximum of 59.81%, passing the full 
vehicle strength test and significantly enhancing resistance to multidimensional failure modes. These 
results highlight the method’s significant practical application value in addressing the optimization of 
railway wagon lockbolt structures under complex multidimensional failure modes.

Keywords  Lockbolt structure failure modes, Layout optimization, DVS EFB 3435-2, MSNSGA-III, 
Container flatcar

Lockbolt technology, known as the Huckbolt® after its inventor, represents an alternative to conventional bolted 
joints1,2. Initially developed for the aerospace industry, lockbolts feature a unique ring groove structure that 
provides high preload and shear resistance, excellent corrosion resistance, and environmentally friendly assem-
bly processes. This technology has been successfully adapted for application in railway wagons2,3, as illustrated 
in Fig. 1. Despite its widespread use, the unique connection mode of lockbolts introduces several problems. 
In traditional structural design, the lockbolt position is usually determined by engineering experience, and its 
specifications are determined according to the load conditions and relevant standards to ensure the lockbolt 
structure’s reliability during rail vehicle operation4. However, the layout of lockbolts critically impacts load dis-
tribution. An optimized layout ensures uniform load distribution, thereby mitigating the risk of failures such as 
bearing or shearing5. Moreover, an efficient layout can reduce the number of lockbolts required, consequently 
decreasing overall weight and production costs5–7. Therefore, the optimization of lockbolt layouts is of significant 
importance for structural design and analysis.
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Fastener layout primarily depends on empirical design methods5. However, some researchers have explored 
fastener layout optimization using topology optimization and meta-heuristic methods. Zhu et al.8 investigated 
the load distribution in fastener joints within aircraft structural design. They combined topology optimization 
with compliance design to validate the effectiveness of joint load constraint methods and proposed an optimi-
zation scheme for the shear load constraint of multi-fastener joints. Kim et al.9 utilized a genetic algorithm to 
optimize the design of double-bolted joints in cylindrical composite structures. They employed bolt spacing, 
edge distance, and composite lamination sequence as design variables to enhance the load-carrying capacity 
of the double-bolted joints. The optimized design was validated using Progressive Failure Analysis (PFA). Xiao 
et al.10 combined the Parthenon genetic algorithm (PGA) and the chaotic genetic algorithm (CGA) to propose 
the Parthenon chaotic genetic algorithm (PCGA). Addressing the issue of stress concentration at the hole edges 
of aerospace load-bearing connection structures, they optimized the layout of non-uniformly arranged bolt 
groups using bolt spacing as the design variable. The application of PCGA resulted in a 31.01% reduction in 
hole-edge stresses. Shen et al.11 combined parametric modeling with a genetic algorithm to optimize the angular 
acceleration of an electronic device. Using the positional coordinates of a single bolt as the design variable, their 
approach reduced the angular stress by 20.4%, thereby enhancing overall reliability. Cho et al.12 employed the 
response surface method (RSM) for the optimization analysis of bolt-hole edge stresses in composite structures. 
Using the positional coordinates of twin bolts as design variables, their approach reduced the maximum Von-
Mises stresses by approximately 16%, thereby enhancing the overall load-supporting capacity of the structure. 
Chen et al.13 Chen et al.13 utilized an improved particle swarm optimization algorithm to optimize the overall 
stiffness of square components in heavy-duty CNC machine tools. By using process parameters such as preload, 
roughness, and other characteristics of the bolt population as design variables, they achieved global stiffness 
optimization. Lu et al.14 employed the Gray Wolf algorithm to optimize the bolt layout for nickel steel plate 
connectors. Using the positional coordinates of the asymmetric triangular bolt group as design variables, their 
optimization reduced the bolt hole circumferential Von-Mises stresses by 24% and the maximum bolt Von-Mises 
stresses by 12.5%. Zhou et al.15 constructed a finite element model of bolted joints based on CFRP/Al to analyze 
their failure modes. By using the NSGA-III algorithm to optimize the bolt connection layout, they increased the 
structural strength by 26.52%.

The above optimization methods primarily focus on determining the specific number of fasteners, utilizing 
relative positional coordinates as design variables, and aiming to minimize the Von-Mises stresses of the fasten-
ers or the connected parts as the optimization objective. However, these fastener layout optimization methods 
are limited in that they cannot account for the impact of changes in the number of fasteners on the optimization 
results. Additionally, these methods typically rely on Von-Mises stress or a single evaluation criterion as the 
optimization objective, failing to comprehensively consider various failure modes of the fastener structure, such 
as the slipping failure of the lockbolt structure. Consequently, current optimization methods for fastener layouts 
still have significant limitations and face challenges in practical engineering applications.

To address the limitations of the aforementioned optimization methods, this paper first establishes the mod-
eling methods, failure modes, and assessment methods for the lockbolt structure through tensile tests, destruc-
tive tests, and the guidelines provided in DVS EFB 3435-216,17. Secondly, this paper proposes an MSNSGA-III 
combining improved circle chaos mapping, dynamic crossover-mutation calibration strategy, and improved 
reference point selection strategy. Then, a new layout optimization method is presented that can simultaneously 
optimize the number and spacing of lockbolts while comprehensively evaluating multidimensional failure modes. 
This method utilizes submodel parametric modeling and combines the DVS EFB 3435-2 and the MSNSGA-III. 
Finally, using the fully lockbolt container flatcar as the research object for engineering application, multi-objective 
optimization is conducted to address high-stress areas and hazardous regions that may cause lockbolt structure 
failure. This process verifies the feasibility of the proposed layout optimization method and enhances the ability 
of the lockbolt structure in the region to resist multidimensional failure modes.

Figure 1.   Lockbolts in railway wagons.
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Modeling and assessment method
Validation of modeling methods
Tensile test
To ensure the accuracy of the numerical simulation results of the lockbolt structure, the modeling method needs 
to be verified experimentally. The lockbolt specimen installation process is based on the Chinese standard "Gen‑
eral Technical Specification of Riveting Process for Railway Vehicle"18 (TB/T 2911-2016). As shown in Fig. 2, the 
lockbolt lap joint specimen consists of two plates and one lockbolt. The lockbolt specification is M16 × 50; the 
preload force is 85,000 N. The plate’s material is Q450 high-strength weather-resistant steel with a 10 mm thick-
ness. The plate overlap distance is 40 mm, and the clamping distance is 40 mm. The lockbolt and plate materials 
are the same as the fully lockbolt container flatcar. The red squares in Fig. 2 indicate the measurement points, 
totaling 24 in number. The measurement points are symmetrically positioned on the top and bottom surfaces, 
with points 1 to 12 located on the top surface and points 13 to 24 on the bottom surface.

