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distribution
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Partial accelerated life tests (PALTs) are employed when the results of accelerated life testing cannot
be extended to usage circumstances. This work discusses the challenge of different estimating
strategies in constant PALT with complete data. The lifetime distribution of the test item is assumed
to follow the power half-logistic distribution. Several classical and Bayesian estimation techniques
are presented to estimate the distribution parameters and the acceleration factor of the power half-
logistic distribution. These techniques include Anderson-Darling, maximum likelihood, Cramér von-
Mises, ordinary least squares, weighted least squares, maximum product of spacing and Bayesian.
Additionally, the Bayesian credible intervals and approximate confidence intervals are constructed.
A simulation study is provided to compare the outcomes of various estimation methods that have
been provided based on mean squared error, absolute average bias, length of intervals, and coverage
probabilities. This study shows that the maximum product of spacing estimation is the most effective
strategy among the options in most circumstances when adopting the minimum values for MSE and
average bias. In the majority of situations, Bayesian method outperforms other methods when taking
into account both MSE and average bias values. When comparing approximation confidence intervals
to Bayesian credible intervals, the latter have a higher coverage probability and smaller average
length. Two authentic data sets are examined for illustrative purposes. Examining the two real

data sets shows that the value methods are workable and applicable to certain engineering-related
problems.

Keywords Power half-logistic distribution, Cramér von-Mises, Weighted least squares, Partially accelerated
life tests, Acceleration factor, Constant stress, Maximum likelihood estimation

Today’s highly competitive environment demands that manufacturers offer goods with improved reliability at
lower costs and faster processing times. Accelerated life tests (ALTs) are therefore recommended for use in indus-
trial sectors to quickly gather the appropriate amount of failure data to draw conclusions about the link between
them and external stress factors. The test items in ALTs are only put to the test under expedited circumstances
or stress levels that are greater than normal in order to cause early failures. To estimate the lifetime distribu-
tion under typical usage settings, data gathered under such accelerated conditions are then extrapolated using
a statistical model that is appropriate for the physical environment. There are primarily three ALT techniques,
according to Nelson'. The first approach, known as the constant-stress ALT, maintains a constant degree of stress
for the duration of the test run. The second one, known as progressive-stress ALT, involves gradually increasing
the stress that is applied to a test product over time. The third type of test condition change is known as the step-
stress ALT, and it occurs when a certain number of failures occur or at a specific period. In situations where it
is not possible to assume that the acceleration factor is known, the partially ALT (PALT) is a suitable option for
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conducting the life test. The experimental units are operated at both use and accelerated settings in a PALT, and
they are subjected to higher stress levels than typical in an ALT to shorten the time to failure. A statistical model
that is suitable for the physical environment is used to extrapolate data obtained in such accelerated settings and
predict the lifespan distribution under typical use conditions. Three forms of stress may be identified in PALT:
step-stress, progressive-stress, and constant-stress. Step-stress and constant-stress PALT are two often employed
techniques. Items under step-stress PALT are tested under both used and accelerated conditions (see*™®). In
constant-stress PALT (CPALT), all test units are split into two groups, one of which is tasked with working under
used conditions and the other under accelerated conditions.

Numerous writers have examined CPALTs, in which items are tested at either normal use or accelerated
conditions. The problem of CPALT estimation with different censored data using different distributions was
studied in subsequent studies. Bai and Chung’ estimated the scale parameter and the acceleration factor for
exponentially distributed lifetimes under Type-I censoring using the maximum likelihood (ML) technique. Bai
et al.® examined the optimum design and estimation for the log-normal distribution using CPALT with Type-I
censored data. Hassan® discussed the estimation of the exponentiated exponential distribution in CPALT using
Type II censoring. Using Type-I censored data in CPALT, the optimum design problem for the inverse Weibull
distribution has been examined by Ismail'®. Using progressive Type-II censoring, Abdel-Hamid'! examined the
issue of estimating the Burr XII distribution based on CPALT. Ismail et al.'? investigated the issue of optimal
design for Pareto distribution in CPALT by employing Type-I censoring. Using Type-I censoring, Kamal et al."®
examined the CPALT plan with the assumption that test item life under usage conditions follows an inverted
Weibull distribution. Abushal and Soliman'* studied CPALT using progressive censoring under the Pareto distri-
bution. Hassan et al.”” obtained the ML estimates (MLEs) of parameters and acceleration factor in CPALT using
multiple censoring data. Ahmad et al.'® studied the Bayesian estimation of the exponentiated Weibull model
for CPALT using progressive censoring. Li and Zheng'” investigated CPALT in the context of the Gompertz
distribution with Type-I censoring. Ismail and Tamimi'® examined the optimum design and estimation for the
inverse Weibull distribution using CPALT with Type-I censored data. Mahmoud et al.’’ used a Type-II censored
sample to examine the estimation issues of modified Weibull distributions based on CPALT. The CPALT compet-
ing failure model from the Weibull distribution under Type I and Type II censoring was examined by Hassan
et al.?’ in their estimate issue analyses. Ahmadini et al.?! investigated the estimation problems of the Fréchet
distribution based on CPALT using a Type-I censored sample. Based on CPALT, Lone et al.?? constructed the
Bayesian prediction of the Gompertz distribution under CPALT. For the Kumaraswamy distribution, Almalki
et al.” investigated CPALT under adaptive type-1I progressive censoring. The CPALT, under type-II progressive
censoring, for an inverted generalized linear exponential distribution was examined by Mahmoud et al.**. Esti-
mating the parameters of the Lomax distribution using a CPALT under progressive first failure type-II censored
data was investigated by Eliwa and Ahmed®. For more recent studies. the reader can refer to?*-*'.

In statistics, parameter estimation is essential, and most of the time, estimating parameters starts with the ML
method. This approach is well-liked because of its straightforward and understandable formulation. Lehmann
and Casella®' showed that the estimators produced by this approach have a normal distribution and are asymp-
totically consistent. Nonetheless, there are alternative, widely-utilized estimating techniques in the literature.
The techniques include Cramér-von-Mises estimation (CME), Anderson-Darling estimation (ADE), ordinary
least squares estimation (OLSE), weighted least squares estimation (WLSE), maximum product of spacing esti-
mation (MPSE), and Bayesian estimation (BE). While these approaches, except for ML estimation (MLE), lack
strong theoretical characteristics, in some circumstances they can yield more accurate estimates of the unknown
parameters. Using complete data, only one study was provided by Radwan and Alenazi*? using various estima-
tion techniques based on CPALT. They obtained the parameter and acceleration factor estimators of the Chen
distribution in CPALT using different classical methods, including MLE, OLSE, ADE, CME, WLSE, MPSE,
percentile estimation, and right tail-ADE.

The study’s main objective is to address the problem of different CPALT-based estimating methods that use
complete data. This is due to many different natural phenomena, engineering problems, and medical procedures
that generate significant amounts of complete real data that are vital to our way of life. The aforementioned
suggests that the topic of different CPALT-based estimating techniques using complete, available real data is
quite relevant. In this study, seven different estimating techniques for CPALT of power half-logistic distribution
(PHLD) are investigated. The suggested methods are ADE, MPSE, MLE, OLSE, CME, WLSE, and BE. Further,
the approximate confidence intervals (ACIs) based on MLE and the Bayesian credible intervals (BCIs) are
investigated. We study how the estimators of the different parameters and acceleration factor behave for different
sample sizes and for different parameter values. Further, we develop a guideline for choosing the best estimation
method to estimate the parameters and the acceleration factor of the PHLD using CPALT, which we think would
be of deep interest to applied statisticians and reliability engineers.

This paper is structured as follows: A description and fundamental presumptions of the model are given in
Sect. "Model description and basic assumptions". Seven estimation techniques for investigating the parameters
and acceleration factor are covered in Sect. Methods of estimation. A simulation study is conducted in Sect.
"Simulation study" to evaluate how well these strategies function for the provided model. Two authentic data
sets are used in Sect. "Data analysis" to demonstrate the importance of the PHLD. Lastly, some closing thoughts
are provided in Sect. "Summary and conclusion”.

Model description and basic assumptions

In most applied sciences, including engineering, economics, insurance, and biological science, statistical analysis
and modeling of lifetime data are crucial. Numerous continuous distributions, such as the exponential, Lindley,
gamma, log normal, half logistic, and Weibull have been introduced in the statistical literature for the modelling
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of lifetime data. The analysis of lifetime and reliability data has made considerable use of the power half-logistic
distribution. The halflogistic distributed random variable X with scale parameter a, and shape parameter b was
introduced by Krishnarani*. The cumulative distribution function (CDF) of the PHLD is given by:

Fi(z;a,b) =1— z,a,b > 0. 1)

e

The CDF (1) reduced to half-logistic distribution for b= 1. The probability density function (PDF) of the
PHLD is given by:

b
2abzb—1e%

(o)

The survival function (SF) and hazard rate function (HF) of the PHLD are, respectively, given by:

filz;a,b) = z,a,b > 0. 2

_ 2

Fi(z;a,b) = T (3)
b b—1az?

iz ab) = 4)
1+ ea?

Plots of the PDF and HF of the PHLD are represented in Fig. 1 for some selections of the distribution param-
eters. It can be noted that the density function provides some asymmetric and semi symmetric shapes, see the
case of a = 0.6 and b = 2.3. The HF has an increasing behavior, decreasing, and reversed J-shaped depending
on the parameter’s values.

The PHLD is a flexible statistical distribution that has gained considerable popularity for analyzing lifetime
and reliability data for several reasons:

1. The PHLD is a versatile distribution that can model a wide range of lifetime distributions, including sym-
metric and asymmetric distributions. This flexibility allows it to capture various shapes of failure distributions
observed in real-world data. The PHLD has been successfully applied in various fields, including reliability
engineering, survival analysis, and lifetime data analysis, making it a widely accepted distribution in these
domains. To confirm that PHLD is a flexible model, see Krishnarani®. Also, this model is fitting different
data sets as follows: Data I is COVID-19 data by Abu El Azm et al.’*, Data II is time between failures of
secondary reactor pumps by Suprawhardana and Prayoto®, and Data I11 is active repair time for 40 air bone
communication transceivers by Oguntunde et al.*.

