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Enhancing cervical cancer cytology 
screening via artificial intelligence 
innovation
Yuki Kurita 1*, Shiori Meguro 1*, Isao Kosugi 1, Yasunori Enomoto 1, Hideya Kawasaki 2, 
Tomoaki Kano 3, Takeji Saitoh 4, Kazuya Shinmura 5 & Toshihide Iwashita 1

A double-check process helps prevent errors and ensures quality control. However, it may lead 
to decreased personal accountability, reduced effort, and declining quality checks. Introducing 
an artificial intelligence (AI)-based system in such scenarios could effectively address the risk of 
oversights. This study introduces an innovative AI-integrated workflow for cervical cytology screening 
that substantially improves efficiency and reduces the burden on cytologists. The AI model prioritizes 
cases for review based on anomaly scores and streamlines the first screening process to approximately 
10 s per case. The model enhances the identification of high-risk cases via detailed microscopic 
observation, high anomaly scores cases, and a targeted review of low-score cases. The workflow 
highlights its capability for rapid, accurate, and less labor-intensive evaluations, demonstrating the 
potential to transform cervical cancer screening. This study highlights the importance of AI in modern 
medical diagnostics, particularly in areas with a high demand for accuracy and efficiency.

Cervical cancer is the fourth most common cancer among women worldwide, with approximately around 
660,000 new cases and around 350,000 deaths reported in 2022, highlighting its substantial impact on global 
health1. Early detection of cervical cancer significantly affects survival rates, and screening based on the Bethesda 
System2 is essential for early detection. This method is cost-effective and non-invasive. The use of a microscope 
plays a crucial role in identifying abnormal cells, thereby serving as a vital strategy to reduce the incidence and 
mortality rates of cervical cancer.

Improving the accuracy and efficiency of cytological examinations is crucial in medicine, especially because 
early detection and diagnostic accuracy are directly linked to successful cancer treatment. The introduction of 
liquid-based cytology (LBC) technology has improved the detection accuracy of abnormal cells, reducing the rate 
of inadequate samples3–5. However, cytological examination relies heavily on meticulous manual observations 
with the human eye by cytologists and cytopathologists. This process often involves double-checking by multiple 
people using a microscope, causing physical and mental strain. Such strain may result in delays in obtaining 
results and potential oversights, jeopardizing patient treatment opportunities6,7. A new approach is needed to 
improve the efficiency and diagnostic accuracy of cytological examinations simultaneously. In particular, reduc-
ing the burden on cytotechnologists and cytopathologists while expediting diagnosis is crucial for maximizing 
patient treatment opportunities.

Against this backdrop, the development of artificial intelligence (AI)-based diagnostic systems has progressed. 
AI technology in cytology has the potential for quantitative, objective, and reproducible examinations. However, 
systematic reviews indicate that although AI-based cytological research has shown promising results, much of it 
remains at an experimental stage, with limited implementation in clinical settings8–15. Specifically, a substantial 
portion of the research has not been validated with realistic clinical data, constraining its applicability in actual 
clinical scenarios. Moreover, the focus of most developments has been predominantly on diagnosis, neglect-
ing the comprehensive needs and specific workflows of clinical environments. Additionally, research has often 
disregarded evaluation time, a pivotal factor for clinical deployment.
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Furthermore, convolutional neural network (CNN)-based models developed thus far rely on large volumes 
of labeled image data and require improvements to accommodate the diversity and complexity of actual clinical 
data. Our focus has been on developing models for screening rather than diagnosis and rapidly assessing low-
magnification images. However, these models have not yet been used practically16. Therefore, in this study, we 
adopted the latest visual language models, using more advanced algorithms than traditional CNNs, and evaluated 
them using more realistic data.

The new workflow proposed in this study incorporates AI. It aims to improve the traditional screening pro-
cess, reduce the burden on cytologists and cytopathologists, and enhance the quality of cytological examinations. 
This approach is expected to substantially contribute to the early detection and treatment of cervical cancer by 
increasing the efficiency and quality of the cytological examination process. Integrating AI technology is antici-
pated to simultaneously increase the speed and accuracy of screening and reduce delays and oversights in test 
results, thereby maximizing patient treatment opportunities. Unlike typical AI-based direct diagnostic studies 
that only deal with images of already detected abnormalities, our approach targets all slides, including those with 
undetected anomalies, thereby enhancing the pre-diagnosis screening process. AI is believed to bring objectivity 
and reproducibility to cytological examinations, benefiting healthcare providers and patients.