The lockbolt tensile test is based on the Chinese standard "Ring groove rivet Assemblies Specifications"19 (GB/T 
36993-2018). As shown in Fig. 3, the tests used an SDZ0100 electro-hydraulic servo dynamic and static fatigue 
testing machine. At room temperature, the quasi-static tensile test was carried out at a tensile rate of 1000N-min, 
and three groups of M16 lap joint specimens were subjected to quasi-static tensile tests. The average value of 

Figure 2.   Lockbolt lap joint specimen.

Figure 3.   Equipment for tension test of the lockbolt structure.
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load-strain data of the measurement points was taken as the test results. The load-strain ( F − ε ) curves of each 
measurement point in the tensile test are shown in Fig. 6.

Modeling method research
This paper refers to the Beam & Coupling elements connection model20,21 in the simplified modeling method 
of bolt structure and applies it to the finite element modeling of lockbolt structure. To ensure the calculation 
accuracy, the finite element model of the lockbolt structure was established by using the 4-node shell element 
S4 in ABAQUS/Standard. The basic mesh size of both plates is 4 mm. All measurement points’ locations are the 
shell elements’ nodes.

According to the Chinese Standards TB/T 2911–201618, and International Standard DIN EN ISO 898-122 to 
determine the material parameters of M16 lockbolt: E = 450MPa , σ0.2 = 640MPa , σm = 800MPa . In numerical 
simulations, the lockbolt constitutive model is modeled using a bilinear isotropic material model based on the 
above parameters. Figure 4 shows the Q450 constitutive model obtained from test measurements. Real stress 
and real strain consider the actual changing dimensions of the material during deformation, whereas nominal 
stress and nominal strain are based on the original, unchanging dimensions of the material. Considering the large 
deformation of the specimen, the real stress σTrue and the real strain εTrue are used in the numerical simulation, 
and their relationships with the nominal stress σNom and the nominal strain εNom are as follows.

The finite element model of the specimen is shown in Fig. 5. During the test, the testing machine clamped 
the specimen. To simplify the model, it was assumed that the clamping regions at both ends of the plate were 
rigid. Two reference points, RP-1 and RP-2 were defined at the centroid positions of the clamping regions of 
the two plates and coupled with the rigid region. Rigid constraints are applied to both reference points, where 
the displacement along the tensile direction is allowed at RP-2, and the same load as in the tensile test is loaded 
on PR-2. Numerical simulations were conducted using kinematic coupling and distributing coupling elements, 

(1)σTrue = σNom(1+ εNom)

(2)εTrue = ln(1+ εNom)

Figure 4.   Q450 constitutive model.

Figure 5.   Finite element model of lockbolt lap joint specimen.
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respectively. Kinematic coupling is a constraint mechanism wherein the motion of slave nodes is entirely gov-
erned by a master node, ensuring that the relative displacement between the slave nodes and the master node 
remains constant. Conversely, distributing coupling involves the application of distributed forces or displacements 
from the master node to the slave nodes, permitting some degree of relative movement among the slave nodes 
while ensuring their average motion is influenced by the master node.

Figure 6.   Numerical simulation and tensile test results.
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Verification of test and numerical simulation results
Figure 6a–d shows the strain results from the numerical simulation and tensile test, while Fig. 6e presents the 
strain error between these two methods. Based on the finite element model with Distributed Coupling, the load-
strain curves at the measurement points around the edge of the lockbolt holes (measurement points 5, 6, 7, 17, 
19, and 20) show significant deviations from the test data, with a root mean square error of 3.37e−4. In contrast, 
the numerical simulation results obtained using the finite element model based on Kinematic Coupling demon-
strate good agreement with the test data, exhibiting an average deviation of 3% for 24 measurement points and 
a root mean square error of 6.23e−5. The experimental results fully validate the validity and accuracy of using 
the Beam & Kinematic Coupling elements for simulating the lockbolt structure.

Typical failure modes and assessment method
Typical failure modes
Many scholars have conducted in-depth and comprehensive analyses of the failure modes of fastener 
structures1,23–26, and other scholars have systematically generalized and summarized the failure modes of fas-
tener structures. In this paper, combining the research results of many scholars, destructive tests were conducted 
for different lockbolt structures, and six typical failure modes were identified (Fig. 7), including tension failure, 
bearing failure, shear failure, slipping failure, the shank shear failure, and shank tension failure.

The failure mode analysis has several limitations and assumptions. First, the representativeness of the data 
samples is insufficient, and the complexity of environmental factors such as temperature, humidity, and corrosion 
affecting the lockbolt structure has not been fully considered. Additionally, the simplification of experimental 
conditions and the use of specific materials limit the comprehensiveness of the analysis. The study assumes that 
the lockbolt structure operates under design conditions, each failure mode is independent, materials are uniform 
and isotropic, and the structure is regularly maintained and defect-free. However, in practical applications, fac-
tors such as overload, interactions between failure modes, material heterogeneity, and inadequate maintenance 
can all affect failure modes. These limitations and assumptions need further validation and improvement in 
future research.

Assessment method
The DVS EFB 3435-2 is introduced to evaluate the six typical failure modes of the lockbolt structure. In the field 
of mechanical and rolling stock engineering in Germany, approximately 68% of removable joints are designed 
and evaluated with reference to VDI 223027,28, which has been used worldwide for 40 years as a guideline for the 
design and evaluation of high-strength bolts25. This standard provides a systematic specification for the strength 
assessment method of lockbolts, considering factors such as the connection form between the lockbolt and the 
clamped part, dimensions, and friction coefficients. Compared to traditional assessment methods, it offers a 
comprehensive evaluation of multiple failure modes of the lockbolt structure2. It is widely used in regions such 
as ships and rolling stock.

GLIENKE1–3 et al. and SCHWARZ25 et al. have demonstrated the accuracy of the DVS EFB 3435-2 standard. 
In addition, some scholars have already used DVS-EFB 3435-2 in the railway industry4. The DVS EFB 3435-2 
assessment process based on the finite element method is shown in Fig. 8.

