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Approximately 15% of patients with colorectal cancer (CRC) exhibit a distinct molecular phenotype
known as microsatellite instability (MSI). Accurate and non-invasive prediction of MSI status is

crucial for cost savings and guiding clinical treatment strategies. The retrospective study enrolled

307 CRC patients between January 2020 and October 2022. Preoperative images of computed
tomography and postoperative status of MSI information were available for analysis. The stratified
fivefold cross-validation was used to avoid sample bias in grouping. Feature extraction and model
construction were performed as follows: first, inter-/intra-correlation coefficients and the least
absolute shrinkage and selection operator algorithm were used to identify the most predictive feature
subset. Subsequently, multiple discriminant models were constructed to explore and optimize the
combination of six feature preprocessors (Box-Cox, Yeo-Johnson, Max-Abs, Min-Max, Z-score, and
Quantile) and three classifiers (logistic regression, support vector machine, and random forest).
Selecting the one with the highest average value of the area under the curve (AUC) in the test set as
the radiomics model, and the clinical screening model and combined model were also established
using the same processing steps as the radiomics model. Finally, the performances of the three
models were evaluated and analyzed using decision and correction curves.We observed that the
logistic regression model based on the quantile preprocessor had the highest average AUC value in
the discriminant models. Additionally, tumor location, the clinical of N stage, and hypertension were
identified as independent clinical predictors of MSI status. In the test set, the clinical screening model
demonstrated good predictive performance, with the average AUC of 0.762 (95% confidence interval,
0.635-0.890). Furthermore, the combined model showed excellent predictive performance (AUC,
0.958; accuracy, 0.899; sensitivity, 0.929) and favorable clinical applicability and correction effects.
The logistic regression model based on the quantile preprocessor exhibited excellent performance
and repeatability, which may further reduce the variability of input data and improve the model
performance for predicting MSI status in CRC.

Keywords Microsatellite instability, Radiomics, Preprocessors and classifiers, Colorectal cancer, Computed
tomography

Colorectal cancer (CRC) is a frequent malignant tumor worldwide, ranking third in the number of new can-
cer cases and deaths in the United States in 2023'. Approximately 15% of patients with CRC exhibit a distinct
molecular phenotype known as microsatellite instability (MSI)?, which can be categorized into three groups
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according to the frequency of MSI occurrence: microsatellite stable (MSS), low-frequency MSI (MSI-L), and
high-frequency MSI (MSI-H)?. Accurate determination of MSI status is critical in guiding clinical treatment
strategies, as reflected in the diagnostic and treatment guidelines of CRC that recommend MSI testing for all
patients with CRC.

The MSI status has important implications for the diagnosis, treatment reaction, and prognostic result of
CRC. First, MSI is the characteristic molecule of the most common hereditary CRC syndrome, also known
as Lynch syndrome. Thus, the MSI status identifys the families with this syndrome and reminds their risk of
the disease®. Second, patients with MSI are more likely to derive therapeutic benefits from programmed death
receptorl (PD-1) monoclonal antibody treatment other than the traditional fluorouracil chemotherapy®~’. The
underlying reason may be related to the more obvious cancer cell mutations and easier immune recognition in
patients with MSI®®. Third, the 5-year survival rate of CRC patients with MSI is significantly longer than that of
patients with MSS, particularly in patients with stages IT and III CRC'.

The most common detection methods for MSI include immunohistochemistry (IHC) and polymerase chain
reaction (PCR). Both methods are invasive and have high inspection costs'>!?. Surgical resection is the ideal
method of obtaining histological specimens for testing'®. However, it is not recommended clinically for lesions
with distant metastasis. Considering the impact of tumor heterogeneity, the small portion of sample tissue
obtained through biopsy may not accurately reflect the MSI status'®. Repeated biopsies may increase the risk of
tumor bleeding, dissemination, etc. Therefore, it is necessary to develop a non-invasive, economical, and eftective
preoperative prediction method for MSI.