Results
Time required for generating and evaluating whole‑slide image and tile image
Converting a single specimen into a whole-slide image (WSI) required 210 s, whereas generating tile images 
required approximately 60 s. The tile images were evaluated using a single RTX A6000 GPU. Of the 938 cases in 
the test dataset, 896 (389,566 tile images; an average of 500 images per case) were analyzed. This excluded cases 
in which scanning was impossible (eight cases) and cases without generated tile images (34 cases). The total 
determination time was approximately 160 min, with an average of 10.7 s per case.

Sorting results of test cases
Among the 938 cases in the test dataset, 162 (17.3%) were deemed inadequate. The inadequate cases included 
those with fewer than 50 tile images (120 cases), cases where scanning was not possible (8 cases), and cases 
where no tile images were generated (34 cases). Among the inadequate cases, there was one case each of atypical 
squamous cells that could not exclude HSIL (ASC-H) and high-grade squamous intraepithelial lesions (HSIL).

Sorting all 938 cases based on anomaly scores and age revealed that among the low-grade squamous intraepi-
thelial lesion (LSIL), squamous cell carcinoma (SCC), and adenocarcinoma (ADC) cases, 40 (76.9%) were sorted 
into the top 50% and 47 (90.4%) into the top 75%. For atypical squamous cells of undetermined significance 
(ASC-US) and ASC-H cases, 23 (56.1%) were in the top 50%, and 39 (95.1%) were in the top 75%. Overall, 
among the abnormal cases, 63 (67.7%) were sorted into the top 50% and 86 (92.5%) into the top 75% (see Sup-
plementary Fig. S1 online).

Seven abnormal cases did not rank in the top 75%. After excluding inadequate specimens (two cases), only 
five cases remained. These included one case of ASC-US, two of LSIL, one of HSIL, and one of ADC. A common 
characteristic of these cases was a low number of atypical cells.

Sorting results of each bag
The test dataset was grouped (bags) by submission date, creating 42 bags. Among the 42 grouped bags, eight were 
only negative for intraepithelial lesion or malignancy (NILM), representing approximately 19% of all bags. The 
average number of cases per bag was 22.3, with a maximum of 42 cases and a minimum of 10 cases.

There were 52 cases of LSIL, HSIL, SCC, and ADC and 41 cases of ASC-US and ASC-H. Among the top five, 
21 cases (40.4%) of LSIL, HSIL, SCC, and ADC were sorted, along with 15 cases (36.6%) of ASC-US and ASC-H. 
In total, 36 abnormal cases (38.7%) were sorted into the top five. When considering the top 50% in each bag, 41 
cases (78.8%) of LSIL, HSIL, SCC, and ADC and 28 cases (68.3%) of ASC-US and ASC-H were sorted, resulting 
in 69 abnormal cases (74.2%) sorted overall. Among the top 75%, 49 cases (94.2%) of LSIL, HSIL, SCC, and ADC, 
37 cases (90.2%) of ASC-US and ASC-H, and 86 abnormal cases (92.5%) were sorted in total.

A total of 174 NILM cases were sorted into the top five in each bag, the details of which are presented in 
Table 1. The analysis revealed that cases with overlapping cells or a high cell count (Fig. 1a) were more frequently 
sorted higher. Cases with inflammatory cells (Fig. 1b) or bacteria (Fig. 1c) present in large numbers, overlapping 

Table 1.   Details of the top five NILM cases that are sorted in each bag.

Number of cases %

Overlap 120 69.0

High cell number 85 48.8

Inflammatory 53 30.5

Bacterial 43 24.7

Atrophy 43 24.7

Unknown 13 7.5

Glandular cell 7 4.0

Artifact 5 2.9



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19535  | https://doi.org/10.1038/s41598-024-70670-6

www.nature.com/scientificreports/

with epithelial cells, or showing cell atrophy (Fig. 1d) were also sorted higher. Regarding artifacts, notable cases 
included those with considerable bubble inclusions or poor encapsulation. In addition, 13 cases were ranked 
higher for unknown reasons. Some patients also exhibited overlapping factors. In age-based analysis, the sam-
ple was categorized into two groups: under 50 and over 50 years old, and the significance of the appearance 
frequency of each item was verified using the chi-square test. Consequently, bacteria, high cell numbers, and 
overlap appeared significantly more in the under 50 group (bacteria: p = 0.0016, high cell numbers: p = 0.0384, 
overlap: p = 0.0003). In contrast, atrophy appeared predominantly in the over-50 age group (p < 0.001) (Fig. 2).