2. 'The parameters of the PHLD have meaningful interpretations, making it easier to understand the distribu-
tion’s characteristics. Specifically, the shape parameter governs the tail behavior of the distribution, while
the scale parameter determines the spread of the distribution (see Fig. 1).

3. 'The PHLD is relatively robust against outliers and deviations from the assumed distributional form, making
it suitable for analyzing data with varying degrees of complexity or uncertainty (see Figs. 2, 3, and 4).

4. 'The PHLD has several desirable statistical properties, such as closed-form expressions for moments, CDF,
PDE SE and HE, see Egs. (1), (2), (3), (4), respectively.

Table 1 discussed estimate (Esti) based on the MLE of the PHLD parameters for aforementioned each data
set with standard error (StEr), and different measures of goodness of fit as: AIC (Akaike information criterion),
BIC (Bayesian information criterion), CAIC (Consistent AIC), HQIC (Hannan-Quinn information criterion),
Kolmogorov-Smirnov distance (KSD) with the corresponding p-value (PVKS), CMT (Cramér-von-Mises test)
and ADT (Anderson-Darling test). Also, Figs. 2, 3, 4 contain the boxplot, the total time test (TTT), hazard rate
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Fig. 1. The PDF and HF plots of the PHLD.
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Fig. 2. Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD by using Data I.
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Fig. 3. Boxplot, TTT, hazard rate estimated, CDF, PDF, and PPs plot for PHLD by using Data II.
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Fig. 4. Boxplot, TTT, hazard rate estimated, CDF, PDFE and PP plots for PHLD by using Data III
Data a b KSD PVKS | AIC BIC CAIC HQIC CMT ADT
Esti | 46.7521 | 1.0590
1 0.0636 | 0.8944 | —383.2977 | —378.4842 | —383.1458 | —381.3652 | 0.0774 | 0.5255
StEr | 13.0379 | 0.0916
Esti | 1.1717 | 0.6759
11 0.1237 | 0.8311 | 70.0187 72.2897 70.6187 70.5898 0.0790 | 0.5082
StEr 0.2463 | 0.1150
Esti 0.5018 | 0.8033
111 0.1428 | 0.3885 | 196.7768 200.1546 197.1011 197.9981 0.1641 | 1.1500
StEr 0.1143 | 0.0968
Table 1. MLE and different measures of goodness of fit for each data set.
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Fig. 5. Likelihood profile of PHLD parameters for each data set.

estimated, CDE, PDE, and PP plots for PHLD based on Data Sets I, IT and III, respectively. Figure 5 shows the
likelihood profile of the PHLD parameters for each data set.

Based on the previous results, particularly the KST, we observe that the PVKS is greater than 0.05. This means
that the PHLD fits different data for future use, suiting the PHLD adequately.

We use the following assumptions for the estimation under CPALT and PHLD.

1. The lifetimes of test units are independent and identically distributed (iid), and they follow the PHLD with
the CDF (1), PDF (2), SF (3) and HF (4).

2. 'The test units’ lifetimes are iid, according to the PHLD under the acceleration condition. The formula for
the HF of the test unit is h,(z) =68 h,(z), where the acceleration factor is §> 1. So, the HF of the PHLD, based

b1 azb
on (4), under the accelerated condition is as follows: h(z; ¢) = % ,where ¢ = (a,b,8)7 is the set
(4

of parameters. Afterwards, the SF of unit items under acceleration condition is given by:

z — [ ha(z;¢)dz 5 5
: = 0 =
2z ) =e ()

Furthermore, the CDEF, and the PDF of unit items under acceleration condition may be expressed as:

8
Fz(z;¢>)=1—( >,z>0, (5)

1+ es

and

20abszb—1ea 2

W’ z > 0. (6)

folz; @) =

3. Using the CPALT, the total size of units is divided into two groups: ¢, units for use condition and g, units for
accelerated condition. Let the lifetime Z, ;, k=1,2, ..., g;, h=1, 2 be two complete samples from the PHLD.
The lifetime of an item tested at use conditions is denoted by Z,,, while the lifetime of an item tested at
accelerated conditions is denoted by Z,;. The two lifetimes Z,; and Z,, are pairwise statistically independent.

Methods of estimation
In this section, different classical methods of estimation are employed to get the parameter and acceleration
factor estimates for the PHLD under CPALT.

Maximum likelihood estimation
In this subsection, the MLE is applied to obtain the estimators of the unknown parameters and acceleration factor
under CPALT. The likelihood function of CPALT for PHLD under complete data can be obtained as:

2 qn q 92
(9|2 ) = [T T1fitem: & = [T fiters: a0 T ] oo ). )
h=1k=1 k=1 k=1

The log-likelihood function of (7) based on (2) and (6) can be written as follows:

q1 92 q1
I° = (q1 + q28) log 2 + (q1 + q2) log(ab) + q21log s + (b — 1) Zlogzlk + Zlogzzk + aZzi’k
k=1 k=1 k=1

a @ L
—ZZIOg(l + e“sz) +a Z sz -+ Zlog(l + e“gk).
k=1 k=1 k=1

The normal equations of the unknown parameters b, a and the accelerated factor § can be given as:
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al° & u - U 24z 1o Z1k
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B Z 6+ l)azzk log zpk _
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P} 1+ 7&12”( P 1+efazzk

and

o

3l &
= =4210g2+%—Zlog(1+e“zbk)=0. (10)
k=1

The three aforementioned Eqs. (8-10) do not have a closed-form solution; hence, the MLEs can be obtained
using a numerical methodology by employing approximations, as in the R program, by the “optim” function
for log-likelihood.

Additionally, for evaluating the estimated variance-covariance matrix and related ACIs of MLEs, the observed
Fisher information matrix is specified as follows:

Fi 5 S o SO i

A ggzo %%‘;;b %%?08 Ill 112 Il3 111 112 113
[@) =~ 55 oz o §21 }22 ?3 s = |12 2 D
2 gl e | . 31 I L33 |%=0
369a 2806 957 | 9=% b=1h I3 Is; I3
b=1b 6= 3
5= 3

Note that the second-order partial derivative equations are defined as follows:

921° -9 2 ¢ 2 & zazbk(log aw)? o 24 Z (108 zik)’e i
= + aZzlk(logzlk) + ﬂzzzk(logZZk) Z : - Z
a2 pat k=1 o l4em k=1 (14 ek

i (8 + Dazl, (log z5)* Z(5+1)a2z§£(log22k)2 —azj
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The estimated standard normal distribution was used to derive the (1 -v) 100% AClIs, which are given by

b £Z,,\/var(@), ¢ =(ab8)7,

where Z,, denoted the upper v / 2 percent point of standard normal distribution.

Minimum distances estimators
This sub-section considers CME and ADE by minimization of the goodness-of-fit statistics, i.e., minimizing the
distance between the theoretical and empirical CDFs with respect to a, b, and §.

Cramer-von Mises estimators

MacDonald*” offered empirical evidence showing the estimator’s bias is less than that of the other minimal
distance estimators, which supported our selection of CM type minimum distance estimators. This method will
be used to estimate the acceleration factor § of the PHLD under complete data, as well as the unknown param-
eters a, and b, using CPALT. To do this, consider the lifetimes Z ), k=1,2,..., q;, and h=1, 2 as two full ordered
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samples with CDF Fj, (Z(hk)) from the PHLD under CPALT. Therefore, by minimizing ¢ with respect to a, b, and
§,the CME of g, b, and § are obtained as follows:
_1)2
{Fh (zihiy: @) — } . (11)

2
4>
e h=1 k=1 th

Alternatively, the CME of g, b, and § can be obtained by solving the following nonlinear equations in place
of using Eq. (11) as:

91 92 8
a¢ 2 2k —1 2 2k —1
BKJZZ{I_Hb_ } ﬁl(z(lk)a)b)'i‘Z{l—( b > - 20 } V2(z0K)l9) =0,

Pt Sw 20 Pt 1 4+ 50k

8
3 & 2 2k —1 & 2 2k —1
abzz{lb : } 193(Z(lk)|a,b)+z 1— 5 - 2q2 194(Z(zk>|¢)=0,

pt 1 4 %%k 2q e 1+ e*%eh
and
9@ 8
ar 2 2k—1
=241 — |~ 95(2k)ld) =0,
k=1 1+e "o 92
azl b se.azl, b
2e (1k>z(1k) 2°%6e (2k>z(2k)
where ¥1(zapla, b)) = ————, (zppldp) = —73—, (12)
(l +eaz(1k))2 (1 +eaz(2k))5+1
b
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(14 €*%an)2 (1+ %001
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s
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Anderson-Darling estimators
In place of statistical tests, Anderson and Darling®® developed a test to identify deviations from the normal
distribution in sample distributions. This sub-section provides ADE for the parameters and acceleration factor
of the PHLD under CPALT. Suppose that Z ), k = 1,2,...,qn h = 1,2 are two full-ordered samples from the
PHLD in the CPALT.

The ADE of the parameters a, b and acceleration factor §, in the CPALT model is produced by minimizing
the function A* as below:

2

2%k — _
=—q9- ZZ ( {10th(Z<hk> @) —log Fu(z(g,+1-hky: #) }- (15)

h=1 k=1

Instead of (15), the non-linear equations listed below can be solved to get the ADEs as

dA* _i@k—l) N@lab)  NGgr-wleb)
da ©q
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(2k -1
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where ¥1(zqakla, b), 2(zar @), F3(zakla, b), Fa(zer i) and F5(z@kl¢) are given in Egs. (12)-(14),
respectively.

Method of maximum product spacing’s
This subsection uses the MPS approach established by Refs***° to estimate the PHLD under complete data using
CPALT. A similar technique was separately developed by Ranneby*! as an approximation to the Kullback-Leibler
information measure.

Suppose that Z, k=1,2,..., g, , h=1, 2 are two complete-ordered samples with CDF Fj, (z(hk)) taken from
the PHLD under CPALT. The following function must be maximized with respect to a, b and §, in order to
determine their MPSE

wt] log Apx

gn+1°

h=1 k=1

(]

(16)

where Ay is the uniform spacings of a random sample from the PHLD under CPALT and is defined by

Ank = Fi(z(niy: @) — Fn(2k—1); #)>  Fn(zhoy; ¢) = 0, Fy(z(uks1); ¢) = 1.
Consequently, by using (1) and (5) in (16), we have

Qa1+l Q2+1
ql 1 Z logA 1k + —_— Z logAjg.

