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OPEN A robust deep learning attack

immune MRAM-based physical
unclonable function

Mohammad Javad Adel*, Mohammad Hadi Rezayati', Mohammad Hossein Moaiyeri**,
Abdolah Amirany? & Kian Jafari>*

The ubiquitous presence of electronic devices demands robust hardware security mechanisms to
safeguard sensitive information from threats. This paper presents a physical unclonable function
(PUF) circuit based on magnetoresistive random access memory (MRAM). The circuit utilizes inherent
characteristics arising from fabrication variations, specifically magnetic tunnel junction (MTJ) cell
resistance, to produce corresponding outputs for applied challenges. In contrast to Arbiter PUF, the
proposed effectively satisfies the strict avalanche criterion (SAC). Additionally, the grid-like structure
of the proposed circuit preserves its resistance against machine learning-based modeling attacks.
Various machine learning (ML) attacks employing multilayer perceptron (MLP), linear regression (LR),
and support vector machine (SVM) networks are simulated for two-array and four-array architectures.
The MLP-attack prediction accuracy was 53.61% for a two-array circuit and 49.87% for a four-array
circuit, showcasing robust performance even under the worst-case process variations. In addition,
deep learning-based modeling attacks in considerable high dimensions utilizing multiple networks
such as convolutional neural network (CNN), recurrent neural network (RNN), MLP, and Larq are

used with the accuracy of 50.31%, 50.25%, 50.31%, and 50.31%, respectively. The efficiency of the
proposed circuit at the layout level is also investigated for simplified two-array architecture. The
simulation results indicate that the proposed circuit offers intra and inter-hamming distance (HD) with
amean of 0.98% and 49.96%, respectively, and a mean diffuseness of 49.09%.

Keywords Hardware security primitives, Physical unclonable function (PUF), Magnetic tunnel junction
(MTTJ), Emerging technologies, Machine learning (ML)-based modeling attack, Deep learning (DL)-based
modeling attack

Physical unclonable functions (PUFs) are designed to enhance hardware security by using the unique physical
properties of electronic components!—. These functions generate distinct and unpredictable responses, known
as challenge-response pairs (CRP)*, which serve as robust cryptographic keys. PUFs play a crucial role in safe-
guarding electronic circuits against various security threats®, particularly those arising from machine learning
(ML)-based modeling attacks”®. In the landscape of hardware security, PUFs have become integral due to their
ability to withstand sophisticated attacks. However, they are not immune to challenges, with modeling attacks
employing ML and deep learning (DL) posing a significant risk”!°. ML and DL attacks can exploit vulnerabilities
in PUFs by analyzing large datasets to identify patterns and predict and generate accurate models that emulate
the behavior of original PUFs. An attacker can create a mathematical simulation of the desired PUF by building
an ML model from PUE which can be trained to achieve high accuracy in prediction after obtaining a sufficient
set of CRP'. For instance, the Arbiter PUF was initially proposed as a simple, structured, functioning secret
key. However, the Arbiter PUF is vulnerable to adversaries who can access a PUF sample to CRPs and attempt
to construct a mathematical framework to predict PUF response with high accuracy!'>!®. These attacks aim to
replicate the behavior of PUFs, compromising their security. Therefore, there is a need for innovative approaches
to construct PUFs that are resilient against such threats.

Traditional PUFs, often based on complementary metal-oxide-semiconductor (CMOS) technology, have
demonstrated effectiveness in hardware security applications'*!>. However, due to specific vulnerabilities and
limitations in CMOS-based designs, such as high energy consumption, substantial area overhead', design
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complexity, and susceptibility to power overhead and environmental fluctuations'®-%!, researchers are increas-

ingly exploring emerging technologies to bolster PUF security. CMOS-based PUFs suffer from two major issues:
high bit error rate (BER) and weak uniqueness. Most CMOS-based PUFs employ error correction codes (ECC)
to improve results uncertainty; however, strong ECC results in significant area overhead and high energy con-
sumption. Post-silicon technologies like spintronics are emerging as promising alternatives to address these
challenges. Spintronic devices, particularly magnetic tunnel junctions (MT]J), offer significant advantages over
traditional CMOS technology, including low-power consumption, non-volatility, and high endurance. These
attributes make them highly resilient against modeling-based attacks and better at achieving ideal uniqueness,
approaching the target value of 50%?2. The pursuit of these emerging technologies is driven by their potential to
address the shortcomings of CMOS-based? PUFs and enhance overall hardware security?#?.