Description of representative bags
First, we analyzed two bags with many daily diagnostic cases: Bag10 and Bag25. Bag10 (Fig. 3a) included cases 
of LSIL, ASC abnormalities, and ADC, whereas Bag25 (Fig. 3b) contained LSIL and ASC-US. When screening in 
the order of specimen reception, ADC and LSIL in Bag10 were last in the screening order. However, all abnormal 
cases in Bag10 were placed in the top 50% of cases after sorting. In Bag25, although the sorting order of LSIL 
marginally decreased, all abnormal cases were sorted into the top 50%.

In Bag1 (Fig. 3c) and Bag4 (Fig. 3d), abnormal cases positioned lower were sorted higher. In Bag1, the 
lower-positioned LSIL was sorted into the top 1. In Bag4, despite one-third of the cases deemed inadequate, the 
lower-positioned HSIL and ASC-US were sorted to the top. These results are considered effective for improving 
screening efficiency and reducing the workload of cytologists.

However, some bags showed no change in sorting results. Bag11 and Bag28 included cases of LSIL, HSIL, 
and ADC. In Bag11 (Fig. 3e), although LSIL was sorted higher, three out of the four HSIL cases originally in 

Fig. 1.   Images of the top five NILM cases are sorted in each bag. (a) Examples with overlapping cells or a high 
cell count. (b) Cases where inflammatory cells are abundant in the specimen and overlapping with epithelial 
cells. (c) Cases where bacteria are abundant in the specimen and overlapping with epithelial cells. (d) Examples 
showing cell atrophy.
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lower positions remained lower after sorting. In Bag28 (Fig. 3f), diagnostically important cases, such as HSIL 
and ADC, were sorted lower. The lower anomaly score in these cases was attributed to the lower number of tile 
images generated (indicating a lower number of cells in the specimen) and a lower occurrence of atypical cells.

The sorting results for all other bags analyzed are shown in Supplementary Figs. S2–S7 online.

Discussion
In our study, we addressed the limitations of current methods in cervical cytology screening by proposing a new 
model and workflow that utilizes AI technology. The AI model developed through our research has demonstrated 
the capability to rapidly and accurately evaluate cytology images, significantly reducing screening time while 
potentially improving diagnostic quality. Although the double-check process aids in error prevention and quality 
control, it can also lead to diminished personal accountability (the Ringelmann effect)17 and reduced effort (the 
social loafing phenomenon)18 within the group, consequently risking a decline in check quality. In other words, 
using the same method for double-checking may repeat initial oversights19, and in tasks such as cytological 
examination, which involve considerable physical and mental strain, the risk of missing something is particularly 
high. Introducing an AI-based system under such circumstances could be an effective measure to reduce potential 
oversights. In addition, cytology is not always a specialized task in our country and is often performed alongside 
other laboratory tasks. These additional tasks increase cytologists’ burden, leading to delays in reporting cytology 
results. The current double-check process depends heavily on cytologists’ skills and experience.

We previously focused on developing models for screening purposes, particularly for evaluating low-magni-
fication images. The developed models required approximately 30 s per case for determination, highlighting the 
necessity to improve the determination performance and further reduce processing time16. This study addresses 
these challenges by adopting a visual language model. It quantizes it to develop a model capable of the high-
accuracy and high-speed evaluation of many tile images. The time required for screening was approximately 

