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Different estimation 
techniques and data analysis 
for constant‑partially accelerated 
life tests for power half‑logistic 
distribution
Ghadah A. Alomani 1, Amal S. Hassan  2, Amer I. Al‑Omari 3* & Ehab M. Almetwally  4

Partial accelerated life tests (PALTs) are employed when the results of accelerated life testing cannot 
be extended to usage circumstances. This work discusses the challenge of different estimating 
strategies in constant PALT with complete data. The lifetime distribution of the test item is assumed 
to follow the power half-logistic distribution. Several classical and Bayesian estimation techniques 
are presented to estimate the distribution parameters and the acceleration factor of the power half-
logistic distribution. These techniques include Anderson–Darling, maximum likelihood, Cramér von-
Mises, ordinary least squares, weighted least squares, maximum product of spacing and Bayesian. 
Additionally, the Bayesian credible intervals and approximate confidence intervals are constructed. 
A simulation study is provided to compare the outcomes of various estimation methods that have 
been provided based on mean squared error, absolute average bias, length of intervals, and coverage 
probabilities. This study shows that the maximum product of spacing estimation is the most effective 
strategy among the options in most circumstances when adopting the minimum values for MSE and 
average bias. In the majority of situations, Bayesian method outperforms other methods when taking 
into account both MSE and average bias values. When comparing approximation confidence intervals 
to Bayesian credible intervals, the latter have a higher coverage probability and smaller average 
length. Two authentic data sets are examined for illustrative purposes. Examining the two real 
data sets shows that the value methods are workable and applicable to certain engineering-related 
problems.

Keywords  Power half-logistic distribution, Cramér von-Mises, Weighted least squares, Partially accelerated 
life tests, Acceleration factor, Constant stress, Maximum likelihood estimation

Today’s highly competitive environment demands that manufacturers offer goods with improved reliability at 
lower costs and faster processing times. Accelerated life tests (ALTs) are therefore recommended for use in indus-
trial sectors to quickly gather the appropriate amount of failure data to draw conclusions about the link between 
them and external stress factors. The test items in ALTs are only put to the test under expedited circumstances 
or stress levels that are greater than normal in order to cause early failures. To estimate the lifetime distribu-
tion under typical usage settings, data gathered under such accelerated conditions are then extrapolated using 
a statistical model that is appropriate for the physical environment. There are primarily three ALT techniques, 
according to Nelson1. The first approach, known as the constant-stress ALT, maintains a constant degree of stress 
for the duration of the test run. The second one, known as progressive-stress ALT, involves gradually increasing 
the stress that is applied to a test product over time. The third type of test condition change is known as the step-
stress ALT, and it occurs when a certain number of failures occur or at a specific period. In situations where it 
is not possible to assume that the acceleration factor is known, the partially ALT (PALT) is a suitable option for 
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conducting the life test. The experimental units are operated at both use and accelerated settings in a PALT, and 
they are subjected to higher stress levels than typical in an ALT to shorten the time to failure. A statistical model 
that is suitable for the physical environment is used to extrapolate data obtained in such accelerated settings and 
predict the lifespan distribution under typical use conditions. Three forms of stress may be identified in PALT: 
step-stress, progressive-stress, and constant-stress. Step-stress and constant-stress PALT are two often employed 
techniques. Items under step-stress PALT are tested under both used and accelerated conditions (see2–6). In 
constant-stress PALT (CPALT), all test units are split into two groups, one of which is tasked with working under 
used conditions and the other under accelerated conditions.

Numerous writers have examined CPALTs, in which items are tested at either normal use or accelerated 
conditions. The problem of CPALT estimation with different censored data using different distributions was 
studied in subsequent studies. Bai and Chung7 estimated the scale parameter and the acceleration factor for 
exponentially distributed lifetimes under Type-I censoring using the maximum likelihood (ML) technique. Bai 
et al.8 examined the optimum design and estimation for the log-normal distribution using CPALT with Type-I 
censored data. Hassan9 discussed the estimation of the exponentiated exponential distribution in CPALT using 
Type II censoring. Using Type-I censored data in CPALT, the optimum design problem for the inverse Weibull 
distribution has been examined by Ismail10. Using progressive Type-II censoring, Abdel-Hamid11 examined the 
issue of estimating the Burr XII distribution based on CPALT. Ismail et al.12 investigated the issue of optimal 
design for Pareto distribution in CPALT by employing Type-I censoring. Using Type-I censoring, Kamal et al.13 
examined the CPALT plan with the assumption that test item life under usage conditions follows an inverted 
Weibull distribution. Abushal and Soliman14 studied CPALT using progressive censoring under the Pareto distri-
bution. Hassan et al.15 obtained the ML estimates (MLEs) of parameters and acceleration factor in CPALT using 
multiple censoring data. Ahmad et al.16 studied the Bayesian estimation of the exponentiated Weibull model 
for CPALT using progressive censoring. Li and Zheng17 investigated CPALT in the context of the Gompertz 
distribution with Type-I censoring. Ismail and Tamimi18 examined the optimum design and estimation for the 
inverse Weibull distribution using CPALT with Type-I censored data. Mahmoud et al.19 used a Type-II censored 
sample to examine the estimation issues of modified Weibull distributions based on CPALT. The CPALT compet-
ing failure model from the Weibull distribution under Type I and Type II censoring was examined by Hassan 
et al.20 in their estimate issue analyses. Ahmadini et al.21 investigated the estimation problems of the Fréchet 
distribution based on CPALT using a Type-I censored sample. Based on CPALT, Lone et al.22 constructed the 
Bayesian prediction of the Gompertz distribution under CPALT. For the Kumaraswamy distribution, Almalki 
et al.23 investigated CPALT under adaptive type-II progressive censoring. The CPALT, under type-II progressive 
censoring, for an inverted generalized linear exponential distribution was examined by Mahmoud et al.24. Esti-
mating the parameters of the Lomax distribution using a CPALT under progressive first failure type-II censored 
data was investigated by Eliwa and Ahmed25. For more recent studies. the reader can refer to26–30.

In statistics, parameter estimation is essential, and most of the time, estimating parameters starts with the ML 
method. This approach is well-liked because of its straightforward and understandable formulation. Lehmann 
and Casella31 showed that the estimators produced by this approach have a normal distribution and are asymp-
totically consistent. Nonetheless, there are alternative, widely-utilized estimating techniques in the literature. 
The techniques include Cramér-von-Mises estimation (CME), Anderson-Darling estimation (ADE), ordinary 
least squares estimation (OLSE), weighted least squares estimation (WLSE), maximum product of spacing esti-
mation (MPSE), and Bayesian estimation (BE). While these approaches, except for ML estimation (MLE), lack 
strong theoretical characteristics, in some circumstances they can yield more accurate estimates of the unknown 
parameters. Using complete data, only one study was provided by Radwan and Alenazi32 using various estima-
tion techniques based on CPALT. They obtained the parameter and acceleration factor estimators of the Chen 
distribution in CPALT using different classical methods, including MLE, OLSE, ADE, CME, WLSE, MPSE, 
percentile estimation, and right tail-ADE.

The study’s main objective is to address the problem of different CPALT-based estimating methods that use 
complete data. This is due to many different natural phenomena, engineering problems, and medical procedures 
that generate significant amounts of complete real data that are vital to our way of life. The aforementioned 
suggests that the topic of different CPALT-based estimating techniques using complete, available real data is 
quite relevant. In this study, seven different estimating techniques for CPALT of power half-logistic distribution 
(PHLD) are investigated. The suggested methods are ADE, MPSE, MLE, OLSE, CME, WLSE, and BE. Further, 
the approximate confidence intervals (ACIs) based on MLE and the Bayesian credible intervals (BCIs) are 
investigated. We study how the estimators of the different parameters and acceleration factor behave for different 
sample sizes and for different parameter values. Further, we develop a guideline for choosing the best estimation 
method to estimate the parameters and the acceleration factor of the PHLD using CPALT, which we think would 
be of deep interest to applied statisticians and reliability engineers.

This paper is structured as follows: A description and fundamental presumptions of the model are given in 
Sect. "Model description and basic assumptions". Seven estimation techniques for investigating the parameters 
and acceleration factor are covered in Sect. Methods of estimation. A simulation study is conducted in Sect. 
"Simulation study" to evaluate how well these strategies function for the provided model. Two authentic data 
sets are used in Sect. "Data analysis" to demonstrate the importance of the PHLD. Lastly, some closing thoughts 
are provided in Sect. "Summary and conclusion".

Model description and basic assumptions
In most applied sciences, including engineering, economics, insurance, and biological science, statistical analysis 
and modeling of lifetime data are crucial. Numerous continuous distributions, such as the exponential, Lindley, 
gamma, log normal, half logistic, and Weibull have been introduced in the statistical literature for the modelling 
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of lifetime data. The analysis of lifetime and reliability data has made considerable use of the power half-logistic 
distribution. The half logistic distributed random variable X with scale parameter a, and shape parameter b was 
introduced by Krishnarani33. The cumulative distribution function (CDF) of the PHLD is given by:

The CDF (1) reduced to half-logistic distribution for b = 1. The probability density function (PDF) of the 
PHLD is given by:

The survival function (SF) and hazard rate function (HF) of the PHLD are, respectively, given by:

Plots of the PDF and HF of the PHLD are represented in Fig. 1 for some selections of the distribution param-
eters. It can be noted that the density function provides some asymmetric and semi symmetric shapes, see the 
case of a = 0.6 and b = 2.3 . The HF has an increasing behavior, decreasing, and reversed J-shaped depending 
on the parameter’s values.