MT]J-based PUFs, utilizing magnetic materials, exhibit unique characteristics that make them challenging to
model or predict. This marks a significant advancement in PUF design, offering heightened security for embed-
ded systems. Exploring emerging technologies, particularly MTJs, signifies a shift towards more resilient PUFs?.
Associating PUF models with adversarial training processes enhances PUF circuit security”’. By training PUF
models through adversarial attacks, circuits become more resilient against malicious input. For instance, training
PUF models to detect fraudulent patterns enables them to counteract attacks like tampering with encryption
keys. This adaptive training transforms PUF circuits into highly resilient security systems.

Hardware obfuscation alters hardware to hinder unauthorized analysis and comprehension, safeguarding
sensitive information. The goal is to obscure the analysis process at the hardware level to protect confidential
data like circuit designs or encryption algorithms. CMOS-based methods face challenges, such as accessibility
of device characteristics, deterministic properties, and conventional architectural designs, leading to increased
power consumption and area overhead. Alternative approaches beyond CMOS devices offer heightened secu-
rity with minimal overheads. STT-MRAM presents a promising hardware obfuscation solution because it can
generate random responses and prevent feature extraction. Increasing circuit complexity enhances security and
prevents unauthorized analyses®.

Numerous studies have explored PUFs’ application in hardware security, significantly advancing our under-
standing of their potential and limitations. However, challenges persist. In the pursuit of bolstering hardware
security, multiple research papers have proposed distinct implementations of PUFs. One work presented an
MRAM-based PUF (MPUF) to enhance resilience against ML attacks. Nevertheless, there are opportunities for
improving energy consumption and the utilization of space and increasing the CRP area®®. Another explored a
spintronics memory PUF based on STT-MRAM, emphasizing its robustness against cloning and counterfeiting;
however, this circuit incurs a significant area overhead®. A different study also focused on MRAM PUE, utilizing
geometric variations and energy tilt for heightened security and efficiency. Nevertheless, this approach requires
further investigation in terms of reliability*.

Researchers introduce a memristive crossbar PUF in another work, emphasizing ML attack resilience through
circuit design enhancements. It appears that XORing the responses as post-processing has been utilized to
enhance the efficiency of the presented PUF ”. Finally, a subthreshold current array PUF in 130 nm CMOS tech-
nology demonstrates remarkable resilience to ML attacks while maintaining predictability at negligible levels.
Moreover, the average bit error rate in this study is reported to be 9%, with a reduction of approximately 10%
in CRP space to improve it. Additionally, the circuit’s resistance against ML-based attacks slightly deviates from
the expected value®. Despite their contributions, each work has limitations, including specific vulnerabilities,
authentication overhead, power consumption, and delay considerations.

This paper proposes a strong MPUF operating based on the resistance values derived from the manufactur-
ing process variations of MT]J cells. The performance of this circuit is evaluated using various criteria, such as
the NIST statistical test suit, which is specific for uniformity. Also, under different environmental conditions,
such as changes in source voltage and temperature, the presented circuit is tested in the fabrication corners, and
its post-layout simulation is also considered. The main contributions of this paper can be expressed as follows:

® Proposing a grid-like structure that provides a high resilience against forgery attacks and modeling based on
ML and DL algorithms

Offering advantages regarding the occupied area

Utilization of fewer transistors than similar work

Being superior in power consumption compared to previous counterparts

Providing a more vast CRP space state than previous work

Performing appropriately in evaluations and various metrics, especially in intra-HD

Preliminaries

STT-MRAM technology

Spin-transfer torque magnetic random access memory (STT-MRAM) stands out as a promising nonvolatile mem-
ory technology that uses the principles of spintronics®*2. In STT-MRAM, information is stored and retrieved by
manipulating the orientation of magnetic moments using spin-polarized currents. STT-MRAM devices typically
consist of an MTJ. An MTJ comprises two ferromagnetic layers separated by a thin insulating barrier***. The
free layer’s magnetic moment can be manipulated using spin-polarized electrons generated by passing a current
through the barrier. The relative alignment of magnetic moments in the free and reference layers determines
the overall resistance of the MTJ. The efficiency of STT-MRAM relies on the tunnel magnetoresistance ratio
(TMR)***. The TMR ratio is expressed as
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where Rp is the resistance of MT] when the magnetizations of the two layers are antiparallel, and Ry is the resist-
ance of MT] when the magnetizations of the two layers are parallel. Figure 1 shows the two operational modes of
the MTJs**¥. A high TMR indicates a significant difference in resistance between the parallel (P) and antiparallel
(AP) states®®*. A high TMR ratio is crucial for reliable and efficient operation*®*!.