Fig. 2.   Analysis of the top five NILM cases sorted within each bag. Cases with overlapping cells or a high cell 
count were sorted higher. In addition, cases with a large presence of inflammatory cells or bacteria overlapping 
with epithelial cells and those showing cell atrophy were also sorted higher. Regarding artifacts, notable 
examples included those with significant bubble inclusion or poor encapsulation. A chi-square test was used 
to conduct an age-based analysis, categorizing the sample into two groups: under 50 and over 50 years. The 
results indicated bacterial presence, high cell number, and cell overlap were significantly more common in the 
under-50 age group. Conversely, in the over-50 age group, a higher prevalence of atrophy was observed. n.s.: Not 
significant.
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Fig. 3.   Description of representative bags. (a) A bag containing many daily diagnostic cases, including LSIL, 
ASC abnormalities, and ADC. When screening in the order of specimen reception, ADC and LSIL were last. 
However, after sorting, all abnormal cases were sorted into the top 50%. (b) A bag with many daily diagnostic 
cases, including LSIL and ASC abnormalities. Although the ranking of originally higher-positioned LSIL 
changed minimally, ASC-US was sorted higher. (c) A bag where lower-positioned abnormal cases were sorted 
higher. A lower-positioned LSIL was sorted to the top. (d) A bag where lower-positioned abnormal cases were 
sorted higher. Despite one-third of the cases being deemed inadequate specimens, lower-positioned HSIL and 
ASC-US were sorted to the top. (e) A bag containing LSIL and HSIL, with no change in the sorting results. 
Although LSIL was sorted higher, three out of four originally lower-positioned HSIL cases remained lower after 
sorting. (f) A bag containing ASC-US, HSIL, and ADC, with no change in the sorting results. Although ASC-US 
was originally sorted into the top 50%, the lower-positioned HSIL and ADC remained lower.
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10 s per case, whereas digitizing a case and generating tile images required approximately 270 s. Furthermore, 
we established a workflow to sort daily cases using anomaly scores and detect inadequate cases. This model and 
workflow have the potential to contribute to screening efficiency substantially, reduce the burden on cytologists, 
and expedite reporting.

In traditional workflows, cytologists must screen each case meticulously without knowing the location of the 
abnormal cases, leading to considerable physical and mental strain. Our validation results showed that the sorted 
outcomes within a bag can be categorized into three zones (Fig. 4). The Top5 zone, also known as the “Critical 
observation zone,” requires meticulous scrutiny by cytologists. These include abnormal cases, those with a high 
cell count and strong overlaps, atrophic changes in older individuals requiring differentiation from HSIL, and 
cases with a high number of bacteria or severe inflammation in younger individuals. The bottom zone, also 
known as the “Diagnostic ambiguity zone,” consists of potentially inappropriate or ambiguous diagnoses, often 
inadequate specimens, or cases with a low cell count. However, ASC abnormalities can also be observed in this 
zone. The most crucial area is the “High-risk sorting zone,” between the critical observation zone and diagnostic 
ambiguity zone, where over 90% of abnormal cases are sorted. Atrophic cases, or those with overlapping cells 
sorted into the critical observation zone, were considered significant. Atrophic cases may require differentiation 
from HSIL20,21, and cases with numerous overlapping cells require careful adjustment of the microscope’s focus 
in the z-direction. Therefore, these cases should be considered important by cytologists. Appropriate feedback 
on inadequate cases is crucial to prevent overlooking high-grade lesions, reduce the burden on patients for 
re-examinations, and contribute to improving clinicians’ specimen collection techniques22. However, feedback 
on inadequate cases is currently left to the subjective judgment of cytologists. Our study objectively assessed 
inadequate cases based on cell quantity and the number of generated tile images, which we consider useful for 
providing appropriate feedback.

The model and workflow developed in this study demonstrated the potential for enhancing the efficiency 
and accuracy of the cytological screening process. However, some limitations have also become apparent. First, 
the sorting outcome was significantly influenced by the number of tile images generated and the occurrence of 
abnormal cells. When a small number of tile images were generated from a single case, the low anomaly score 

Fig. 4.   Sorting results were categorized into three zones. The critical observation zone corresponds to the 
top five sorted cases. This zone is the “area where cytologists must carefully observe.” It includes abnormal 
cases and cases with a high quantity of cells and strong overlaps, atrophic changes in older adults that 
require differentiation from HSIL, and cases in younger individuals with a high number of bacteria or strong 
inflammation. The diagnostic ambiguity zone corresponds to a lower sorted area. This zone is characterized as 
“potentially inappropriate or ambiguous for diagnosis.” This characterization included cases with inadequate 
specimens or low cell count. However, ASC abnormalities may also be observed in this zone. The high-risk 
sorting zone lies between critical observation and diagnostic ambiguity zones. It is where “more than 90% of 
abnormal cases are sorted.” This zone is crucial for identifying cases requiring further attention and careful 
evaluation.
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demonstrated that the screening accuracy was significantly affected by the number of cells in the specimen (see 
Supplementary Fig. S8 online). This observation is important considering the widespread use of LBC in cervical 
cytology. LBC facilitates efficient cell recovery compared with the direct smear method and enables stable speci-
men preparation. However, the number of cells in a specimen depends on the specimen collection technique 
and LBC preparation method. When the cell count in a specimen is low, the specimen is considered inadequate, 
and re-examination or re-preparation of the specimen is recommended2.