Figure 7.   Typical failure modes of the lockbolt structure.
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As shown in Fig. 8, the DVS EFB 3435-2 standard defines six safety margins, which correspond to one or 
more of the typical failure modes, and these safety margins can be used to effectively predict and assess the typi-
cal failure behavior of the lockbolt structure under different load conditions. Therefore, this paper assesses the 
failure behavior of the lockbolt structure using SF,SP,SG,SA,and SL of DVS EFB 3435-2. These safety margins are 
calculated as follows:

(1) Safety margin against exceeding the yield point SF:
The safety margin against exceeding the yield point SF is used to assess the tensile safety of the lockbolt struc-

ture. The aim is to ensure that the lockbolt structure works safely and reliably under actual operating conditions, 
i.e., the maximum bolt load FSmax does not exceed the tensile strength of the bolt RM , which corresponds to the 
shank tension failure (Fig. 7f). The expression is as follows:

where FM is the assembly preload; �n is the load factor; FAmax is the axial load; �Fvth′ is the change in the 
preload as a result of a temperature different from room temperature; σZmax is the tensile stress in the lockbolt 
in the working state; AS is the stress cross-section of the lockbolt thread, dS = d3 ; RM is the tensile strength of 
the lockbolt.

(2) Safety margin against surface pressure SP:
Safety margin against surface pressure SP is used to assess the safety of the contact stresses on the surfaces of 

the clamped parts of the lockbolt structure and to ensure that the surfaces of the clamped parts are not subject 
to problems such as compression collapse, which corresponds to the bearing failure (Fig. 7b). The expression 
is as follows:

where: FSAmax is the maximum axial additional bolt load; APmin is the minimum of the bolt head or nut bearing 
area;PM/Bmax is the surface pressure in assembled state and working state; PG is the limiting surface pressure.

(3) Safety margin against slipping SG:

(3)FSmax = FM +�nFAmax−�FVth

(4)σZmax =
FSmax

AS

(5)SF =
RM

σZmax
> 1.2

(6)PBmax = (FM + FSAmax −�FVth)/Apmin

(7)PMmax = (FM −�FVth)
/

APmin

(8)SP =
PG

PM/Bmax
≥ 1.0

Figure 8.   Assessment process of the DVS EFB 3435-2 based on the finite element method.
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Safety margin against slipping SG is used to assess the slip phenomenon of the clamped parts of the lockbolt 
structures under transverse loading, which corresponds to the slipping failure (Fig. 7d). The expression is as 
follows:

where: FQmax is the transverse load; qF is the number of force-transmitting inner interfaces involved in pos-
sible slipping/shearing of the bolt; µT min is the coefficient of friction at the interface; αA is the tightening factor, 
αA = 1.05.

(4) Safety margin against shearing SA:
Safety margin against shearing SA is used to assess the safety of a lockbolt structure under transverse load-

ing FQmax , to ensure that the lockbolt does not suffer shank shear failure (Fig. 7e). The expression is as follows:

where: Aτ is the shearing area during transverse loading; τB/RM is the shear strength ratio; dτ is the diameter of 
the shearing cross-section, dτ = d3.

(5) Safety margin against breaing pressure SL:
Safety margin against breaing pressure SL is used to assess the reliability of the lockbolt structure under 

transverse loading, to ensure that the clamped parts do not suffer from tension failure and shear out failure 
(Fig. 7a,c). The expression is as follows:

where: h is the thickness of the clamped parts; Rp0,2P is the 0.2% proof stress of the clamped parts.

Layout optimization method
Parametric model of the lockbolt structure
A parametric model is a method in finite element analysis where the geometry of the model is controlled by a 
set of parameters, allowing for flexible adjustments and optimization of the design. This paper utilizes Pycharm 
Professional 2023 and Python 3.11 for the secondary development of ABAQUS 2021, establishes a parametric 
modeling and automated solution process for the general-purpose lockbolt lap structures shown in Fig. 9a. Fig-
ure 9b shows the main parameters to be determined for the parametric model, where p is the lockbolt spacing, 

(9)FKerf = FKQ =
FQmax

qF · µT min

(10)FKRmin =
FM

αA
− (1−�n)FAmax − FZ −�Fvth

(11)SG =
FKRmin

FKerf
> 1.2

(12)FQzulS = τB · Aτ =
π

4
· d2τ ·

(

τB

RM

)

· RM

(13)SA =
FQzulS

FQmax
> 1.25

(14)FQzulL = h · dτ · Rp0,2P

(15)SL =
FQzulL

FQmax
> 1.0

Figure 9.   Parametric model.
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q is the number of lockbolts, l  is the specification of the clamped parts, and e is the distance of the lockbolt from 
the edges of the clamped parts.

The parametric modeling and solution automation process is shown in Fig. 10a,b,c, which is mainly composed 
of a user definition and input module, a Python driver module, and an ABAQUS output module. After defin-
ing the input parameters, Python can drive the ABAQUS/Standard program based on specified parameters to 
execute steps such as component modeling, component assembly, coupling, meshing, load, and solution, where 
the lockbolt structure is meshing using the Beam & Kinematic Coupling element in Section "Verification of Test 
and Numerical Simulation Results". After the solution is completed, Python automatically extracts the Beam 
element loads Fx , Fy , Fz , Mx , My , and Mz in the ABAQUS result file (.odb) and calculates the SF , SP , SG , SA , and 
SL of the lockbolt based on the DVS EFB 3435-2. Furthermore, mesh refinement is conducted during meshing, 
particularly focusing on the stress concentration region around the hole. This automated procedure enhances 
the efficiency of the parametric modeling solution and optimization analysis for the lockbolt structure.

