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Non‑reciprocity in photon 
polarization based on direction 
of polarizer under gravitational 
fields
Hansol Noh 1,2, Paul M. Alsing 3, Warner A. Miller 3 & Doyeol Ahn 1,3*

Unification of gravity with quantum mechanics is still a terra incognita. Photon polarization 
measurements offer a unique window for probing the interaction between these two fundamental 
forces. We have revealed that non-reciprocity in the photon polarization angle can arise by tailoring 
the quantization axis, which corresponds to the direction of polarizer. Due to this non-reciprocity, 
the measured polarization angle can become ten times larger than that of gravitationally induced 
frame rotation in both near-Earth and black hole environments. To verify this finding, we propose an 
astronomical interferometer composed of satellites with the tailored quantization axis, challenging 
the conventional view of their triviality in closed paths of a photon. Notably, this non-reciprocity can 
extend to any rotation in the polarization plane, irrespective of the origins, all of which can dictate 
polarization rotation. Our findings could offer new opportunities for testing fundamental principles in 
physics.

The unification of general relativity and quantum mechanics remains one of the most significant challenge in 
theoretical physics. General relativity governs the large-scale dynamics of the universe and quantum mechan-
ics dictates the behavior of quantum particles at Planck scales. However, the description of quantum particles 
under gravitational fields has not been fully understood. Seminal works such as Hawking radiation1 and Unruh 
effect2, have provided some insights into the interaction between quantum particles and classical gravitational 
field. Nevertheless, complete understanding of the interplay between two pillars of physics is still lacking, leaving 
ample room for further discoveries3.

Photons, as inherently massless entities, move along null geodesics, positioning them as sensitive probes of 
spacetime curvature. The essential roles of photons in advanced experimental systems from interferometers4–6 to 
quantum communication systems7–23, further emphasize the significance of comprehending the nature of photon 
states under gravitational influence. Moreover, state-of-the-art advancements in high-precision measurements 
of relativistic effects, such as the Laser Interferometer Space Antenna (LISA)5, and, like Gravity Probe B4, have 
made probing gravity’s subtle influence on light increasingly feasible. A recent study employing the Micius sat-
ellite examined the decoherence effects of entangled photons in Earth’s gravitational field, providing data that 
challenges the predictions of event formalism and is consistent with the standard quantum formalism24. These 
technological developments open new arenas for investigating the intricate interplay between general relativity 
and quantum mechanics, furthering our understanding of the universe’s fundamental nature.

Furthermore, the polarization of a photon provides a unique window for probing various advanced fields 
such as quantum gravity25,26, potential violations of Einstein equivalence principle27,28, and broader areas of 
astrophysics29 and cosmology30, as the polarization changes when the photon moves through spacetime. Never-
theless, while the effects of time dilation have been widely explored, the intricacies of the spin (or polarization) 
states of a photon in spacetime have been underexplored.

In flat spacetime, the exploration of photon polarization states has yielded key insights, notably into the 
Wigner rotation—an additional relativistic rotation arising from the non-commutative nature of Lorentz 
transformations31,32—and its associated quantum phase, the Wigner rotation angle (WRA), which becomes 
observable with spin states of quantum particles and elucidates how a spin state of a quantum particle interacts 
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with the additional rotation. In this context, introducing a standard frame—where the wave vector is aligned to 
the third axis (called the quantization axis corresponding to the orientation of a polarizer)—is essential for under-
standing how quantum particles respond to Lorentz transformations between inertial frames32. It is employed to 
construct irreducible unitary representations of a single Lorentz transformation. In this frame, the representation 
decomposes into three sequential Lorentz transformations: from the standard frame to the original, an arbitrary 
Lorentz transformation in the original, and back to the standard frame. From non-commutativity of these three 
sequential Lorentz transformations, the Wigner rotation angle (WRA) arises naturally.

The effect of Wigner rotation in flat spacetime on quantum information has been widely studied. Previous 
study has shown that WRA affects entanglement between the spins of a pair of particles through spin-momentum 
mixing in moving frames33. Furthermore, it has been shown that momentum-dependent phases (WRA) result in 
variations in entanglement between a pair of polarization-entangled photon beams in moving frames depending 
on the boost direction34. Wigner rotation is introduced in both studies to study entanglement of quantum parti-
cles observed in moving frames and demonstrate that the WRA can lead to frame-dependent quantum effects.

The phenomenon becomes more intricate in curved spacetime. Employing Einstein equivalence principle 
and tetrad fields—a set of four orthonormal basis vectors that delineate spacetime curvature into locally flat seg-
ments, providing a means to describe various local inertial frames (corresponding to observers in different states 
of motion: e.g. stationary, freely falling, rotating, etc.)—the WRA can be extended into the geometric phase of 
photon helicity states in curved spacetime. In this framework, spacetime curvature is encoded in the variations 
in local inertial frames which manifest as local Lorentz transformations35. Naturally, their irreducible unitary 
representations and the associated Wigner rotation angles are employed in the quantum field description of local 
Lorentz transformations as a particle moves in curved spacetime.

