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Exploring the value of multiple 
preprocessors and classifiers 
in constructing models 
for predicting microsatellite 
instability status in colorectal 
cancer
Yi Ma 1,3, Zhihao Shi 1,3, Ying Wei 2, Feng Shi 2, Guochu Qin 1* & Zhengyang Zhou 1*

Approximately 15% of patients with colorectal cancer (CRC) exhibit a distinct molecular phenotype 
known as microsatellite instability (MSI). Accurate and non-invasive prediction of MSI status is 
crucial for cost savings and guiding clinical treatment strategies. The retrospective study enrolled 
307 CRC patients between January 2020 and October 2022. Preoperative images of computed 
tomography and postoperative status of MSI information were available for analysis. The stratified 
fivefold cross-validation was used to avoid sample bias in grouping. Feature extraction and model 
construction were performed as follows: first, inter-/intra-correlation coefficients and the least 
absolute shrinkage and selection operator algorithm were used to identify the most predictive feature 
subset. Subsequently, multiple discriminant models were constructed to explore and optimize the 
combination of six feature preprocessors (Box-Cox, Yeo-Johnson, Max-Abs, Min–Max, Z-score, and 
Quantile) and three classifiers (logistic regression, support vector machine, and random forest). 
Selecting the one with the highest average value of the area under the curve (AUC) in the test set as 
the radiomics model, and the clinical screening model and combined model were also established 
using the same processing steps as the radiomics model. Finally, the performances of the three 
models were evaluated and analyzed using decision and correction curves.We observed that the 
logistic regression model based on the quantile preprocessor had the highest average AUC value in 
the discriminant models. Additionally, tumor location, the clinical of N stage, and hypertension were 
identified as independent clinical predictors of MSI status. In the test set, the clinical screening model 
demonstrated good predictive performance, with the average AUC of 0.762 (95% confidence interval, 
0.635–0.890). Furthermore, the combined model showed excellent predictive performance (AUC, 
0.958; accuracy, 0.899; sensitivity, 0.929) and favorable clinical applicability and correction effects. 
The logistic regression model based on the quantile preprocessor exhibited excellent performance 
and repeatability, which may further reduce the variability of input data and improve the model 
performance for predicting MSI status in CRC.

Keywords  Microsatellite instability, Radiomics, Preprocessors and classifiers, Colorectal cancer, Computed 
tomography

Colorectal cancer (CRC) is a frequent malignant tumor worldwide, ranking third in the number of new can-
cer cases and deaths in the United States in 20231. Approximately 15% of patients with CRC exhibit a distinct 
molecular phenotype known as microsatellite instability (MSI)2, which can be categorized into three groups 
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according to the frequency of MSI occurrence: microsatellite stable (MSS), low-frequency MSI (MSI-L), and 
high-frequency MSI (MSI-H)3. Accurate determination of MSI status is critical in guiding clinical treatment 
strategies, as reflected in the diagnostic and treatment guidelines of CRC that recommend MSI testing for all 
patients with CRC.

The MSI status has important implications for the diagnosis, treatment reaction, and prognostic result of 
CRC. First, MSI is the characteristic molecule of the most common hereditary CRC syndrome, also known 
as Lynch syndrome. Thus, the MSI status identifys the families with this syndrome and reminds their risk of 
the disease4. Second, patients with MSI are more likely to derive therapeutic benefits from programmed death 
receptor1 (PD-1) monoclonal antibody treatment other than the traditional fluorouracil chemotherapy5–7. The 
underlying reason may be related to the more obvious cancer cell mutations and easier immune recognition in 
patients with MSI8,9. Third, the 5-year survival rate of CRC patients with MSI is significantly longer than that of 
patients with MSS, particularly in patients with stages II and III CRC​10.

The most common detection methods for MSI include immunohistochemistry (IHC) and polymerase chain 
reaction (PCR). Both methods are invasive and have high inspection costs11,12. Surgical resection is the ideal 
method of obtaining histological specimens for testing13. However, it is not recommended clinically for lesions 
with distant metastasis. Considering the impact of tumor heterogeneity, the small portion of sample tissue 
obtained through biopsy may not accurately reflect the MSI status14. Repeated biopsies may increase the risk of 
tumor bleeding, dissemination, etc. Therefore, it is necessary to develop a non-invasive, economical, and effective 
preoperative prediction method for MSI.