Radiomics can obtain many informative features that cannot be observed by the naked eye from conventional
images. Further, it can not only non-invasively and quantitatively evaluate tumor heterogeneity, but also deeply
mine the clinicopathological information contained in big data, providing more objective and accurate support
for clinical decision-making'>!®. Presently, radiomics has been widely used in preoperative diagnosis'”*%,
treatment response’*?’, and prognostic assessment of CRC?*2, Several studies have confirmed that the radiomics
features of enhanced CT could help identify preoperative MSI status in CRC patients?*-?. However, during
the model construction, only two studies mentioned the use of preprocessors, and both used one type?*%.
In addition, they all used only one type of classifier. Data processing is crucial in machine learning, different
preprocessors and classifiers have different data processing functions, which may affect the performance and
generalization ability of the models?”?. Therefore, it’s necessary to choose the appropriate preprocessor and
classifier for improving the model performance.

Our study retrospectively collected the clinicopathological data of CRC patients. Based on six preprocessors
and three classifiers, multiple discriminant models, a clinical screening model, and a nomogram were constructed
to predict MSI status. We aimed to explore and optimize the combination of mulitiple preprocessors and
classifiers to improve the performance and generalization ability of prediction models.

Materials and methods
Patients and data
The ethics review committee of Nanjing Drum Tower Hospital approved this retrospective study and waived
the informed consent form. All the procedures involving human participants were followed in accordance with
the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The data of patients
with CRC confirmed by surgery and pathology in our hospital were collected continuously from January 2020
to October 2022. The inclusion criteria were as following: (1) before surgery the patients received abdominal
enhanced computed tomography (CT) examination, (2) pathologically confirmed CRC, and (3) MSI status tests
by IHC were available. The exclusion criteria were as following: (1) the interval between CT scan and surgery
were more than 2 weeks (n=15), (2) insufficient image quality to distinguish tumor contour due to motion or
metal artifacts (n=18), and (3) any anti-tumor treatment before CT scan (n=32). Figure 1 presents the specific
inclusion and exclusion criteria.

The collected clinical and pathological indicators included history with or without hypertension, diabetes, sex,
age, tumor location, and the clinical of TNM stage. Tumor markers, including CEA, CA125, and CA199, were
the results of the last laboratory examination before operation. These results were confirmed by two clinicians.

MSI status assessment

The pathological tissues were stained during IHC using the standard streptavidin-biotin peroxidase process®.
Subsequently, the status of MSI was identified by assessing the THC staining results of four major mismatch repair
(MMR) proteins (MLH1, PMS2, MSH2, and MSH6) contained in the tissue. In the four MMR proteins, any lack
of expression was considered as MSI, while all positive expressions were considered as MSS®.

CT scan

All patients were scanned using the same 160-slice CT scanner (uCT 780, United Imaging Healthcare, Shanghai,
China). Each patient received an informed consent form at the time of appointment for CT scan, covering unified
pre-examination preparation work. It was necessary to fast for more than 4 h before the examination and take
250-300 mL of water orally 30 min before scanning. In order to improve the standardization of examinations,
an integrated scanning protocol had been developed specifically for the patients, including a unified scanning
sequence package and contrast agent. Omnipaque (350 mg I/mL, GE Healthcare) with a dose of 1.5 mL/kg
was administered through the anterior elbow vein using a high-pressure syringe at rate of 2.5-3.0 mL/s. Each
patient underwent plain scanning, followed by three phases of enhanced scanning. Starting from the injection
of contrast agent, the triggering of the arterial, venous, and delay phases scans was delayed for 40 s, 70 s, and
180 s, respectively. The scanning field was from the diaphragm top to the pubic symphysis level. The parameters
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Fig. 1. Patient screening and grouping process. MSS Microsatellite stability, MSI Microsatellite instability, THC

immunohistochemistry.

were as follows: tube current: automatic mAs, tube voltage: 120 kV, pitch: 0.9875: 1, rotation time: 0.5 s, matrix:
512x 512, field of view: 350 x 350 mm. All of the images were reconstructed with hybrid iterative reconstruction
(KARL 3D, United Imaging Healthcare, Shanghai, China) at a 5.0-mm layer thickness and 5.0-mm layer spacing.