MSNSGA‑III
A genetic algorithm is an optimization technique inspired by natural selection and genetics, used to find optimal 
or near-optimal solutions to complex problems. It starts by generating an initial population of random solutions, 
followed by evaluating each solution based on a fitness function that measures its quality. The best solutions are 
selected to reproduce, combining parts of two parent solutions to create new ones, a process known as crossover. 
Additionally, some parts of the new solutions are randomly modified to maintain diversity, known as mutation. 
This process of evaluation, selection, crossover, and mutation is repeated over several generations until an opti-
mal solution is found or a stopping condition is met. Genetic algorithms are advantageous due to their global 
search capability, flexibility in application to various problems, and parallelism, allowing for the simultaneous 
processing of multiple solutions, thus improving efficiency. NSGA-III is a multi-objective genetic algorithm based 
on the second generation of non-dominated sorting genetic algorithm NSGA-II 29, which introduces reference 
points to transform large-scale problems into uniformly distributed trade-off solution sets. Although it reduces 
the complexity of NSGA-II and improves the computational efficiency of large-scale optimization problems, it 
still suffers from the issues of poor utilization of decision-making information in the population space, difficulty 

Figure 10.   Parametric modeling and solution automation process.
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in determining the division of the reference points, and over-focusing on the local optimum. To address these 
drawbacks, this paper proposes the MSNSGA-III (Multi-Strategies) with the following improvement strategies.

Improved circle Chaos mapping population initialization
Population initialization refers to generating a set of random initial solutions at the start of a genetic algorithm 
to provide a starting point for the optimization process. Random generation of traditional NSGA-III populations 
tends to cluster the initial populations, which leads to uneven distribution of populations and thus affects the 
subsequent optimization results. This paper introduces a chaotic mapping initialization population method for 
this problem. The chaotic mapping randomness and traversal can ensure the dispersion and uniformity of the 
initial population. The standard chaotic mappings include Logistic, circle, and Sine chaotic mapping30,31. Wu 
et al. improved the circle chaotic mapping method to obtain a more uniformly distributed initial population with 
high coverage of chaotic values32. To get a more excellent initial population, this paper carries out population 
initialization based on the improved circle chaotic mapping with the expression:

where: xij is the position of the ith individual in the jth dimension; udi is the upper limit in the jth dimension; ldi is 
the lower limit in the jth dimension; zij is the chaos parameter of the ith individual in the jth dimensional, initial 
value is rand(); µ = 0.2;τ = 0.5;ρ = 3.14;θ = 1.75.

Dynamic crossover‑mutation calibration strategy
In genetic algorithms, crossover and mutation involve combining parts of two parent solutions to create new 
solutions and randomly altering some parts of these new solutions to maintain diversity. Using fixed crossover 
and mutation probabilities will lead to slower genetic algorithm convergence and fall into the local optimum, 
resulting in subpar search outcomes33. The traditional NSGA-III algorithm sets the crossover and mutation 
probabilities as constant values, which may destroy the excellent individuals in the process of evolution and 
cause the phenomenon of population "degradation"34. Therefore, to address the above problems, this paper 
proposes a dynamic crossover and mutation calibration strategy: before the simulated binary crossover (SBX) 
and polynomial mutation (PM), their probabilities for crossover pc and mutation pm are dynamically calibrated 
by multidimensional adaptation Fit . The specific formulas are as follows (Fig. 11):

(16)











xij = ldi + (udi − ldi)z
i
j

zij+1 = mod

�

ρ · zij + θ · µ−
θ · τ

2π
sin(ρ · πzij ), 1

�

(17)pc =

{

p1
Fitmax−Fit′

Fitmax−Fitavg
Fit′ ≤ Fitavg

p2 Fit′ > Fitavg

(18)pm =

{

p3
Fitmax−Fit∗

Fitmax−Fitavg
Fit∗ ≤ Fitavg

p4 Fit∗ > Fitavg

The smaller multidimensional

fitness of the A and BFit

Probability of cross-mutation for 
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max
1

max

c
avg

Fit Fitp p
Fit Fit 2cp p

The smaller multidimensional
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*

max
3
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m
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The cross-mutation 
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,i jfit
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avgFit
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maxFit
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*

avgFit Fit

Extract

Yes No

Figure 11.   Flowchart of the dynamic crossover-mutation calibration strategy.
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where: Fitmin is the minimum multidimensional fitness in the population; Fitavg is the average multidimensional 
fitness in the population; Fit′ is the smaller multidimensional fitness of the two individuals in the crossover; Fit∗ 
is the smaller multidimensional fitness of the individual to be mutated; fiti,j is the fitness of the ith individual in 
the jth dimension; p1 , p2 , p3 , and p4 is the const.

Improved reference point selection strategy
In genetic algorithms, reference point selection strategies are used in multi-objective optimization to guide the 
population towards optimal solutions. These strategies select representative reference points based on theoreti-
cal models, historical data, or problem-specific criteria to enhance the algorithm’s convergence and maintain 
diversity. The conventional NSGA-III employs the boundary-crossing construction weight method for reference 
point selection. This strategy effectively addresses issues with uniformly continuous Pareto fronts like DTLZ1, 
UF8, WFG1, etc. However, it is less effective in solving problems featuring discontinuous or inaccessible real 
Pareto fronts. This limitation becomes apparent when optimizing the lockbolt structure where the true Pareto 
front surface cannot be obtained (The true Pareto front refers to the set of all optimal solutions that are not domi-
nated by any other solution in multi-objective optimization.). To address the above issues, this study proposes 
an improved reference point selection strategy based on the reference point selection strategy35. This strategy 
discerns the evolutionary stage of the population through the quartile distribution feature information of the 
population in the decision space. Then, it selects the reference point on the hyperplane through the distribution 
feature of the population in the objective space (The objective space is the set of all objective function values, 
representing how solutions perform on multiple objectives.).

Entropy reduction refers to the process of selecting split points to decrease the uncertainty or entropy of a 
dataset, making the data purer. During population evolution, the population changes from disorder to order and 
gradually converges, which is the course of entropy reduction. Hence, the entropy reduction �et and threshold 
�µ of two neighboring generations can characterize the population’s evolutionary stage Smode , as depicted in 
Eqs. (20) and (21). If 

∣

∣�et
∣

∣ > �µ , it indicates that the population has entered a state of positive evolution Sexplode , 
the algorithm performs "Explode" behavior, and the population gradually explodes in the search space (The search 
space contains all possible solutions, which is the set of all potential solutions.). If 

∣

∣�et
∣

∣ < �µ , it indicates that 
the population exits the positive evolutionary stage Sexplode and enters the negative evolutionary stage Sexplore , it 
means that the algorithm performs "Explore" behavior. The population stops exploding and converges gradually 
in the search space.

where: t  is the current evolutionary number of the population; et is the entropy value; infi is the standardized 
interquartile difference of the population; �midt is the standardized median difference of the populations; inf  
is the standardized interquartile difference for a uniformly distributed population, inf = 0.5 ; D is the dimension 
of the decision space; N is the population size.