Radiomics can obtain many informative features that cannot be observed by the naked eye from conventional 
images. Further, it can not only non-invasively and quantitatively evaluate tumor heterogeneity, but also deeply 
mine the clinicopathological information contained in big data, providing more objective and accurate support 
for clinical decision-making15,16. Presently, radiomics has been widely used in preoperative diagnosis17,18, 
treatment response19,20, and prognostic assessment of CRC​21,22. Several studies have confirmed that the radiomics 
features of enhanced CT could help identify preoperative MSI status in CRC patients23–26. However, during 
the model construction, only two studies mentioned the use of preprocessors, and both used one type23,26. 
In addition, they all used only one type of classifier. Data processing is crucial in machine learning, different 
preprocessors and classifiers have different data processing functions, which may affect the performance and 
generalization ability of the models27,28. Therefore, it’s necessary to choose the appropriate preprocessor and 
classifier for improving the model performance.

Our study retrospectively collected the clinicopathological data of CRC patients. Based on six preprocessors 
and three classifiers, multiple discriminant models, a clinical screening model, and a nomogram were constructed 
to predict MSI status. We aimed to explore and optimize the combination of mulitiple preprocessors and 
classifiers to improve the performance and generalization ability of prediction models.

Materials and methods
Patients and data
The ethics review committee of Nanjing Drum Tower Hospital approved this retrospective study and waived 
the informed consent form. All the procedures involving human participants were followed in accordance with 
the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The data of patients 
with CRC confirmed by surgery and pathology in our hospital were collected continuously from January 2020 
to October 2022. The inclusion criteria were as following: (1) before surgery the patients received abdominal 
enhanced computed tomography (CT) examination, (2) pathologically confirmed CRC, and (3) MSI status tests 
by IHC were available. The exclusion criteria were as following: (1) the interval between CT scan and surgery 
were more than 2 weeks (n = 15), (2) insufficient image quality to distinguish tumor contour due to motion or 
metal artifacts (n = 18), and (3) any anti-tumor treatment before CT scan (n = 32). Figure 1 presents the specific 
inclusion and exclusion criteria.

The collected clinical and pathological indicators included history with or without hypertension, diabetes, sex, 
age, tumor location, and the clinical of TNM stage. Tumor markers, including CEA, CA125, and CA199, were 
the results of the last laboratory examination before operation. These results were confirmed by two clinicians.

MSI status assessment
The pathological tissues were stained during IHC using the standard streptavidin–biotin peroxidase process29. 
Subsequently, the status of MSI was identified by assessing the IHC staining results of four major mismatch repair 
(MMR) proteins (MLH1, PMS2, MSH2, and MSH6) contained in the tissue. In the four MMR proteins, any lack 
of expression was considered as MSI, while all positive expressions were considered as MSS30.

CT scan
All patients were scanned using the same 160-slice CT scanner (uCT 780, United Imaging Healthcare, Shanghai, 
China). Each patient received an informed consent form at the time of appointment for CT scan, covering unified 
pre-examination preparation work. It was necessary to fast for more than 4 h before the examination and take 
250–300 mL of water orally 30 min before scanning. In order to improve the standardization of examinations, 
an integrated scanning protocol had been developed specifically for the patients, including a unified scanning 
sequence package and contrast agent. Omnipaque (350 mg I/mL, GE Healthcare) with a dose of 1.5 mL/kg 
was administered through the anterior elbow vein using a high-pressure syringe at rate of 2.5–3.0 mL/s. Each 
patient underwent plain scanning, followed by three phases of enhanced scanning. Starting from the injection 
of contrast agent, the triggering of the arterial, venous, and delay phases scans was delayed for 40 s, 70 s, and 
180 s, respectively. The scanning field was from the diaphragm top to the pubic symphysis level. The parameters 
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were as follows: tube current: automatic mAs, tube voltage: 120 kV, pitch: 0.9875: 1, rotation time: 0.5 s, matrix: 
512 × 512, field of view: 350 × 350 mm. All of the images were reconstructed with hybrid iterative reconstruction 
(KARL 3D, United Imaging Healthcare, Shanghai, China) at a 5.0-mm layer thickness and 5.0-mm layer spacing.