Image processing and feature extraction

The venous phase images were selected and sent to the uAI Research Portal software (Shanghai United Imag-
ing Intelligence, Co., Ltd.). It’s workflow consisted of four parts: image annotation, feature extraction, feature
selection, model construction and evaluation (Fig. 2). All tumors were manually drawn by a senior diagnostic
radiologist (reader 1 with 11 years of experience), who was blinded to the status of MSI. The cross-section with
the largest tumor area was chosen, including necrotic and bleeding areas, while avoiding blood vessels, perienteric
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Fig. 2. Workflow of MSI status prediction of colorectal cancer patients including image segmentation and
feature extraction, data grouping, feature and model selection, and model building and evaluation.
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fat, intestinal contents, and gas. These areas were marked as regions of interest (ROI) (Fig. 3). The largest tumor
was chosen to draw the ROI for patients with multiple ones.

Two-dimensional radiomics features were collected from the extensive used radiomics toolbox of
PyRadiomics®!, which contains seven stable feature categories and 14 image filters. Ultimately, 2,259 features were
picked up from each ROL Detailed information on the radiomics features can be obtained in our previous study?.

Feature selection and model construction

After generating the features, machine-learning methods were utilized to select appropriate features and predict
the MSI status in CRC patients. To avoid the sample bias of grouping, a stratified fivefold cross-validation
strategy was used to randomly but equally divided all the patients into five partitions to make sure that the same
percentage of each class (i.e., MSI/MSS) was preserved in each partition. Finally, five different training and test
sets were acquired, and the mean value was taken to obtain a more reliable and accurate sample evaluation. To
ensure the robustness and generalizability of each model, the feature selection and prediction process was limited
to training set, and the parameters obtained from the training cohort were applied to the test set.

Before the feature selection, we first used inter-/intra-correlation coefficients (ICCs) to evaluate inter-/intra-
delineator reproducibility. In detail, about two months after the completion of the image delineation, 30 patients®
were randomly selected, and the above steps were finished by reader 1 and another radiodiagnosis physician
(reader 2 with 8 years of experience) to segment the images, i.e., manually delineate the ROIs of 30 patients and
extract the radiomics features. Features with ICCs less than 0.75 were excluded. Subsequently, the least absolute
shrinkage and selection operator algorithm (LASSO) was used to pick the most predictive feature subset within
each training set of the fivefold cross-validation. The corresponding coefficients of the selected features were
evaluated and utilized to calculate each patient’s Rad-score. The Rad-Score of each sample in the test set was
computed based on the LASSO coeflicients of the corresponding training set and the feature values of the test
set sample itself. The following equation was used to calculate the Rad-score:

Rad — score = Zn ICi xXi+b
i=

where n is the number of selected features, C; is the coefficient of the ith feature from the LASSO regression
algorithm, X; is the ith feature, and b is the intercept of LASSO.

Based on six feature preprocessors (Box-Cox, Yeo-Johnson, Max-Abs, Min-Max, Z-score, and Quantile) and
three classifiers [logistic regression, support vector machine (SVM), and random forest], different discriminant
models were constructed in the training set using the screened radiomics features. Logistic regression is a well-
established and interpretable method, suitable for linear relationship problems®. SVM is known for its ability
to handle complex data patterns and nonlinear relationships or when the decision boundaries are not linearly
separable®®. Random forest, an ensemble learning method, offers robustness and good performance through the
combination of multiple decision trees*. These classifiers have been widely used and demonstrated effectiveness
in studies®*~%, making them suitable choices for our analysis.