As the population evolves, individuals tend to be associated with the reference line through the true Pareto 
front. Therefore, the traditional reference point selection strategy can be improved by counting the number of 
associations between the reference points and the individuals in the population in each generation to assess the 
importance of the reference points. Hence, the reference points with more associations with the individuals can 
be retained more. The process of the improved reference point selection strategy is as follows:

(1)	 The set of reference points Z with each dimension divided into p is selected according to the population 
size N , The number of reference points in Z is Hp , Hp satisfies:Hp ≥ 1.2N and Hp−1 < 1.2N .

(2)	 Determine the evolutionary stage Smode based on entropy reduction �et and the threshold �µ between 
neighboring generations.

(3)	 When the population is in the "Explode" stage, Smode = Sexplode , counting the sum of the number of associ-
ated individuals per generation Zsum in the set of reference points Z .

(4)	 When the population is in the "Explore" stage, Smode = Sexplore , select the N reference points with the highest 
number of associations to create a new set of reference points, denoted as Zn.

Algorithmic process

Combining the above circle chaotic mapping population initialization, dynamic crossover mutation calibration 
strategy, and the improved reference point selection strategy, the specific steps of the MSNSGA-III algorithm 
are as follows (annotations indicate the position and Eq. of strategies):

(19)
Fiti =

D
∑

j=1
Normalize

(

fiti,j
)

D

(20)et = −

n
∑

i=1
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n
∑
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(
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(
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Input: N , D ,T //Population size, problem dimensions, and maximum number of iterations

Output: 1tP+

1: ( )Reference points generation ,Z N D=

2: ( )0 Circle initialization of population NP = //Circle chaotic mapping population initialization Eq.(16)

3: ( )0 Threshold generation ,D Nµ = //Calculate thresholds of the evolutionary stage Eq.(21)

4: mode explodeS S= //The initial evolutionary stage is "Explode"

5: ( )sum Initialization nullZ = //Initialize the total number of reference set history associations

6: 0t =
7: while :t T≤
8: Genetic op )eratio  ( nttQ P= //Dynamic crossover-mutation calibration strategies Eq.(17)(18)(19) 

9: t t tR P Q= ∪

10: ( ) ( )1 2, , Non-dominated sort tF F R=

11: if 
mode explode :S S= //Evolutionary stage is "Explode"

12: sum UpdataZ Z= //Update the total number of historical associations for the reference set

14: elif mode exploreS S= :    //Evolutionary stage is "Explore"

15: Updata ,sumZ Z N= //Update reference points

16: tS = ∅ , 1i =

17: while :tS N≤

18: ,  1t t iS S F i i= ∪ = +

19: 1l iF F −=

20: if :tS N=

21: 1t tP S+ =
22: break

23: else :

24: ( )Normalize tS=

25: ( ) ( ) ( ), Association operation ,ts d s S Z  = 
26: 1tK N P+= −

27: ( )1 Niche preservat ,ion operation , , , , ,t l tP K d Z F Pρ+ =

28: 1t t= +
29: ( )mode modeUpdataS S= //Updated evolutionary stages Eq.(20)(21)

30: return 1tP+

Algorithm.   MSNSGA-III

Performance verification and analysis
In evolutionary algorithms and optimization problems, test functions are standardized problems used to evaluate 
algorithm performance. They provide consistent and repeatable benchmarks to help researchers validate and 
compare the effectiveness and robustness of different algorithms. To validate the efficacy of the MSNSGA-III, 
the DTLZ1, DTLZ2, DTLZ4, DTLZ5, DTLZ6, and DTLZ7 functions from the DTLZ36 test set are chosen for 
experimentation and compared with the NSGA-III. To ensure the fairness of the evaluation, the population 
size is N = 100 , and the maximum generations is Gmax = 30 of the two algorithms. The crossover probability 
is 0.8, and the mutation probability is 0.1 of the NSGA-III. The test platform is PlateEMO 4.537 of MATLAB 
R2023b. Inverted generation distance (IGD) 38 and Hype volume (HV) 39, which can reflect the convergence 
and distribution of the algorithm, are used as primary performance evaluation metrics to gauge the algorithms’ 
effectiveness. The IGD indicator calculates the average distance from reference points to the nearest solution. 
Reference points far from all solutions have a larger IGD, thus reflecting both the convergence and diversity of 
the solution set. The HV indicator calculates the sum of the hypervolume formed by all nondominated solu-
tions and the Nadir Point. For the same test function, each algorithm runs independently 30 times to calculate 
the average and standard deviation of the results. The non-parametric Wilcoxon rank-sum test compares the 
two algorithms with a significance level set at 5%. In Table 1, the symbol "+" indicates that the MSNSGA-III is 
significantly better than other algorithms, "−" indicates significant inferiority to different algorithms, and "=" 
indicates no difference between the two algorithms.

From the comparison results in Table 1, the MSNSGA-III algorithm achieved the optimal IGD and HV on 
all 6 test functions. This indicates that the MSNSGA-III algorithm exhibits the best performance in terms of 
convergence and diversity on the five test functions. This paper uses box plots to represent the statistical results 
of the two algorithms on various test functions. The outer upper and lower limits of the box plot represent the 
maximum and minimum of the samples, the inner upper and lower boundaries represent the upper and lower 
quartiles, the central red line within the box represents the median, the central blue dashed line represents the 
mean, and the red dots represent outliers. The box plots for the IGD and HV indicators (Figs. 12, 13) further 
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demonstrate the advantages of the MSNSGA-III in terms of mean, median, quartiles, and outliers. This indicates 
that the MSNSGA-III is more stable and robust than the NSGA-III. This conclusion further demonstrates the 
effectiveness of the circle chaotic mapping, dynamic crossover-mutation calibration strategy, and the improved 
reference point selection strategy.

Optimization model
Design variables are parameters in the optimization process that can be adjusted and modified to influence 
and improve the performance of a design. For a lockbolt structure, as shown in Fig. 9a, the design variables are 

Table 1.   IGD metrics and HV metrics of each algorithm with 6 test functions.