Image processing and feature extraction
The venous phase images were selected and sent to the uAI Research Portal software (Shanghai United Imag-
ing Intelligence, Co., Ltd.). It’s workflow consisted of four parts: image annotation, feature extraction, feature 
selection, model construction and evaluation (Fig. 2). All tumors were manually drawn by a senior diagnostic 
radiologist (reader 1 with 11 years of experience), who was blinded to the status of MSI. The cross-section with 
the largest tumor area was chosen, including necrotic and bleeding areas, while avoiding blood vessels, perienteric 

Fig. 1.   Patient screening and grouping process. MSS Microsatellite stability, MSI Microsatellite instability, IHC 
immunohistochemistry.

Fig. 2.   Workflow of MSI status prediction of colorectal cancer patients including image segmentation and 
feature extraction, data grouping, feature and model selection, and model building and evaluation.
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fat, intestinal contents, and gas. These areas were marked as regions of interest (ROI) (Fig. 3). The largest tumor 
was chosen to draw the ROI for patients with multiple ones.

Two-dimensional radiomics features were collected from the extensive used radiomics toolbox of 
PyRadiomics31, which contains seven stable feature categories and 14 image filters. Ultimately, 2,259 features were 
picked up from each ROI. Detailed information on the radiomics features can be obtained in our previous study26.

Feature selection and model construction
After generating the features, machine-learning methods were utilized to select appropriate features and predict 
the MSI status in CRC patients. To avoid the sample bias of grouping, a stratified fivefold cross-validation 
strategy was used to randomly but equally divided all the patients into five partitions to make sure that the same 
percentage of each class (i.e., MSI/MSS) was preserved in each partition. Finally, five different training and test 
sets were acquired, and the mean value was taken to obtain a more reliable and accurate sample evaluation. To 
ensure the robustness and generalizability of each model, the feature selection and prediction process was limited 
to training set, and the parameters obtained from the training cohort were applied to the test set.

Before the feature selection, we first used inter-/intra-correlation coefficients (ICCs) to evaluate inter-/intra-
delineator reproducibility. In detail, about two months after the completion of the image delineation, 30 patients32 
were randomly selected, and the above steps were finished by reader 1 and another radiodiagnosis physician 
(reader 2 with 8 years of experience) to segment the images, i.e., manually delineate the ROIs of 30 patients and 
extract the radiomics features. Features with ICCs less than 0.75 were excluded. Subsequently, the least absolute 
shrinkage and selection operator algorithm (LASSO) was used to pick the most predictive feature subset within 
each training set of the fivefold cross-validation. The corresponding coefficients of the selected features were 
evaluated and utilized to calculate each patient’s Rad-score. The Rad-Score of each sample in the test set was 
computed based on the LASSO coefficients of the corresponding training set and the feature values of the test 
set sample itself. The following equation was used to calculate the Rad-score:

where n is the number of selected features, Ci is the coefficient of the ith feature from the LASSO regression 
algorithm, Xi is the ith feature, and b is the intercept of LASSO.

Based on six feature preprocessors (Box-Cox, Yeo-Johnson, Max-Abs, Min–Max, Z-score, and Quantile) and 
three classifiers [logistic regression, support vector machine (SVM), and random forest], different discriminant 
models were constructed in the training set using the screened radiomics features. Logistic regression is a well-
established and interpretable method, suitable for linear relationship problems33. SVM is known for its ability 
to handle complex data patterns and nonlinear relationships or when the decision boundaries are not linearly 
separable34. Random forest, an ensemble learning method, offers robustness and good performance through the 
combination of multiple decision trees35. These classifiers have been widely used and demonstrated effectiveness 
in studies36–38, making them suitable choices for our analysis.