The PHLD is a flexible statistical distribution that has gained considerable popularity for analyzing lifetime 
and reliability data for several reasons:

1.	 The PHLD is a versatile distribution that can model a wide range of lifetime distributions, including sym-
metric and asymmetric distributions. This flexibility allows it to capture various shapes of failure distributions 
observed in real-world data. The PHLD has been successfully applied in various fields, including reliability 
engineering, survival analysis, and lifetime data analysis, making it a widely accepted distribution in these 
domains. To confirm that PHLD is a flexible model, see Krishnarani33. Also, this model is fitting different 
data sets as follows: Data I is COVID-19 data by Abu El Azm et al.34, Data II is time between failures of 
secondary reactor pumps by Suprawhardana and Prayoto35, and Data III is active repair time for 40 air bone 
communication transceivers by Oguntunde et al.36.

2.	 The parameters of the PHLD have meaningful interpretations, making it easier to understand the distribu-
tion’s characteristics. Specifically, the shape parameter governs the tail behavior of the distribution, while 
the scale parameter determines the spread of the distribution (see Fig. 1).

3.	 The PHLD is relatively robust against outliers and deviations from the assumed distributional form, making 
it suitable for analyzing data with varying degrees of complexity or uncertainty (see Figs. 2, 3, and 4).

4.	 The PHLD has several desirable statistical properties, such as closed-form expressions for moments, CDF, 
PDF, SF, and HF, see Eqs. (1), (2), (3), (4), respectively.

Table 1 discussed estimate (Esti) based on the MLE of the PHLD parameters for aforementioned each data 
set with standard error (StEr), and different measures of goodness of fit as: AIC (Akaike information criterion), 
BIC (Bayesian information criterion), CAIC (Consistent AIC), HQIC (Hannan-Quinn information criterion), 
Kolmogorov–Smirnov distance (KSD) with the corresponding p-value (PVKS), CMT (Cramér-von-Mises test) 
and ADT (Anderson–Darling test). Also, Figs. 2, 3, 4 contain the boxplot, the total time test (TTT), hazard rate 
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Fig. 1.   The PDF and HF plots of the PHLD.
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Fig. 2.   Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD by using Data I.

Fig. 3.   Boxplot, TTT, hazard rate estimated, CDF, PDF, and PPs plot for PHLD by using Data II.

Fig. 4.   Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD by using Data III.

Table 1.   MLE and different measures of goodness of fit for each data set.

Data a b KSD PVKS AIC BIC CAIC HQIC CMT ADT

I
Esti 46.7521 1.0590

0.0636 0.8944 − 383.2977 − 378.4842 − 383.1458 − 381.3652 0.0774 0.5255
StEr 13.0379 0.0916

II
Esti 1.1717 0.6759

0.1237 0.8311 70.0187 72.2897 70.6187 70.5898 0.0790 0.5082
StEr 0.2463 0.1150

III
Esti 0.5018 0.8033

0.1428 0.3885 196.7768 200.1546 197.1011 197.9981 0.1641 1.1500
StEr 0.1143 0.0968
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estimated, CDF, PDF, and PP plots for PHLD based on Data Sets I, II and III, respectively. Figure 5 shows the 
likelihood profile of the PHLD parameters for each data set.

Based on the previous results, particularly the KST, we observe that the PVKS is greater than 0.05. This means 
that the PHLD fits different data for future use, suiting the PHLD adequately.

We use the following assumptions for the estimation under CPALT and PHLD.

1.	 The lifetimes of test units are independent and identically distributed (iid), and they follow the PHLD with 
the CDF (1), PDF (2), SF (3) and HF (4).

2.	 The test units’ lifetimes are iid, according to the PHLD under the acceleration condition. The formula for 
the HF of the test unit is h2(z) = δ h1(z), where the acceleration factor is δ > 1. So, the HF of the PHLD, based 

on (4), under the accelerated condition is as follows: h2(z;φ) = abδzb−1eaz
b

(1+eaz
b
)

, where φ = (a, b, δ)T is the set 
of parameters. Afterwards, the SF of unit items under acceleration condition is given by: 

F2(z;φ) = e
−

z∫

0

h2(z;φ)dz

=
(

2

1+eaz
b

)δ
.

	   Furthermore, the CDF, and the PDF of unit items under acceleration condition may be expressed as:

and

3.	 Using the CPALT, the total size of units is divided into two groups: q1 units for use condition and q2 units for 
accelerated condition. Let the lifetime Zh,k, k = 1,2, … , qh, h = 1, 2 be two complete samples from the PHLD. 
The lifetime of an item tested at use conditions is denoted by Z1k, while the lifetime of an item tested at 
accelerated conditions is denoted by Z2k. The two lifetimes Z1k and Z2k are pairwise statistically independent.

Methods of estimation
In this section, different classical methods of estimation are employed to get the parameter and acceleration 
factor estimates for the PHLD under CPALT.

Maximum likelihood estimation
In this subsection, the MLE is applied to obtain the estimators of the unknown parameters and acceleration factor 
under CPALT. The likelihood function of CPALT for PHLD under complete data can be obtained as:

The log-likelihood function of (7) based on (2) and (6) can be written as follows:

The normal equations of the unknown parameters b, a and the accelerated factor δ can be given as:
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Fig. 5.   Likelihood profile of PHLD parameters for each data set.
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and

The three aforementioned Eqs. (8–10) do not have a closed-form solution; hence, the MLEs can be obtained 
using a numerical methodology by employing approximations, as in the R program, by the “optim” function 
for log-likelihood.

Additionally, for evaluating the estimated variance–covariance matrix and related ACIs of MLEs, the observed 
Fisher information matrix is specified as follows:

Note that the second-order partial derivative equations are defined as follows:

The estimated standard normal distribution was used to derive the (1 − υ ) 100% ACIs, which are given by

where Zυ/ 2 denoted the upper υ
/
2 percent point of standard normal distribution.

Minimum distances estimators
This sub-section considers CME and ADE by minimization of the goodness-of-fit statistics, i.e., minimizing the 
distance between the theoretical and empirical CDFs with respect to a, b, and δ.

Cramer–von Mises estimators
MacDonald37 offered empirical evidence showing the estimator’s bias is less than that of the other minimal 
distance estimators, which supported our selection of CM type minimum distance estimators. This method will 
be used to estimate the acceleration factor δ of the PHLD under complete data, as well as the unknown param-
eters a, and b, using CPALT. To do this, consider the lifetimes Z(hk), k = 1,2,…, qh, and h = 1, 2 as two full ordered 
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samples with CDF Fh
(
z(hk)

)
 from the PHLD under CPALT. Therefore, by minimizing ζ with respect to a, b, and 

δ, the CME of a, b, and δ are obtained as follows:

Alternatively, the CME of a, b, and δ can be obtained by solving the following nonlinear equations in place 
of using Eq. (11) as:

and

and

Anderson–Darling estimators
In place of statistical tests, Anderson and Darling38 developed a test to identify deviations from the normal 
distribution in sample distributions. This sub-section provides ADE for the parameters and acceleration factor 
of the PHLD under CPALT. Suppose that Z(hk), k = 1, 2, ..., qh, h = 1, 2 are two full-ordered samples from the 
PHLD in the CPALT.

The ADE of the parameters a, b and acceleration factor δ, in the CPALT model is produced by minimizing 
the function A∗ as below:

Instead of (15), the non-linear equations listed below can be solved to get the ADEs as
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(2k)zb(2k) ln z(2k)

(1+ e
a zb

(2k) )δ+1
,

(14)ϑ5( z(2k)|φ ) =

(
2

1+ e
a zb

(2k)

)δ

ln

(
2

1+ e
a zb

(2k)

)
.

(15)A∗ = −q−

2∑

h=1

qh∑

k=1

(2k − 1)

qh

{
log Fh

(
z(hk);φ

)
− log Fh

(
z(qh+1−hk);φ

)}
.

∂A∗

∂a
= −

q1∑

k=1

(2k − 1)

q1

{
ϑ1(z1k|a, b)

F1
(
z(1k); a, b

) −
ϑ1(z(q1+1−1k)|a, b)

F1
(
z(q1+1−1k); a, b

)
}

−

q2∑

k=1

(2k − 1)

q2

{
ϑ2(z(2k)|φ)

F2
(
z(2k);φ

) −
ϑ2(z(q2+1−2k)|φ)

F2
(
z(q2+1−2k);φ

)
}

= 0,

∂A∗

∂b
= −

q1∑

k=1

(2k − 1)

q1

{
ϑ3(z(1k)|a, b)

F1
(
z(1k); a, b

) −
ϑ3(z(q1+1−1k)|a, b)

F1
(
z(q1+1−1k); a, b

)
}

−

q2∑

k=1

(2k − 1)

q2

{
ϑ4(z(2k)|φ)

F2
(
z(2k);φ

) −
ϑ4(z(q2+1−2k)|φ)

F2
(
z(q2+1−2k);φ

)
}

= 0,
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where ϑ1( z(1k)|a, b ), ϑ2( z(2k)|φ ), ϑ3( z(1k)|a, b ), ϑ4( z(2k)|φ ) and ϑ5( z(2k)|φ ) are given in Eqs.  (12)–(14), 
respectively.

Method of maximum product spacing’s
This subsection uses the MPS approach established by Refs39,40 to estimate the PHLD under complete data using 
CPALT. A similar technique was separately developed by Ranneby41 as an approximation to the Kullback–Leibler 
information measure.