STT-MRAM offers several advantages, including low power consumption, excellent scalability*>** nearly
zero leakage power, and fast access speed**. Its nonvolatile nature ensures data retention even during sudden
power outages, making it suitable for various memory-intensive applications. In the context of hardware security,
STT-MRAM presents an intriguing option for implementing PUFs. The inherent variability in resistance due
to manufacturing process variations*® and thermal fluctuations within the MTJ can be used to generate unique
and unpredictable responses.

Previous work and challenges

In?, a strong PUF based on STT-MRAM and the intrinsic properties and process variations present in MTJs
was proposed. Introducing an array selection circuit (ASC) to enhance nonlinear characteristics also increases
resistance against machine learning-based attacks. The design proposed in?® demonstrates good performance,
with MT]J cells effectively interacting with 28 nm CMOS technology in the evaluated metrics. However, there
is potential for reducing the number of transistors and, consequently, reducing area and energy consumption
while increasing CRP space.

An STT-MRAM is utilized as a PUF for secure and anti-counterfeit storage, as proposed in®. This work pro-
poses a temper-resilient solution that remains resistant to tampering with a detection rate of 100%. The authors
of? study the advantage of STT-MRAM over attacks such as threat models and cloning attacks on SRAM PUFs by
examining major attacks on CMOS circuits. However, there is a significant area overhead in the examined circuit.

An MRAM-based PUFs and CMOS integrated circuits design in** has shown notable advantages, such as
its high entropy, a crucial feature for system security, and a smaller footprint. Furthermore, it has demonstrated
performance in terms of area and power consumption. However, there may be challenges in terms of initial
setup and complexity of fabrication. Additionally, evaluating PUF responses may require specific hardware and
protocols, leading to increased authentication overhead in terms of delay and power consumption.

In’, a memristive crossbar-based PUF proposed, attempting to increase its resistance against machine learn-
ing-based attacks by XORing response bits and swapping columns, shows impressive entropy levels. Nevertheless,
the reliability and energy consumption of the proposed circuit in the’ require improvement.

A strong PUF based on subthreshold current is proposed in®, formed by an array of two-dimensional cells
capable of providing 2% challenge-response pairs, leading to high reliability. However, the bit error rate is gener-
ally high *. In this case, the BER has been significantly reduced by using a calibration-based CRP filtering, with
10% CRP loss. In addition, the proposed design in®® is susceptible to some ML-based attacks.

The proposed ML and DL attack immune MPUF

The architecture of the proposed MPUF

Figure 2 illustrates the proposed MPUF circuit, including signal decoders for discharge path selection (A, B)
for odd arrays, and signal decoders for discharge path selection (D, F) for even arrays, as well as signal decoders
for end-node determination (C, S) and (V, Z). An ASC circuit is also placed to select among arrays with control
signals P and Q. By the dimensions and topology of the circuit and the available signals, using Algorithm 1, the
necessary set of challenges to apply to the circuit and extract responses for use in analyses and evaluations is
provided.

A pre-charged sense amplifier (PCSA) is also embedded in the proposed MPUF circuit. The PCSA circuit
measures the predetermined path resistance value and compares two selected arrays in a challenge, determining
the output. To prevent the input voltage offset effect in PCSA, two transistors controlled by the clock signal are
connected from the voltage source to the input of PCSA (Fig. 6)*. The ASC circuit enhances resilience against
modeling CRP attacks due to its nonlinear properties and ability to choose from multiple arrays. Moreover, the
grid-like proposed circuit architecture offers greater complexity, higher resilience against attacks, and fewer
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Fig. 1. 1MTJ/1T’ structure and its switching mechanism.
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Fig. 2. Schematic of the proposed MPUE

transistors, resulting in reduced area. In general, the number of MT] cells in each array can be calculated from
the following equation:

x+1D)xn+m+1) xx (2)

where, x represents cells in length and n represents cells in width. For an array with the dimensions of 3 x 2, by
the way of example, the number of MT] cells is 17. The critical point is that transistors with gate signals C(1) and
V(1) do not participate in the set of PUF challenges.