In the test stage, the trained models were applied to the test dataset to predict the probability of being MSI or 
MSS status. The model with the highest average value of the area under the curve (AUC) in the test set was chosen 
as the radiomics model. To predict the MSI status, multivariate regression analysis was performed on clinical 
characteristics with P values less than 0.1 in the difference analysis to screen out the clinical independent factors. 
The same feature preprocessing algorithm and classifier of the radiomics model were used to develop the clinical 
screening model and combined model. The clinical screening model was composed of clinical independent 
factors, whereas the combined model, including the clinical independent factors and the Rad-score derived from 
the LASSO feature selection process. To provide clinicians a convenient and user-friendly approach for rapidly 
and accurately estimating the risk of MSI status in individual patients, a nomogram model was developed. It 
should be noted that all available data was employed for training and estimating the parameters of the nomogram, 

Rad− score =

∑n

i=1
Ci × Xi + b

Fig. 3.   The tumor with the largest area in cross-section were segmented on venous phase, avoiding the 
intestinal contents and gas.
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which allows for a more comprehensive understanding of the overall patterns and relationships. Specifically, 
the clinical characteristics and Rad-score values were directly obtained by concatenating the test sets from 
the fivefold cross-validation used in the construction of combined model. Additionally, three features were 
randomly selected from the features screened by LASSO to perform six data transformations to compare the 
feature processing results of different preprocessors. In model construction, the hyperparameters were defined 
using the training set with a grid search to optimize predictive accuracy, detailed information can be found in 
the Supplementary material.

Statistical analysis
We separately used the Mann–Whitney U and the χ2 test to compare the continuous and the categorical 
variables.The statistical analyses were bilateral, and statistical difference was set to P < 0.05. To evaluate and 
verify the predictive effectiveness of the models, the receiver operating characteristic (ROC) curves of the clinical, 
radiomics, and combined models were analyzed, respectively. We used the DeLong test to statistically compare 
the AUC values obtained from the different prediction models. The average performance of each model was 
evaluated across the fivefold cross-validation. The clinical applicability and correction effects of the models were 
compared using decision curve analysis (DCA) and calibration curves. The Brier score (BS) was used to calculate 
the quantitative analysis of each model performance: BS = 0 indicates that the model performs excellently and 
the predicted and actual values were identical; BS > 0.25 implies the failure of the model prediction. To address 
the impact of class imbalance on our calibration curves analysis, the BS value was adjusted based on the class 
distribution. All statistical tests were executed using IBM SPSS Statistics for Windows, version 26 (IBM Corp., 
Armonk, N.Y., USA) and R software (version 3.5.2; http://​www.​Rproj​ect.​org). All feature preprocessing and 
model construction were carried out using the scikit-learn package in Python 3.9.12.

Results
Patient profiles
There were 307 CRC patients with 182 males (59.3%) and 125 females (40.7%) were enrolled. Their average age 
was 62.7 ± 12.0 years (27–93 years), including 68 (22.1%) patients with MSI, and 239 (77.9%) patients with MSS. 
In Table 1, the clinical analysis of the two groups showed statistical differences in hypertension (P = 0.009), the 
clinical of N stage (P < 0.001), and tumor location (P < 0.001). The multivariate regression analysis identified 

Table 1.   Characteristics of patients [median (Q1, Q3) or no. (%)]. P value was derived from the Mann–
Whitney U test or the χ2 test. P value less than .05 were considered as statistically significant. CEA: 
carcinoembryonic antigen level; CA: carbohydrate antigen.

Variable MSI (n = 68) MSS (n = 239) P value

Gender 0.077

 Male 34 148

 Female 34 91

Age (years) 64 (53, 73) 63 (55, 71) 0.741

Hypertension 0.009

 Presence 16 (23.53%) 98 (41.00%)

 Absence 52 (76.47%) 141(59.00%)

Diabetes 0.196

 Presence 11 (16.18%) 25 (10.46%)

 Absence 57 (83.82%) 214 (89.54%)

Tumor location  < 0.001

 Right colon 43 (63.23%) 75 (31.38%)

 Left colon 13 (19.12%) 45 (18.83%)

 Rectum 12 (17.65%) 119 (49.79%)

T stage 0.707

 T1 ~ 2 9 (13.24%) 36 (15.06%)

 T3 ~ 4 59 (86.76%) 203 (84.94%)

N stage  < 0.001

 N0 55 (80.88%) 113 (47.28%)

 N1 ~ 2 13 (19.12%) 126 (52.72%)

M stage 0.344

 M0 68 (100.00%) 233 (97.49%)

 M1 0 (0.00%) 6 (2.51%)