For an open path of a photon, in Schwarzschild spacetime, there is a consensus that the phase is zero on open 
paths only with the proper choice of gauge36. Prior research has accentuated the gravitationally induced WRA 
can have values of O(10−5) degrees, especially for observers in circular orbits of Earth (e.g. satellites). While 
these findings underscore the observational potential of WRA, especially in Earth’s vicinity37,38, the WRA of a 
photon traveling along a closed loop has conventionally been considered trivial, interpreted as a Berry phase 
influenced by the holonomy group of classical polarization vectors39. In Schwarzschild spacetime, the WRA is 
known to be zero on closed paths regardless of gauge36. For Kerr spacetime, it has been reported that a gauge-
invariant result can be obtained using two future-directed trajectories whose layout is similar to the two arms of 
a Mach-Zehnder interferometer36. However, given that the effect of the Earth’s spinning angular momentum is 
negligible, measurement via interferometers has been regarded as infeasible, despite the small values of WRA.

In this study, we explore the effects of the choice of quantization axis, which corresponds to the orientation 
of a polarizer and has not been previously considered, on the geometric phase (WRA) of a photon helicity state, 
leading to momentum-dependence in the WRA, for both flat and curved spacetime scenarios. Since the WRA 
depends on the Lorentz transformations rather than the frame, the choice of various possible standard frames 
can yield different values for the WRA, resulting in momentum-dependence in WRA. We find that the interplay 
between the tailored choices of the quantization axis and spacetime curvature results in non-reciprocity of the 
WRAs. This leads to measurable phase differences in astronomical interferometry conducted near Earth. Also, 
it is found that the conventional view of trivial WRA on a closed path is recovered with the quantization axis 
chosen to be parallel to the momentum-vector of a photon.

We propose employing two types of astronomical interferometers with a specifically tailored quantization axis 
to investigate the interactions between quantum spin states and classical gravitational fields. The first type, the 
combination of Hong–Ou–Mandel (HOM) and Mach-Zehnder interferometer is appreciated for its precision, 
particularly its sensitivity and its ability to resist noise from single-photon detection. Through monitoring the 
coincidence counts, the subtle geometric phase variances induced by spacetime curvature should be measur-
able. In parallel, we consider a Mach-Zehnder interferometer using a nearly monochromatic light source or a 
single-photon source. This setup is introduced for validating the equivalence between the Wigner rotation of 
photon states and the transformation of classical electric fields by comparing the results of the case with the 
single-photon source, which highlights photon state non-locality.

It is noteworthy that the non-reciprocity arising from the choice of quantization axis can extend beyond the 
WRA induced by local inertial frame variations. Establishing a standard frame aligned with the chosen quanti-
zation axis introduces a sequence of three Lorentz transformations including any arbitrary rotation regardless 
of its origin: starting from the standard frame, applying the rotation, and then returning to the original frame. 
Also, it is numerically shown that WRA can be ten times larger than the frame’s rotation angle in both near-Earth 
and black hole environments by harnessing the non-reciprocity. This suggests that the observed non-reciprocity 
could be utilized in measuring subtle polarization rotations under varying gravitational conditions, opening 
doors for further exploration in how light and electromagnetic phenomena behave in different cosmic settings.

Results
Theoretical background
In the study of photon helicity states in spacetime, the standard frame is indispensable, wherein the third axis 
is designated as the quantization axis. Within this framework, the photon undergoes three sequential Lorentz 
transformations32; starting from the Lorentz transformation aligning the photon’s wave vector in the standard 
frame to the transmission direction of a photon, a local Lorentz transformation induced by spacetime curvature, 
and finally returning to alignment with the quantization axis for comparison with the initial state. The non-com-
mutative nature of the three Lorentz transformations gives rise to the additional rotation, called Wigner Rotation 
Angle (WRA), underscoring the significant role the quantization axis selection plays in determining the WRA.
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Transformation between two local inertial frames, through which a photon passes, is described by an infini-
tesimal variation of the local orthonormal bases, called tetrads eµ

â
(x) , along an infinitesimal displacement of the 

photon, which, spanning the local inertial frames, satisfy the orthonormal constraints,

with η
âb̂

= (−1, 1, 1, 1) . Considering Einstein equivalence principle, the variation of local inertial frames 
can be viewed as a local Lorentz transformation35,40–43. When a photon state moves along a null geodesic in the 
geometric optics limit44, photon four-momentum components measured in local frames are transformed under 
an infinitesimal change of tetrads such that

where �b̂â(x) =
(

∇ke
ν
â(x)

)

eb̂ν(x) . The infinitesimal variation rate �b̂â(x) is antisymmetric35,40 and thus can be natu-
rally interpreted as an infinitesimal local Lorentz transformation, �b̂

â(x) = δb̂â + �
b̂
â(x) ref.35,40,42,43 with Kronecker 

delta δb̂â . A unitary representation of arbitrary Lorentz transformation, Λ, for a photon state with the helicity, σ, 
is described by32

where the W(�, k̂) and D(W) represent the Wigner’s little group element and its irreducible representation, 
respectively. Hereafter, the bolded letters indicate the spatial components of the four vector: k̂ refers to the spatial 
components of the wave vector in the local frame and k̂� signifies the Lorentz-transformed spatial components 
of the wave vector in the local frame. The necessity of Wigner’s little group in the quantization process lies in its 
role in steering transformations of particles’ internal degrees of freedom under Lorentz transformations. To 
formulate a detailed description of the system, it is essential to account for transformations possibly altering the 
particles’ spin states while preserving momentum invariance. The Wigner’s little group is defined as the subgroup 
of Poincaré group, which leaves the particle’s four-momentum invariant in a specific reference frame—either the 
rest frame for a massive particle or the standard frame for a massless one. Accordingly, for photons, the little 
group W is defined to leave the wave vector invariant in the standard frame conventionally defined as having 
the photon wave vector aligned along the third axis such that the photon 4-momentum becomes k̂std = (1, 0, 0, 1) . 
As such, the WRA in Eq. (3) is defined as W = L−1