Suppose that Z(hk), k = 1,2,…, qh , h = 1, 2 are two complete-ordered samples with CDF Fh
(
z(hk)

)
 taken from 

the PHLD under CPALT. The following function must be maximized with respect to a, b and δ, in order to 
determine their MPSE

where �hk is the uniform spacings of a random sample from the PHLD under CPALT and is defined by

Consequently, by using (1) and (5) in (16), we have

The following nonlinear equations can be numerically solved to get the MPSE of a, b and δ as

and

where ϑ1( z(1k)|a, b ), ϑ2( z(2k)|φ ), ϑ3( z(1k)|a, b ), ϑ4( z(2k)|φ ) and ϑ5( z(2k)|φ ) are given in Eqs. (12)–(14).

Ordinary least and weighted least squares estimators
In this subsection, the OLSE and WLSE of a, b and acceleration factor δ, for the PHLD under CPALT are obtained. 
Suppose that Z(hk), k = 1,2,…, qh , h = 1, 2 be the complete ordered samples have CDFs Fh

(
z(hk)

)
 from the PHLD 

under CPALT. Hence, by minimizing the following function with respect to a, b and δ as

where πh = 1, in case of OLSEs and πh =
(qh+1)2(qh+2)
k(qh−k+1) , in the case of the WLSE.

An alternative way to (17), the OLSE and WLSE of a, b and  δ, can be produced by solving the following 
equations numerically:

and

∂A∗

∂δ
= −

q2∑

k=1

(2k − 1)

q2

{
ϑ5(z(2k)|φ)

F2
(
z(2k);φ

) −
ϑ5(z(q2+1−2k)|φ)

F2
(
z(q2+1−2k);φ

)
}

= 0,

(16)ψ =

2∑

h=1

qh+1∑

k=1

log�hk

qh + 1
,

�hk = Fh
(
z(hk);φ

)
− Fh

(
z(hk−1);φ

)
, Fh

(
z(h0);φ

)
= 0, Fh

(
z(hk+1);φ

)
= 1.

ψ =
1

q1 + 1

q1+1∑

k=1

log�1k +
1

q2 + 1

q2+1∑

k=1

log�2k .

∂ψ

∂a
=

q1+1∑

k=1

ϑ1
(
z(1k)|a, b

)
− ϑ1

(
z(1k−1)|a, b

)

(q1 + 1)�1k
+

q2+1∑

k=1

ϑ2
(
z(2k)|φ

)
− ϑ2

(
z(2k−1)|φ

)

(q2 + 1)�2k
= 0,

∂ψ

∂b
=

q1+1∑

k=1

ϑ3
(
z(1k)|a, b

)
− ϑ3

(
z(1k−1)|a, b

)

(q1 + 1)�1k
+

q2+1∑

k=1

ϑ4
(
z(2k)|φ

)
− ϑ4

(
z(2k−1)|φ

)

(q2 + 1)�2k
= 0,

∂ψ

∂δ
=

q2+1∑

k=1

ϑ5
(
z(2k)|φ

)
− ϑ5

(
z(2k−1)|φ

)

(q2 + 1)�2k
= 0,

(17)�
− =

2∑

h=1

qh∑

k=1

πh

[
Fh
(
z(hk); a, b, δ

)
−

k

qh + 1

]2
,

∂�−

∂a
=

q1∑

k=1

π1

[
F1
(
z(1k)|a , b

)
−

k

q1 + 1

]
ϑ1( z(1k)|a,b)+

q2∑

k=1

π2

[
F2
(
z(2k)|φ

)
−

k

q2 + 1

]
ϑ2( z(2k)|a,b) = 0,

∂�−

∂b
=

q1∑

k=1

π1

[
F1
(
z(1k)|a , b

)
−

k

q1 + 1

]
ϑ3( z(1k)|a,b)+

q2∑

k=1

π2

[
F2
(
z(2k)|φ

)
−

k

q2 + 1

]
ϑ4( z(2k)|a,b) = 0,

∂�−

∂δ
=

q2∑

k=1

π2

[
F2
(
z(2k)|φ

)
−

k

q2 + 1

]
ϑ5( z(2k)|a,b) = 0,
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where ϑ1( z(1k)|a, b ), ϑ2( z(2k)|φ ), ϑ3( z(1k)|a, b ), ϑ4( z(2k)|φ ) and ϑ5( z(2k)|φ ) are given in Eqs. (12)–(14).

Bayesian estimation
This sub-section presents the Bayes estimators for the unknown parameters and the acceleration factor of the 
PHLD under the assumption that the random variables a, and b, have independent gamma prior distributions, 
and the independent parameter δ has a truncated gamma distribution. Assumed that a ∼ Gamma (α1,β1), b∼ 
Gamma (α2,β2), and δ − 1 ∼ Gamma (α3,β3), then the joint prior density of a, b, and δ can be written as follows:

The gamma prior density was first used by DeGroot and Goel42 for the parameter of acceleration factor δ. In 
this case, every hyper-parameter α1,α2,α3,β1,β2, and β3 is non-negative and known. Due to the great flexibility 
of the gamma distribution (see, for example, Dey et al.43), and (Kundu and Howlader44), independent gamma 
priors have been utilized in the Bayesian analysis. Using the Bayes theorem, the joint posterior distribution of a, 
b, and δ is provided by combining the joint prior distribution (18) with the likelihood function (7) as

where

Under the squared error loss function (SELF), the Bayes estimator of the function of parameters g∗(φ) is 
given by

In general, it is not possible to obtain the integral provided by Eq. (20) in a closed form.
In this instance, we create samples from the posterior distributions using the Markov chain Monte Carlo 

(MCMC) approach, after which we calculate the Bayes estimators for each of the individual parameters and 
acceleration factor.

Selecting among the many different MCMC schemes that are available might be challenging. Gibbs sampling 
and the more generic Metropolis within Gibbs samplers are significant subclasses of MCMC techniques. The 
MCMC technique has an advantage over the MLE method in that by building the probability intervals based 
on the empirical posterior distribution, we can always obtain an acceptable interval estimate of the parameters. 
With the MLE, this is frequently not available. In fact, by using a kernel estimate of the posterior distribution, 
the MCMC samples may be utilized to fully characterize the posterior uncertainty regarding the parameters a, 
b, and δ. This also holds for any function that depends on the arguments. The conditional posterior densities of 
a, b, and δ are as follows:

where φ−a stands for a vector of the unknown parameters except the parameter a. Furthermore, using the 
approach suggested by Chen and Shao40, we obtain the 95% two-sided BCIs for the set of unknown parameter 
as [φ0.025N :N ,φ0.975N :N ] , where N is the length of the MCMC result.

The following Metropolis–Hastings (MH)-within-Gibbs sampling steps can be used to obtain samples of a, 
b, and δ:

1.	 Start by initializing an initial estimate, denoted as φ(0) ≡ (â, b̂, δ̂).
2.	 Set the iteration index to t = 1.
3.	 Generate a candidate point φ∗ using a normal proposal distribution q(φ) = N(φ̂, var(φ̂)).
4.	 For the given candidate point φ∗,  compute the acceptance probability.

(18)g( φ) ∝ aα1−1bα2−1(δ − 1)α3−1e−(β1a+β2b+β3(δ−1)).

(19)

g(φ
∣∣∣ z
⇁
) = D−1aα1+q−1bα2+q−1(δ − 1)α3+q2−1e−(β1a+β2b+(δ−1)β3)

q1∏

k=1

zb−1
1k eaz

b
1k

(1+ ea z
b
1k )2

q2∏

k=1

2δzb−1
2k ea z

b
2k

(1+ ea z
b
2k )(δ−1)+1

,

D =

∞∫

1

∞∫

0

∞∫

0

aα1+q−1bα2+q−1(δ − 1)α3+q2−1e−(β1a+β2b+(δ−1)β3)

q1∏

k=1

zb−1
1k eaz

b
1k

(1+ ea z
b
1k )2

q2∏

k=1

2δzb−1
2k ea z

b
2k

(1+ ea z
b
2k )(δ−1)+1

dadbdδ.

(20)g̃∗(φ) =

∞∫

1

∞∫

0

∞∫

0

g∗(φ)g(φ
∣∣∣ z
⇁
)dadbdδ.

g1(a
∣∣∣φ−a, z

⇁
) ∝ aα1+q−1e

−a

(
β1−

q1∑
k=1

zb1k−
q2∑
k=1

zb2k

)

e
−

(
2

q1∑
k=1

ln

(
1+e

a zb
1k

)
+(δ−1)

q2∑
k=1

ln

(
1+e

a zb
2k

))

g2(b
∣∣φ−b, z

⇁
) ∝ bα2+q−1e

−b

(
β2+

q1∑
k=1

ln z1k+
q2∑
k=1

ln z2k

)

e
−

(
2

q1∑
k=1

ln

(
1+e

a zb
1k

)
+(δ−1)

q2∑
k=1

ln

(
1+e

a zb
2k

))

g3(δ
∣∣∣φ−δ , z

⇁
) ∝ Gamma

[
α3 + q2,β3 +

q2∑

k=1

ln((1+ ea z
b
2k )

]
,
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	   A(φ
(t−1)
1 ,φ∗

1 ) = min

[
1,

g
(
a∗ ,at−1,δt−1

∣∣∣ x
⇁

)
q(a∗)

g
(
at−1,at−1,δt−1

∣∣∣ x
⇁

)
q(at−1)

]
, and repeat this probability for all parameters to obtain 

A(φ(t−1),φ∗).
5.	 Generate a sample from a uniform distribution, i.e., u ∼ U(0,1).

6.	 Increment the iteration index: t = t + 1, and repeat Steps 2–5 M times until obtaining M samples, resulting in 
(at−1, at−1, δt−1) for t = 1, 2,…, M.