The layout of the proposed circuit, designed using the 7 nm FinFET technology design kit*, for the two arrays,
each containing 60 MRAM cells, is shown in Fig. 3. Two transistors associated with the Clk signal are embedded
after the end-node path transistors.

1 START

2 INPUT number_of challenges

3 INPUT circuit_dimension

4: challenges_created =0

5: challenges_array = []

6 WHILE challenges_created < number_of challenges DO
7 (A,B) € generate_random_bitstream(circuit_dimension)
8: (D,F) € generate random_bitstream(circuit_dimension)
9: IF ASC_exist THEN

10: (P,Q) € Select_two_Arrays()
11: ENDIF
12: IF is_suitable challenge((A,B),(D,F)) THEN
13: IF is_unique( (A,B),(D,F),challenges_array ) THEN
14: (C,V) € every end-node could be on the discharge path
15: ADD [A,B,D,F,P,Q,C,V] challenges to challenges array
16: challenges_created € challenges_created + the number

' of challenges that have just created
17: ENDIF
18: ENDIF

19: ENDWHILE

OUTPUT (generate HSPICE signal codes (.sp files) based on
created challenges)

21: END

Algorithm 1. Creating challenges and signal code files.

The proposed circuit’s grid-like architecture encompasses many series resistance paths, introducing a specific
complexity. Additionally, including sub-paths not connected to the main path has increased the circuit’s resilience
against modeling-based attacks. Furthermore, using ASC also provides another effective means of maintaining
circuit flexibility in using multiple arrays and contributes to the increased complexity of the proposed circuit.
Moreover, considering the circuit’s topology, employing fewer transistors is possible.

Operation of the Proposed MPUF

An example of a four-array circuit, with each array having dimensions of 3 x 2, is illustrated in Fig. 4. In a chal-
lenge involving five MTJ cells from the first array and six MT] cells from the fourth array for comparison by the
PSCA, control signals B(1), B(6), B(7), A(4), and A(5) from the first array, as well as F(1), F(4), F(7), D(3), D(4),
and D(5) from the fourth array, are enabled. Consequently, MTT cells on either side are selected and arranged in
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Fig. 3. Layout of the 2-array proposed MPUF with 60 cells in each array without ASC.

series. Additionally, transistors with their gate connected to C(11) in the first array and their gate connected to
V(10) in the fourth array are turned on as end-node leading to the ground [using S(11) and Z(10)], completing
the discharge path. As depicted in Fig. 4, signals B(7) in the first array and F(7) and D(3) in the fourth array
are, although ’1’ are considered deviated inputs because they do not reside in the discharge path. Each MT]J cell,
whether in a parallel or antiparallel state at the moment of challenge, is considered, and the basis for comparison
between the two arrays is the resistance value of each MT], resulting from fabrication process variations, which
are engaged in the challenge.

It is noteworthy that during the writing phase, the clock (CIk) signal is 0} and the state of each MTJ cell is
adjustable. The output is not considered a valid response when the clock signal is zero. Therefore, using control
signals, the state of MTJ cells can be set to either the parallel or antiparallel state. However, the worst-case sce-
nario is where all states of the MTJs are identical. The proposed circuit is simulated under conditions where all
MTTs have the same state (all are parallel and antiparallel). The results indicate that the proposed circuit remains
resilient to the attacks mentioned in these scenarios.

On the contrary, when the Clk signal is ’1’, the read operation is performed, and the response is obtained from
the circuit. As stated in?®, the ASC enhances nonlinearity and increases the CRP state space, thereby improving
resilience against attacks like ML and DL modeling. Furthermore, for this proposed circuit, the presence of the
ASC in this configuration leads to the subdivision of arrays into smaller dimensions, increasing the CRP space.
In this case, using ASC, the first array is selected by signal P(1), and the fourth array is selected by signal Q(4).
Subsequently, they will participate in the comparison operation. Notably, no signals P(i) and Q(i) with the same
index will be concurrently high to prevent connecting a single array to both PCSA inputs. Once the arrays are
identified, MTJ cells selected by the challenge are placed at the two PCSA inputs, and their resistance is com-
pared. For instance, if array T(1) has a lower resistance value, the OUT terminal is ’1’; if array T(4) has a lower
resistance value, the OUTB terminal discharges to ’0’
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Fig. 4. Sample operation of the proposed 4-array MPUF with ASC.