(

�k̂
)

�L
(

k̂
)

 . Here, L
(

k̂
)

 represents Lorenz transformation 

from k̂std to k̂ . The non-commutativity of these sequential Lorentz transformations naturally leads to the WRA.
By translating the infinitesimal variations of tetrads into local Lorentz transformations between local inertial 

frames, the phase of a photon state evolves by an infinitesimal Wigner rotation angle dψ (IWRA) whose ratio 
with respect to an affine parameter ξ is given by37

where nî is defined as kî/|kî| with î = 1, 2, and 3 . The first term, �1̂
2̂
 , in Eq. (4) is the rotation in the 1̂− 2̂ plane 

about the local third axis, 3̂-axis, and the residual terms in the square bracket represents a momentum-dependent 
phase which we designate as ψ̃ residual

inf.  . The first (classical) term corresponds to the rotation of the polarization 
about the 3̂-axis which should be disentangled from other rotations when considering WRA induced by the 
non-commutativity of local Lorentz transformation. Also, by setting the local third axis to be orthogonal to the 
observers’ planes, the contribution from the geodetic precession can be isolated in the first term �1̂

2̂
= ψ̃

geodetic
inf.  . 

The total Wigner rotation angle Ψ can be obtained via a time-ordered integration of the IWRAs over the geodesic 
trajectory x(ξ) of the photon such that

where T represents the time-ordering operator.

WRA for two open paths of a photon: earth‑satellite communication and a spinning black hole
We explore the dependency of the Wigner Rotation Angle (WRA) on the quantization axis by examining two 
distinct scenarios depicted in Fig. 1: ground-station-to-satellite communication (Fig. 1A), and orbiting observers 
in the equatorial plane of a rotating black hole (Fig. 1B). Figure 1A illustrates a satellite in the equatorial (yellow 
line) and polar (light blue line) orbits around Earth. In Fig. 1B, yellow circles represent observers in an equatorial 
orbit around the black hole such as materials in an accretion disk, stars, or spacecrafts. The black hole scenario 
is chosen to study WRA in a context where such effects from the dependence are more pronounced. The three 

(1)gµν(x) = η
âb̂
eâµ(x)e

b̂
ν(x); â and µ = 0, 1, 2, 3,

(2)kâ(x) → k′â(x) ≡ kâ(x)+ δkâ(x) =
(

δb̂â + �
b̂
â(x)dξ

)

k
b̂
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(5)
eiψ(�,�n) = eiψ

geodetic(�,�n)+iψ residual(�,�n)

= T exp

[

i

∫

ψ̃
geodetic
inf (�(x(ξ)), nî(ξ))dξ

]

+ T exp
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i
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]

,



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20801  | https://doi.org/10.1038/s41598-024-71203-x

www.nature.com/scientificreports/

sequential Lorentz transformations in these scenarios can be interpreted as follows: prior to photon emission, 
the polarization or phase of the helicity state is measured in the standard frame where the wave vector is aligned 
with the local third axis eφ, called the quantization axis (Fig. 1C) and rotated back to the original wave vector 
(Fig. 1D). Then, as the photons propagate, photons experience local Lorentz transformations induced by the 
gravitational field. Upon reaching the receiver, the polarization and phase are measured again in the standard 
frame (Fig. 1E). For brevity, we focus on the case where photon lies in the equatorial plane only. Throughout this 
paper, a photon field on a curved spacetime is assumed to have a spinor structure32,45 and the (− +  + +) metric 
signature is used, and the hatted letter represents local flat spacetime. Details of tetrads and photon’s trajectory 
in a Kerr spacetime can be found in the Method section.

To isolate contribution from the geodetic precession, another relativistic effect, we intentionally choose the 
quantization axis to be orthogonal to the orbit plane37. We then examine how the Wigner Rotation Angle (WRA) 
changes with different orientations of the quantization axis relative to the wave vector. For this, we consider 
various ratios of rkφ to kr—approximately the impact factors bph of photon’s trajectories42,46—for both cases; for 
the earth-satellite case, the photon is sent off with the different ratios rkφ /k at the radius of Earth, and for the 
black hole (BH), photons are sent from an observer at a distance of 4.5 times the Schwarzschild radius from the 
BH with the various ratios rkφ /k.

In our analysis of satellites in polar orbits, we noted that the signs of the ratios of rkφ to kr significantly influ-
ence the WRA, as illustrated in Fig. 1F; WRAs for the negative ratios have ten times larger values than those for 
the positive. Also, for equatorial orbits, while WRA variations are not discernible for the Earth case, in black hole 
orbit scenarios, the impact of sign change is apparent for WRAs, indicating a complex interplay with the sign 
of the impact parameter bph on both orbits in general. The WRAs calculated for observers in equatorial plane of 
M87* black hole are presented in Fig. 1G.