Simulation study
The primary objective of this section is to compare parameter estimates using mean squared error (MSE) and 
absolute bias (ABias) for different point estimates. For different values of q1 and q2 (representing the sample sizes 
for use and accelerated conditions) as (20, 15), (50, 40), (100, 120), and (200, 150), a large number ( N = 10, 000 ) 
of complete samples are generated from the PHLD under both use and accelerated conditions. The true values of 
the parameters a, b , and δ are considered as follows: In Table 2: ( a, b,δ) = (1.2, 1.5, 1.1), (1.2, 1.5, 2), and (1.2, 1.5, 
3). In Table 3: ( a, b,δ) = (0.5, 1.5, 1.1), (0.5, 1.5, 2), and (0.5, 1.5, 3). In Table 4: ( a, b,δ) = (0.5, 0.6, 1.1), (0.5, 0.6, 2), 

If

{
u ≤ A(φ(t−1),φ∗) accept φ∗ = φ(t)

u ≤ A(φ(t−1),φ∗) acceptφt = φ(t−1).

Table 2.   Different estimates of the PHLD under CPALT at true value a = 1.2, and b = 1.5.

MLEs MPSEs OLSEs WLSEs CMEs ADEs Bayesian

δ q1, q2 ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE

1.1

20,15

a 0.0189 0.2275 0.0306 0.2353 0.0183 0.2707 0.0196 0.2711 0.0257 0.3034 0.0196 0.2639 0.0175 0.1411

b 0.0513 0.2537 0.1334 0.2452 0.0510 0.2636 0.0067 0.2654 0.0873 0.3021 0.0086 0.2356 0.0361 0.1287

δ 0.0812 0.3806 0.0339 0.3605 0.0128 0.4856 0.0982 0.5509 0.0824 0.5591 0.0843 0.4417 0.0146 0.2765

50,40

a 0.0179 0.1401 0.0288 0.1590 0.0182 0.1781 0.0169 0.1759 0.0199 0.1851 0.0195 0.1740 0.0062 0.0873

b 0.0213 0.1368 0.0825 0.1493 0.0216 0.1631 0.0063 0.1537 0.0303 0.1714 0.0079 0.1428 0.0121 0.0724

δ 0.0752 0.1625 0.0309 0.2279 0.0108 0.2714 0.0975 0.2633 0.0722 0.2811 0.0774 0.2589 0.0128 0.1484

100,120

a 0.0023 0.0936 0.0069 0.1075 0.0039 0.1221 0.0073 0.1187 0.0168 0.1240 0.0023 0.1174 0.0016 0.0673

b 0.0074 0.0856 0.0471 0.0942 0.0074 0.1015 0.0053 0.0935 0.0135 0.1038 0.0026 0.0903 0.0092 0.0528

δ 0.0684 0.0962 0.0291 0.1583 0.0098 0.1818 0.0853 0.1751 0.0684 0.1840 0.0686 0.1730 0.0104 0.0910

200,150

a 0.0021 0.0697 0.0061 0.0788 0.0025 0.0857 0.0022 0.0837 0.0027 0.0865 0.0022 0.0831 0.0012 0.0504

b 0.0059 0.0683 0.0344 0.0746 0.0059 0.0815 0.0024 0.0744 0.0072 0.0824 0.0025 0.0732 0.0028 0.0437

δ 0.0590 0.0866 0.0278 0.1436 0.0090 0.1551 0.0790 0.1506 0.0589 0.1558 0.0591 0.1501 0.0093 0.0806

2

20,15

a 0.0344 0.2169 0.0445 0.2335 0.0340 0.2679 0.0325 0.2665 0.0422 0.2994 0.0374 0.2626 0.1118 0.1670

b 0.0471 0.2315 0.1448 0.2402 0.0472 0.2644 0.0106 0.2644 0.0937 0.3089 0.0157 0.2220 0.0128 0.1228

δ 0.9258 0.8722 0.9611 1.0283 0.9252 1.0322 0.9257 1.0324 0.9045 1.0416 0.9335 1.0316 0.3402 0.4634

50,40

a 0.0116 0.1375 0.0236 0.1526 0.0117 0.1680 0.0098 0.1656 0.0132 0.1747 0.0123 0.1633 0.1047 0.1264

b 0.0176 0.1373 0.0823 0.1489 0.0177 0.1613 0.0075 0.1526 0.0342 0.1709 0.0036 0.1411 0.0110 0.0720

δ 0.9081 0.8692 0.9098 1.0185 0.9081 1.0124 0.9082 1.0113 0.8978 1.0122 0.9084 1.0120 0.3316 0.3677

100,120

a 0.0023 0.0945 0.0090 0.1076 0.0022 0.1197 0.0013 0.1164 0.0029 0.1216 0.0025 0.1157 0.0920 0.1208

b 0.0035 0.0866 0.0442 0.0932 0.0036 0.1018 0.0068 0.0941 0.0173 0.1049 0.0016 0.0911 0.0091 0.0563

δ 0.8674 0.8094 0.8993 0.9800 0.8672 0.9996 0.8805 0.9998 0.8661 0.9998 0.8869 1.0002 0.2162 0.2406

200,150

a 0.0013 0.0691 0.0074 0.0755 0.0013 0.0809 0.0011 0.0789 0.0012 0.0817 0.0023 0.0784 0.0816 0.1065

b 0.0019 0.0665 0.0314 0.0714 0.0019 0.0801 0.0058 0.0731 0.0112 0.0817 0.0004 0.0707 0.0083 0.0514

δ 0.8097 0.7801 0.8500 0.9005 0.8097 0.9825 0.8099 0.9983 0.8092 0.9979 0.8099 0.9988 0.1747 0.1939

3

20,15

a 0.0313 0.2266 0.0415 0.2464 0.0310 0.2852 0.0373 0.3558 0.0394 0.3195 0.0328 0.2802 0.3266 0.2884

b 0.0418 0.2333 0.1403 0.2376 0.0419 0.2667 0.0084 0.2943 0.0982 0.3117 0.0113 0.2225 0.0635 0.1237

δ 1.9130 1.8223 1.9542 1.9848 1.9130 1.9655 1.9104 1.9645 1.8904 1.9583 1.9197 1.9662 0.4677 0.5901

50,40

a 0.0098 0.1368 0.0203 0.1512 0.0098 0.1725 0.0107 0.1992 0.0113 0.1793 0.0102 0.1671 0.3020 0.2773

b 0.0193 0.1366 0.0837 0.1502 0.0195 0.1635 0.0073 0.1678 0.0325 0.1723 0.0064 0.1445 0.0305 0.0764

δ 0.9664 1.6906 0.9887 0.9700 1.6627 1.9084 1.6968 1.1985 1.7963 1.1982 1.2972 1.1909 0.4236 0.4576

100,120

a 0.0091 0.0938 0.0070 0.1068 0.0023 0.1183 0.0022 0.1150 0.0016 0.1201 0.0099 0.1140 0.2996 0.2623

b 0.0137 0.0849 0.0416 0.0904 0.0130 0.1003 0.0061 0.0916 0.0197 0.1040 0.0034 0.0888 0.0304 0.0678

δ 0.9076 1.4937 0.8541 0.8399 1.0976 1.8237 0.9783 0.9841 1.2976 0.9823 0.9790 0.9805 0.2439 0.2681

200,150

a 0.0052 0.0662 0.0061 0.0745 0.0021 0.0813 0.0021 0.0793 0.0015 0.0821 0.0051 0.0785 0.2884 0.1903

b 0.0087 0.0651 0.0363 0.0729 0.0087 0.0801 0.0036 0.0736 0.0044 0.0806 0.0032 0.0704 0.0302 0.0669

δ 0.8995 1.2957 0.8002 0.8004 0.9095 0.9985 0.8995 0.8998 0.8994 0.8900 0.8100 0.8761 0.2037 0.2223
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and (0.5, 0.6, 3). In addition, the upper, lower, length of the point estimates of the ACIs (LCI) and BCIs (LCCI) 
as well as the coverage probabilities (CPs) with a 95% confidence level are computed. Values of CPs, upper, lower, 
LCIs, and LCCIs are provided in Tables 5, 6, 7.

To conduct the numerical analysis, the following steps are necessary:

1.	 Create two separate sets of random samples, each with sizes represented by q1 and q2 , drawn from the uni-
form (0,1) distribution utilizing the “runif()” function in R program. These random samples are denoted 
as (U11,U21), (U12,U22), ...,

(
U1q1 ,U2q2

)
 . By varying the values of q1 , q2 , as well as different parameters and 

acceleration factors, the two samples are generated from the inverse CDF in Eqs. (5), and (1), respectively 
as follows:

2.	 Using the outcomes using the MLEs, MPSEs, OLSEs, WLSEs, CMEs, ADEs, and BEs, various estimates of 
the unknown parameters and acceleration factor are computed. This is accomplished either by employing 
the “optim()” function in R or by utilizing the BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm.

3.	 Perform Steps 1 and 2 repeatedly for a total of 10,000 iterations.

z1 =

[
1

a
ln

(
2

1− U1i
− 1

)]1/b
; i = 1, 2, ..., q1. & z2 =

[
1

a
ln

(
2

(1− U2i)
1/δ

− 1

)]1/b
; i = 1, 2, ..., q2.

Table 3.   Different estimates of the PHLD under CPALT at true value a = 0.5, and b = 1.5.