Conversely, an excessively high cell quantity may result in challenges during WSI creation, such as poor focus 
or difficulty in observation because of overlapping cells, rendering the specimen unsuitable for diagnosis. Another 
challenge is the low diagnostic accuracy for ASC cases. ASC determination often occurs when diagnostic findings 
are lacking, particularly in cases of insufficient nuclear atypia or a low frequency of occurrences2. This influence 
may be attributed to only including definitively diagnosed abnormally labeled tile images in the training data. 
In particular, cases diagnosed as ASC-US, known to include normal cases, pose a challenge in differentiating 
them from normally labeled tile images. However, as a subjective judgment by cytologists plays a crucial role in 
ASC determination, further discussion is needed regarding its addition to future datasets.

Furthermore, in this workflow, we opted not to scale the anomaly scores based on the number of images to 
avoid losing important information regarding the number of cells in the specimen. Instead, our workflow detects 
inadequacies using the number of generated tile images as an objective indicator. Cytology screening aims to 
evaluate the entire specimen, and the number of cells in the specimen is crucial for clinical feedback. However, 
the number of cells distributed on a specimen varies, and its assessment has traditionally been subjective22. In 
particular, feedback on inadequate specimens requires careful consideration; however, there are variations among 
facilities. Some diagnoses are made without feedback, even when inadequacy is suspected. The primary cause 
of inadequacy, especially in the prevalence of LBC, is the method of specimen collection. Cases with a low cell 
count in the specimen were designed to be sorted lower, despite all tile images being deemed abnormal, to ensure 
accurate clinical feedback. The anomaly score may be low for cases with numerous tile images if abnormal cells 
are exceptionally rare. In this study, we identified five cases with few abnormal cells. Variations in specimen col-
lection site, instrument, and clinician’s technique level led to substantial differences between facilities. Training 
for proper specimen collection from the appropriate sites will likely improve this issue.

Our approach emulates the actual workflow of cytological examinations and utilizes AI to assess cytology 
slides, aiming to reduce the workload of cytotechnologists. As depicted in Fig. 5, the cytology process involves 
multiple complex stages, particularly the time-consuming and labor-intensive microscopy observations. Unlike 
typical AI-based diagnostic studies that only handle images with already detected abnormalities, our method 
targets all slides, including those with undetected anomalies, thereby enhancing the pre-diagnosis screening 
process. The sorting algorithm used in this study was not integrated into the AI model algorithm and had a simple 
structure, allowing customization to suit individual facilities. For example, sorting can be based on conditions 
such as HPV test results or the presence of follow-up information. As these data vary by facility, this study used 
only the anomaly score and age, which are generally available for sorting. Sorting using various information 
enables customization tailored to each facility’s characteristics. For example, sorting solely based on anomaly 
scores and age may be effective for screening facilities with numerous new patients. In contrast, larger facilities 
focusing on referrals may require sorting that considers follow-up information, medical history, and surgical 

Fig. 5.   Overview diagram of conventional workflow and proposed workflow. In traditional workflows, the 
process from specimen submission to result typically takes 4–7 d. This process is considered intense for 
cytologists and cytopathologists, leading to considerable mental and physical strain. The burden associated with 
the first and second screenings is a critical issue. The proposed workflow introduces AI into the first screening, 
substantially streamlining the process. Using AI, the first screening can be completed in approximately 10 s 
per case, efficiently passing the sorted group of cases to the second screener. As an operational example in this 
optimized process, cases with high anomaly scores undergo detailed microscopic observation, whereas those 
with low scores primarily review only the identified abnormal tiles. Even for cases with low Anomaly scores, 
microscopic confirmation can be considered if abnormalities are observed in the tile images. This AI-integrated 
approach reduces the workload and enhances the precision and speed of the screening process. It allows for a 
more focused review where it is most needed, potentially improving the accuracy of diagnoses and the well-
being of the medical professionals involved.
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history. Implementing this new workflow for the first screening step can streamline the screening process and 
reduce the burden on cytologists (Fig. 5). However, this study was limited to validation at a single facility; there-
fore, multi-facility validation is essential in the future.