Simulation results

The performance of the proposed circuit has been evaluated using the experimentally validated MT] model
presented in*® and the ASAP 7 nm FinFET technology design kit presented in*®. The specifications and defined
parameters are given in Table 1. The post-layout circuit simulations are conducted using Cadence Virtuoso and
HSPICE tools. The Python programming language is also utilized to generate challenges and the code related
to the circuit.

Function Simulation

Figure 5 depicts the timing diagram for the elementary 1 x 1 dual-array proposed MPUE. The structure of this
array is shown in Fig. 6, comprising four MRAM cells in each array. When the Clk signal is ’0’, the circuit’s out-
puts, OUT and OUTB, are ’1’ Challenges are applied when the Clk signal transitions to ’1, and responses are
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Symbol ‘ Description Value

MTJ

TMR Tunnel magnetoresistance ratio 200%

ty Thickness of the oxide barrier 0.85 nm

tg Thickness of the free layer 1.3 nm

d Diameter of the MT] 64 nm

RA Resistance area product 10 Q.pm?
Vh Voltage bias when the real TMR is 0.5x TMR,, | 0.5V

] Energy barrier height for MgO 0.4eV

H, Effective anisotropy field 1433 Am™!
M, Saturation magnetization 15,800 A m™!
a Magnetic damping constant 0.027
FinFET

T Fin thickness 7 nm

Hg, Fin height 32 nm

Pg, Fin pitch 27 nm

L Gate length 21 nm

Toxp Oxide thickness 2.1 nm
EOT Equivalent oxide thickness 1nm

Table 1. Device parameters.
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Fig. 5. Timing Diagram of the proposed MPUE
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Fig. 6. Schematic of Simplified 2-array MPUF without ASC during the fifth Clk signal pulse.

obtained from the circuit as outputs. For instance, during the fifth Clk signal pulse, inputs A(2) and B(1) with
end-node signal C(4) from the first array and D(2) and F(1) with end-node signal V(4) from the second array.
The discharge path forms through A(2) and B(1) in the first array and D(2) and F(1) in the second array. In this
example, the MT] cells named MTJ1 and MTJ8 were in a parallel state, while MTJ4 and MTJ5 cells were in an
antiparallel state. The resistance values of the corresponding cells in these two paths (MT]J1, MTJ4) and (MTJ5,
MT]J8)) will be of importance. Since the path connected to the second array has a lower resistance than the cells
connected to the first, the OUTB of the second array will discharge.

Performance Evaluation
Simulations have been conducted on multiple PUF chips with different process variations for a more accurate
evaluation.

Various metrics such as reliability, uniqueness, diffuseness, and uniformity are calculated to assess the pro-
posed circuit’s performance. These metrics are explained as follows:

Reliability

Reliability evaluates the circuit’s performance and efficiency in adverse environmental conditions, including
voltage and temperature variations. For this purpose, the intra-hamming distance (HD) is utilized. The ideal
value for the difference between responses is 0%°°. Equation (3) is used for measuring this metric®'.

HDintrg = — x 100% (3)
m n

i=1

The HD function calculates the intra-hamming distance between the reference response (Ry(x)) and the
response at a different condition (R;(x)) for the same challenge of x.

Bit Error Rate (BER) is another reliability metric that quantifies the number of response changes due to
environmental conditions®. BER is calculated using (4).

1 < HD(R;,R},)
BER = — Y — 2 5w 100%
— ; . 6 (4)

R, represents the reference response at nominal conditions, and R’i,t is the t-th response extracted at different
conditions using an n-bit response from m samples.

Uniqueness

PUFs are generally recognized as fingerprint-like entities in identity verification tasks. The capability of a PUF
to generate unique CRPs is assessed using the uniqueness metric. The inter-HD typically measures uniqueness
with an ideal value of 50%°. Uniqueness is calculated using (5).

d-1 d

2 HD(R(x), R (x))
HDinger = YOS S X 100%
t dd—1) i=1 j=it1 n ®)
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R(x) and R'(x) are n-bit responses from two among d PUF instances using the same challenge of x. If multiple
PUFs exist, and the same set of challenges is applied to them, the average HD between their responses should
ideally be 50%.