The observed discrepancy between the two different orbits near Earth is attributed to the momentum-depend-
ence of WRA, i.e., the dependence on the relative direction of the quantization axis compared to the wave vector. 
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Fig. 1.   Ground-station-to-satellite (A), and orbiting observers in an equatorial plane of a rotating black 
hole (B). Yellow and light blue lines in A represent an equatorial and polar orbit, respectively. Yellow circles 
in B represent observers orbiting around the black hole; we consider the case where photons are emitted 
from 4.5 times the Schwarzschild radius (rs) away from the black hole. For both cases, various ratios rkφ to 
kr are considered. As depicted in (C-E), wave vectors of photons are aligned with the local third axis, eφ, i.e., 
transformed to the standard frame. Before sending a photon, the polarization (i.e. the phase of helicity state) is 
measured in the standard frame (C). Then, photons are rotated due to the WRA induced by gravity as depicted 
in (D). At the receiver, polarization and phase are again measured in the standard frame. While both WRAs for 
the equatorial and polar-orbit cases have the dependence on the impact factors of photon trajectories, the case 
of observers in the equatorial orbits near the Earth does not give discernible difference due to the weak gravity. 
For the cases of Earth-satellite-in-polar-orbits and observers in the equatorial plane of M87* black hole, WRAs 
are plotted as in (F) and (G), respectively. The original image of Earth used in A is obtained from Yeongkwang 
Kim47.
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Central to this dependence is the choice of the quantization axis, which determines the two Lorentz transfor-
mations—the initial transformation from the standard frame to the original frame and the subsequent return 
transformation to the standard frame after the local Lorentz transformation induced by spacetime curvature. Such 
intricacies hold significant implications for the polar orbit case, where both wave vectors and quantization axis 
lie in the same plane. In such a case, when a local Lorentz transformation is applied, WRA changes depending 
on the sign of ẑ-component of the wave vector, n3̂ , while the direction of the ẑ-component wave vector n3̂ alone 
without any Lorentz transformation does not affect the Wigner rotation angle.

For the specific case illustrated in Fig. 2, as an example, we consider the case where photon momentum lies 
in ŷẑ-plane of a local frame. In the absence of any rotation, WRA is null as illustrated in Fig.2A–E. Also, we 
consider the situation where the local frame undergoes the rotation Rŷ(�φ) about the ŷ-axis by the angle �φ , 

the corresponding rotation R−1
(

k̂′
)

—aligning the rotated wave vector k̂′ = Rŷ(�φ)k̂ to the standard wave 

vector k̂std = (1, 0, 0, 1)—is directly influenced by the relative orientation of the quantization axis ( ̂z-axis, marked 
by purple arrows in Fig. 2) with respect to the wave vector k̂′ , as per the definition of the rotation R−1

(

k̂′
)

 . This 
interrelation leads to asymmetry in WRA depending on the relative orientation of the quantization axis as well 
as Rŷ(�φ) , as depicted in Figs. 2J. For infinitesimal ŷ-axis rotation angle �φ , the corresponding WRA is 

Arg
[

1−�φn2̂/
(

0.5n2̂�φ + i
(

1+ n3̂
))]

.

Fig. 2.   Dependence of WRA on the choice of quantization axis. Using the ẑ-axis as the quantization axis 
and the photons on the ŷẑ-plane as an example. Wave vector k̂ and polarization vector p̂ are illustrated by red 
and blue arrows, respectively (A). In the absence of any Lorentz-induced rotation, when the wave vector’s ẑ
-component aligns with the quantization axis, the ẑ-component matches this axis in the standard frame (B) 
by rotating the frame about k̂ × ẑ , represented by the green arrows (along x̂ in A). (C and D) present the case 
where the direction of ẑ-component of wave vector is opposite to the quantization axis. Regardless of the 
direction of the ẑ-component, the polarization angle (with respect to the ẑ-axis) is consistent in both cases 
as shown in (E). However, when the system is rotated by spatial rotation or boost of the frame, ẑ-component 
direction of the wave vector, resulting in varied polarization angles in the standard frame. As an example, 
under a frame rotation about ŷ-axis, (F-J) show the polarization angle varies in the standard frame depending 
on the direction of ẑ-component of wave vector but does not equate to the frame rotation angle due to the 
non-commutativity. A general observation as depicted in J, is that polarization angle in the standard frame 
depends on the relative direction of ẑ-component of wave vector compared to the quantization axis (here the ẑ
-axis), as shown in J, which could lead to asymmetry in WRA. Here, k̂′ and p̂′ are represent the wave vector and 
polarization vector after the Lorentz transformation of k̂ and p̂ , respectively.
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Violation of local‑time reversal symmetry in WRA​
In Fig. 3, we illustrate scenarios for the study of local time reversal symmetry of the WRA, where photons are 
transmitted between satellites in polar orbits. The red shapes represent the wave vector k and 4-velocity of each 
satellite et̂ , while blue shapes indicate those of the corresponding time-reversed case (Fig. 3A), and the scenario 
with photon transmission in the opposite direction −kφ in the azimuthal plane (Fig. 3B). When dealing with 
local-time reversal symmetry, the special relativity and equivalence principle govern the behavior of the local 
wave vectors, represented as k̂ . Under local-time reversal operator, special relativity dictates that the spatial 
components of the momentum of the particles reverses direction, while the energy (time component) remains 
unchanged. In accordance with the equivalence principle, this leads to sign flip of the local spatial components 
of momentum as shown in Fig. 3A. Also, by the definition of the local-time reversal operator, the sign of time-
like component of the tetrad fields should change because time reversal symmetry corresponds to reversing the 
direction of time, while keeping spatial directions unchanged. These conditions can be achieved by flipping the 
signs of affine parameter ξ → ξ ′ = −ξ and the proper time τ → τ ′ = −τ such that
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Fig. 3.   Local time reversal symmetry violation and WRAs of wave vectors with opposite azimuthal component. 
Polar orbits of satellites are considered whose 4-velocity vectors are orthogonal to the equatorial plane as 
shown in (A and B). Under local-time reversal symmetry, photons sent between satellites with wave vector k 
(depicted with the red arrow in A), the signs of local spatial components should be flipped, while the local time-
component (local frequency), remain unchanged, as dictated by the special relativity and equivalence principle. 
The local-time reversed vectors are depicted with blue in A. Additionally, since by definition local-time reversal 
symmetry implies a sign flip of time component of tetrad eî , with no sign change in the same spatial components 
eî , the corresponding wave vector in Boyer-Lindquist coordinate bases, local boosts, and rotations should be 
transformed as shown in (C). When photons are sent with the opposite azimuthal wave vector component, 
(depicted by the blue arrow in B), the corresponding transformation of the Christoffel symbols of the spherically 
symmetric Schwarzschild metric are given in (D), where α̂ is 0, 1, and 2. The original image of Earth used in 
Fig. 3 is obtained from Yeongkwang Kim47.
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with ̂i = 1, 2, and 3 . Under these transformations, the signs of local infinitesimal rotations, �î
ĵ
= (∇ke