 CEA (ng/ml) 2.22 (0.94, 4.13) 2.65 (1.43, 6.46) 0.074

 CA125 (U/ml) 8.95 (6.20, 16.48) 8.00 (5.10, 11.30) 0.061

 CA199 (U/ml) 15.65 (7.44, 25.98) 12.26 (7.15, 30.49) 0.483

http://www.Rproject.org
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hypertension [OR 0.378 (95% confidence intervals (CI), 0.191–0.748), P = 0.005], N stage [OR 0.195 (95% CI 
0.096–0.395), P < 0.001], and tumor location [OR 0.347 (95% CI 0.139–0.866), P = 0.023] as independent factors 
of MSI status.

Model building and processor analysis
We evaluated the average performance of each model across the fivefold cross-validation. In Table 2, we can see 
that under different types of preprocessors, the models established by the logistic regression classifier all had the 
higher average AUC value. And the logistic regression model based on the quantile preprocessor had the highest 
average AUC value of 0.852 [95% confidence interval (CI) 0.750–0.958] in all the discriminant models (Table S2). 
It was selected as the radiomics model which included 23 radiomic features (Figure S1). The logistic regression 
model based on the quantile preprocessor was also used to build the clinical screening model as well as the com-
bined model. In the test cohort, the clinical screening model produced moderate performance with an average 
AUC value of 0.762 (95% CI 0.635–0.890), and the combined model yielded the excellent performance with an 
average AUC value of 0.958 (95% CI 0.920–0.998) (Table 3). In order to assess their predictive performance, 
the average ROC curves of the training and test sets were presented in Fig. 4. To provide a more comprehensive 
assessment of the model’s performance across different training and test sets on the fivefold cross-validation, 
the predictive performance and ROC curves for each fold of the combined model was presented in Table S4 and 
Figure S2, respectively. The results revealed that each fold achieved a desirable diagnostic performance, with AUC 

Table 2.   Analysis of average AUC values for 18 discriminant models with preprocessing. AUC, area under the 
curve. SVM, support vector machine.

Feature selection methods

Box-Cox Max-Abs Min–Max Quantile Yeo-Johnson Z-score

Training Test Training Test Training Test Training Test Training Test Training Test

Logistic regression 0.914 0.846 0.907 0.839 0.893 0.833 0.903 0.852 0.911 0.845 0.911 0.845

SVM 0.913 0.837 0.981 0.823 0.909 0.824 0.906 0.827 0.906 0.829 0.906 0.829

Random forest 0.965 0.775 0.942 0.801 0.941 0.803 0.973 0.735 0.956 0.786 0.953 0.780

Table 3.   Pairwise comparisons of average AUCs of the clinical screening model, radiomics model, and 
combined model. P value derived from Delong test.

Cohorts

AUC (95% CI) P value
(0 vs. 1)

P value
(0 vs. 2)

P value
(1 vs. 2)Clinical screening model (0) Radiomics model (1) Combined model (2)

Training set 0.770
(0.708–0.832)

0.903
(0.863–0.944)

0.963
(0.946–0.985)  < 0.001  < 0.001  < 0.001

Test set 0.762
(0.635–0.890)

0.852
(0.750–0.958)

0.958
(0.920–0.998) 0.030  < 0.001  < 0.001

Fig. 4.   The average receiver operating characteristic (ROC) curves of the clinical screening model, radiomics 
model and combined model in the training set (A) and test set (B). The combined model performed better than 
the other two models with the average area under the curve (AUC) of 0.963 and 0.958 in the training and test 
set, respectively.
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values ranging from 0.959 to 0.978 and accuracy ranging from 0.886 to 0.910 in the training set. Similarly, in the 
test set, the AUC values ranged from 0.912 to 0.987 and accuracy ranged from 0.855 to 0.934. After the process-
ing of the six feature preprocessors, the result data of the quantile transformer tended to be similar to a normal 
distribution, and the mean value of the MSS features was higher than that of MSI (Fig. 5). Additionally, ablation 
experiments were conducted on the selected radiomics features without preprocessing (Table S2). The results 
showed that the use of preprocessing improved average AUC values of the discriminative models by at least 2%.