Diffuseness

Gauges the variability in responses when different challenges are applied to the same PUF. The diffuseness metric
is calculated by determining the mean HD across all possible responses generated by the PUE. A random subset
of responses is assessed in practical scenarios if the total number of CRPs is extensive. In short, the diffuseness
evaluates differences between responses while different challenges are applied to the same PUFE. The ideal dif-
fuseness value is half of the length of the responses, ideally reaching 50%'. Diffuseness quantifies the informa-
tion richness derived from a PUF, indicating the number of distinct identifiers (IDs) the PUF can produce'®.
Diffuseness is calculated using (6).

d—1 d
) 2 HD(R;, Rj)
Diffuseness = 1d-D ;:1 j:E,-H — X 100% (6)

In (6), R; and R; (i#]) represent n-bit responses for two among d distinct PUFs.

Uniformity
The randomness uniformity criterion assesses the stochastic nature of the output of a PUF circuit by examining
the balance and equilibrium between 0’ and ’1” states™.

Simulations have been conducted on multiple PUF chips with different process variations for a more accurate
evaluation. Monte Carlo simulations were conducted to assess the impact of process variations. Gaussian distri-
bution and variations at the + 3o level were considered for the MT] and FinFET critical device parameters. For
the MTTs, 10% variations in the TMR ratio, 15% variation in the resistance-area product (R,p), 5% variation in
the barrier thickness (t,) and the thickness of the free layer (t,), and 15% for the surface area were considered®.
Furthermore, for the FinFETSs, 10% variations have been considered for the gate length (Lg), fin height (Hg,), fin
thickness (Tg,), and gate oxide thickness (T,,) parameters®.

Figure 7 shows the above metrics for the proposed two-array circuit, each containing 60 MT] cells. Figure 7a
shows the intra-HD, with an average response difference of 0.98% and a standard deviation of 0.56% for 512
challenges applied at different temperatures ranging from — 25 to 100 °C and supply voltages ranging from 0.65
t0 0.85 V for 100 different PUF devices. Figure 7a also displays the inter-HD for 40 chips with proposed PUF for
a 1024-challenge set. These measurements were taken at the supply voltage of 0.75V and temperature of 27 °C.
Figure 7a shows that the average inter-HD is 49.96%, with a standard deviation of 7.40%. Considering how close
these values are to the ideal value and their low standard deviation, Fig. 7a firmly indicates the high reliability
of the proposed MPUF.

In Fig. 7b, the BER is displayed in different temperatures for the supply voltage of 0.75 V. The worst-mean
value is 2.52%, occurring at — 25 °C. Figure 7.c also shows the BER for supply voltage variations at a temperature
of 27 °C. The highest mean value is 1.99%, observed at a supply voltage of 0.65 V. Figure 7b and c together indicate
the reliable performance of the proposed MPUF in different temperatures and supply voltage. These Figures are
the result of simulations on 200 different PUF chips.

Finally, Fig. 7d depicts the diffuseness distribution of the proposed MPUE. To evaluate diffuseness, 200 sets of
challenges, each set containing 128-bit output, have been applied to a PUFE, and the HDs of each set of responses
have been calculated. The average diffuseness is 49.09%, with a standard deviation of 4.39%. This result indicates
that each PUF circuit constructed will produce different outputs than other PUF circuits.

In addition, Table 2 investigates the uniformity of the proposed MPUF employing the National Institute of
Standards and Technology (NIST) statistical test suit. The proposed two-array circuit generated responses for the
NIST statistical test. Each array contains 60 MTJ cells. Test conducted over 80 million-bit. A test with a portion
exceeding 0.96 and a p-value greater than 0.01 is considered successful®’. This table indicates that the proposed
circuit is highly random and unpredictable. Notably, the standard deviation of energy consumption in the pres-
ence of process variations is 3.2%, with a mean value of 9.49 pj/bit.

It is crucial for a PUF circuit used in security applications to operate significantly reliably and randomly.
Based on evaluation criteria, the ideal scenario is for it to be completely resilient to environmental changes, with
the responses of each PUF chip being unique and specific to that chip. Based on the results obtained, the circuit
presented in this paper has achieved these objectives satisfactorily.