Additionally, data containing actual diagnostic statements, not just text data, are needed to improve the model 
performance further. Diagnostic statements include subtle nuances perceived by cytologists, which are important 
features of model training. Developing large-scale visual language models with a comprehensive global open 
dataset, considering text data, image data, and the multiscale nature of WSI, is crucial for automating cytology 
screening and enhancing its accuracy. Furthermore, significantly enhancing the integration of our AI model 
into medical information systems can be achieved by interfacing with onsite microscopic cameras for real-time 
assistance and incorporating decision processes during WSI creation. Leveraging on-premise servers or mobile 
devices can also improve accessibility and convenience in low-resource environments. However, realizing these 
technological advances requires overcoming several technical challenges. Specifically, further development in 
model quantization and optimization, strengthening data-centric learning infrastructures, and accelerating infer-
ence through hardware acceleration and edge computing technologies are necessary. These advancements are 
essential for expanding the adoption of AI models in clinical environments and ensuring their practical utility.

In this study, we proposed a new cytology-based screening workflow that incorporates AI to improve the 
early detection and treatment of cervical cancer. We achieved more efficient and accurate screening via AI 
technology to address the physical and mental burden on cytologists and cytopathologists, reduce delays in the 
screening, and overcome oversights in traditional methods. AI-enhanced screening accelerates and enhances 
the precision of test results, ultimately expanding early detection and treatment possibilities for cervical cancer. 
Additionally, the objectivity and reproducibility introduced by AI in cytological examinations provide a reliable 
diagnostic support tool for healthcare providers, ensuring faster and more accurate treatments for patients. 
This study represents a new paradigm for screening cervical cytology specimens with potential future applica-
tions in other cancer types and medical fields. However, further validation and improvements are needed for 
clinical implementation, and addressing these challenges in future studies is crucial. Our approach focuses on 
outputting the degree of abnormality and sorting results of specimens, rendering traditional definitions of false 
negatives and false positives inapplicable, which complicates statistical comparisons. This is because our system 
is not designed to provide diagnoses but to assist cytotechnologists in the screening process. Therefore, direct 
comparisons with similar studies are challenging. The contributions of this study lie in its unique approach and 
practicality. To further illustrate the application and effectiveness of our workflow, we have included additional 
validation results in the supplemental materials (see Supplementary Fig. S9 online). These figures demonstrate 
how the expanded dataset contributes to refining our workflow, offering insights into potential optimizations 
and adjustments that could enhance the utility and accuracy of the model in clinical settings. Future research 
should explore further optimization of this new workflow and the potential benefits of integrating it with other 
diagnostic tools.

Methods
Description of the dataset
From October 2020 to August 2023, cervical specimens were collected from patients at the JA Shizuoka Koseiren 
Enshu Hospital (400 beds, annual cytology cases: 6766, cervical cytology cases: 3491). Each specimen was 
subjected to LBC using BD SurePath (Becton Dickinson, Inc., Franklin Lakes, NJ, USA) and standard Papani-
colaou staining. Two cytopathologists with over 20 and 10 years of experience and three cytologists, each with 
over 10 years of experience, diagnosed all cases according to the Bethesda System. This study was approved by 
the Ethics Review Committees of Hamamatsu University School of Medicine and JA Shizuoka Koseiren Enshu 
Hospital (Approval No. 21-131). All methods were carried out in accordance with relevant institutional guide-
lines and regulations. The study was specifically designed and conducted in accordance with the Declaration 
of Helsinki. The explanation to participants was made using an opt-out process, which the ethics above review 
committees approved. Informed consent was waived or declared not required by the Ethics Review Committees 
of Hamamatsu University School of Medicine and JA Shizuoka Koseiren Enshu Hospital as our study did not 
directly involve obtaining informed consent from participants, as it utilized anonymized tissue samples that were 
previously collected as part of routine clinical care. These samples were provided by the Hamamatsu University 
School of Medicine and JA Shizuoka Koseiren Enshu Hospital, with all patient identifiers removed to ensure 
anonymity and privacy.