Clinical application
To promote clinical practice, a quantitative nomogram was developed for non-invasive prediction of MSI status 
(Fig. 6). We used the consistency indexes (C-indexes) to estimate its performance. The C-index of the nomo-
gram reached 0.970, indicating its excellent effectiveness. The average predictive ability of the combined model 
(accuracy: 0.899; sensitivity: 0.929; specificity: 0.891) was superior to that of the radiomics and clinical screening 
model in the test set (Table S3). The Delong test further revealed statistical differences between any two models 

Fig. 5.   Randomly selected 3 features for six data transformations to compare the feature processing results of 
different preprocessors. The results showed that the data processed by the Quantile transformer were closer to 
the normal distribution, which can make better distinguish between MSI and MSS.
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(P < 0.05) (Table 3). It indicated that the combined model can better predict MSI status than the radiomics model 
and the clinical screening model in the calibration curve. The adjusted BS values of the clinical screening model, 
radiomics model, and combined model were 0.196, 0.128, and 0.073 in the training set and 0.199, 0.164, and 
0.079 in the test set, respectively (Fig. 7A,B). DCA revealed that compared to the other two models, the combined 
model generally had the best net benefit value over the entire range (Fig. 7C,D).

Discussion
In our study, six preprocessors and three classifiers were used to build models to predict the status of MSI 
in CRC. It revealed that the logistic regression model based on the quantile preprocessor exhibited good 
predictive performance. The same combination was also used to build the clinical and combined models. 
The results showed that the clinical screening model demonstrated moderate predictive performance, with 
an average AUC value of 0.762 (95% CI 0.635–0.890) in the test cohort. Furthermore, the combined model 
demonstrated excellent predictive ability with an average AUC value of 0.958 (95% CI 0.920–0.998). This further 
confirms the performance and repeatability of the chosen combination.

In this study, 11 clinical factors were included. MSI incidence was 22.15% (68/307). It mainly happened in 
the right colon, and the incidence rate was 63.23% (43/68), consistent with previous studies39,40. Aside from 
tumor location, we discovered that the clinically independent factors to predict MSI status also included N-stage 
and hypertension. Lymph node metastasis is an important prognostic factor for CRC, the higher the N-stage, 
the shorter the patient’s survival period maybe41,42. In addition, the patients with metabolic syndrome such as 
hypertension or diabetes may have a higher risk with disease recurrence and death43. The previous reports10,44 
have confirmed that CRC patients with MSI usually have a favorable outcome. It may be related to the lower 
incidence rate of lymph node metastasis and hypertension incidence in our study. However, a recent research45 
based on 100 patients found that there was no significant relationship between hypertension and MSI status. 
These results need to be confirmed by future studies with larger sample sizes.

Radiomics analysis can extract high-throughput features hidden in images to reflect tumor heterogeneity46. 
It has been widely used in the field of prognosis, treatment evaluation, and survival prediction of many clinical 
diseases47,48. Pathologically, the histological heterogeneity of MSI CRC is more obvious than that of MSS. 
The former has a higher proportion of lymphocyte infiltration and mucus components49. These histological 
differences have laid the foundation for radiomics analysis.

Previous studies have predominantly used a single preprocessor and classifier to establish predictive models. 
For instance, Cao et al.23 and our previous work26 both used the preprocessor of Z-score normalization and the 
classifier of logistic regression to build the models. The combined models showed excellent predictive ability with 
an AUC of 0.964 (95% CI: 0.919–1.000) and 0.928 (95% CI: 0.860–0.991) in the validation cohort, respectively. 
Ying et al.24 and Pei et al.25 proposed the combined model with an AUC of 0.900 (95% CI 0.830–0.960) and 0.770 
(95% CI 0.680–0.850) in the validation sets. They both used the logistic regression classifier, but the preprocessor 
did not explicitly state. As we know, data processing is crucial in machine learning. Through appropriate 