The following nonlinear equations can be numerically solved to get the MPSE of a, b and § as

W _ qlil 91 (zamlab) — 01 (zak-nla,b) N ’“ZH 92 (zamld ) — 02 (2ak-1)l9)

= O)
da = (1 + DAk p (@2 + DAy
oy W 9, (zamla, b) — 93(zak—1)la, b) 9, (zawl9) — Pa(zk-1)l¢)
b > 2 =0

(q1 + DA (g2 + DAz

k=1

and

E 95 (zanl9) — 95 (zk-1)l9) —0

(@2 + DAy
where 91 (z(1x)la, b), 92( 2k @), 93 (Zak)la, b), F4(zk)|¢) and ¥5(zak)|¢ ) are given in Egs. (12)-(14).

Ordinary least and weighted least squares estimators
In this subsection, the OLSE and WLSE of g, b and acceleration factor §, for the PHLD under CPALT are obtained.

Suppose that Z ), k=1,2,..., g;, h=1, 2 be the complete ordered samples have CDFs Fj, (z(hk)) from the PHLD
under CPALT. Hence, by minimizing the following function with respect to a4, b and § as

2
=1
where 7, = 1, in case of OLSEs and 7, = @ +tD(g+2) ,in the case of the WLSE.

An alternative way to (17), the OLSE ané%\’LSE) of a, b and §, can be produced by solving the following
equations numerically:

qh

k 2
T F Z(hi); G, b, 8 , 17
2 {h (k) ) — Qh+1] (17)

9% q1 k 92 k
— = F b — | b F ) ,b) =0,
Py Zm{ 1 (zawla,b) — qH—J 1(zapyla )+Zﬂ2{ 2 (20K |9) qz—H} 2(z@k)la, b)

k=1
Y k 2 k
— = 1 |F1(z a,b) — —— | 93(z a,b) + JT|:FZ —7}ﬂz a,b) =0,
b ; 1[1((1k)| ) q1+1} 3(zakla,b) kz:; 2| F2(zam o) PR 4(zkla, b)
and

& k

Z [Fz (zamle) — 7} Vs5(zokla,b) =0,

= q +1
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where 91 (z(1x)la, b), 92(zk) @), P3(2zak)la, b), F4( 2k |¢) and ¥5(zak)|¢ ) are given in Egs. (12)-(14).

Bayesian estimation

This sub-section presents the Bayes estimators for the unknown parameters and the acceleration factor of the
PHLD under the assumption that the random variables g, and b, have independent gamma prior distributions,
and the independent parameter § has a truncated gamma distribution. Assumed that a ~ Gamma («y, 1), b~
Gamma (o2, B2),and § — 1~ Gamma (a3, 83), then the joint prior density of a, b, and § can be written as follows:

g(¢) x aa]—lba2—1(3 _ 1)a3—le—(ﬁ1a+ﬁ2b+f33(8—1)). (18)

The gamma prior density was first used by DeGroot and Goel*? for the parameter of acceleration factor §. In
this case, every hyper-parameter a, ot2, @3, B1, B2, and B3 is non-negative and known. Due to the great flexibility
of the gamma distribution (see, for example, Dey et al.#*), and (Kundu and Howlader**), independent gamma
priors have been utilized in the Bayesian analysis. Using the Bayes theorem, the joint posterior distribution of a,
b, and § is provided by combining the joint prior distribution (18) with the likelihood function (7) as

a_b—1 azh i 8,b—1 az}

g((z)‘z):D—laa1+q—lbaz+q—l(6_1)a3+qz 1o—(Bra+Brb+(5— 1);33)1—[ zjj el 2 zzkh e

- Z (1+ e“lk)2 o1 (14 e®%2x)(6-D+1

(19)
where
o0 00 00
—1 azb 2 §,b—1 az

D= ///amquaﬁqﬂ(s 1)+ (Brafabe- (6 1),93>H 2y el 11 2o et dadbds.

1 00

bl 1(1+e“21k)2 s 1(1+eazzk)(5 D+1

Under the squared error loss function (SELF), the Bayes estimator of the function of parameters g*(¢) is
given by

g@r=[ [ [ @] dotras 0)
1 00

In general, it is not possible to obtain the integral provided by Eq. (20) in a closed form.

In this instance, we create samples from the posterior distributions using the Markov chain Monte Carlo
(MCMC) approach, after which we calculate the Bayes estimators for each of the individual parameters and
acceleration factor.

Selecting among the many different MCMC schemes that are available might be challenging. Gibbs sampling
and the more generic Metropolis within Gibbs samplers are significant subclasses of MCMC techniques. The
MCMC technique has an advantage over the MLE method in that by building the probability intervals based
on the empirical posterior distribution, we can always obtain an acceptable interval estimate of the parameters.
With the MLE, this is frequently not available. In fact, by using a kernel estimate of the posterior distribution,
the MCMC samples may be utilized to fully characterize the posterior uncertainty regarding the parameters a,
b, and §. This also holds for any function that depends on the arguments. The conditional posterior densities of
a, b, and § are as follows:

a ., o, al azb a2 azb
al =2 =2 2z | —[2XIn <1+e 1k>+(5—1) > ln (H—e 2k>
(4

gl(a’d’fm z) x aal+q—le < k=1 k=1 k=1 k=1

q1 92 q1 b 92 b
b B+ Inzp+Y Inzy | —(23 In <1+e”lk>+(8—1) N In (1+e“"zk)
gz(b}¢—b, Z) & bﬂ2+q—le k=1 k=1 e k=1 k=1

92
o3+, B3+ Y In((1 + e“z%},

k=1

g3(5‘¢—6, z ) x Gamma

where ¢_, stands for a vector of the unknown parameters except the parameter a. Furthermore, using the
approach suggested by Chen and Shao*, we obtain the 95% two-sided BClIs for the set of unknown parameter
as [¢0.025N:N> $0.975n:N ], where N is the length of the MCMC result.

The following Metropolis—-Hastings (MH)-within-Gibbs sampling steps can be used to obtain samples of 4,
b, and 6:

1. Start by initializing an initial estimate, denoted as ¢(0) = (a, i), 3).
2. Set the iteration index to t=1. R R
3. Generate a candidate point ¢* using a normal proposal distribution q(¢) = N (¢, var(¢)).
4. For the given candidate point ¢*, compute the acceptance probability.
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g<u*,at—l,5t—l ‘f, )q(a*)
g(at—l)ut—l,(gz—l ‘f, )q(at_l)

A((j)ft_l) ,$7) = min |1, ,and repeat this probability for all parameters to obtain
A", 6%).

5. Generate a sample from a uniform distribution, i.e., u ~ U(0,1).

U= AU, %) accept p* = ¢p®
u < AU, ) acceptpt = ¢V,

6. Increment the iteration index: t=t+ 1, and repeat Steps 2-5 M times until obtaining M samples, resulting in
@~ a8 Hfort=1,2,..., M.

Simulation study

The primary objective of this section is to compare parameter estimates using mean squared error (MSE) and
absolute bias (ABias) for different point estimates. For different values of ; and g, (representing the sample sizes
for use and accelerated conditions) as (20, 15), (50, 40), (100, 120), and (200, 150), a large number (N = 10, 000)
of complete samples are generated from the PHLD under both use and accelerated conditions. The true values of
the parameters a, b, and § are considered as follows: In Table 2: (g, b,6) = (1.2, 1.5, 1.1), (1.2, 1.5, 2), and (1.2, 1.5,
3). In Table 3: (a, b,8) = (0.5, 1.5, 1.1), (0.5, 1.5, 2), and (0.5, 1.5, 3). In Table 4: (a, b,8) = (0.5, 0.6, 1.1), (0.5, 0.6, 2),