Tile image data acquisition
LBC specimens were scanned at 40× magnification using a whole-slide scanner (NanoZoomer 2.0-HT; Hama-
matsu Photonics, Hamamatsu, Japan) and converted to WSIs. They were categorized into small patches called tile 
images, each measuring 1024 × 1024 pixels (0.92 microns/pixel), equivalent to a 10 × objective lens on an optical 
microscope. The cell quantity in each tile image was calculated based on the number of pixels, excluding the 
background. Images with a 30% or more cell quantity were filtered and retained. The tile images were generated 
using a custom algorithm (available at https://​github.​com/​kuri54/​Prepr​ocess​ing-​WSI), implemented using only 
a CPU. The CPU used was Ryzen Threadripper™ PRO 5965WX (AMD, Santa Clara, CA, USA).

Training datasets
From the dataset, we specifically selected cervical specimens from patients who had not undergone a hysterec-
tomy or cervical conization between October 7, 2020, and May 17, 2023. In total, 215 patients were randomly 
selected. Only the first specimen was used in patients with multiple samples collected during the study period. 
The breakdown was as follows: NILM, 150 cases; Low-grade LSIL, 10 cases; HSIL, 10 cases; SCC, four cases; and 

https://github.com/kuri54/Preprocessing-WSI
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ADC, four cases (Fig. 6a). Additionally, the recent introduction of LBC at the facility has limited the availability 
of a broader historical range of cases. These factors have inevitably influenced the diversity and volume of the 
data collected, contributing to the limitations of our dataset.

All cases were categorized into tiles. For NILM, one image without cell overlap and one with cell overlap 
among these tile images were used for a similar image search using image hash (available at https://​github.​com/​
Johan​nesBu​chner/​image​hash). Color hash was used for the hash value search, and only those with a hash value 
of three or more were sampled. From the sampled image pool, 500 images were randomly selected for each, and 
all these images were labeled as “normal” (Fig. 6b).

The non-NILM cases were also categorized into tiles and hand-labeled. When atypical cells appeared in 
tile images that could be determined, they were labeled as “abnormal,” and 200 LSIL, 200 HSIL, 100 SCC, and 
100 ADC images, totaling 600 images, were sampled (Fig. 6c). A training dataset of 1600 images was created 
by combining all “normal” (1000) and “abnormal” (600) images. The average age of the cases included in this 
dataset is 47.7 years (Max: 89, Min: 21).

Test datasets
From the dataset, 938 cervical specimens submitted for cervical cancer screening between May 18, 2023, and 
July 14, 2023, were used. These specimens were collected consecutively and may have included multiple samples 
from the same patient. Details are presented in Table 2. All cases were categorized into tiles, and those not labeled 
were used as the test dataset (Fig. 6d). Among these, 42 cases could not be scanned because of poor encapsula-
tion or a low cell count in the specimen.

Fig. 6.   Overview of the dataset creation process. (a) Flowchart for acquiring the training dataset. After 
converting the LBC specimens to WSIs, they were categorized into tiles, and images with a cell quantity of 30% 
or more were filtered and selected. (b) The process for acquiring data with a “normal” label using a similar 
image search. One image without cell overlap and one with overlap were used, and a similar image search 
was conducted using a color hash. From the resulting image pool, 500 images were each randomly selected. 
They were labeled as “normal.” (c) The process for acquiring data with an “abnormal” label. Hand labeling 
was performed for each tile image. If atypical cells were identifiable in the tile image, the label “abnormal” was 
assigned. (d) Flowchart for acquiring the test dataset. After converting LBC specimens to WSIs, cases that could 
not be scanned were excluded, and the remaining specimens were categorized into tiles. Images with a 30% or 
more cell quantity were filtered and selected.

https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
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Model training and tuning
All experiments were conducted using Python version 3.8.10. The library versions used in the experiments were 
as follows: torch v2.0.1, CUDA v11.7.1, CUDNN v8.5.0, torchvision v0.15.2, pillow v9.5.0, scikit-learn v1.3.0, 
scikit-image v0.21.0, pandas v2.0.3, numpy v1.24.4, seaborn v0.12.2, accelerate v0.23.0, transformers v4.33.1, 
albumentations v1.3.1, and openslide-python v1.1.1.