Fig. 6.   An individualized nomogram for preoperative prediction of MSI status in patients with colorectal 
cancer. In terms of the N stage, the value of 0 indicates N0 while 1 represents either N1 or N2. For hypertension, 
0 indicates absence of hypertension, whereas 1 indicates that the patient has hypertension. Regarding the 
location, 0 corresponds to the left colon, 1 indicates the right colon, and 2 refers to the rectum. As for Rad-
score, the value was calculated for each patient through a linear combination of the selected features weighted 
by their corresponding LASSO coefficients. Note that, all the test sets data from the fivefold cross-validation of 
combined model construction were concatenated and used for the nomogram model development. When using 
the nomogram, first locate each variable on the axis, and then draw a vertical line towards the points axis to 
obtain the corresponding score. Finally, by summing all the scores and positioning them on the bottom line, the 
predicted incidence of MSI states could be obtained.
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preprocessing, the raw data can be transformed into data features for model use. Subsequently, the classifier can 
classify the filtered features into reasonable categories to improve the performance and generalization ability of 
the model27,28. Therefore, our study simultaneously selected 6 preprocessors and 3 classifiers to constructed the 
models, and explored the impact of different combinations on model performance.

Consistent with the recent studies23–26,we selected the logistic regression classifier to establish the predictive 
models. The logistic regression model is suitable for solving binary classification problems in machine learning, 
which can quickly learn and predict data, and the obtained results are easy to explain50. These characteristics make 
it advantageous in predicting MSI status. However, there were several scenarios where SVM or random forest 
could potentially outperform logistic regression. For example, in image recognition tasks or when dealing with 
datasets with high-dimensional feature spaces and intricate patterns, SVM often shows superior performance34. 
Random forest, on the other hand, tends to perform better when there are numerous features and potential 
interactions among them. It’s also more robust to noise and outliers in the data35. In our framework, including 
these three classifiers allows us to comprehensively evaluate and compare their performance, and thus determine 
which classifier is more suitable for our given problem.

Additionally, as shown in Table S2, the preprocessors play a relatively minor role in influencing the 
classification performance, indicating that they mainly focus on operations such as data cleaning, normalization, 
and similar tasks that do not substantially alter the fundamental nature and discriminatory power of the 
features. On the contrary, the type of features and the choice of classifier have a more significant impact on the 
classification performance. Different feature types capture distinct aspects of the data, and each classifier has 
its inherent strengths and weaknesses in handling and learning from these features. Regarding our task, the 
combination of the logistic regression classifier and the quantile transformer proved to be effective in predicting 

Fig. 7.   Calibration curves of the clinical screening model, radiomics model and combined model in the 
training set (A) and test set (B). The dotted line represented a perfect prediction, while the solid lines with three 
different colors indicated the predictive performance of the three models. The closer to the dotted line, the 
better prediction of the model. The Brier score values were adjusted based on the imbalanced class distribution. 
Calibration curves showed the prediction performance for MSI status of the combined model was generally 
better than the other two in the test set. Decision curve analysis (DCA) of the three model (C–D). The x-axis 
was the threshold probability and the y-axis was the net benefit. Within any threshold probability range, a higher 
curve was the best prediction for maximizing the net benefit. The DCA showed that the combined model had 
the highest net benefit almost across the entire range.
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for the MSI status of CRC patients, highlighting the importance of selecting the right combination of algorithm 
to optimize classification results.

To facilitate clinical applications, a nomogram was developed to optimize treatment strategies. Our study 
screened common clinical indicators such as location, N-stage, and hypertension as predictive factors. By 
constructing a nomogram, it was expected to save the cost of preoperative individualized and precise prediction 
of MSI status. What’s more, the effectiveness and repeatability of the selected processor and classifier have been 
preliminarily validated in the construction of clinical screening model and combined model. Standardized 
processing can further reduce the variability of the input data, promote the homogenization of different 
researches and ensure comparability of results.

However, our research still had several limitations. Firstly, it was a single-center study with a limited sample 
size, it will be necessary to further validate our results through external and multicenter studies. Secondly, we 
chosen the largest layer of tumor to draw the ROI, similar to previous studies32,51. But it may result in a certain 
degree of selection bias. Thirdly, all of the CT images were obtained from a same scanner, it may affect the 
generalizability of our findings, although it reduced changes in image acquisition.

Conclusion
Simultaneously using multiple preprocessors and classifiers to construct predictive models, our results showed 
that the logistic regression model based on the quantile preprocessor exhibited excellent predictive performance 
and repeatability. It may further reduce the variability of input data and improve the model performance for 
predicting MSI status in CRC.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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