Test Function M D Metrics MSNSGA-III NSGA-III

DLTZ1 4 13
IGD 3.2570e−01(1.916e−01) +  3.9852e−01(2.928e−01)

HV 3.2084e−01(3.351e−01) +  3.2673e−01(3.521e−01)

DLTZ2 4 13
IGD 1.2848e−01(1.456e−03) +  1.4118e−01(3.080e−04)

HV 7.2513e−01(4.450e−03) +  6.8325e−01(2.021e−03)

DLTZ4 4 13
IGD 2.2041e−01(1.361e−01) +  2.4312e−01(1.478e−01)

HV 6.7899e−01(7.395e−02) +  6.3334e−01(7.261e−02)

DLTZ5 4 13
IGD 5.8220e−02(1.004e−02) +  6.6119e−02(1.215e−02)

HV 1.3447e−01(5.339e−03) +  1.2735e−01(5.356e−03)

DLTZ6 4 13
IGD 4.5909e−01(3.937e−01) +  4.8814e−01(4.410e−01)

HV 3.1342e−02(4.148e−02) +  2.9201e−02(4.065e−02)

DTLZ7 4 13
IGD 1.9929e−01(2.046e−02) +  2.2189e−01(1.365e−02)

HV 2.5397e−01(8.075e−03) +  2.4567e−01(8.168e−03)

Figure 12.   Box plots of IGD metrics for MSNSGA-III and NSGA-III on 6 test functions.

Figure 13.   Box plots of HV metrics for MSNSGA-III and NSGA-III on 6 test functions.
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defined as follows: the number and space of lockbolts along the length direction of the plate is q1 and p1 , And 
the number and space of lockbolts along the width direction of the plate is q2 and p2 , as specifically shown in 
Fig. 9b and Eq. (22).

The optimization objective is the specific goal that an optimization process aims to achieve. For the six failure 
modes of the lockbolt structure: tension failure, bearing failure, shear out failure, slipping failure, shank shear 
failure, and shank tension failure, this method defines the optimization objective: the parametric model FPM 
outputs a set of minimum safety margins, including against exceeding the yield point SFmin , surface pressure 
SPmin , slipping SGmin , shearing SAmin , and breaing pressure SLmin . The optimization objectives are selected to 
reinforce the lockbolt structure’s capacity to withstand multidimensional failure modes.

The objective function is a mathematical expression that quantitatively represents the optimization objective, 
guiding the optimization process by evaluating the performance of different design variables. Objective function: 
the squared error between the minimum Smin and tolerable safety margin [S] , as shown in Eqs. (23) and (24). This 
objective function is used to measure the difference between Smin and [S] , rapidly converging as Smin approaches 
[S] , which [S] can be adjusted according to different industries and standards. The definition of this objective 
function is based on the following factors: the number of lockbolts is positively correlated with the minimum 
margins, and defining the objective function to approach infinity would result in a significant increase in the 
total number of lockbolts in the optimization results. Excessive lockbolt holes can lead to stress concentration 
in the clamped parts, causing fatigue issues40,41. Additionally, an excessive number of lockbolt holes can increase 
production costs. Therefore, to align the optimized results with actual engineering requirements and avoid over-
design or under-design, the objective function is defined as the square error between Smin and [S].

Constraints are limitations or conditions imposed on the optimization process, defining the feasible region 
within which the solution must lie. Constraints: for structures with multiple fasteners, inadequate fastener spac-
ing, and edge distances can decrease fatigue life40. Therefore, it is essential to consider the minimum allowable dis-
tances of fastener spacing p and edge e during the optimization process. Different countries, regions, or industries 
have specific and varying requirements for the minimum allowable distances of fasteners in steel structures41–44. 
The DIN EN 1993–1-345 and DIN EN 1993–1-846 are used to determine e > 1.5dh and p > 2.2dh . Additionally, 
it is necessary to ensure that the clamped parts σVon·Mises do not exceed the allowable stress [σVon·Mises] during 
the optimization process, as shown specifically in Eq. (25) and (26).

The expression of this optimization method is as follows:
Find:

Minimize:

where:

Subject to:

where:

With bounds:
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{

g1(x) = 1.5dh − e1 ≤ 0
g2(x) = 1.5dh − e2 ≤ 0

g3(x) = σVon·Mises − [σVon·Mises] ≤ 0

(26)
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The layout optimization process of the lockbolt structure combining the submodel method, parametric mod-
eling method, DVS EFB 3435-2, and the MSNSGA-III is shown in Fig. 14. The specific steps are as follows:

(1)Conduct finite element analysis on the overall engineering model according to load conditions. Utilize 
DVS EFB 3435-2 to identify regions with inadequate safety margins or high stresses for optimization.

(2)Extract the displacements of the boundary nodes of the identified region and construct a submodel.
(3)The parametric modeling solution method outlined in Section "Parametric Model of the Lockbolt Struc-

ture" is used to parameterize the submodel of the optimized regions, allowing for the consideration of various 
parameter combinations during optimization to achieve the optimal layout solution.

(4)Set the parameters of optimization and constraint to establish the optimization model.
(5)Based on advanced production experience, determine the number and spacing of temporary lockbolts 

to establish a group of high-quality individual samples. Introduce these high-quality individuals into the initial 
population, generated using improved circle chaotic mapping. Each initial individual undergoes interference 
checks and repair operations in conjunction with constraint parameters.

(6)Perform optimization using the MSNSGA-III algorithm presented in Section "MSNSGA-III".
(7)Select the optimal solution based on the design variables and optimization objectives from the optimiza-

tion results.

Engineering applications
Submodel and parametric model of the flatcar
This paper proposed lockbolt structure layout optimization method has been applied in the design stage of the 
fully lockbolt structure container flatcars produced by CRRC Qiqihar Rolling Stock Co., Ltd. The prototype of 
the fully lockbolt container flatcar, along with its geometric model and finite element model, is shown in Fig. 15. 
The flatcar is primarily composed of main beams, side beams, a bottom plate, a floor, and a container locking 
device. The material used is Q450 high-strength weather-resistant steel (material parameters are shown in Fig. 4). 
The finite element model of the flatcar is constructed using shell elements and solid elements, while the lockbolt 
structure is modeled using Beam & Kinematic Coupling elements as described in section "Verification of Test 
and Numerical Simulation Results". The model consists of a total of 4,398,878 elements and 1,798,706 nodes.