îµ)e
µĵ

37,42, 

are flipped while those of local infinitesimal boosts, �t̂
ĵ
= (∇ke

t̂µ)e
µĵ = (∇kdx

µ/dτ )e
µĵref.37,42, remain unchanged 

as shown in Fig. 3C. The corresponding time reversed infinitesimal Wigner rotation angle rate becomes

(compare with Eq. (4)). Thus, the time-reversed total Wigner rotation angle can be written in terms of the 
infinitesimal local Lorentz transformation �â

b̂
 and unit vector nî along the direction of photon’s momentum k̂ as

Then, the WRA difference between a path of photons and the time-reversed one represented with red and 
blue arrows in Fig. 3A, respectively, is non-zero in general such that

For further verification of local-time reversal symmetry breakdown, in the Supplementary Information (SI), 
we derive the violation of time reversal symmetry in Euler-Lagrangian framework. In both Eq. (8) and the result 
of Euler-Lagrangian mechanics, the violation comes from the effect of the choice of quantization axis yielding 
non-zero components for n1̂ and n2̂ , leading to non-zero WRA difference between the path and the time-revs-
ersed. This symmetry breakdown is caused by the difference between Loretnz transformations L
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)
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k̂ and L
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)

  from k̂std to Tk̂ . Here, k̂std and Tk̂ represent the wave vector of a photon in standard and local-time 
reversed frame, respectively. Accordingly, when choosing the quantization axis such that the effects of these 
Lorentz transformations remain in the WRA, the WRA exhibits a localized breakdown in time-reversal sym-
metry. Accordingly, by selecting a quantization axis parallel to the spatial component of the photon’s wave vector, 
which avoids retaining the effects of these Lorentz transformations within the WRA, we can ensure that quantum 
communication systems maintain stability and reliability of quantum states, undisturbed by this localized time-
reversal symmetry breakdown.

It should be also highlighted that the local space-inversion operator not only reverses the direction of momen-
tum but also alters the sign of helicity. Consequently, considering the non-reciprocity of the Wigner Rotation 
Angle (WRA) that maintains the helicity, we focus on the local time-reversal operator instead (See SI).

Asymmetry in WRA under different sign of the momentum component along the quantization 
axis
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eîµ

)

→{

ξ → ξ ′
τ → τ ′

(∣

∣

∣k̂
∣

∣

∣
,
(

dxµ/dξ ′
)

eîµ
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where Fî(x) =
{

cos (x) for î = 1

sin (x) for î = 2
 . Accordingly, the WRA difference ΔΨ between two paths, represented with 

red (path 1) and blue arrows (path 2) in Fig. 3b, is as follows:

The relative WRA in Eq. (11) has the same form as that of the case of the local time-reversal symmetry viola-
tion in Eq. (9). Ascribed to the asymmetry illustrated in Fig. 2 of the main text, the sign of n3̂ affects both scenarios 

depicted in Fig. 3 through the denominator 1−
(

n3̂
)2

 of Eqs. (9), (11). As the value of n3̂ increases, the denomi-

nator 1−
(

n3̂
)2

 decreases, and hence the value of the equations can be enhanced in the case of polar Earth orbits 
up to measurable orders. This also explains why observers in polar and equatorial orbits of Earth exhibit different 
WRA dependences based on the sign of azimuthal component wave vector kφ of photons in the equatorial plane, 
where in the former case, the quantization axis (azimuthal direction) was set to be orthogonal to orbit plane, 
while for latter, the quantization axis was set to the polar (or zenith) direction. Since we set the photon trajectories 
to lie in the equatorial plane, the asymmetry induced by the form of the denominator in Eqs. (9), (11) only affects 
the case of polar orbits. Moreover, by choosing the quantization axis along the wave vector, for which n1̂ = n2̂ = 0 , 
the relative WRA of Eqs. (9), (11) become zero, consistent with the result from the previous work39. This means 
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Fig. 4.   Astronomical Mach-Zehnder interferometry setup designed to observe WRA (depicted in A). For a 
quantum source scenario, two indistinguishable photons enter two input ports aI and bI , respectively, of the 
first beam splitter (BS). In front of one output port bI, π/2-phase shift is applied as shown in (B). In David’s 
frame, photons are detected with single photon detectors (SPDs) after being aligned along the quantization axis 
depicted in (C). With Hong-Ou-Mandel (HOM) effect, photons emit from each output port with ½ possibility 
with rkφ/kr = tanα . For a classical source one, light passes through as in (D) and is sent to David with rkφ/
kr = tanα. The relative phase difference is measured in David’s frame, assuming that Allice is at the altitude of 
300 km, as shown in (E). WRA from Bob and Charlie to David are calculated as integrating infinitesimal WRA 
along photon’s geodesics from image1 and 2 of Alice to David and subtract the part integrated along images 
to Bob and Charlie depicted with green lines. The original image of Earth used in Fig. 4 is obtained from 
Yeongkwang Kim47.
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the effect intertwined with local Lorentz transformations induces the asymmetry and violation of local-time 
reversal symmetry.