MLEs MPSEs OLSEs WLSEs CMEs ADEs Bayesian

δ q1, q2 ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE

1.1

20,15

a 0.0397 0.1262 0.0679 0.1523 0.0397 0.1495 0.0267 0.1477 0.0043 0.1461 0.0264 0.1418 0.0083 0.0697

b 0.0604 0.2312 0.1419 0.2352 0.0605 0.2396 0.0182 0.2383 0.0708 0.2609 0.0167 0.2108 0.0187 0.1080

δ 0.0764 0.3592 0.0965 0.3442 0.0748 0.4070 0.0651 0.4305 0.0822 0.4474 0.0741 0.3982 0.0320 0.2569

50,40

a 0.0114 0.0837 0.0345 0.0959 0.0114 0.0983 0.0042 0.0955 0.0029 0.0983 0.0065 0.0938 0.0010 0.0417

b 0.0132 0.1445 0.0771 0.1518 0.0134 0.1658 0.0093 0.1562 0.0383 0.1760 0.0024 0.1493 0.0065 0.0656

δ 0.0639 0.1707 0.0836 0.2312 0.0637 0.2653 0.0636 0.2580 0.0601 0.2748 0.0676 0.2544 0.0299 0.1535

100,120

a 0.0057 0.0553 0.0195 0.0635 0.0056 0.0662 0.0013 0.0631 0.0011 0.0661 0.0039 0.0631 0.0009 0.0319

b 0.0092 0.0870 0.0445 0.0938 0.0082 0.1050 0.0089 0.0971 0.0186 0.1082 0.0017 0.0931 0.0015 0.0483

δ 0.0592 0.0952 0.0793 0.1585 0.0591 0.1782 0.0469 0.1725 0.0592 0.1800 0.0592 0.1708 0.0233 0.0908

200,150

a 0.0046 0.0416 0.0152 0.0473 0.0047 0.0491 0.0012 0.0478 0.0010 0.0490 0.0035 0.0470 0.0006 0.0245

b 0.0084 0.0683 0.0354 0.0752 0.0078 0.0793 0.0009 0.0743 0.0045 0.0797 0.0014 0.0718 0.0014 0.0399

δ 0.0490 0.0922 0.0698 0.1497 0.0490 0.1565 0.0391 0.1534 0.0490 0.1572 0.0491 0.1528 0.0227 0.0818

2

20,15

a 0.0348 0.1318 0.0654 0.1576 0.0347 0.1598 0.0220 0.1562 0.0079 0.1581 0.0234 0.1518 0.0485 0.0740

b 0.0535 0.2542 0.1382 0.2526 0.0533 0.2620 0.0125 0.2583 0.0793 0.2885 0.0140 0.2385 0.0152 0.1082

δ 0.9204 0.8652 0.9570 1.0145 0.9201 1.0083 0.9130 1.0033 0.9024 1.0106 0.9262 1.0057 0.3105 0.4386

50,40

a 0.0094 0.0831 0.0363 0.0977 0.0094 0.0998 0.0146 0.1000 0.0050 0.1002 0.0069 0.0948 0.0366 0.0735

b 0.0092 0.1384 0.0823 0.1500 0.0094 0.1613 0.0113 0.1578 0.0430 0.1730 0.0114 0.1424 0.0143 0.0675

δ 0.9164 0.8591 0.9291 1.0115 0.9064 0.9992 0.8896 0.9935 0.8960 0.9987 0.9070 1.0001 0.2846 0.3302

100,120

a 0.0052 0.0564 0.0185 0.0656 0.0052 0.0714 0.0088 0.0686 0.0036 0.0715 0.0040 0.0674 0.0068 0.0528

b 0.0038 0.0907 0.0442 0.0972 0.0039 0.1110 0.0079 0.1033 0.0171 0.1137 0.0041 0.0974 0.0138 0.0598

δ 0.9070 0.8489 0.8993 1.0021 0.8899 1.0033 0.8099 0.9003 0.8099 1.0035 0.8993 1.0037 0.1655 0.1993

200,150

a 0.0033 0.0408 0.0148 0.0463 0.0032 0.0484 0.0018 0.0455 0.0026 0.0484 0.0027 0.0452 0.0032 0.0398

b 0.0025 0.0673 0.0319 0.0724 0.0024 0.0800 0.0029 0.0715 0.0108 0.0812 0.0013 0.0702 0.0136 0.0524

δ 0.8994 0.8096 0.8800 0.8801 0.8199 1.0022 0.7998 0.8900 0.7993 1.0018 0.8096 1.0029 0.1462 0.1681

3

20,15

a 0.0119 0.1341 0.0622 0.1652 0.0118 0.1890 0.0142 0.1918 0.0251 0.1915 0.0115 0.1709 0.1142 0.1242

b 0.0422 0.2545 0.1288 0.2467 0.0218 0.3308 0.0752 0.3699 0.1628 0.3847 0.0107 0.2556 0.0461 0.1134

δ 1.8021 1.8424 1.9219 1.9720 1.8022 1.8923 1.7443 1.8481 1.7641 1.8728 1.8170 1.9005 0.4120 0.5331

50,40

a 0.0099 0.0798 0.0316 0.1033 0.0058 0.1068 0.0129 0.1393 0.0092 0.1081 0.0090 0.0959 0.0581 0.0713

b 0.0232 0.1327 0.0796 0.1476 0.0026 0.1858 0.0689 0.2676 0.0571 0.2059 0.0045 0.1436 0.0457 0.0805

δ 1.6939 1.6912 1.9046 1.9683 1.7938 1.6967 1.6770 1.8389 1.6932 1.6303 1.6965 1.8456 0.3594 0.4041

100,120

a 0.0095 0.0538 0.0128 0.0624 0.0053 0.0912 0.0117 0.1290 0.0061 0.1028 0.0081 0.0706 0.0081 0.0516

b 0.0226 0.0846 0.0425 0.0915 0.0021 0.1621 0.0512 0.2130 0.0413 0.1923 0.0039 0.0944 0.0396 0.0747

δ 1.3778 1.3943 1.7443 1.9080 1.7779 1.1817 1.5729 1.7751 1.2768 1.3808 1.4407 1.7956 0.1849 0.2177

200,150

a 0.0091 0.0431 0.0121 0.0485 0.0050 0.0563 0.0014 0.0508 0.0051 0.0562 0.0009 0.0486 0.0080 0.0407

b 0.0214 0.0701 0.0314 0.0746 0.0020 0.0948 0.0069 0.0820 0.0353 0.0979 0.0010 0.0742 0.0362 0.0671

δ 0.9614 0.9538 0.9973 0.9000 0.9614 0.9687 0.9286 0.9910 0.8963 0.8970 0.8799 1.6099 0.1563 0.1790
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4.	 Calculate the average of ABias, MSE, CPs, upper, lower, LCIs, and LCCIs of the different parameter estimates 
and accelerated factor estimates of the PHLD.

The outcomes derived from the numerical comparison analysis of various methods using MSEs and ABias 
for all estimates are showcased in Tables 2 through 4. The outcomes of the CPs, upper, lower, LCIs, and LCCIs 
of all estimates are listed in Tables 5, 6, 7. From these tables we conclude the following:

•	 The MSEs and ABias decrease for all estimates as the values of q1 and q2 increase, as anticipated, as seen in 
Tables 2 through 4.

•	 The MLEs show notable improvement with smaller values of MSE and ABias, making them one of the top 
classical estimation method choices for large sample sizes concerning parameters.

•	 In general, the MPSEs perform better than other classical estimates (MLE, CME, ADE, OLSE, WLSE) with 
smaller MSE and ABias values.

•	 In most cases, Bayesian estimation exhibits superior performance compared to alternative techniques, con-
sidering both MSE and ABias.

•	 Based on the results of the simulation study, we recommend utilizing Bayesian, MPSE, and MLE for CPALT 
with complete data, while prioritizing consideration of MSEs and ABias.

Table 4.   Different estimates of the PHLD under CPALT at true value: a = 0.5, and b = 0.6.

MLEs MPSEs OLSEs WLSEs CMEs ADEs Bayesian

δ q1, q2 ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE ABias MSE

1.1

20,15

a 0.0276 1.0523 0.0574 0.1596 0.0278 0.1616 0.0158 0.1591 0.0077 0.1625 0.0150 0.1544 0.0044 0.0679

b 0.0130 0.2648 0.0486 0.0956 0.0130 0.1073 0.0082 0.1057 0.0418 0.1247 0.0038 0.0930 0.0072 0.0389

δ 0.0819 6.2194 0.0984 0.3378 0.0794 0.4049 0.0918 0.4131 0.0051 0.4405 0.0216 0.3892 0.0357 0.2412

50,40

a 0.0145 0.7790 0.0377 0.0957 0.0144 0.0987 0.0074 0.0947 0.0017 0.0984 0.0101 0.0935 0.0028 0.0392

b 0.0065 0.1465 0.0316 0.0591 0.0065 0.0637 0.0024 0.0603 0.0143 0.0676 0.0007 0.0565 0.0021 0.0239

δ 0.0748 1.6220 0.0904 0.2213 0.0745 0.2595 0.0783 0.2447 0.0050 0.2677 0.0198 0.2483 0.0128 0.1411

100,120

a 0.0042 0.7644 0.0181 0.0636 0.0042 0.0669 0.0073 0.0638 0.0016 0.0670 0.0024 0.0639 0.0018 0.0313

b 0.0031 0.1228 0.0180 0.0376 0.0031 0.0416 0.0018 0.0381 0.0052 0.0425 0.0006 0.0370 0.0015 0.0163

δ 0.0688 1.1869 0.0893 0.1644 0.0688 0.1783 0.0689 0.1731 0.0049 0.1802 0.0189 0.1726 0.0125 0.0955

200,150

a 0.0016 0.2408 0.0131 0.0479 0.0017 0.0496 0.0068 0.0484 0.0012 0.0497 0.0010 0.0475 0.0017 0.0242

b 0.0008 0.0729 0.0125 0.0289 0.0008 0.0318 0.0012 0.0294 0.0045 0.0324 0.0003 0.0284 0.0009 0.0133