In the test stage, the trained models were applied to the test dataset to predict the probability of being MSI or
MSS status. The model with the highest average value of the area under the curve (AUC) in the test set was chosen
as the radiomics model. To predict the MSI status, multivariate regression analysis was performed on clinical
characteristics with P values less than 0.1 in the difference analysis to screen out the clinical independent factors.
The same feature preprocessing algorithm and classifier of the radiomics model were used to develop the clinical
screening model and combined model. The clinical screening model was composed of clinical independent
factors, whereas the combined model, including the clinical independent factors and the Rad-score derived from
the LASSO feature selection process. To provide clinicians a convenient and user-friendly approach for rapidly
and accurately estimating the risk of MSI status in individual patients, a nomogram model was developed. It
should be noted that all available data was employed for training and estimating the parameters of the nomogram,

Fig. 3. The tumor with the largest area in cross-section were segmented on venous phase, avoiding the
intestinal contents and gas.
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which allows for a more comprehensive understanding of the overall patterns and relationships. Specifically,
the clinical characteristics and Rad-score values were directly obtained by concatenating the test sets from
the fivefold cross-validation used in the construction of combined model. Additionally, three features were
randomly selected from the features screened by LASSO to perform six data transformations to compare the
feature processing results of different preprocessors. In model construction, the hyperparameters were defined
using the training set with a grid search to optimize predictive accuracy, detailed information can be found in
the Supplementary material.

Statistical analysis

We separately used the Mann-Whitney U and the 2 test to compare the continuous and the categorical
variables.The statistical analyses were bilateral, and statistical difference was set to P<0.05. To evaluate and
verify the predictive effectiveness of the models, the receiver operating characteristic (ROC) curves of the clinical,
radiomics, and combined models were analyzed, respectively. We used the DeLong test to statistically compare
the AUC values obtained from the different prediction models. The average performance of each model was
evaluated across the fivefold cross-validation. The clinical applicability and correction effects of the models were
compared using decision curve analysis (DCA) and calibration curves. The Brier score (BS) was used to calculate
the quantitative analysis of each model performance: BS=0 indicates that the model performs excellently and
the predicted and actual values were identical; BS>0.25 implies the failure of the model prediction. To address
the impact of class imbalance on our calibration curves analysis, the BS value was adjusted based on the class
distribution. All statistical tests were executed using IBM SPSS Statistics for Windows, version 26 (IBM Corp.,
Armonk, N.Y.,, USA) and R software (version 3.5.2; http://www.Rproject.org). All feature preprocessing and
model construction were carried out using the scikit-learn package in Python 3.9.12.

Results

Patient profiles

There were 307 CRC patients with 182 males (59.3%) and 125 females (40.7%) were enrolled. Their average age
was 62.7 +12.0 years (27-93 years), including 68 (22.1%) patients with MSI, and 239 (77.9%) patients with MSS.
In Table 1, the clinical analysis of the two groups showed statistical differences in hypertension (P=0.009), the
clinical of N stage (P<0.001), and tumor location (P <0.001). The multivariate regression analysis identified

Variable MSI (n=68) MSS (n=239) Pvalue

Gender 0.077
Male 34 148

Female 34 91

Age (years) 64 (53,73) 63 (55,71) 0.741
Hypertension 0.009
Presence 16 (23.53%) 98 (41.00%)

Absence 52 (76.47%) 141(59.00%)

Diabetes 0.196
Presence 11 (16.18%) 25 (10.46%)

Absence 57 (83.82%) 214 (89.54%)

Tumor location <0.001
Right colon 43 (63.23%) 75 (31.38%)

Left colon 13 (19.12%) 45 (18.83%)

Rectum 12 (17.65%) 119 (49.79%)

T stage 0.707
T1~2 9 (13.24%) 36 (15.06%)

T3~4 59 (86.76%) 203 (84.94%)

N stage <0.001
NoO 55 (80.88%) 113 (47.28%)

N1~2 13 (19.12%) 126 (52.72%)

M stage 0.344
MO 68 (100.00%) 233 (97.49%)

M1 0 (0.00%) 6(2.51%)

CEA (ng/ml) 222(0.94,4.13) | 2.65 (143, 6.46) 0.074
CA125 (U/ml) 8.95 (6.20, 16.48) 8.00 (5.10, 11.30) 0.061
CA199 (U/ml) 15.65 (7.44, 25.98) | 12.26 (7.15, 30.49) 0.483

Table 1. Characteristics of patients [median (Q1, Q3) or no. (%)]. P value was derived from the Mann-
Whitney U test or the -y test. P value less than .05 were considered as statistically significant. CEA:

carcinoembryonic antigen level; CA: carbohydrate antigen.
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hypertension [OR0.378 (95% confidence intervals (CI), 0.191-0.748), P=0.005], N stage [OR0.195 (95% CI
0.096-0.395), P<0.001], and tumor location [OR0.347 (95% CI 0.139-0.866), P=0.023] as independent factors
of MSI status.