Detecting WRA in an astronomical interferometer
The relative WRA induced by the effect from choice of the quantization axis can be measured near Earth in both 
quantum source and classical light source (Fig. 4). For the former, the combination of a Hong-Ou-Mandel (HOM) 
and Mach–Zehnder interferometer consisting of four satellites, each on polar orbits, can be utilized.; At Alice’s 
local frame, two indistinguishable photon helicity states, |1, 1�aI,bI , are launched, passing through a 50:50 beam 
splitter, after which a π/2-phase shift on one of the output ports dI is applied (Fig. 4B). In this setup, we select a 
two-photon state with helicity σ as an input state of the interferometer to observe the WRA Ψ in the coincidence 
rate. For the helicity state, WRA manifests as a phase shift of σΨ rather than a rotation angle of the polarization. 
This WRA-induced phase difference between the two paths could lead to the variation of the coincidence rate.

Using the creation operators of the two input a†I  and b†I  and two output ports c†I  and d†I  of the 50:50 beam 
splitter, the two-photon helicity states at each in input port can be written in terms of output-port operators as

Correspondingly, the state after the phase shift on an output port dI becomes 
(

|2, 0�cI,dI − eiπ/2|0, 2�cI,dI
)

/2.
Following this, the photons from each output port are sent from Alice to Bob to David, and from Alice to 

Charlie to David with rkφ/kr = tanα as shown in Fig. 4A), which is approximately the impact parameter ( bph ) 
of a photon’s trajectory. Then, considering the relative Wigner rotation angle ΔΨ between the two arms of the 
interferometer, the photon states passing through output ports cII and dII of the second beam splitter (Fig. 4C) 
are as follows:

where the relative WRA �ψ has the same form of Eq. (9). The relative WRA �ψchanges the linear combi-
nation of two indistinguishable photon states in Eq. (13), leading to the coincidence rate at David’s frame, 
(1− sin(σ�ψ))/2 , depending on both the helicity and relative WRA.

In addition, we consider a Mach-Zehnder interferometer with a nearly monochromatic light source or a 
single-photon source. In Alice’s local frame the classical light or a single photon enters through one of the input 
ports of the first beam splitter (as illustrated in the Fig. 4D) and then in David’s frame, the relative phase dif-
ference is measured after the light or the photon passes through the second beam splitter after aligning wave 
vectors to the quantization axis. By comparing the results from two different sources, it is possible to validate 
the equivalence between the Wigner rotation of photon states with the transformation of classical electric fields 
(proven in the Method)34,37,42. Moreover, this Mach-Zehnder interferometer could underscore the interplay of 
the WRA and non-local properties of a photon when a single-photon source is employed.

The relative WRA differences between the two arms of an interferometer near the Earth have a small order of 
10−4 degrees compared to a few degrees (See Fig.S3D) for an interferometer around M87*. Considering the preci-
sion of LIGO and LISA where a few tens of attometer and picometer precision are required with near-infrared 
light respectively, O(10−4) degrees of the relative WRA (shown in Fig. 4E) should be measurable. Moreover, while 
the spinning angular momentum of M87* black hole would lead to a noticeable difference in the WRA, on the 
O(10–2) degrees, but that of Earth does not significantly affect the WRA to measurable order for both equatorial 
and polar orbits, as supported by the results of the Gravity Probe B (See SI).

Discussion
Polarization measurements of photons offer a room a window to unveil a variety of phenomena, ranging from 
the quantum gravity26 to the possibility of violations of the Einstein Equivalence Principle27. The polarization 
of a photon undergoes alterations as it interacts with the curvature of spacetime during its passage. In this 
work, we uncover a new facet: the non-reciprocity that emerges from the strategic choice of a quantization axis. 
Numerical calculations show that in different environments, near-Earth to near a black hole, the WRA can be 
measured as ten times larger than the rotation angle of the frame by exploiting this non-reciprocity (See SI). 
This finding suggests that the non-reciprocity could be harnessed to detect subtle polarization rotations under 
varying gravitational conditions.
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This non-reciprocity extends its influence beyond the usual scope of the Wigner rotation angle (WRA), associ-
ated with frame variations in spacetime. When a standard frame is established with the chosen quantization axis, 
there would be a sequence of three Lorentz transformations including a polarization rotation, regardless of its 
origins: transforming the standard frame to the original, applying the polarization rotation around the photon’s 
wave vector, and returning to the standard frame. While in this work we only consider polarization rotations in 
classical gravitational fields, following the Einstein Equivalence Principle, polarization rotation can be induced by 
various factors such as quantum gravity and violations of the Einstein Equivalence Principle—If the polarization 
rotations are considered as an SO(2) rotation on the polarization plane in each formalism, we could still utilize 
the non-reciprocity by introducing a standard frame defined with a tailored direction of the quantization axis.