According to the Chinese standard "Strength Design and Test Accreditation Specification for Rolling Stock-Car 
body" TB/T 3550.247, the combined load conditions are set: the self-weight of the flatcar is 22.4t; mass points of 
9t are applied to each of the 8 locking seats of the body to simulate the payload weight of 72t; the torsional load 
40kN·m is applied at the body side bearing; the tensile load 1920kN is applied at the front and rear body bolster, 
and the lateral force is applied in the form of a lateral acceleration of 0.1g. All loads are applied simultaneously. 
Constrain is applied at the center plate. The calculation results of Von-Mises stress under combination load 

Figure 14.   Layout optimization process of the lockbolt structure.
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conditions are shown in Fig. 16. The region where the main beam is connected to the floor is a stress concentra-
tion region. After calculation, the minimum safety margins of the lockbolts group in this region are shown in 
Table 3, where the safety margin against slipping SGmin is below the specified tolerable margin of 1.2; the safety 
margin against surface pressure SPmin is below the specified tolerable margin of 1.0.

This region is selected for further optimization analysis using the proposed layout optimization method for 
the lockbolt structure. First, as shown in Fig. 17a,b, the flatcar model is trimmed to identify the boundary nodes 

Figure 15.   The fully lockbolt container flatcar (loaded with two containers).

Figure 16.   The Von-Mises stress cloud of flatcar under combination load conditions.

Figure 17.   Submodel, Boundary selection, Boundary displacement interpolation, and Parametric model.
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of the submodel. Figure 17c and 16d display the boundary displacements, with the X-axis representing the 
sequence of nodes and the Y-axis showing the displacements U or rotational displacements UR . These boundary 
node displacements are extracted and linearly interpolated, and the interpolated displacements are then used 
as boundary conditions for the parametric model. Finally, the submodel method and techniques described in 
Section "Parametric model of the lockbolt structure" are applied to establish the parametric model. To ensure the 
parametric model’s results are accurate, the boundary should be truncated far from the stress concentration areas. 
Figure 17e illustrates the boundary conditions of the parametric model, while Fig. 17f presents the Von-Mises 
stress results for the parametric model with the specified input parameter q1 = 2, q2 = 2, p1 = 117, p2 = 67.

Layout optimization results
In the optimization process, the population size N = 100 , and the number of generations Gmax = 30 . Figure 18 
shows the relationship between the optimization objective and the generations, whose coordinates are the safety 
margins, the generations, and the use of the standardized optimization objective [S]

/

S . Our analysis reveals 
that the population evolves and continues to optimize as the number of generations gradually increases. The 
optimization objective S finally converges to a tolerable safety margin [S] . The optimization process shows a good 
trend in agreement with the expected design, highlighting the significant effect of the method. Further analysis 
of the relationship between the minimum objective functions for Paradigm Normalization and the generations 
(Fig. 19) shows that the minimum objective functions continue to decrease. After 21 generations, the minimum 
of each objective function no longer decreases significantly, and the algorithm approximates the true Pareto 
optimal solution of the optimization problem.

Figure 20a,b demonstrate the distribution of design variables of the initial populations and Pareto solutions. 
The horizontal and vertical coordinates correspond to p1 and p2 , with the color of the molecules corresponding 

Figure 18.   The relationship between the optimization objectives and the generations.

Figure 19.   The relationship between the objective functions and the generations.
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to q2 , and the size of the molecules corresponding to q1 . The design variables of the initial populations exhibit 
a disordered and discrete distribution state without a clear clustering trend. The design variables of the Pareto 
solutions exhibit a significant clustering distribution towards three distribution characteristics (as shown in 
Table 2). Figure 20c,d respectively demonstrate the distribution of optimization objectives of the initial popula-
tions and Pareto solutions. The horizontal axis represents the safety margins S , and the vertical axis represents 
the standardized optimization objective [S]

/

S . Each line on the Fig. 20c,d corresponds to an individual. Each 
optimization objective’s range significantly decreases through box plot comparison, approaching the tolerable 
safety margins [S] . Statistical analysis further validated these findings. A paired T-test was conducted to compare 
the optimization objectives before and after the optimization process. The results showed that the maximum 
p-value for the safety margins ( SP ) was 4.8e−2, which is less than 0.05. This confirms that the optimization 
effectively narrowed the range and improved the overall safety margins. Additionally, an ANOVA test revealed 
significant differences in safety margins before and after optimization.

In this paper, considering the manufacturing cost, the design parameters that satisfy the requirements of 
tolerable safety margin, and the minimum total number of lockbolts in the Pareto solution are selected as the 
optimization results. The optimal design variables q1 = 3, q2 = 2, p1 = 57, p2 = 117 and optimization objec-
tives SFmin = 1.306 , SPmin = 1.050 , SGmin = 1.202 , SAmin = 4.525 and SLmin = 115.698 were determined based 
on Fig. 20b,d. To validate the optimization results and the accuracy of the parametric model, we verified the 

Figure 20.   Distribution of design variables and optimization objectives of the initial populations and Pareto 
solutions.

Table 2.   Distribution characteristics of different populations.

Population Distribution characteristics

1 q1 = 7, q2 = 2, p1 ∈ [46, 50], p2 ∈ [107, 117]

2 q1 ∈ [6, 7], q2 ∈ [3, 4], p1 ∈ [53, 58], p2 ∈ [38, 49]

3 q1 ∈ [3, 4], q2 = 2, p1 ∈ [57, 58], p2 ∈ [109, 117]
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calculated results. As shown in Table 3, we optimized the original finite element model using the optimal design 
variables and analyzed the error between the parametric model and the optimized finite element model, with a 
maximum error of 11.51%, which meets engineering requirements. Additionally, we compared the minimum 
safety margins of the lockbolts among the original finite element model, the parametric model, and the optimized 
finite element model. After optimization, SPmin is improved by 19.60%, SGmin by 22.29%, SAmin by 58.13%, and 
SLmin by 59.81%. The safety margins have been significantly improved and all exceeded the tolerable safety mar-
gins [S] . Applying these optimization results, the prototype container flatcar passed the strength tests, and the 
lockbolt structure did not exhibit the failure modes described in Section "Typical failure modes".