Model building and processor analysis

We evaluated the average performance of each model across the fivefold cross-validation. In Table 2, we can see
that under different types of preprocessors, the models established by the logistic regression classifier all had the
higher average AUC value. And the logistic regression model based on the quantile preprocessor had the highest
average AUC value of 0.852 [95% confidence interval (CI) 0.750-0.958] in all the discriminant models (Table S2).
It was selected as the radiomics model which included 23 radiomic features (Figure S1). The logistic regression
model based on the quantile preprocessor was also used to build the clinical screening model as well as the com-
bined model. In the test cohort, the clinical screening model produced moderate performance with an average
AUC value of 0.762 (95% CI 0.635-0.890), and the combined model yielded the excellent performance with an
average AUC value of 0.958 (95% CI 0.920-0.998) (Table 3). In order to assess their predictive performance,
the average ROC curves of the training and test sets were presented in Fig. 4. To provide a more comprehensive
assessment of the model’s performance across different training and test sets on the fivefold cross-validation,
the predictive performance and ROC curves for each fold of the combined model was presented in Table S4 and
Figure S2, respectively. The results revealed that each fold achieved a desirable diagnostic performance, with AUC

Box-Cox Max-Abs Min-Max Quantile Yeo-Johnson Z-score
Feature selection methods Training Test Training Test Training Test Training Test Training Test Training Test
Logistic regression 0.914 0.846 0.907 0.839 0.893 0.833 0.903 0.852 0911 0.845 0.911 0.845
SVM 0913 0.837 0.981 0.823 0.909 0.824 0.906 0.827 0.906 0.829 0.906 0.829
Random forest 0.965 0.775 0.942 0.801 0.941 0.803 0.973 0.735 0.956 0.786 0.953 0.780

Table 2. Analysis of average AUC values for 18 discriminant models with preprocessing. AUC, area under the
curve. SVM, support vector machine.

LB R EY Pvalue | Pvalue |Pvalue

Cohorts Clinical screening model (0) | Radiomics model (1) | Combined model (2) (0vs.2) |(1vs.2)
N 0.770 0.903 0.963

Training set | (4 708 0.832) (0.863-0.944) (0.946-0.985) <0.001 | <0.001
0.762 0.852 0.958

Test set (0.635-0.890) (0.750-0.958) (0.920-0.998) <0.001 | <0.001

Table 3. Pairwise comparisons of average AUCs of the clinical screening model, radiomics model, and
combined model. P value derived from Delong test.

A ROC curves of the training set B ROC curves of the test set
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Fig. 4. The average receiver operating characteristic (ROC) curves of the clinical screening model, radiomics
model and combined model in the training set (A) and test set (B). The combined model performed better than
the other two models with the average area under the curve (AUC) of 0.963 and 0.958 in the training and test
set, respectively.
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values ranging from 0.959 to 0.978 and accuracy ranging from 0.886 to 0.910 in the training set. Similarly, in the
test set, the AUC values ranged from 0.912 to 0.987 and accuracy ranged from 0.855 to 0.934. After the process-
ing of the six feature preprocessors, the result data of the quantile transformer tended to be similar to a normal
distribution, and the mean value of the MSS features was higher than that of MSI (Fig. 5). Additionally, ablation
experiments were conducted on the selected radiomics features without preprocessing (Table S2). The results
showed that the use of preprocessing improved average AUC values of the discriminative models by at least 2%.