δ 0.0599 0.8622 0.0879 0.1472 0.0586 0.1595 0.0657 0.1545 0.0039 0.1603 0.0172 0.1537 0.0112 0.0761

2

20,15

a 0.0244 0.8240 0.0622 0.1552 0.0243 0.1594 0.0100 0.1586 0.0125 0.1615 0.0157 0.1506 0.0594 0.0791

b 0.0118 0.1567 0.0530 0.0967 0.0118 0.1092 0.0051 0.1075 0.0441 0.1279 0.0057 0.0944 0.0095 0.0383

δ 0.9046 10.1306 0.9581 1.0180 0.9044 0.9999 0.8840 0.9850 0.8832 1.0008 0.9157 1.0016 0.2204 0.3338

50,40

a 0.0166 0.3956 0.0250 0.1044 0.0165 0.0989 0.0092 0.1017 0.0019 0.0986 0.0118 0.0940 0.0534 0.0710

b 0.0115 0.0849 0.0341 0.0608 0.0113 0.0664 0.0028 0.0637 0.0094 0.0692 0.0054 0.0577 0.0091 0.0257

δ 0.8950 2.2558 0.8934 0.9314 0.8950 0.9876 0.8790 0.9476 0.8794 0.9860 0.9054 0.9871 0.2166 0.3148

100,120

a 0.0101 0.1497 0.0168 0.0639 0.0108 0.0711 0.0081 0.0667 0.0017 0.0718 0.0106 0.0624 0.0495 0.0697

b 0.0068 0.0447 0.0179 0.0377 0.0097 0.0436 0.0021 0.0397 0.0093 0.0452 0.0009 0.0373 0.0082 0.0236

δ 0.8906 1.3198 0.8055 0.8991 0.8596 0.9793 0.8068 0.8646 0.7960 0.9778 0.8973 0.9861 0.1518 0.1833

200,150

a 0.0041 0.0924 0.0146 0.0478 0.0040 0.0492 0.0010 0.0480 0.0003 0.0491 0.0031 0.0474 0.0378 0.0680

b 0.0023 0.0394 0.0131 0.0295 0.0023 0.0320 0.0016 0.0296 0.0029 0.0324 0.0006 0.0289 0.0072 0.0207

δ 0.8749 1.0023 0.7999 0.8005 0.8199 0.9198 0.7991 0.8105 0.6989 0.8998 0.8299 0.9996 0.1322 0.1543

3

20,15

a 0.1073 2.3852 0.0949 0.1625 0.0918 0.1975 0.0837 0.2036 0.0576 0.2086 0.0691 0.1638 0.1199 0.1314

b 0.0833 0.4762 0.0517 0.0990 0.0336 0.1658 0.0609 0.1923 0.1019 0.2213 0.0056 0.1006 0.0150 0.0406

δ 1.6107 2.1169 1.6829 1.8972 1.6093 1.7550 1.5003 1.6775 1.5387 1.7120 1.7478 1.8451 0.4116 0.6295

50,40

a 0.0910 1.8882 0.0724 0.1384 0.0810 0.1338 0.0642 0.1561 0.0294 0.1412 0.0674 0.1192 0.0912 0.1314

b 0.0826 0.4635 0.0279 0.0588 0.0183 0.1107 0.0572 0.1188 0.0448 0.1255 0.0050 0.0661 0.0136 0.0286

δ 1.2802 1.5926 1.2379 1.3259 1.1802 1.2873 1.5029 1.6252 1.4764 1.1846 1.1598 1.4875 0.3889 0.6057

100,120

a 0.0675 1.3886 0.0129 0.0731 0.0676 0.1135 0.0618 0.1211 0.0285 0.1156 0.0140 0.0681 0.0826 0.1285

b 0.0341 0.4586 0.0150 0.0365 0.0134 0.0654 0.0436 0.0707 0.0419 0.0691 0.0046 0.0378 0.0136 0.0249

δ 1.1691 1.1691 1.1855 1.0088 1.1691 1.1736 1.0637 1.1692 1.3692 1.7375 1.1193 1.1494 0.1662 0.2192

200,150

a 0.0091 1.2230 0.0116 0.0681 0.0069 0.0503 0.0452 0.0597 0.0032 0.0517 0.0048 0.0462 0.0715 0.1149

b 0.0105 0.3154 0.0108 0.0303 0.0109 0.0344 0.0058 0.0445 0.0046 0.0369 0.0020 0.0273 0.0108 0.0218

δ 0.9653 0.9456 0.6224 0.8109 0.6514 0.9722 0.9359 0.9519 0.9621 0.9699 0.8844 1.0992 0.1556 0.1864
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•	 We note from the results of the confidence intervals that the larger the sample size, the shorter the length of 
the interval, and this indicates the accuracy of the results and the convergence of the results as the sample 
size increases. The BCIs have a higher coverage probability than the ACIs

Data analysis
In this section, different data sets are used to illustrate the suggested estimators and some measures of goodness 
of tests are considered.

Data set 1: Comprises chronological failure times. It encompasses the recorded failure times of ten steel 
samples subjected to four different stress levels. This section focuses on data representing only two stress levels, 
specifically 0.87 and 0.99 (106 psi), which were adjusted to suit the problem under investigation. The data can be 
displayed as follows: Stress (106 psi) the use condition (0.87) is 1.679, 2.20, 2.519, 3.009, 3.909, 4.70, 7.53, 14.70, 
27.8, and 37.4. While the accelerated condition (0.99) is 0.80, 1.00, 1.37, 2.25, 2.95, 3.70, 6.07, 6.65, 7.05, and 7.37.

Initially, the MLE is applied to the complete dataset to assess the suitability of the PHLD for fitting both the 
normal and accelerated conditions. The AIC, BIC, CAIC, HQIC, KSD with the PVKS, CMT, and ADT are com-
puted for both conditions, and the outcomes are outlined in Table 8. Results indicate that the PHLD adequately 
fits the data for both normal and accelerated conditions. Figure 6 illustrates this further by presenting a boxplot 
of the dataset, a TTT plot of the dataset, a fitted hazard rate, the empirical CDF alongside the fitted CDF, a his-
togram of the data with a PDF, and a PP plot of the PHLD obtained through MLE for used conditions. Figure 7 

Table 5.   The ACIs and BCIs of the PHLD under CPALT at true value a = 1.2, and b = 1.5.

MLE Bayesian

δ q1, q2 Lower Upper LACI CP Lower Upper LCCI CP

1.1

20,15

a 0.7030 1.7474 1.0444 95.30% 0.9620 1.4899 0.5279 94.59%

b 0.7471 1.5864 0.8393 95.80% 1.0650 1.4548 0.3898 95.19%

δ 0.2099 1.9268 1.7169 96.20% 0.7968 1.5459 0.7491 95.29%

50,40

a 0.8702 1.5575 0.6872 94.89% 1.0508 1.3581 0.3074 95.19%

b 0.9341 1.4411 0.5070 95.10% 1.0979 1.3291 0.2312 96.90%

δ 0.5232 1.5119 0.9886 95.50% 0.8669 1.3201 0.4531 95.80%

100,120

a 0.9837 1.4273 0.4436 95.50% 1.0696 1.3193 0.2496 96.30%

b 1.0387 1.3473 0.3085 94.19% 1.1331 1.2871 0.1540 96.30%

δ 0.7183 1.3034 0.5851 95.30% 0.9094 1.2478 0.3384 96.80%

200,150

a 1.0375 1.3699 0.3325 94.29% 1.0903 1.2737 0.1834 97.10%

b 1.0699 1.3224 0.2525 95.30% 1.1341 1.2618 0.1277 97.20%

δ 0.7656 1.2470 0.4814 94.59% 0.9372 1.2069 0.2696 97.30%

2

20,15

a 0.6695 1.7868 1.1173 95.59% 0.8412 1.2627 0.4215 94.99%

b 0.7474 1.6008 0.8534 95.39% 1.0365 1.4252 0.3887 94.79%

δ 0.1822 1.9620 1.7798 94.59% 1.3451 2.2845 0.9394 94.96%

50,40

a 0.8738 1.5280 0.6542 95.39% 0.9114 1.2189 0.3075 96.08%

b 0.9315 1.4520 0.5206 94.39% 1.0927 1.3477 0.2549 95.18%

δ 0.5339 1.5787 1.0448 95.79% 1.4659 2.1167 0.6507 95.38%

100,120

a 0.9799 1.4500 0.4700 95.99% 0.8770 1.1151 0.2381 95.78%

b 1.0332 1.3500 0.3168 94.59% 1.0960 1.2737 0.1778 96.28%

δ 0.7091 1.2835 0.5744 94.99% 1.5928 2.0650 0.4722 96.98%

200,150

a 1.0399 1.3724 0.3325 95.99% 0.9521 1.1629 0.2109 97.19%

b 1.0672 1.3198 0.2526 94.99% 1.0965 1.2541 0.1576 97.29%

δ 0.7592 1.2467 0.4875 94.39% 1.6525 2.0459 0.3934 98.80%

3

20,15

a 0.7253 1.7389 1.0137 94.79% 0.7426 1.1829 0.4402 95.28%

b 0.7157 1.6065 0.8908 94.99% 1.0128 1.4067 0.3938 95.98%

δ 0.2436 1.8755 1.6319 95.59% 1.4572 3.4094 1.9522 94.80%

50,40

a 0.8903 1.5344 0.6440 95.19% 0.7625 1.0822 0.3197 96.01%

b 0.9416 1.4193 0.4777 95.19% 1.0566 1.3051 0.2486 96.18%

δ 0.5595 1.5216 0.9621 94.79% 1.9581 3.0259 1.0679 96.90%

100,120

a 0.9776 1.4210 0.4434 95.39% 0.6882 0.9220 0.2338 97.00%

b 1.0262 1.3697 0.3435 95.39% 1.0911 1.2636 0.1724 97.00%

δ 0.7175 1.3095 0.5920 95.19% 2.4628 3.0305 0.5678 97.98%

200,150

a 1.0282 1.3649 0.3367 96.19% 0.7763 1.0333 0.2570 98.00%

b 1.0752 1.3210 0.2459 95.39% 1.0700 1.2317 0.1617 98.08%

δ 0.7667 1.2362 0.4694 95.19% 2.4398 2.9966 0.5567 99.00%
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illustrates this further by presenting a boxplot of the dataset, a TTT plot of the dataset, a fitted hazard rate, the 
empirical CDF alongside the fitted CDF, a histogram of the data with PDF, and a PP plot of the PHLD obtained 
through MLE for accelerated conditions.