MLEs MPSEs OLSEs WLSEs CMEs ADEs Bayesian

8 q1>92 ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE
a 0.0189 | 0.2275 |0.0306 |0.2353 |0.0183 |0.2707 |0.0196 |0.2711 0.0257 | 0.3034 |0.0196 |0.2639 |0.0175 |0.1411
20,15 b 0.0513 | 0.2537 | 0.1334 | 0.2452 | 0.0510 |0.2636 |0.0067 |0.2654 |0.0873 | 0.3021 0.0086 | 0.2356 | 0.0361 0.1287
8 0.0812 | 0.3806 |0.0339 |0.3605 |0.0128 |0.4856 |0.0982 |0.5509 |0.0824 |0.5591 0.0843 | 0.4417 |0.0146 | 0.2765
a 0.0179 | 0.1401 0.0288 | 0.1590 | 0.0182 | 0.1781 0.0169 | 0.1759 | 0.0199 | 0.1851 0.0195 | 0.1740 | 0.0062 | 0.0873
50,40 b 0.0213 | 0.1368 | 0.0825 |0.1493 |0.0216 | 0.1631 0.0063 | 0.1537 | 0.0303 |0.1714 |0.0079 |0.1428 | 0.0121 0.0724
8 0.0752 | 0.1625 |0.0309 |0.2279 |0.0108 |0.2714 |0.0975 |0.2633 |0.0722 | 0.2811 0.0774 | 0.2589 | 0.0128 | 0.1484
H a 0.0023 0.0936 0.0069 0.1075 0.0039 0.1221 0.0073 0.1187 0.0168 0.1240 0.0023 0.1174 0.0016 0.0673
100,120 b 0.0074 | 0.0856 | 0.0471 0.0942 | 0.0074 |0.1015 |0.0053 |0.0935 |0.0135 |0.1038 |0.0026 |0.0903 |0.0092 |0.0528
8 0.0684 | 0.0962 | 0.0291 0.1583 | 0.0098 | 0.1818 |0.0853 |0.1751 0.0684 | 0.1840 | 0.0686 |0.1730 |0.0104 |0.0910
a 0.0021 0.0697 | 0.0061 0.0788 | 0.0025 | 0.0857 |0.0022 |0.0837 |0.0027 |0.0865 |0.0022 |0.0831 0.0012 | 0.0504
200,150 b 0.0059 | 0.0683 |0.0344 |0.0746 |0.0059 |0.0815 |0.0024 |0.0744 |0.0072 |0.0824 |0.0025 |0.0732 |0.0028 | 0.0437
8 0.0590 | 0.0866 | 0.0278 | 0.1436 | 0.0090 | 0.1551 0.0790 | 0.1506 | 0.0589 | 0.1558 | 0.0591 0.1501 0.0093 | 0.0806
a 0.0344 | 0.2169 |0.0445 |0.2335 |0.0340 |0.2679 |0.0325 |0.2665 |0.0422 |0.2994 |0.0374 |0.2626 |0.1118 |0.1670
20,15 b 0.0471 0.2315 0.1448 0.2402 0.0472 0.2644 0.0106 0.2644 0.0937 0.3089 0.0157 0.2220 0.0128 0.1228
8 0.9258 | 0.8722 | 0.9611 1.0283 | 0.9252 1.0322 | 0.9257 1.0324 | 0.9045 1.0416 | 0.9335 1.0316 | 0.3402 | 0.4634
a 0.0116 |0.1375 |0.0236 |0.1526 |0.0117 |0.1680 |0.0098 |0.1656 |0.0132 |0.1747 |0.0123 |0.1633 |0.1047 |0.1264
50,40 b 0.0176 0.1373 0.0823 0.1489 0.0177 0.1613 0.0075 0.1526 0.0342 0.1709 0.0036 0.1411 0.0110 0.0720
8 0.9081 0.8692 | 0.9098 1.0185 | 0.9081 1.0124 | 0.9082 1.0113 | 0.8978 1.0122 | 0.9084 1.0120 | 0.3316 | 0.3677
2 a 0.0023 | 0.0945 |0.0090 |0.1076 |0.0022 |0.1197 |0.0013 |0.1164 |0.0029 |0.1216 |0.0025 |0.1157 |0.0920 |0.1208
100,120 0.0035 | 0.0866 | 0.0442 |0.0932 |0.0036 |0.1018 |0.0068 | 0.0941 0.0173 | 0.1049 | 0.0016 | 0.0911 0.0091 0.0563
3 0.8674 | 0.8094 | 0.8993 |0.9800 |0.8672 |0.9996 |0.8805 |0.9998 | 0.8661 0.9998 | 0.8869 1.0002 | 0.2162 | 0.2406
a 0.0013 | 0.0691 0.0074 | 0.0755 | 0.0013 | 0.0809 | 0.0011 0.0789 | 0.0012 | 0.0817 |0.0023 |0.0784 |0.0816 | 0.1065
200,150 b 0.0019 | 0.0665 |0.0314 |0.0714 |0.0019 | 0.0801 0.0058 | 0.0731 0.0112 | 0.0817 | 0.0004 |0.0707 |0.0083 |0.0514
) 0.8097 0.7801 0.8500 0.9005 0.8097 0.9825 0.8099 0.9983 0.8092 0.9979 0.8099 0.9988 0.1747 0.1939
a 0.0313 | 0.2266 | 0.0415 |0.2464 |0.0310 |0.2852 |0.0373 |0.3558 |0.0394 |0.3195 |0.0328 |0.2802 |0.3266 |0.2884
20,15 b 0.0418 | 0.2333 | 0.1403 | 0.2376 |0.0419 |0.2667 |0.0084 |0.2943 |0.0982 |0.3117 |0.0113 |0.2225 |0.0635 |0.1237
) 1.9130 1.8223 1.9542 1.9848 1.9130 1.9655 1.9104 1.9645 1.8904 1.9583 1.9197 1.9662 0.4677 0.5901
a 0.0098 | 0.1368 | 0.0203 |0.1512 |0.0098 |0.1725 |0.0107 |0.1992 |0.0113 |0.1793 |0.0102 |0.1671 0.3020 | 0.2773
50,40 b 0.0193 | 0.1366 | 0.0837 |0.1502 |0.0195 |0.1635 |0.0073 |0.1678 |0.0325 |0.1723 |0.0064 |0.1445 |0.0305 |0.0764
8 0.9664 1.6906 | 0.9887 | 0.9700 1.6627 1.9084 1.6968 1.1985 1.7963 1.1982 1.2972 1.1909 | 0.4236 | 0.4576
} a 0.0091 0.0938 | 0.0070 | 0.1068 | 0.0023 |0.1183 |0.0022 |0.1150 |0.0016 | 0.1201 0.0099 | 0.1140 | 0.2996 | 0.2623
100,120 b 0.0137 | 0.0849 | 0.0416 |0.0904 |0.0130 |0.1003 | 0.0061 0.0916 |0.0197 |0.1040 |0.0034 |0.0888 |0.0304 |0.0678
8 0.9076 1.4937 | 0.8541 0.8399 1.0976 1.8237 | 0.9783 | 0.9841 1.2976 | 0.9823 | 0.9790 |0.9805 |0.2439 | 0.2681
a 0.0052 0.0662 0.0061 0.0745 0.0021 0.0813 0.0021 0.0793 0.0015 0.0821 0.0051 0.0785 0.2884 0.1903
200,150 b 0.0087 | 0.0651 0.0363 | 0.0729 | 0.0087 | 0.0801 0.0036 | 0.0736 | 0.0044 |0.0806 |0.0032 |0.0704 |0.0302 | 0.0669
8 0.8995 1.2957 | 0.8002 | 0.8004 |0.9095 |0.9985 |0.8995 |0.8998 |0.8994 |0.8900 |0.8100 |0.8761 0.2037 | 0.2223

Table 2. Different estimates of the PHLD under CPALT at true value g = 1.2, and b = 1.5.
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MLEs MPSEs OLSEs WLSEs CMEs ADEs Bayesian

) q1> 92 ABias MSE ABias | MSE ABias | MSE ABias | MSE ABias MSE ABias | MSE ABias | MSE
a 0.0397 0.1262 0.0679 0.1523 0.0397 0.1495 0.0267 0.1477 0.0043 0.1461 0.0264 0.1418 0.0083 0.0697
20,15 b 0.0604 | 02312 |0.1419 |0.2352 | 0.0605 |0.2396 |0.0182 |0.2383 |0.0708 |0.2609 |0.0167 |0.2108 |0.0187 | 0.1080
8 0.0764 | 03592 |0.0965 |0.3442 |0.0748 |0.4070 |0.0651 |0.4305 |0.0822 |0.4474 |0.0741 |0.3982 |0.0320 |0.2569
a 0.0114 0.0837 0.0345 0.0959 0.0114 0.0983 0.0042 0.0955 0.0029 0.0983 0.0065 0.0938 0.0010 0.0417
50,40 b 0.0132 | 0.1445 |0.0771 |0.1518 |0.0134 |0.1658 |0.0093 |0.1562 |0.0383 |0.1760 |0.0024 |0.1493 |0.0065 | 0.0656
8 0.0639 | 0.1707 |0.0836 | 0.2312 | 0.0637 |0.2653 |0.0636 |0.2580 |0.0601 |0.2748 |0.0676 |0.2544 |0.0299 |0.1535
H a 0.0057 | 0.0553 [0.0195 |0.0635 |0.0056 |0.0662 |0.0013 |0.0631 |0.0011 |0.0661 |0.0039 |0.0631 |0.0009 |[0.0319
100,120 | b 0.0092 | 0.0870 |0.0445 |0.0938 |0.0082 |0.1050 |0.0089 |0.0971 |0.0186 |0.1082 |0.0017 |0.0931 |0.0015 |0.0483
8 0.0592 | 0.0952 [0.0793 | 0.1585 |0.0591 |0.1782 |0.0469 |0.1725 |0.0592 |0.1800 |0.0592 |0.1708 |0.0233 |0.0908
a 0.0046 | 0.0416 |0.0152 | 0.0473 |0.0047 |0.0491 |0.0012 |0.0478 |0.0010 |0.0490 |0.0035 |0.0470 |0.0006 |0.0245
200,150 b 0.0084 0.0683 0.0354 0.0752 0.0078 0.0793 0.0009 0.0743 0.0045 0.0797 0.0014 0.0718 0.0014 0.0399
8 0.0490 | 0.0922 [0.0698 |0.1497 |0.0490 |0.1565 |0.0391 |0.1534 |0.0490 |0.1572 |0.0491 |0.1528 |0.0227 |0.0818
a 0.0348 | 0.1318 |0.0654 |0.1576 |0.0347 |0.1598 |0.0220 |0.1562 |0.0079 |0.1581 |0.0234 |0.1518 |0.0485 |0.0740
20,15 b 0.0535 | 0.2542 [0.1382 | 0.2526 |0.0533 |0.2620 |0.0125 |0.2583 |0.0793 |0.2885 |0.0140 |0.2385 |0.0152 |0.1082
8 0.9204 |0.8652 |0.9570 |1.0145 | 0.9201 1.0083 | 0.9130 |1.0033 |0.9024 |1.0106 |0.9262 |1.0057 |0.3105 |0.4386
a 0.0094 | 0.0831 [0.0363 |0.0977 |0.0094 |0.0998 |0.0146 |0.1000 |0.0050 |0.1002 |0.0069 |0.0948 |0.0366 |0.0735
50,40 b 0.0092 | 0.1384 |0.0823 | 0.1500 |0.0094 |0.1613 |0.0113 |0.1578 |0.0430 |0.1730 |0.0114 |0.1424 |0.0143 |0.0675
3 09164 | 0.8591 |0.9291 1.0115 | 0.9064 |0.9992 |0.8896 |0.9935 |0.8960 |0.9987 |0.9070 |1.0001 |0.2846 |0.3302
g a 0.0052 | 0.0564 |0.0185 |0.0656 |0.0052 |0.0714 |0.0088 |0.0686 |0.0036 |0.0715 |0.0040 |0.0674 |0.0068 |0.0528
100,120 | b 0.0038 | 0.0907 |0.0442 |0.0972 |0.0039 |0.1110 |0.0079 |0.1033 |0.0171 |0.1137 |0.0041 |0.0974 |0.0138 |0.0598
) 0.9070 0.8489 0.8993 1.0021 0.8899 1.0033 0.8099 0.9003 0.8099 1.0035 0.8993 1.0037 0.1655 0.1993
a 0.0033 | 0.0408 |0.0148 | 0.0463 |0.0032 |0.0484 |0.0018 |0.0455 |0.0026 |0.0484 |0.0027 |0.0452 |0.0032 |0.0398
200,150 | b 0.0025 | 0.0673 |0.0319 |0.0724 |0.0024 |0.0800 |0.0029 |0.0715 |0.0108 |0.0812 |0.0013 |0.0702 |0.0136 |0.0524
8 0.8994 | 0.8096 |0.8800 |0.8801 |0.8199 |1.0022 |0.7998 |0.8900 | 0.7993 1.0018 | 0.8096 |1.0029 |0.1462 |0.1681
a 0.0119 |0.1341 |0.0622 |0.1652 |0.0118 |0.1890 |0.0142 |0.1918 |0.0251 |0.1915 |0.0115 |0.1709 |0.1142 |0.1242
20,15 b 0.0422 | 0.2545 |0.1288 |0.2467 |0.0218 |0.3308 |0.0752 |0.3699 |0.1628 |0.3847 |0.0107 |0.2556 |0.0461 |0.1134
8 1.8021 1.8424 | 1.9219 | 1.9720 | 1.8022 |1.8923 |1.7443 |1.8481 1.7641 1.8728 | 1.8170 | 1.9005 |0.4120 |0.5331
a 0.0099 0.0798 0.0316 0.1033 0.0058 0.1068 0.0129 0.1393 0.0092 0.1081 0.0090 0.0959 0.0581 0.0713
50,40 b 0.0232 | 0.1327 [0.0796 | 0.1476 |0.0026 |0.1858 |0.0689 |0.2676 |0.0571 |0.2059 |0.0045 |0.1436 |0.0457 |0.0805
8 1.6939 | 1.6912 | 1.9046 | 19683 |1.7938 |1.6967 |1.6770 |1.8389 |1.6932 |1.6303 1.6965 | 1.8456 | 0.3594 | 0.4041
} a 0.0095 0.0538 0.0128 0.0624 0.0053 0.0912 0.0117 0.1290 0.0061 0.1028 0.0081 0.0706 0.0081 0.0516
100,120 | b 0.0226 | 0.0846 |0.0425 |0.0915 |0.0021 |0.1621 |0.0512 |0.2130 |0.0413 |0.1923 |0.0039 |0.0944 |0.0396 |0.0747
8 1.3778 | 1.3943 1.7443 1.9080 | 1.7779 |1.1817 |1.5729 |1.7751 1.2768 | 1.3808 | 1.4407 |1.7956 |0.1849 |0.2177
a 0.0091 | 0.0431 |0.0121 | 0.0485 |0.0050 |0.0563 |0.0014 |0.0508 |0.0051 |0.0562 |0.0009 |0.0486 | 0.0080 | 0.0407
200,150 | b 0.0214 | 0.0701 |0.0314 |0.0746 |0.0020 | 0.0948 |0.0069 |0.0820 |0.0353 |0.0979 |0.0010 |0.0742 |0.0362 |0.0671
8 0.9614 | 0.9538 [0.9973 |0.9000 |0.9614 |0.9687 |0.9286 |0.9910 |0.8963 |0.8970 |0.8799 |1.6099 |0.1563 |0.1790