Clinical application

To promote clinical practice, a quantitative nomogram was developed for non-invasive prediction of MSI status
(Fig. 6). We used the consistency indexes (C-indexes) to estimate its performance. The C-index of the nomo-
gram reached 0.970, indicating its excellent effectiveness. The average predictive ability of the combined model
(accuracy: 0.899; sensitivity: 0.929; specificity: 0.891) was superior to that of the radiomics and clinical screening
model in the test set (Table S3). The Delong test further revealed statistical differences between any two models
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Fig. 5. Randomly selected 3 features for six data transformations to compare the feature processing results of
different preprocessors. The results showed that the data processed by the Quantile transformer were closer to
the normal distribution, which can make better distinguish between MSI and MSS.
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Fig. 6. An individualized nomogram for preoperative prediction of MSI status in patients with colorectal
cancer. In terms of the N stage, the value of 0 indicates NO while 1 represents either N1 or N2. For hypertension,
0 indicates absence of hypertension, whereas 1 indicates that the patient has hypertension. Regarding the
location, 0 corresponds to the left colon, 1 indicates the right colon, and 2 refers to the rectum. As for Rad-
score, the value was calculated for each patient through a linear combination of the selected features weighted
by their corresponding LASSO coefficients. Note that, all the test sets data from the fivefold cross-validation of
combined model construction were concatenated and used for the nomogram model development. When using
the nomogram, first locate each variable on the axis, and then draw a vertical line towards the points axis to
obtain the corresponding score. Finally, by summing all the scores and positioning them on the bottom line, the
predicted incidence of MSI states could be obtained.

(P<0.05) (Table 3). It indicated that the combined model can better predict MSI status than the radiomics model
and the clinical screening model in the calibration curve. The adjusted BS values of the clinical screening model,
radiomics model, and combined model were 0.196, 0.128, and 0.073 in the training set and 0.199, 0.164, and
0.079 in the test set, respectively (Fig. 7A,B). DCA revealed that compared to the other two models, the combined
model generally had the best net benefit value over the entire range (Fig. 7C,D).

Discussion

In our study, six preprocessors and three classifiers were used to build models to predict the status of MSI
in CRC. It revealed that the logistic regression model based on the quantile preprocessor exhibited good
predictive performance. The same combination was also used to build the clinical and combined models.
The results showed that the clinical screening model demonstrated moderate predictive performance, with
an average AUC value of 0.762 (95% CI 0.635-0.890) in the test cohort. Furthermore, the combined model
demonstrated excellent predictive ability with an average AUC value of 0.958 (95% CI 0.920-0.998). This further
confirms the performance and repeatability of the chosen combination.

In this study, 11 clinical factors were included. MSI incidence was 22.15% (68/307). It mainly happened in
the right colon, and the incidence rate was 63.23% (43/68), consistent with previous studies**’. Aside from
tumor location, we discovered that the clinically independent factors to predict MSI status also included N-stage
and hypertension. Lymph node metastasis is an important prognostic factor for CRC, the higher the N-stage,
the shorter the patient’s survival period maybe**. In addition, the patients with metabolic syndrome such as
hypertension or diabetes may have a higher risk with disease recurrence and death*’. The previous reports'®*
have confirmed that CRC patients with MSI usually have a favorable outcome. It may be related to the lower
incidence rate of lymph node metastasis and hypertension incidence in our study. However, a recent research*
based on 100 patients found that there was no significant relationship between hypertension and MSI status.
These results need to be confirmed by future studies with larger sample sizes.

Radiomics analysis can extract high-throughput features hidden in images to reflect tumor heterogeneity*.
It has been widely used in the field of prognosis, treatment evaluation, and survival prediction of many clinical
diseases*”*%, Pathologically, the histological heterogeneity of MSI CRC is more obvious than that of MSS.
The former has a higher proportion of lymphocyte infiltration and mucus components*. These histological
differences have laid the foundation for radiomics analysis.