Subsequently, various estimation methods outlined in ML, MPS, OLS, WLS, CM, AD, and Bayesian are 
utilized to derive estimates of the unknown parameters and the acceleration factor under CPALT, utilizing the 
ordered failure times data. These estimates, derived from real datasets using different estimation methods, are 
summarized in Table 9. Additionally, the survival and hazard rates of the PHLD with the mean average of ordered 
times to failure data are examined under both conditions as seen in Table 9.

Also, the StErs have been obtained for parameters of PHLD by MLE, MPS, and Bayesian estimation methods 
based on the SELF in Table 10. Based on these results in Table 10, the Bayesian estimation method has the smallest 
StEr compared to the ML and MPS methods. To validate the MLE, a likelihood profile for the PHLD is plotted 
in Fig. 8. This graph illustrates how the natural logarithm of the likelihood function, representing the probability 
of observing the ordered times to failure data given various parameter values, changes as the parameter var-
ies. This information is crucial for comprehending the behavior and uncertainty associated with the estimated 
parameter. By analyzing the likelihood profile alongside the natural logarithm of the likelihood, insights into the 
parameter of the likelihood function and the behavior of the estimated PHLD parameters can be gained. Peaks 
in the likelihood profile correspond to the MLE of the PHLD parameters, while the natural logarithm of the 
likelihood provides additional information regarding the curvature of the likelihood function around these peaks.

Table 6.   The ACIs and BCIs of the of the PHLD under CPALT at true value a = 0.5, and b = 1.5.

ML Bayesian

δ q1, q2 Lower Upper LACI CP Lower Upper LCCI CP

1.1

20,15

a 0.2398 0.8354 0.5956 95.79% 0.3913 0.6471 0.2559 95.18%

b 0.9896 1.8885 0.8989 94.79% 1.3281 1.7485 0.4204 95.38%

δ 0.2719 1.8628 1.5909 96.19% 0.8026 1.7217 0.9190 95.34%

50,40

a 0.3267 0.6990 0.3723 95.59% 0.4155 0.5925 0.1770 96.45%

b 1.1565 1.7851 0.6286 94.99% 1.3691 1.6406 0.2716 95.18%

δ 0.5696 1.5131 0.9435 95.19% 0.8455 1.4447 0.5992 96.78%

100,120

a 0.3807 0.6354 0.2547 95.59% 0.4198 0.5574 0.1376 97.18%

b 1.2966 1.6803 0.3837 95.59% 1.3855 1.6217 0.2362 97.67%

δ 0.7036 1.3142 0.6106 95.19% 0.9177 1.2847 0.3670 97.00%

200,150

a 0.4119 0.6023 0.1904 94.19% 0.4320 0.5576 0.1255 98.00%

b 1.3369 1.6399 0.3030 95.39% 1.4097 1.6088 0.1991 98.18%

δ 0.7621 1.2545 0.4923 94.79% 0.8956 1.2990 0.4033 98.38%

2

20,15

a 0.2328 0.8369 0.6041 95.39% 0.3514 0.5568 0.2054 94.38%

b 0.9637 1.9366 0.9729 96.79% 1.2808 1.6828 0.4020 94.78%

δ 0.2283 1.9301 1.7017 95.59% 1.2692 2.4124 1.1432 95.00%

50,40

a 0.3239 0.7079 0.3840 94.99% 0.3670 0.4984 0.1313 95.68%

b 1.1601 1.7821 0.6220 96.19% 1.3510 1.6141 0.2632 95.89%

δ 0.5331 1.5265 0.9935 94.39% 1.4770 2.0616 0.5847 96.97%

100,120

a 0.3659 0.6408 0.2749 92.59% 0.3515 0.4557 0.1042 96.38%

b 1.2766 1.7186 0.4420 94.79% 1.3533 1.5789 0.2256 97.08%

δ 0.7042 1.3442 0.6400 95.19% 1.5978 2.0927 0.4948 97.28%

200,150

a 0.4084 0.5977 0.1893 95.19% 0.3749 0.4766 0.1017 97.99%

b 1.3424 1.6555 0.3132 94.79% 1.3784 1.5649 0.1865 98.18%

δ 0.7596 1.2445 0.4849 94.79% 1.6381 2.0472 0.4091 98.22%

3

20,15

a 0.1601 0.8842 0.7240 96.99% 0.2831 0.4951 0.2119 94.16%

b 0.8649 2.1351 1.2702 95.79% 1.2810 1.6809 0.3999 94.36%

δ 0.0889 2.3561 2.2672 94.59% 1.2297 3.3816 2.1520 94.96%

50,40

a 0.2976 0.7093 0.4117 94.79% 0.3070 0.4259 0.1189 95.07%

b 1.1492 1.8873 0.7381 95.79% 1.3214 1.5982 0.2768 95.77%

δ 0.4575 1.6881 1.2306 94.79% 1.8091 3.1237 1.3146 95.97%

100,120

a 0.2284 0.6778 0.4494 99.60% 0.2722 0.3875 0.1153 96.18%

b 1.2343 1.9579 0.7236 97.60% 1.3444 1.5378 0.1934 96.88%

δ 0.4786 1.9394 1.4608 95.99% 2.5023 3.1291 0.6268 96.98%

200,150

a 0.3806 0.6050 0.2244 96.59% 0.3111 0.3986 0.0875 97.19%

b 1.3040 1.7435 0.4395 98.00% 1.3653 1.5534 0.1881 97.89%

δ 0.6988 1.3710 0.6721 95.59% 2.6444 3.0719 0.4275 97.69%
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MCMC is a highly effective computational method utilized to estimate the intricate posterior density of 
PHLD parameters. When conducting an MCMC simulation, it’s vital to examine the trajectory of the Markov 
chain and its convergence to guarantee the accuracy of the outcomes. Evaluating the trace plot and convergence 
diagnostics is crucial in verifying MCMC findings and ensuring the dependability of Bayesian inference, as 
illustrated in Fig. 9.

Dataset 2: Encompasses the breakdown times of insulating fluids used in high-voltage tests. After necessary 
modifications to align with the specific research problem, this dataset is scrutinized in this section. The focus is 

Table 7.   The ACIs and BCIs of the of the PHLD under CPALT at true value a = 0.5, and b = 0.6.