Table 3. Different estimates of the PHLD under CPALT at true value ; = 0.5, and b = 1.5.

and (0.5, 0.6, 3). In addition, the upper, lower, length of the point estimates of the ACIs (LCI) and BCIs (LCCI)
as well as the coverage probabilities (CPs) with a 95% confidence level are computed. Values of CPs, upper, lower,
LCIs, and LCClIs are provided in Tables 5, 6, 7.

To conduct the numerical analysis, the following steps are necessary:

1. Create two separate sets of random samples, each with sizes represented by g; and g, drawn from the uni-

form (0,1) distribution utilizing the “runif()” function in R program. These random samples are denoted
as (U1, Uz1), (Urz, Upz),s ey (Ulql s Uzqz). By varying the values of q1, 2, as well as different parameters and
acceleration factors, the two samples are generated from the inverse CDF in Egs. (5), and (1), respectively
as follows:

ll 2 1 v i=1,2 & 11 2 1 v i =1,2
z1=|-In{ ———— — ;o i=1,2,..,4q. n=|-In| ———— — ;o i=1,2,..,9.
! a 1— U o : a (1—Upy)? o

Using the outcomes using the MLEs, MPSEs, OLSEs, WLSEs, CMEs, ADEs, and BEs, various estimates of
the unknown parameters and acceleration factor are computed. This is accomplished either by employing
the “optim()” function in R or by utilizing the BEGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm.
Perform Steps 1 and 2 repeatedly for a total of 10,000 iterations.
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MLEs MPSEs OLSEs WLSEs CMEs ADEs Bayesian

) 91> 92 ABias | MSE ABias | MSE ABias | MSE ABias | MSE ABias | MSE ABias | MSE ABias | MSE
a 0.0276 1.0523 0.0574 0.1596 0.0278 0.1616 0.0158 0.1591 0.0077 0.1625 0.0150 0.1544 0.0044 0.0679
20,15 b 0.0130 0.2648 | 0.0486 | 0.0956 |0.0130 |0.1073 |0.0082 |0.1057 |0.0418 |0.1247 |0.0038 |0.0930 |0.0072 | 0.0389
3 0.0819 6.2194 ]0.0984 |0.3378 |0.0794 |0.4049 |0.0918 |0.4131 |0.0051 |0.4405 |0.0216 |0.3892 |0.0357 |0.2412
a 0.0145 0.7790 0.0377 0.0957 0.0144 0.0987 0.0074 0.0947 0.0017 0.0984 0.0101 0.0935 0.0028 0.0392
50,40 b 0.0065 0.1465 |0.0316 |0.0591 |0.0065 |0.0637 |0.0024 |0.0603 |0.0143 |0.0676 |0.0007 |0.0565 |0.0021 | 0.0239
8 0.0748 1.6220 | 0.0904 |0.2213 | 0.0745 [0.2595 |0.0783 |0.2447 |0.0050 |0.2677 |0.0198 |0.2483 |0.0128 |0.1411
H a 0.0042 0.7644 ]0.0181 |0.0636 |0.0042 |0.0669 |0.0073 |0.0638 |0.0016 |0.0670 |0.0024 |0.0639 |0.0018 |0.0313
100,120 | b 0.0031 0.1228 | 0.0180 | 0.0376 |0.0031 |0.0416 |0.0018 |0.0381 |0.0052 |0.0425 |0.0006 |0.0370 |0.0015 |0.0163
8 0.0688 1.1869 | 0.0893 |0.1644 |0.0688 |0.1783 |0.0689 |[0.1731 |0.0049 |[0.1802 |0.0189 [0.1726 |0.0125 |0.0955
a 0.0016 0.2408 | 0.0131 | 0.0479 |0.0017 |0.0496 |0.0068 |0.0484 |0.0012 |0.0497 |0.0010 |0.0475 |0.0017 | 0.0242
200,150 b 0.0008 0.0729 0.0125 0.0289 0.0008 0.0318 0.0012 0.0294 0.0045 0.0324 0.0003 0.0284 0.0009 0.0133
8 0.0599 0.8622 | 0.0879 |0.1472 |0.0586 |0.1595 |0.0657 |0.1545 |0.0039 |0.1603 |0.0172 |[0.1537 |0.0112 |0.0761
a 0.0244 0.8240 | 0.0622 | 0.1552 |0.0243 |0.1594 |0.0100 |0.1586 |0.0125 |0.1615 |0.0157 |0.1506 |0.0594 |0.0791
20,15 0.0118 0.1567 | 0.0530 |0.0967 |0.0118 |0.1092 |0.0051 |0.1075 |0.0441 |0.1279 |0.0057 |0.0944 |0.0095 | 0.0383
8 0.9046 | 10.1306 | 0.9581 | 1.0180 |0.9044 |0.9999 |0.8840 |0.9850 |0.8832 |1.0008 |0.9157 |1.0016 |0.2204 |0.3338
a 0.0166 0.3956 | 0.0250 | 0.1044 |0.0165 |0.0989 |0.0092 |0.1017 |0.0019 |0.0986 |0.0118 |0.0940 |0.0534 |0.0710
50,40 b 0.0115 0.0849 |0.0341 |0.0608 |0.0113 |0.0664 |0.0028 |0.0637 |0.0094 |0.0692 |0.0054 |0.0577 |0.0091 |0.0257
8 0.8950 22558 |0.8934 |0.9314 |0.8950 [0.9876 |0.8790 |0.9476 |0.8794 |0.9860 |0.9054 [0.9871 |0.2166 |0.3148
g a 0.0101 0.1497 ]0.0168 | 0.0639 |0.0108 |0.0711 |0.0081 |0.0667 |0.0017 |0.0718 |0.0106 |0.0624 |0.0495 | 0.0697
100,120 | b 0.0068 0.0447 ]0.0179 | 0.0377 |0.0097 |0.0436 |0.0021 |0.0397 |0.0093 |0.0452 |0.0009 |0.0373 |0.0082 |0.0236
) 0.8906 1.3198 0.8055 0.8991 0.8596 0.9793 0.8068 0.8646 0.7960 0.9778 0.8973 0.9861 0.1518 0.1833
a 0.0041 0.0924 |0.0146 |0.0478 |0.0040 |0.0492 |0.0010 |0.0480 |0.0003 |0.0491 |0.0031 |0.0474 |0.0378 | 0.0680
200,150 | b 0.0023 0.0394 |0.0131 | 0.0295 |0.0023 |0.0320 |0.0016 |0.0296 |0.0029 |0.0324 |0.0006 |0.0289 |0.0072 | 0.0207
8 0.8749 1.0023 | 0.7999 |0.8005 |0.8199 [0.9198 |0.7991 [0.8105 |0.6989 |[0.8998 |0.8299 [0.9996 |0.1322 |0.1543
a 0.1073 2.3852 | 0.0949 |0.1625 |0.0918 |0.1975 |0.0837 |0.2036 |0.0576 |0.2086 |0.0691 |0.1638 |0.1199 |0.1314
20,15 b 0.0833 0.4762 | 0.0517 |0.0990 |0.0336 |0.1658 |0.0609 |0.1923 |0.1019 |0.2213 |0.0056 |0.1006 |0.0150 | 0.0406
8 1.6107 21169 | 1.6829 |1.8972 |1.6093 |1.7550 |1.5003 |1.6775 |1.5387 |1.7120 |1.7478 |1.8451 |0.4116 |0.6295
a 0.0910 1.8882 0.0724 0.1384 0.0810 0.1338 0.0642 0.1561 0.0294 0.1412 0.0674 0.1192 0.0912 0.1314
50,40 b 0.0826 0.4635 |0.0279 |0.0588 |0.0183 |0.1107 |0.0572 |0.1188 |0.0448 |0.1255 |0.0050 |0.0661 |0.0136 | 0.0286
3 1.2802 1.5926 | 1.2379 |1.3259 |1.1802 |1.2873 |1.5029 |[1.6252 |1.4764 |1.1846 |1.1598 |1.4875 |0.3889 |0.6057
} a 0.0675 1.3886 0.0129 0.0731 0.0676 0.1135 0.0618 0.1211 0.0285 0.1156 0.0140 0.0681 0.0826 0.1285
100,120 | b 0.0341 0.4586 | 0.0150 | 0.0365 |0.0134 |0.0654 |0.0436 |0.0707 |0.0419 |0.0691 |0.0046 |0.0378 |0.0136 | 0.0249
8 1.1691 1.1691 1.1855 | 1.0088 | 1.1691 1.1736 | 1.0637 | 1.1692 |1.3692 |[1.7375 |1.1193 |[1.1494 |0.1662 |0.2192
a 0.0091 1.2230 | 0.0116 |0.0681 |0.0069 |0.0503 |0.0452 [0.0597 |0.0032 [0.0517 |0.0048 |0.0462 |0.0715 |0.1149
200,150 0.0105 0.3154 | 0.0108 |0.0303 |0.0109 |0.0344 |0.0058 |0.0445 |0.0046 |0.0369 |0.0020 |0.0273 |0.0108 | 0.0218
8 0.9653 0.9456 | 0.6224 | 0.8109 |0.6514 [0.9722 |0.9359 [0.9519 |0.9621 [0.9699 |0.8844 |1.0992 |0.1556 |0.1864