Previous studies have predominantly used a single preprocessor and classifier to establish predictive models.
For instance, Cao et al.”* and our previous work?® both used the preprocessor of Z-score normalization and the
classifier of logistic regression to build the models. The combined models showed excellent predictive ability with
an AUC of 0.964 (95% CI: 0.919-1.000) and 0.928 (95% CI: 0.860-0.991) in the validation cohort, respectively.
Ying et al.** and Pei et al.”® proposed the combined model with an AUC of 0.900 (95% CI 0.830-0.960) and 0.770
(95% CI 0.680-0.850) in the validation sets. They both used the logistic regression classifier, but the preprocessor
did not explicitly state. As we know, data processing is crucial in machine learning. Through appropriate
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Fig. 7. Calibration curves of the clinical screening model, radiomics model and combined model in the
training set (A) and test set (B). The dotted line represented a perfect prediction, while the solid lines with three
different colors indicated the predictive performance of the three models. The closer to the dotted line, the
better prediction of the model. The Brier score values were adjusted based on the imbalanced class distribution.
Calibration curves showed the prediction performance for MSI status of the combined model was generally
better than the other two in the test set. Decision curve analysis (DCA) of the three model (C-D). The x-axis
was the threshold probability and the y-axis was the net benefit. Within any threshold probability range, a higher
curve was the best prediction for maximizing the net benefit. The DCA showed that the combined model had
the highest net benefit almost across the entire range.

preprocessing, the raw data can be transformed into data features for model use. Subsequently, the classifier can
classify the filtered features into reasonable categories to improve the performance and generalization ability of
the model?”?8. Therefore, our study simultaneously selected 6 preprocessors and 3 classifiers to constructed the
models, and explored the impact of different combinations on model performance.

Consistent with the recent studies?~2%,we selected the logistic regression classifier to establish the predictive
models. The logistic regression model is suitable for solving binary classification problems in machine learning,
which can quickly learn and predict data, and the obtained results are easy to explain®. These characteristics make
it advantageous in predicting MSI status. However, there were several scenarios where SVM or random forest
could potentially outperform logistic regression. For example, in image recognition tasks or when dealing with
datasets with high-dimensional feature spaces and intricate patterns, SVM often shows superior performance®.
Random forest, on the other hand, tends to perform better when there are numerous features and potential
interactions among them. It’s also more robust to noise and outliers in the data®. In our framework, including
these three classifiers allows us to comprehensively evaluate and compare their performance, and thus determine
which classifier is more suitable for our given problem.

Additionally, as shown in Table S2, the preprocessors play a relatively minor role in influencing the
classification performance, indicating that they mainly focus on operations such as data cleaning, normalization,
and similar tasks that do not substantially alter the fundamental nature and discriminatory power of the
features. On the contrary, the type of features and the choice of classifier have a more significant impact on the
classification performance. Different feature types capture distinct aspects of the data, and each classifier has
its inherent strengths and weaknesses in handling and learning from these features. Regarding our task, the
combination of the logistic regression classifier and the quantile transformer proved to be effective in predicting
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for the MSI status of CRC patients, highlighting the importance of selecting the right combination of algorithm
to optimize classification results.

To facilitate clinical applications, a nomogram was developed to optimize treatment strategies. Our study
screened common clinical indicators such as location, N-stage, and hypertension as predictive factors. By
constructing a nomogram, it was expected to save the cost of preoperative individualized and precise prediction
of MSI status. What's more, the effectiveness and repeatability of the selected processor and classifier have been
preliminarily validated in the construction of clinical screening model and combined model. Standardized
processing can further reduce the variability of the input data, promote the homogenization of different
researches and ensure comparability of results.

However, our research still had several limitations. Firstly, it was a single-center study with a limited sample
size, it will be necessary to further validate our results through external and multicenter studies. Secondly, we
chosen the largest layer of tumor to draw the RO, similar to previous studies***'. But it may result in a certain
degree of selection bias. Thirdly, all of the CT images were obtained from a same scanner, it may affect the
generalizability of our findings, although it reduced changes in image acquisition.

Conclusion

Simultaneously using multiple preprocessors and classifiers to construct predictive models, our results showed
that the logistic regression model based on the quantile preprocessor exhibited excellent predictive performance
and repeatability. It may further reduce the variability of input data and improve the model performance for
predicting MSI status in CRC.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on
reasonable request.
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