ML Bayesian

δ q1, q2 Lower Upper LACI CP Lower Upper LCCI CP

1.1

20,15

a 0.2116 0.8377 0.6261 95.39% 0.3979 0.6708 0.2729 95.78%

b 0.3757 0.8026 0.4268 95.59% 0.5316 0.6865 0.1549 95.60%

δ 0.2792 1.9200 1.6408 96.59% 0.7726 1.6389 0.8662 95.80%

50,40

a 0.3255 0.7102 0.3847 94.19% 0.4237 0.6031 0.1794 96.50%

b 0.4711 0.7091 0.2380 95.79% 0.5442 0.6461 0.1019 96.90%

δ 0.5662 1.5060 0.9397 95.19% 0.8499 1.4859 0.6360 96.00%

100,120

a 0.3866 0.6394 0.2528 95.59% 0.4373 0.5669 0.1295 97.80%

b 0.5174 0.6746 0.1572 94.99% 0.5635 0.6363 0.0728 97.70%

δ 0.6844 1.3209 0.6365 95.79% 0.8990 1.3096 0.4107 97.65%

200,150

a 0.4120 0.5964 0.1844 93.59% 0.4426 0.5601 0.1175 98.76%

b 0.5394 0.6540 0.1146 94.99% 0.5687 0.6336 0.0650 98.82%

δ 0.7811 1.2399 0.4588 94.39% 0.9193 1.2642 0.3449 98.38%

2

20,15

a 0.2026 0.8422 0.6395 96.39% 0.3519 0.5549 0.2031 95.08%

b 0.3694 0.8065 0.4371 95.59% 0.5264 0.6663 0.1398 94.80%

δ 0.2874 1.9583 1.6709 95.59% 1.3280 2.4043 1.0762 95.10%

50,40

a 0.3312 0.6986 0.3674 94.79% 0.3817 0.4995 0.1178 96.00%

b 0.4714 0.7103 0.2389 95.99% 0.5360 0.6347 0.0987 96.20%

δ 0.5387 1.5464 1.0077 95.79% 1.3539 2.1036 0.7496 96.11%

100,120

a 0.3579 0.6320 0.2740 96.59% 0.3594 0.4571 0.0977 96.98%

b 0.5198 0.6858 0.1660 95.39% 0.5516 0.6209 0.0693 97.18%

δ 0.6842 1.3877 0.7034 95.79% 1.6087 2.1061 0.4974 97.08%

200,150

a 0.4031 0.5966 0.1935 95.39% 0.3841 0.4693 0.0852 98.23%

b 0.5351 0.6657 0.1306 96.79% 0.5552 0.6155 0.0603 98.59%

δ 0.7586 1.2739 0.5152 94.39% 1.6677 2.0659 0.3983 98.19%

3

20,15

a 0.0895 0.8827 0.7932 96.39% 0.2592 0.4911 0.2320 95.60%

b 0.3147 0.9451 0.6303 95.99% 0.5140 0.6576 0.1437 95.40%

δ 0.0385 2.7399 2.7014 97.60% 1.3941 3.4450 2.0509 96.00%

50,40

a 0.2311 0.7443 0.5132 90.76% 0.2780 0.4552 0.1773 96.40%

b 0.4039 0.8292 0.4253 93.37% 0.5405 0.6373 0.0967 96.20%

δ 0.2566 2.1361 1.8794 91.37% 1.5735 3.2556 1.6821 97.20%

100,120

a 0.2469 0.6179 0.3710 93.78% 0.2612 0.3782 0.1169 97.20%

b 0.5233 0.7396 0.2163 94.78% 0.5403 0.6152 0.0749 96.80%

δ 0.5427 2.1120 1.5693 96.99% 2.4931 3.1810 0.6879 98.60%

200,150

a 0.3921 0.5960 0.2040 94.38% 0.2862 0.3782 0.0920 98.70%

b 0.5339 0.6700 0.1361 96.39% 0.5449 0.6152 0.0703 97.40%

δ 0.7136 1.3683 0.6547 96.59% 2.5553 3.1810 0.6257 99.40%

Table 8.   MLE and different measures for the ordered times to failure data under both conditions.

Ordered times to failure a b δ KSD PVKS AIC BIC CAIC HQIC CMT ADT

Use condition (0.87)
Esti 0.2381 0.7849

0.2192 0.6471 71.7364 72.3415 73.4507 71.0725 0.1137 0.6878
StEr 0.1513 0.1970

Accelerated condition (0.99)
Esti 0.0505 1.4810 3.8679

0.2106 0.6932 50.5383 51.4460 54.5383 49.5425 0.0586 0.4292
StEr 0.1351 0.4374 10.0612
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on two stress levels, namely 30 and 32 kV, designated as the normal and accelerated conditions, as indicated as 
follows: Use condition (30) is 7.74, 17.05, 20.46, 21.02, 22.66, 43.40, 47.30, 139.07, 144.12, 175.88, and 194.90. 
Accelerated condition (32) is 0.27, 0.40, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.80, 53.24, 82.85, 89.29, 100.58, 
and 215.10.

Initially, MLE is applied to the complete dataset to assess the suitability of the PHLD for fitting the data for 
both normal and accelerated conditions in Table 11. The KSD with corresponding p-values, AIC, BIC, CAIC, 
HQIC, CMT, and ADT are computed for each condition, as outlined in Table 11. Results from Table 11 suggest 
a favorable fit of the PHLD to the data under both conditions.

Additionally, Fig. 10 illustrates this further by presenting boxplot of dataset, TTT plot of dataset, fitted hazard 
rate, the empirical CDF alongside the fitted CDF, histogram of data with PDF, and PP plot of the PHLD obtained 
through MLE for standard conditions. Figure 11 illustrates this further by presenting boxplot of dataset, TTT 

Fig. 6.   Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD for ordered times of failure data 
under normal condition.

Fig. 7.   Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD of breakdown times data under 
accelerated condition.

Table 9.   Different estimates of the PHLD for ordered times of failure data.

ML MPS OLS WLS CM AD Bayesian

a 0.1341 0.1715 0.1865 0.1447 0.1915 0.1543 0.1387

b 0.9831 0.8391 0.8897 0.9562 0.9843 0.9263 0.9830

δ 3.3283 3.2303 2.6230 3.2225 2.0193 3.1265 3.3880

F(z1) 0.4088 0.4496 0.3599 0.4032 0.2499 0.4061 0.3938

h(z1) 0.3814 0.3723 0.3857 0.3772 0.4166 0.3789 0.3611

F(z2) 0.1008 0.0764 0.1049 0.0997 0.1590 0.0957 0.1052

h(z2) 0.2683 0.2357 0.2442 0.2648 0.2519 0.2558 0.2844

Table 10.   StEr for PHLD parameters by ML, MPS, and Bayesian for ordered times of failure data.

StEr ML MPS Bayesian

a 0.0875 0.1146 0.0511

b 0.1883 0.1823 0.1303

δ 1.8348 1.9648 0.5792
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Fig. 8.   Likelihood profile of PHLD for ordered times of failure data.

Fig. 9.   MCMC analysis for parameters of PHLD for ordered times of failure data.

Table 11.   MLE and different measures for the breakdown time’s data under both conditions.

Ordered times to failure a b δ KSD PVKS AIC BIC CAIC HQIC CMT ADT

Use condition (30)
Esti 0.0300 0.8897

0.2184 0.5966 121.6671 122.4629 123.1671 121.1655 0.1179 0.7057
StEr 0.0335 0.2233

Accelerated condition (32)
Esti 6.0817 0.5420 0.0291

0.1396 0.8936 137.0777 139.2018 139.2595 137.0550 0.0384 0.2949
StEr 8.8177 0.1192 0.0493

Fig. 10.   Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD of breakdown times data 
under normal condition.
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plot of dataset, fitted hazard rate, the empirical CDF alongside the fitted CDF, histogram of data with PDF, and 
PP plots of the PHLD obtained through MLE for accelerated conditions.

Various estimation techniques, ranging from ML, MPS, OLS, WLS, CM, AD, to Bayesian, are utilized to 
determine the unknown parameters and accelerated factor under the CPALT framework. Table 12 presents the 
estimates derived from real datasets using different estimation methods for the oil breakdown times of insulat-
ing fluid. Also, it includes the survival and hazard rate estimates of the PHLD with the mean average of the oil 
breakdown times of insulating fluid data under both conditions.

Furthermore, the StErs for the parameters of the PHLD have been derived using ML, MPS, and Bayesian 
estimation techniques employing the SELF, as shown in Table 13. From the data presented in Table 13, it is evident 
that the Bayesian estimation method yields the smallest standard errors compared to the ML and MPS methods.

To check the MLE, we plotted the likelihood profile for PHLD in Fig. 12. It represents how the log-likelihood 
function, which quantifies the probability of observing the data given different values of a parameter, changes as 

Fig. 11.   Boxplot, TTT, hazard rate estimated, CDF, PDF, and PP plots for PHLD of breakdown times data 
under accelerated condition.

Table 12.   Different estimates of the PHLD for breakdown time’s data.

ML MPS OLS WLS CM AD Bayesian

a 0.1124 0.1586 0.1775 0.1645 0.1559 0.1621 0.1238

b 0.6060 0.5115 0.4710 0.4955 0.5108 0.5050 0.5996

δ 1.7656 1.7404 1.9387 1.8437 1.8955 1.8343 1.7931

F(z1) 0.3507 0.3796 0.4076 0.3941 0.3888 0.3825 0.3200

h(z1) 0.3056 0.3138 0.2912 0.3027 0.2916 0.2959 0.2691

F(z2) 0.0102 0.0079 0.0067 0.0074 0.0077 0.0078 0.0110

h(z2) 0.0207 0.0171 0.0167 0.0170 0.0181 0.0177 0.0228

Table 13.   StEr for PHLD parameters by ML, MPS, and Bayesian for oil breakdown times of insulating fluid 
data.

StEr ML MPS Bayesian

a 0.0611 0.0796 0.0507

b 0.1004 0.0895 0.0840

δ 0.7063 0.7191 0.3619

Fig. 12.   Likelihood profile of PHLD for oil breakdown times of insulating fluid data.
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the parameter varies. This information is crucial for understanding the behavior and uncertainty associated with 
the parameter being estimated. When examining a likelihood profile alongside the log-likelihood, one can gain 
insights into the parameters of the likelihood function and the behavior of the PHLD parameter being estimated. 
Peaks in the likelihood profile correspond to the MLE of the PHLD parameter, while the log-likelihood provides 
additional information about the curvature of the likelihood function around these peaks.

MCMC is a powerful computational technique used for estimating the complex posterior density of PHLD 
parameters. When running an MCMC simulation, it’s crucial to assess the trace of the Markov chain and its 
convergence to ensure the validity of the results. Monitoring the trace plot and assessing convergence diagnos-
tics are essential steps in validating MCMC results and ensuring the reliability of Bayesian inference, which is 
obtained in Fig. 13.

Summary and conclusion
The PALTs are utilized when the findings of accelerated life testing cannot be applied to usage scenarios. The 
problem of various estimating procedures in CPALT with full data is covered in this paper. It is considered that 
the test item’s lifespan distribution will resemble a PHLD. The PHLD’s acceleration factor and distribution param-
eters may be estimated using a variety of traditional and Bayesian estimation methods. Among these methods 
are Bayesian estimation, ADE, MLE, CME, OLSE, WLSE, and MPSE. A simulation study is provided in order 
to assess the outcomes of the various estimating techniques based on absolute average bias, mean squared error, 
coverage probability, and average length. This research indicates that when utilizing the minimal values for mean 
squared error and average bias, the maximum product of spacing estimation method is often the most efficient 
approach out of all the available possibilities. The Bayesian technique performs better than alternative approaches 
in most cases. The lowest interval length and higher coverage probability of the BCIs make them better than the 
ACIs in obtaining confidence intervals. For purposes of illustration, two real data sets are analyzed. The suggested 
approaches are feasible and appropriate for several engineering-related issues, as demonstrated by an analysis 
of the two real data sets. In further work, the aforementioned approaches and other classical procedures can be 
used to investigate the reliability function and the unknown parameters across different probability distributions.

Data availability
The references of the data sets used in this study are presented in the article.
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