Project page (https://​github.​com/​kuri54/​GynAIe).

Model training
Our model was constructed by fine-tuning the architecture described by Radford et al.23, composed of an image 
encoder, vision transformer (ViT-L/14@336px; available at https://​huggi​ngface.​co/​openai/​clip-​vit-​large-​patch​
14-​336, with an input size of 336 × 336 pixels), and text encoder based on a text transformer with a maximum 
sequence length of 77 tokens. The images were resized to 336 × 336 pixels before inputting into the image encoder. 
The image and text encoders output 768-dimensional vectorized features and were optimized by minimizing the 
contrastive loss within a batch. Contrastive learning imparts the model of the correlation between images and 
text by calculating the cosine similarity between image and text features within a batch (Fig. 7a).

Input prompts were prepared using templates such as [‘A photo of {label}.’, ’An image of {label}.’, ’A picture of 
{label}.,’ ‘This is a photo of {label}.,’ ‘Here is an image of {label}.,’ ‘Take a look at this photo of {label}.,’ ’Please see 
the picture of {label},’ ‘You can see the image of {label}.’] randomly selected from each input image. The label, 
‘normal’ or ‘abnormal,’ was filled in the template (Fig. 7b). For example, with the template ‘A photo of {}.’ and the 
label ‘normal,’ the training prompt became ‘A photo of normal.’

We explored combinations of batch sizes and learning rates to identify those minimizing loss. The optimal 
batch size was 16, and the best learning rate was 1e-8. We set the number of epochs to 400 and conducted mixed-
precision training (FP16) using two RTX A6000 GPUs (NVIDIA, Santa Clara, CA, USA) with 48 GB of memory. 
The trained model was saved at the epoch with the lowest validation loss (399th epoch).

Test case evaluation
The test dataset was grouped (bags) by submission date, creating 42 bags. This grouping strategy reflects the 
daily variability in specimen submissions, with each bag corresponding to all the cervical cytology specimens 
received on a particular day. As a result, the number of cases per bag varies, replicating the natural fluctuations 
in specimen volume typically seen in clinical settings. The cervical cytology specimens included in the test set 
cover the past two months, ensuring each bag contains a comprehensive snapshot of daily case numbers. This 
approach simulates the variability observed in actual clinical settings, allowing us to assess the model’s real-
world applicability and robustness across different volumes of cases. All tile images from the test dataset were 
evaluated using a quantized (8-bit) trained Contrastive Language-Image Pre-Training (CLIP) model. Cases with 
fewer than 50 tile images and those that could not be scanned were considered inadequate specimens. A total 
of 120 cases had fewer than 50 tile images, and when combined with cases that could not be scanned, 162 cases 
were deemed inadequate.

For evaluation, the prompts “a image of normal” and “a image of abnormal” were used, and the CLIP model 
inferred which of these the input images had a higher representational similarity (Fig. 7c). For each case, the num-
ber of tile images determined as “a image of abnormal” was calculated, and this value was normalized to a range 
of 0–1 within each bag, defining the “anomaly score.” Cases within a bag were sorted in (1) descending order of 
anomaly score and (2) ascending order of age (Fig. 7d). That is, cases with higher anomaly scores were sorted 
higher within the bag, and among cases with similar anomaly scores, those of younger ages were sorted higher.

Table 2.   Details of the test dataset.

Average age 50.9

Min 19

Max 92

Bethesda classification Number of cases %

NILM 845 90.1

LSIL 22 2.3

HSIL 27 2.9

ASC-US 32 3.4

ASC-H 9 1.0

SCC 1 0.1

ADC 2 0.2

93 9.9

https://github.com/kuri54/GynAIe
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336


11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19535  | https://doi.org/10.1038/s41598-024-70670-6

www.nature.com/scientificreports/

Data availability
Ethical restrictions exist on the public sharing of data. There was no provision in the opt-out phase of this study 
to share data publicly. Therefore, the Ethics Committee of Hamamatsu University School of Medicine restricted 
these data. If you wish to obtain the datasets, permission must be obtained from the Research Ethics Review 
Committee of your institution and the Ethics Committee of the Hamamatsu University School of Medicine. For 
data access requests, please contact the corresponding author, Yuki Kurita.
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