Table 4. Different estimates of the PHLD under CPALT at true value: g = 0.5, and b = 0.6.

4. Calculate the average of ABias, MSE, CPs, upper, lower, LCIs, and LCClIs of the different parameter estimates
and accelerated factor estimates of the PHLD.

The outcomes derived from the numerical comparison analysis of various methods using MSEs and ABias
for all estimates are showcased in Tables 2 through 4. The outcomes of the CPs, upper, lower, LCIs, and LCCls
of all estimates are listed in Tables 5, 6, 7. From these tables we conclude the following:

e The MSEs and ABias decrease for all estimates as the values of q) and g, increase, as anticipated, as seen in
Tables 2 through 4.

e The MLEs show notable improvement with smaller values of MSE and ABias, making them one of the top
classical estimation method choices for large sample sizes concerning parameters.

e In general, the MPSEs perform better than other classical estimates (MLE, CME, ADE, OLSE, WLSE) with
smaller MSE and ABias values.

e In most cases, Bayesian estimation exhibits superior performance compared to alternative techniques, con-
sidering both MSE and ABias.

® Based on the results of the simulation study, we recommend utilizing Bayesian, MPSE, and MLE for CPALT
with complete data, while prioritizing consideration of MSEs and ABias.
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MLE Bayesian

8 q1> 92 Lower | Upper | LACI |CP Lower | Upper |LCCI |CP
a 0.7030 | 1.7474 | 1.0444 |95.30% |0.9620 | 1.4899 |0.5279 |94.59%
20,15 b 0.7471 | 1.5864 | 0.8393 |95.80% |1.0650 |1.4548 |0.3898 |95.19%
8 0.2099 | 1.9268 | 1.7169 |96.20% |0.7968 |1.5459 |0.7491 |95.29%
a 0.8702 | 1.5575 | 0.6872 |94.89% | 1.0508 | 1.3581 |0.3074 |95.19%
50,40 b 0.9341 | 1.4411 |0.5070 |95.10% |1.0979 |1.3291 |0.2312 |96.90%
L1 8 0.5232 | 1.5119 | 0.9886 |95.50% |0.8669 |1.3201 |0.4531 | 95.80%
a 0.9837 | 1.4273 | 0.4436 |95.50% |1.0696 |1.3193 |0.2496 | 96.30%
100,120 | b 1.0387 | 1.3473 | 0.3085 |94.19% | 1.1331 |1.2871 |0.1540 | 96.30%
8 0.7183 | 1.3034 | 0.5851 |95.30% |0.9094 |1.2478 |0.3384 | 96.80%
a 1.0375 | 1.3699 | 0.3325 |94.29% |1.0903 | 1.2737 |0.1834 |97.10%
200,150 | b 1.0699 | 1.3224 |0.2525 |95.30% |1.1341 |1.2618 |0.1277 |97.20%
8 0.7656 | 1.2470 | 0.4814 |94.59% |0.9372 |1.2069 |0.2696 |97.30%
a 0.6695 | 1.7868 | 1.1173 |95.59% |0.8412 |1.2627 |0.4215 |94.99%
20,15 b 0.7474 | 1.6008 | 0.8534 |95.39% |1.0365 |1.4252 |0.3887 |94.79%
8 0.1822 | 1.9620 | 1.7798 |94.59% | 1.3451 |2.2845 |0.9394 | 94.96%
a 0.8738 | 1.5280 | 0.6542 |95.39% |0.9114 |1.2189 |0.3075 | 96.08%
50,40 b 0.9315 | 1.4520 | 0.5206 |94.39% |1.0927 |1.3477 |0.2549 |95.18%
5 8 0.5339 | 1.5787 | 1.0448 |95.79% | 1.4659 |2.1167 |0.6507 |95.38%
a 0.9799 | 1.4500 | 0.4700 |95.99% |0.8770 |1.1151 |0.2381 |95.78%
100,120 | b 1.0332 | 1.3500 | 0.3168 |94.59% |1.0960 | 1.2737 |0.1778 | 96.28%
8 0.7091 | 1.2835 | 0.5744 |94.99% |1.5928 |2.0650 |0.4722 | 96.98%
a 1.0399 | 1.3724 |0.3325 |95.99% |0.9521 |1.1629 |0.2109 |97.19%
200,150 | b 1.0672 | 1.3198 | 0.2526 |94.99% |1.0965 | 1.2541 |0.1576 |97.29%
8 0.7592 | 1.2467 | 0.4875 |94.39% | 1.6525 |2.0459 |0.3934 | 98.80%
a 0.7253 | 1.7389 | 1.0137 | 94.79% | 0.7426 | 1.1829 |0.4402 |95.28%
20,15 b 0.7157 | 1.6065 | 0.8908 |94.99% |1.0128 |1.4067 |0.3938 |95.98%
8 0.2436 | 1.8755 | 1.6319 |95.59% | 1.4572 |3.4094 |1.9522 |94.80%
a 0.8903 | 1.5344 | 0.6440 |95.19% |0.7625 |1.0822 |0.3197 |96.01%
50,40 b 0.9416 | 1.4193 | 0.4777 |95.19% |1.0566 |1.3051 |0.2486 |96.18%
s 8 0.5595 | 1.5216 | 0.9621 |94.79% | 1.9581 |3.0259 |1.0679 | 96.90%
a 0.9776 | 1.4210 | 0.4434 |95.39% |0.6882 |0.9220 |0.2338 | 97.00%
100,120 | b 1.0262 | 1.3697 |0.3435 |95.39% | 1.0911 |1.2636 |0.1724 |97.00%
8 0.7175 | 1.3095 | 0.5920 |95.19% |2.4628 |3.0305 |0.5678 |97.98%
a 1.0282 | 1.3649 | 0.3367 |96.19% |0.7763 | 1.0333 |0.2570 | 98.00%
200,150 | b 1.0752 | 1.3210 |0.2459 |95.39% | 1.0700 |1.2317 |0.1617 |98.08%
8 0.7667 | 1.2362 | 0.4694 |95.19% |2.4398 |2.9966 |0.5567 | 99.00%

Table 5. The ACIs and BCIs of the PHLD under CPALT at true value g — 1.2, and b = 1.5.

® We note from the results of the confidence intervals that the larger the sample size, the shorter the length of
the interval, and this indicates the accuracy of the results and the convergence of the results as the sample
size increases. The BCIs have a higher coverage probability than the ACIs

Data analysis
In this section, different data sets are used to illustrate the suggested estimators and some measures of goodness
of tests are considered.

Data set 1: Comprises chronological failure times. It encompasses the recorded failure times of ten steel
samples subjected to four different stress levels. This section focuses on data representing only two stress levels,
specifically 0.87 and 0.99 (106 psi), which were adjusted to suit the problem under investigation. The data can be
displayed as follows: Stress (106 psi) the use condition (0.87) is 1.679, 2.20, 2.519, 3.009, 3.909, 4.70, 7.53, 14.70,
27.8, and 37.4. While the accelerated condition (0.99) is 0.80, 1.00, 1.37, 2.25, 2.95, 3.70, 6.07, 6.65, 7.05, and 7.37.