It has been shown that specific violations of the Einstein Equivalence Principle (EEP) would lead to a rotation 
in the plane of polarization of radiation from distant radio sources28. In the effective field theory approach within 
quantum gravity, Lorentz- and CPT-violating dispersion relations can arise, leading to different group velocities 
for different polarization states26. This results in a polarization rotation during propagation, as described by a 
modified dispersion relation. These additional rotations in the polarization plane can be examined using the 
standard frame with a tailored direction of the quantization axis, thus allowing us to utilize the non-reciprocity. 
Moreover, validating the non-reciprocity induced from the choice of quantization axis could be feasible on an 
optical table. The non-reciprocity itself can also arise from inherent non-commutativity of rotations with no 
need for a boost as depicted in Fig. 2, which can be effectively realized using polarizers and mirrors by effectively 
simulating rotations. Thus, optical table experiments could demonstrate and validate the non-reciprocity in a 
controlled laboratory environment.

Method
All the data in the GitHub link have been obtained using a Mathematica notebook (Wolfram Research Europe 
Ltd, Long Hanborough, UK).

Geodesics in Kerr spacetime
The Kerr metric is applied to model spacetimes considered in this work with spin angular momentum (J/Mc = a) 
of a gravitating object, which is given by48

where � ≡ r2 + a2cos2θ, � ≡ r2− rsr + a2, and rs ≡ 2GM/c2 is the Schwarzschild radius. G and c are the 
gravitational constant and the speed of light. J and M are the angular momentum and the mass of the gravitat-
ing object, respectively.

The geodesics of a particle in Kerr spacetime is described by48

Here, K = C + (�− aE)2. The parameters (ξ, δ1) are (affine parameter, 0) or (proper time, 1) for 
null or time-like geodesics, respectively. E, φ, and C are the conserved quantities, corresponding to energy 
at infinity, axial angular momentum of an orbiting particle, and Carter’s (fourth) constant, defined as 
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Co‑moving tetrads with a satellite, parallel transported along its geodesic
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Co-moving condition ensures that the reference frame moves along with the satellite, providing a local rest frame 
for measurements, and non-spinning condition is essential to eliminate any arbitrary rotational effects within the 
reference frame. The Marck’s solution satisfies the two conditions by obtaining the tetrads parallel-transported 
along a test particle’s geodesics49, specifically those of satellites in our case.
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The parameter Ψ is introduced for the parallel-transport condition of spacelike component of tetrads along the 
geodesics of observers, i.e., satellites. The parameter Ψ can be obtained by integrating the following equation49,

we solve the Eq. (17) with respect to (r, θ, φ) from (the radius of Earth, Π/2, −Π) to (an altitude of 36000 km, π , 
π ) with the intervals (100 km, Π/10, Π/20) for the case of near-Earth and for the black hole, we solve the equation 
from (4.5rs, Π/2,−Π) to (4.5rs + 2 × 1011 km, Π, Π) with the intervals (2 × 109 km, Π/10, Π/20).

For equatorial orbits, as r and θ should be constant, Eq. (17) can be rewritten as

In the case of polar orbits, if Ψ depends on r, θ, and φ , dΨ /dξ can be rewritten as 
(∂�(r, θ ,φ)/∂r)(dr/dξ) + (∂�(r, θ ,φ)/∂φ)(dφ/dξ) + (∂�(r, θ ,φ)/∂θ)(dθ/dξ) using the chain rule. Since 
the four-velocity vector is independent of φ (as shown in Eq. (15)), the second term (∂�(r, θ ,φ)/∂φ)(dφ/dξ) 
cannot be generally zero. Given that Eq. (17) are also independent of φ, this leads to a contradiction. Therefore, 
we conclude Ψ is independent of φ. Accordingly, considering, as the case of equatorial orbit, r is constant on 
the orbits, the following equation dictates the parameter Ψ of the tetrads parallel-tranported on polar orbits:

Then, transforming the Marck’s from Carter’s symmetric bases to the Boyer-Lindquist coordinate ones, we 
obtain the tetrads ei ̂ used in this paper such that

The tetrads (et̂ , er̂ , eθ̂ , eφ̂ ) obtained from Eq. (20) are asymptotically parallel to the unit vectors of global 
coordinates (∂t , ∂r , ∂θ , ∂φ) as r goes to infinity. This transformation also ensures the tetrads obtained from Marck’s 
become equivalent to those used to study of WRA in Schwarzschild spacetime in our previous work37 by setting 
spin angular momentum (J/Mc = a) of gravitating object as zero.

Also, we additionally rotate the tetrads about the local first axis to choose the local third axis as that of geo-
detic precession, compensating the frame-dragging effect. The corresponding rotation angle � is obtained by

This approach is used to ensure a consistent comparison with our previous work37 on the Schwarzschild 
metric, In that previous work, the local third axis, the quantization axis, was chosen to be the geodetic precession 
axis to isolate the geodetic precession.