These results demonstrate the engineering significance of the proposed lockbolt structure layout optimiza-
tion method. By optimizing the number and spacing of rivets under specific load conditions, the reliability of 
the lockbolt structure is significantly enhanced, thereby preventing potential failures.

Sensitivity analysis
To further analyze the sensitivity of the design variables on optimization objectives, this study employs Latin 
Hypercube Sampling (LHS) to perform multiple samplings of the design variables q1 , q2 , p1 and p2 . Considering 
their interactions, we use the SOBOL method for second-order sensitivity analysis to quantitatively evaluate the 
impact of different variable interactions on the optimization results. The results of the second-order sensitivity 
analysis are shown in Fig. 21, where each subplot represents an optimization objective. The color blocks in the 
subplots illustrate the second-order sensitivity of each design variable considering interactions, with the color 
scale indicating the strength of the sensitivity.

By comparing the second-order sensitivity results of different optimization objectives, it can be observed that 
the second-order sensitivities of the design variables show significant differences under different optimization 
objectives. Some variable combinations exhibit significant second-order sensitivities for specific objectives. For 
instance, the positive interaction between q1 and q2 for SP is significant, as is the positive interaction between q1 
and p1 for SG . The negative interaction between q2 and p2 for SG , SA , and SL is significant. Since both SA and SL are 
calculated through the transverse load FQmax (Eq. (13) and Eq. (15)), their second-order sensitivity distributions 
are highly consistent. In summary, the interactions of various variables have a significant impact on the optimiza-
tion results. Considering these interactions can lead to more reliable and efficient optimization.

Discussions
Despite the significant advantages of the MSNSGA-III algorithm in multi-objective optimization problems, it 
has some weaknesses. Firstly, the algorithm may face performance bottlenecks when handling high-dimensional 
problems. As the number of objectives increases, the complexity of the search space rises sharply, leading to 
slower convergence rates. Additionally, since the algorithm relies on a dynamic crossover mutation calibration 
strategy, the initial parameter settings significantly impact the results. These parameters may require multiple 
adjustments for different problems, increasing the difficulty and time cost of using the algorithm.

The current layout optimization method mainly focuses on optimizing the lockbolt structure for six static 
failure modes, without considering fatigue failure. This limitation implies that the optimization results may not 
be ideal for long-term use or under dynamic load conditions.

Future research will include incorporating fatigue failure modes into the existing layout optimization method 
to develop a more comprehensive optimization model, improving the reliability of optimization results for long-
term use and dynamic load conditions; combining deep learning with dimensionality reduction techniques 
such as Principal Component Analysis (PCA) to reduce the complexity of the search space and overcome the 

Table 3.   Comparison results of the minimum of the margins before and after optimization.

SFmin SPmin SGmin SAmin SLmin

Original finite element model 1.393 0.964 1.009 3.189 81.814

Parametric model 1.306 1.050 1.202 4.525 115.698

Optimized finite element model 1.359 1.153 1.234 5.043 130.752

Error +3.89% + 8.93% + 2.59% + 10.27% + 11.51%

Rate of change − 2.44% + 19.60% + 22.29% + 58.13% + 59.81%

Figure 21.   Second-order sensitivity of design variables for different optimization objectives.
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algorithm’s performance bottlenecks in high-dimensional problems; and testing and validating the layout opti-
mization method in industries such as construction and shipbuilding, where lockbolt structures are widely used, 
to evaluate its practical application value.

Conclusions

(1)	 Combined with the tensile test of the lockbolt structure, the Beam & Coupling elements are used to study 
the simplified modeling method. The results show that the finite element model constructed based on 
Distributed Coupling has significant deviations at the measurement points around the edge of the lock-
bolt holes, whereas the model constructed based on Kinematic Coupling exhibits good consistency. The 
numerical simulation agrees with the experimental results, with an average deviation of 3% and a root 
mean square error of 6.23e−5. This modeling method can effectively simulate the mechanical behavior of 
the lockbolt structure, providing a reliable and simplified modeling solution for the numerical simulation 
of lockbolt structures in engineering applications.

(2)	 Many destructive tests have been carried out on a variety of lockbolt structures, and six typical failure modes 
of lockbolt structures have been identified: tension failure, bearing failure, shear failure, slipping failure, 
shank shear failure, and shank tension failure.

(3)	 The MSNSGA-III algorithm is proposed by introducing several key innovations: improved circle chaotic 
mapping for population initialization, a dynamic crossover mutation calibration strategy, and an improved 
reference point selection strategy. These improvements address deficiencies in NSGA-III, such as uneven 
distribution of initial populations, premature convergence to local optima, and poor utilization of decision-
making information within the population space. Specifically, the improved circle chaotic mapping ensures 
a more uniform and dispersed initial population, the dynamic crossover mutation calibration strategy 
enhances convergence and prevents degradation, and the improved reference point selection strategy 
effectively guides the population in complex optimization scenarios. Experiments show that MSNSGA-III 
achieves optimal IGD and HV metrics across all six test functions, demonstrating superior convergence 
and distribution in feasible regions. It excels in handling complex Pareto fronts and challenging optimiza-
tion problems, marking a significant advancement over NSGA-III algorithm .

(4)	 This paper proposes a new layout optimization method using submodel technology, parametric modeling, 
DVS EFB 3435-2, and MSNSGA-III. This method can simultaneously optimize the number and spacing of 
lockbolts, comprehensively evaluate multiple failure modes of the lockbolt structure, and has been verified 
through engineering application. The results show that after increasing the number of lockbolts from 1× 4 
to 2× 3 and adjusting the spacing of lockbolts from 50 to 57mm and 117mm, the minimum safety margins 
in the selected region exceeded the tolerable safety margins [S] . Specifically, SPmin improved by 19.60%, 
SGmin by 22.29%, SAmin by 58.13%, and SLmin by 59.81%. These improvements significantly enhanced the 
ability of the selected region of lockbolt structures to resist multidimensional failure modes. It provides a 
feasible idea for optimizing railway wagon locking structure layout and has important engineering applica-
tion value.

Data availability
The results provided in this paper are generated by MATLAB and Python codes developed by the authors. The 
codes can be available upon request by contacting the corresponding author via email. The container flatcar 
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authors consent to the publication of this manuscript.
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