Initially, the MLE is applied to the complete dataset to assess the suitability of the PHLD for fitting both the
normal and accelerated conditions. The AIC, BIC, CAIC, HQIC, KSD with the PVKS, CMT, and ADT are com-
puted for both conditions, and the outcomes are outlined in Table 8. Results indicate that the PHLD adequately
fits the data for both normal and accelerated conditions. Figure 6 illustrates this further by presenting a boxplot
of the dataset, a TTT plot of the dataset, a fitted hazard rate, the empirical CDF alongside the fitted CDEF, a his-
togram of the data with a PDF, and a PP plot of the PHLD obtained through MLE for used conditions. Figure 7
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ML Bayesian

8 q1> 92 Lower | Upper | LACI |CP Lower | Upper |LCCI |CP
a 0.2398 [0.8354 | 0.5956 |95.79% |0.3913 | 0.6471 |0.2559 |95.18%
20,15 b 0.9896 | 1.8885 | 0.8989 |94.79% |1.3281 |1.7485 |0.4204 |95.38%
8 0.2719 | 1.8628 | 1.5909 |96.19% |0.8026 |1.7217 |0.9190 | 95.34%
a 0.3267 | 0.6990 | 0.3723 |95.59% |0.4155 |0.5925 |0.1770 |96.45%
50,40 b 1.1565 | 1.7851 | 0.6286 |94.99% | 1.3691 |1.6406 |0.2716 |95.18%
L1 8 0.5696 | 1.5131 | 0.9435 |95.19% |0.8455 |1.4447 |0.5992 |96.78%
a 0.3807 | 0.6354 | 0.2547 |95.59% |0.4198 |0.5574 |0.1376 |97.18%
100,120 | b 1.2966 | 1.6803 |0.3837 |95.59% | 1.3855 |1.6217 |0.2362 |97.67%
8 0.7036 | 1.3142 | 0.6106 |95.19% |0.9177 |1.2847 |0.3670 |97.00%
a 0.4119 |0.6023 | 0.1904 |94.19% |0.4320 |0.5576 |0.1255 | 98.00%
200,150 | b 1.3369 | 1.6399 |0.3030 |95.39% |1.4097 |1.6088 |[0.1991 |98.18%
8 0.7621 | 1.2545 | 0.4923 |94.79% |0.8956 |1.2990 |0.4033 | 98.38%
a 0.2328 | 0.8369 | 0.6041 |95.39% |0.3514 |0.5568 |0.2054 | 94.38%
20,15 b 0.9637 | 1.9366 | 0.9729 |96.79% | 1.2808 |1.6828 |0.4020 | 94.78%
8 0.2283 | 1.9301 | 1.7017 |95.59% |1.2692 |2.4124 |1.1432 |95.00%
a 0.3239 | 0.7079 | 0.3840 |94.99% |0.3670 |0.4984 |0.1313 |95.68%
50,40 b 1.1601 |1.7821 |0.6220 |96.19% |1.3510 | 1.6141 |0.2632 |95.89%
5 8 0.5331 | 1.5265 | 0.9935 |94.39% |1.4770 |2.0616 |0.5847 |96.97%
a 0.3659 | 0.6408 | 0.2749 |92.59% |0.3515 |0.4557 |0.1042 |96.38%
100,120 | b 1.2766 | 1.7186 | 0.4420 |94.79% |1.3533 | 1.5789 |0.2256 |97.08%
8 0.7042 | 1.3442 | 0.6400 |95.19% |1.5978 |2.0927 |0.4948 |97.28%
a 0.4084 | 0.5977 |0.1893 |95.19% |0.3749 |0.4766 |0.1017 |97.99%
200,150 | b 1.3424 | 1.6555 | 0.3132 |94.79% |1.3784 | 1.5649 |0.1865 |98.18%
8 0.7596 | 1.2445 | 0.4849 |94.79% | 1.6381 |2.0472 |0.4091 |98.22%
a 0.1601 |0.8842 | 0.7240 |96.99% |0.2831 |0.4951 |0.2119 |94.16%
20,15 b 0.8649 |2.1351 |1.2702 |95.79% |1.2810 |1.6809 |0.3999 |94.36%
8 0.0889 |2.3561 |2.2672 |94.59% |1.2297 |3.3816 |2.1520 | 94.96%
a 0.2976 |0.7093 | 0.4117 |94.79% |0.3070 | 0.4259 |0.1189 |95.07%
50,40 b 1.1492 |1.8873 | 0.7381 |95.79% |1.3214 | 1.5982 |0.2768 |95.77%
s 8 0.4575 | 1.6881 | 1.2306 |94.79% |1.8091 |3.1237 |1.3146 |95.97%
a 0.2284 | 0.6778 | 0.4494 |99.60% |0.2722 |0.3875 |0.1153 | 96.18%
100,120 | b 1.2343 | 1.9579 |0.7236 |97.60% | 1.3444 |1.5378 |0.1934 | 96.88%
8 0.4786 | 1.9394 | 1.4608 |95.99% |2.5023 |3.1291 |0.6268 | 96.98%
a 0.3806 | 0.6050 | 0.2244 |96.59% |0.3111 |0.3986 |0.0875 |97.19%
200,150 | b 1.3040 | 1.7435 | 0.4395 |98.00% | 1.3653 |1.5534 |0.1881 |97.89%
8 0.6988 | 1.3710 | 0.6721 |95.59% |2.6444 |3.0719 |0.4275 |97.69%

Table 6. The ACIs and BClIs of the of the PHLD under CPALT at true value g = 0.5, and b = 1.5.

illustrates this further by presenting a boxplot of the dataset, a TTT plot of the dataset, a fitted hazard rate, the
empirical CDF alongside the fitted CDF, a histogram of the data with PDE, and a PP plot of the PHLD obtained
through MLE for accelerated conditions.

Subsequently, various estimation methods outlined in ML, MPS, OLS, WLS, CM, AD, and Bayesian are
utilized to derive estimates of the unknown parameters and the acceleration factor under CPALT, utilizing the
ordered failure times data. These estimates, derived from real datasets using different estimation methods, are
summarized in Table 9. Additionally, the survival and hazard rates of the PHLD with the mean average of ordered
times to failure data are examined under both conditions as seen in Table 9.

Also, the StErs have been obtained for parameters of PHLD by MLE, MPS, and Bayesian estimation methods
based on the SELF in Table 10. Based on these results in Table 10, the Bayesian estimation method has the smallest
StEr compared to the ML and MPS methods. To validate the MLE, a likelihood profile for the PHLD is plotted
in Fig. 8. This graph illustrates how the natural logarithm of the likelihood function, representing the probability
of observing the ordered times to failure data given various parameter values, changes as the parameter var-
ies. This information is crucial for comprehending the behavior and uncertainty associated with the estimated
parameter. By analyzing the likelihood profile alongside the natural logarithm of the likelihood, insights into the
parameter of the likelihood function and the behavior of the estimated PHLD parameters can be gained. Peaks
in the likelihood profile correspond to the MLE of the PHLD parameters, while the natural logarithm of the
likelihood provides additional information regarding the curvature of the likelihood function around these peaks.
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ML Bayesian

8 q1> 92 Lower | Upper | LACI |CP Lower | Upper |LCCI |CP
a 0.2116 |0.8377 |0.6261 |95.39% |0.3979 |0.6708 |0.2729 |95.78%
20,15 b 0.3757 | 0.8026 | 0.4268 |95.59% |0.5316 |0.6865 |0.1549 |95.60%
8 0.2792 | 1.9200 | 1.6408 |96.59% |0.7726 |1.6389 |0.8662 | 95.80%
a 0.3255 | 0.7102 | 0.3847 |94.19% |0.4237 | 0.6031 |0.1794 | 96.50%
50,40 b 0.4711 |0.7091 | 0.2380 |95.79% |0.5442 |0.6461 |0.1019 |96.90%
L1 8 0.5662 | 1.5060 | 0.9397 |95.19% |0.8499 |1.4859 |0.6360 | 96.00%
a 0.3866 | 0.6394 | 0.2528 |95.59% |0.4373 |0.5669 |0.1295 |97.80%
100,120 | b 0.5174 | 0.6746 | 0.1572 |94.99% |0.5635 |0.6363 |0.0728 |97.70%
8 0.6844 | 1.3209 | 0.6365 |95.79% |0.8990 |1.3096 |0.4107 |97.65%
a 0.4120 | 0.5964 | 0.1844 |93.59% |0.4426 |0.5601 |0.1175 |98.76%
200,150 | b 0.5394 |0.6540 | 0.1146 |94.99% |0.5687 | 0.6336 |0.0650 | 98.82%
8 0.7811 | 1.2399 | 0.4588 |94.39% |0.9193 |1.2642 |0.3449 | 98.38%
a 0.2026 | 0.8422 | 0.6395 |96.39% |0.3519 |0.5549 |0.2031 | 95.08%
20,15 b 0.3694 | 0.8065 | 0.4371 |95.59% |0.5264 |0.6663 |0.1398 | 94.80%
8 0.2874 | 1.9583 | 1.6709 |95.59% | 1.3280 |2.4043 |1.0762 |95.10%
a 0.3312 | 0.6986 | 0.3674 |94.79% |0.3817 |0.4995 |0.1178 | 96.00%
50,40 b 0.4714 |0.7103 | 0.2389 |95.99% |0.5360 |0.6347 |0.0987 | 96.20%
5 8 0.5387 | 1.5464 | 1.0077 |95.79% | 1.3539 |2.1036 |0.7496 |96.11%
a 0.3579 |0.6320 | 0.2740 |96.59% |0.3594 |0.4571 |0.0977 |96.98%
100,120 | b 0.5198 | 0.6858 | 0.1660 |95.39% |0.5516 |0.6209 |0.0693 |97.18%
8 0.6842 |1.3877 |0.7034 |95.79% |1.6087 |2.1061 |0.4974 | 97.08%
a 0.4031 | 0.5966 | 0.1935 |95.39% |0.3841 |0.4693 |0.0852 |98.23%
200,150 | b 0.5351 | 0.6657 |0.1306 |96.79% |0.5552 |0.6155 |0.0603 | 98.59%
8 0.7586 | 1.2739 | 0.5152 |94.39% | 1.6677 |2.0659 |0.3983 |98.19%
a 0.0895 | 0.8827 |0.7932 |96.39% |0.2592 |0.4911 |0.2320 | 95.60%
20,15 b 0.3147 |0.9451 |0.6303 |95.99% |0.5140 |0.6576 |0.1437 |95.40%
8 0.0385 |2.7399 |2.7014 |97.60% |1.3941 |3.4450 |2.0509 | 96.00%
a 0.2311 |0.7443 | 0.5132 |90.76% |0.2780 | 0.4552 |0.1773 | 96.40%
50,40 b 0.4039 | 0.8292 | 0.4253 |93.37% |0.5405 |0.6373 |0.0967 |96.20%
s 8 0.2566 |2.1361 | 1.8794 |91.37% |1.5735 |3.2556 | 1.6821 |97.20%
a 0.2469 | 0.6179 | 0.3710 |93.78% |0.2612 |0.3782 |0.1169 |97.20%
100,120 | b 0.5233 | 0.7396 | 0.2163 |94.78% |0.5403 | 0.6152 |0.0749 | 96.80%
8 0.5427 |2.1120 | 1.5693 |96.99% |2.4931 |3.1810 |0.6879 | 98.60%
a 0.3921 | 0.5960 | 0.2040 |94.38% |0.2862 |0.3782 |0.0920 | 98.70%
200,150 | b 0.5339 | 0.6700 | 0.1361 |96.39% |0.5449 |0.6152 |0.0703 |97.40%
8 0.7136 | 1.3683 | 0.6547 | 96.59% |2.5553 |3.1810 |0.6257 |99.40%

Table 7. The ACIs and BClIs of the of the PHLD under CPALT at true valuea = 0.5, and b = 0.6.