Wigner rotation and the complementarity of classical and quantum theories: equivalence 
between Wigner rotation of a photon and classical polarization rotation
The polarization vector, denoted as ε(p ̂, σ =  ± 1), is defined with R(p ̂) rotating the wave vector k ̂std = (1,0,0,1) in 
the standard frame into the direction of arbitrary momentum p ̂ such that32

(16)











�
0̂

�
1̂

�
2̂

�
3̂











=











1 0 0 0

0 cos� 0 − sin�

0 0 1 0

0 sin� 0 cosψ

























√
�/�

�

e
t

0̂
− a sin

2 θe
φ

0̂

� √
�/�e

r

0̂

√
�e

θ

0̂

�

ae
t

0̂
−

�

r
2 + a

2
�

e
φ

0̂

�

sin θet
0̂
/
√
�

α
√
�/K�re

r

0̂
α
√
1/K��r

�

E

�

r
2 + a

2
�

− a�

�

β
√
1/K�a cos θ(aE sin θ −�/ sin θ) −β

√
�/Ka cos θeθ

0̂√
�/K�a cos θer

0̂

√
1/K��a cos θ

�

E

�

r
2 + a

2
�

− a�

�

−√
1/K�r(aE sin θ −�/ sin θ)

√
�/Kreθ

0̂

α
√
1/��

�

E

�

r
2 + a

2
�

− a�

� √
1/K��a cos θ

�

E

�

r
2 + a

2
�

− a�

�

β
√
�e

θ

0̂
β
√
1/�(aE sin θ −�/ sin θ)















.

(17)
d�

dξ
= K1/2

�

(

E
(

r2 + a2
)

− a�

r2 + K
+ a

(

�− aE sin2 θ
)

K − a2 cos2 θ

)

,

(18)
d�

dφ
= K1/2

�

(

E
(

r2 + a2
)

− a�

r2 + K
+ a

(

�− aE sin2 θ
)

K − a2 cos2 θ

)

dξ

dφ
.

(19)
d�

dθ
= K1/2

�

(

E
(

r2 + a2
)

− a�

r2 + K
+ a

(

�− aE sin2 θ
)

K − a2 cos2 θ

)

dξ

dθ
.

(20)











et
î
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Here, σ represents the helicity. Throughout this paper, the hatted letter represents local or global flat spacetime. 
If the polarization vector is treated as a four-vector, it can be directly subjected to a Lorentz transformation ʌ 
and be rewritten as follows:

with S(α,β) =
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 ref.32. The Wigner’s little group W(ʌ,p ̂), defined as L-1(ʌp ̂)ʌL(ʌ), 

which is a subgroup of the Lorentz group, leaves the wave vector in the standard frame invariant and can be 
decomposed into S(α,β)Rz(ψ(ʌ, p ̂/|p ̂|))32 where S(α,β) is a subgroup isomorphic to the translation of a Euclidean 
plane and Rz(ψ) represents the rotation about z-axis by ψ. The rotation angle ψ(ʌ, p ̂/|p ̂|) corresponds to the 
Wigner rotation angle. Here, we use the decomposition of the Lorentz transformation L(p)̂, which maps the wave 
vector kŝtd in the standard frame to a wave vector p,̂ into R(p)̂Bz(|p|̂) along with the invariance of the polarization 
vector under a boost Bz(|p ̂|) in the z-direction in the standard frame51. As the polarization vector is essentially 
a three-dimensional vector in the spatial part of the spacetime, the corresponding representation of Lorentz 
transformation U(ʌ) can be defined as
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polarization vector ε has no time component.
In classical description, if the light can be described as monochromatic and circular polarized wave and then 

its corresponding potential four vector φ is the function of inner product between momentum p ̂ and position 
x—̂φ=ε(p,̂ σ =  ± 1)ϕ(p∙̂x)̂—the electric fields have the same relation of Eq. (24) under the Lorentz transformation 
� . It implies that a Lorentz transformation of classical light, ensemble of photons, can have the Wigner rotation 
angle within the framework of Coulomb gauge fixing. Here, ε(p ̂, σ =  ± 1) is the four vector defined as Eq. (22) 
and ϕ(p ̂∙x ̂) is the scalar function. In details, the form of gauge-independent electromagnetic field derived from 
a Lorentz transformed potential field is as follows34:
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Eî
(

x̂
)

= −
(

�ε
(

p̂, σ = ±1
))î
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photon showcases the deep connection between the two frameworks and further illustrates the complementary 
nature of classical and quantum theories in explaining physical phenomena within their respective domains of 
applicability rather than negating the other.

Furthermore, to derive the equivalent relation, it is imperative that the potential field of light be a four-vector, 
but not the electric or magnetic fields, and that the light exhibits circular polarization—the unique discretized 
form of polarization corresponding to the quantized helicity. This result underscores the primacy of the Wigner 
rotation description for the properties of the electric field under a Lorentz transformation since the Wigner rota-
tion is rooted in intrinsic properties of the Wigner’s little group depending on a particle’s spin and the relative 
direction of a photon’s path compared to the quantization axis of the spin32,52. This perspective could furnish a 
more foundational approach to understanding the dynamics of spacetime transformations.

This Wigner rotation on a quantum state should be differentiated from that in the context of Thomas pre-
cession observed in spinning particles or rotating macroscopic gyroscopes undergoing curvilinear motion53,54. 
When an observer in an accelerated frame of reference carries out a sequence of infinitesimal Lorentz trans-
formations (boosts), an additional rotation manifests due to the non-commutativity of these transformations 
(a well-known special relativistic effect). Meanwhile, in the quantum domain, while Wigner rotation itself is 
induced from the non-commutativity of boosts as Thomas precession, its application to quantum states results 
in super-positioned spin states of a photon with different phases, called Wigner rotation angles,—distinguished 
from those which can be obtained from polarizer rotation. The Wigner rotation angle becomes observable via 
spin of particles, i.e., Wigner rotation induced from the little group does not affect spinless particles. Thus, the 
distinctiveness of the Wigner rotation angle is characterized by the introduction of superposition spin states 
without any rotation of the polarizer.
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