Ordered times to failure a b 8 KSD PVKS AIC BIC CAIC HQIC CMT ADT
Esti 0.2381 0.7849

Use condition (0.87) 0.2192 0.6471 71.7364 72.3415 73.4507 71.0725 0.1137 0.6878
StEr 0.1513 0.1970
Esti 0.0505 1.4810 3.8679

Accelerated condition (0.99) 0.2106 0.6932 50.5383 51.4460 54.5383 49.5425 0.0586 0.4292
StEr 0.1351 0.4374 10.0612

Table 8. MLE and different measures for the ordered times to failure data under both conditions.

MCMC is a highly effective computational method utilized to estimate the intricate posterior density of
PHLD parameters. When conducting an MCMC simulation, it’s vital to examine the trajectory of the Markov
chain and its convergence to guarantee the accuracy of the outcomes. Evaluating the trace plot and convergence
diagnostics is crucial in verifying MCMC findings and ensuring the dependability of Bayesian inference, as
illustrated in Fig. 9.

Dataset 2: Encompasses the breakdown times of insulating fluids used in high-voltage tests. After necessary
modifications to align with the specific research problem, this dataset is scrutinized in this section. The focus is
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Fig. 6. Boxplot, TTT, hazard rate estimated, CDF, PDFE, and PP plots for PHLD for ordered times of failure data
under normal condition.
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Fig. 7. Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD of breakdown times data under
accelerated condition.

ML MPS OLS WLS CM AD Bayesian

a 0.1341 | 0.1715 | 0.1865 | 0.1447 |0.1915 |0.1543 | 0.1387
b 0.9831 |0.8391 |0.8897 | 0.9562 |0.9843 |0.9263 | 0.9830
8 3.3283 | 3.2303 |2.6230 |3.2225 |2.0193 |3.1265 | 3.3880

F(z) 0.4088 | 0.4496 | 0.3599 | 0.4032 | 0.2499 |0.4061 | 0.3938
h(z1) 0.3814 |0.3723 | 0.3857 | 0.3772 | 0.4166 |0.3789 | 0.3611
F(z) 0.1008 | 0.0764 | 0.1049 | 0.0997 |0.1590 |0.0957 | 0.1052
h(z2) 0.2683 | 0.2357 | 0.2442 | 0.2648 | 0.2519 | 0.2558 | 0.2844

Table 9. Different estimates of the PHLD for ordered times of failure data.

StEr | ML MPS Bayesian

a 0.0875 | 0.1146 | 0.0511
b 0.1883 | 0.1823 | 0.1303
) 1.8348 | 1.9648 | 0.5792

Table 10. StEr for PHLD parameters by ML, MPS, and Bayesian for ordered times of failure data.

on two stress levels, namely 30 and 32 kV, designated as the normal and accelerated conditions, as indicated as
follows: Use condition (30) is 7.74, 17.05, 20.46, 21.02, 22.66, 43.40, 47.30, 139.07, 144.12, 175.88, and 194.90.
Accelerated condition (32) is 0.27, 0.40, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.80, 53.24, 82.85, 89.29, 100.58,
and 215.10.

Initially, MLE is applied to the complete dataset to assess the suitability of the PHLD for fitting the data for
both normal and accelerated conditions in Table 11. The KSD with corresponding p-values, AIC, BIC, CAIC,
HQIC, CMT, and ADT are computed for each condition, as outlined in Table 11. Results from Table 11 suggest
a favorable fit of the PHLD to the data under both conditions.

Additionally, Fig. 10 illustrates this further by presenting boxplot of dataset, TTT plot of dataset, fitted hazard
rate, the empirical CDF alongside the fitted CDF, histogram of data with PDF, and PP plot of the PHLD obtained
through MLE for standard conditions. Figure 11 illustrates this further by presenting boxplot of dataset, TTT
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Ordered times to failure a b 8 KSD PVKS AIC BIC CAIC HQIC CMT ADT
Esti 0.0300 | 0.8897
Use condition (30) 0.2184 | 0.5966 121.6671 122.4629 123.1671 121.1655 | 0.1179 | 0.7057
StEr | 0.0335 | 0.2233
Esti 6.0817 | 05420 | 0.0291
Accelerated condition (32) 0.1396 | 0.8936 137.0777 139.2018 139.2595 137.0550 | 0.0384 | 0.2949
StEr | 8.8177 | 0.1192 | 0.0493
Table 11. MLE and different measures for the breakdown time’s data under both conditions.
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Fig. 10. Boxplot, TTT, hazard rate estimated, CDF, PDFE, and PP plots for PHLD of breakdown times data
under normal condition.
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Fig. 11. Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD of breakdown times data
under accelerated condition.

plot of dataset, fitted hazard rate, the empirical CDF alongside the fitted CDEF, histogram of data with PDF, and
PP plots of the PHLD obtained through MLE for accelerated conditions.

Various estimation techniques, ranging from ML, MPS, OLS, WLS, CM, AD, to Bayesian, are utilized to
determine the unknown parameters and accelerated factor under the CPALT framework. Table 12 presents the
estimates derived from real datasets using different estimation methods for the oil breakdown times of insulat-
ing fluid. Also, it includes the survival and hazard rate estimates of the PHLD with the mean average of the oil
breakdown times of insulating fluid data under both conditions.

Furthermore, the StErs for the parameters of the PHLD have been derived using ML, MPS, and Bayesian
estimation techniques employing the SELF, as shown in Table 13. From the data presented in Table 13, it is evident
that the Bayesian estimation method yields the smallest standard errors compared to the ML and MPS methods.

To check the MLE, we plotted the likelihood profile for PHLD in Fig. 12. It represents how the log-likelihood
function, which quantifies the probability of observing the data given different values of a parameter, changes as

ML MPS OLS WLS CcM AD Bayesian
0.1124 |0.1586 |0.1775 |0.1645 |0.1559 |0.1621 | 0.1238
0.6060 | 0.5115 | 0.4710 | 0.4955 |0.5108 |0.5050 | 0.5996
1.7656 | 1.7404 | 1.9387 | 1.8437 |1.8955 | 1.8343 | 1.7931

|| > | | 2

F(z1) 0.3507 |0.3796 |0.4076 |0.3941 |0.3888 |0.3825 | 0.3200
h(z1) 0.3056 | 0.3138 |0.2912 | 0.3027 |0.2916 | 0.2959 | 0.2691
F(zy) 0.0102 | 0.0079 | 0.0067 | 0.0074 |0.0077 |0.0078 | 0.0110
h(z2) 0.0207 |0.0171 |0.0167 |0.0170 |0.0181 |0.0177 | 0.0228

Table 12. Different estimates of the PHLD for breakdown time’s data.

StEr | ML MPS Bayesian

a 0.0611 | 0.0796 | 0.0507
b 0.1004 | 0.0895 | 0.0840
) 0.7063 | 0.7191 | 0.3619

Table 13. StEr for PHLD parameters by ML, MPS, and Bayesian for oil breakdown times of insulating fluid
data.
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Fig. 12. Likelihood profile of PHLD for oil breakdown times of insulating fluid data.
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Fig. 13. MCMC analysis for PHLD parameters of oil breakdown times of insulating fluid data.

the parameter varies. This information is crucial for understanding the behavior and uncertainty associated with
the parameter being estimated. When examining a likelihood profile alongside the log-likelihood, one can gain
insights into the parameters of the likelihood function and the behavior of the PHLD parameter being estimated.
Peaks in the likelihood profile correspond to the MLE of the PHLD parameter, while the log-likelihood provides
additional information about the curvature of the likelihood function around these peaks.

MCMC is a powerful computational technique used for estimating the complex posterior density of PHLD
parameters. When running an MCMC simulation, it’s crucial to assess the trace of the Markov chain and its
convergence to ensure the validity of the results. Monitoring the trace plot and assessing convergence diagnos-
tics are essential steps in validating MCMC results and ensuring the reliability of Bayesian inference, which is
obtained in Fig. 13.

Summary and conclusion

The PALTSs are utilized when the findings of accelerated life testing cannot be applied to usage scenarios. The
problem of various estimating procedures in CPALT with full data is covered in this paper. It is considered that
the test item’s lifespan distribution will resemble a PHLD. The PHLD’s acceleration factor and distribution param-
eters may be estimated using a variety of traditional and Bayesian estimation methods. Among these methods
are Bayesian estimation, ADE, MLE, CME, OLSE, WLSE, and MPSE. A simulation study is provided in order
to assess the outcomes of the various estimating techniques based on absolute average bias, mean squared error,
coverage probability, and average length. This research indicates that when utilizing the minimal values for mean
squared error and average bias, the maximum product of spacing estimation method is often the most efficient
approach out of all the available possibilities. The Bayesian technique performs better than alternative approaches
in most cases. The lowest interval length and higher coverage probability of the BCIs make them better than the
ACIs in obtaining confidence intervals. For purposes of illustration, two real data sets are analyzed. The suggested
approaches are feasible and appropriate for several engineering-related issues, as demonstrated by an analysis
of the two real data sets. In further work, the aforementioned approaches and other classical procedures can be
used to investigate the reliability function and the unknown parameters across different probability distributions.

Data availability

The references of the data sets used in this study are presented in the article.
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