ML-Based modeling for attack simulation
Machine learning (ML)-based attacks, which predict responses to previously unseen challenges, have increasingly
threatened various types of PUFs. These attacks do not directly map the transformation between challenges and
responses; instead, they predict the outcome of this transformation after learning from a set of CRPs collected
from a specific PUF**. ML-based modeling, including techniques like logistic regression (LR), support vector
machine (SVM), and multilayer perceptron (MLP), has proven effective against conventional PUFs, compromis-
ing their robustness. In these attacks, an adversary first acquires a small set of CRPs and constructs a model of
the PUF’s characteristics. They then attempt to generate additional unknown CRPs with high accuracy?®. Con-
sequently, despite the initial assumption that PUFs are unpredictable and irreproducible, ML-based modeling
attacks can undermine the security of PUFs by enabling identity forgery and application falsification.

ML algorithms consider PUF outputs a classification problem and model it using supervised learning clas-
sification. In this paper, similar to®, the resilience of the proposed MPUF circuit, with a CRP space of 25,000
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Fig. 7. Results of performance evaluation (a) Intra and inter-HD (b) BER under temperature variation when
the supply voltage is 0.75V (c) BER under supply voltage variations when the temperature is 27°C (d) diffuseness
when the supply voltage is 0.75V and temperature is 27°C for 100 sets of challenges under the fabrication
process variation.

samples while 75% of those used for training against ML attacks, is examined for a two-array circuit with 60
MT]Js in each array and four-array with ASC as shown in Fig. 8. To this end, the three most common algorithms
are used as follows:

Support vector machine (SVM)

SVM is a widely utilized algorithm in machine learning for classification tasks. The primary objective of SVM is
to discover a hyperplane within the feature space that effectively separates data belonging to different classes®.
The algorithm strategically positions the hyperplane by identifying support vectors—the data points closest to
the decision boundary to maximize the margin between these classes. This capability of SVM in class separa-
tion is particularly valuable in analyzing attacks on PUFs, as it enables the algorithm to forecast responses and
mimic behavior in attack scenarios. In this work, similar to*®, an SVM with a nonlinear RBF kernel was used. The
simulation results for the proposed two-array and four-array circuits were 54.04% and 49.60%, respectively. These
results indicate that the SVM algorithm did not achieve the expected success in finding the optimal hyperplane
to predict the responses accurately.

Logistic regression (LR)

LR is a widely acknowledged supervised learning technique typically applied in binary classification tasks®. It
predicts the probability of a certain outcome based on specific input variables. The LR algorithm relies on the
sigmoid function and weights learned from the training data. By focusing on the likelihood of a sample belonging

Scientific Reports |

(2024) 14:20649 | https://doi.org/10.1038/s41598-024-71730-7 nature portfolio



www.nature.com/scientificreports/

Test P-value | Proportion | Pass/Fail
Frequency 0.021999 | 97/100 Pass
Block frequency 0.419021 | 100/100 Pass
Cumulative sums 0.026948 | 98/100 Pass
Cumulative sums 0.249284 | 97/100 Pass
Runs 0.191687 | 96/100 Pass
Longest runs 0.911413 | 98/100 Pass
Rank 0.554420 | 100/100 Pass
FFT 0.616305 | 98/100 Pass
Overlapping template 0.048716 | 99/100 Pass
Approximate entropy 0.935716 | 100/100 Pass
Serial 0.455937 | 100/100 Pass
Serial 0.816537 | 100/100 Pass
linear complexity 0.534146 | 98/100 Pass
Universal 0.798139 | 98/100 Pass
Non-overlapping template Pass

Random excursions variant Pass

Random excursions Pass

Table 2. Results of the NIST statistical test.
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Fig. 8. Results of ML-attacks on 2 and 4 array proposed MPUF with different training set sizes.

to one of two classes, logistic regression uses the logistic function to convert a linear output into a probability
between 0 and 1°°. Despite its simplicity, logistic regression can be an effective and interpretable model for
predicting the behavior of PUFs, such as the binary output of Arbiter PUFs. Several studies have employed this
method to model the probability of correct or incorrect responses, capturing nonlinearity within binary datasets.
In this paper, similar to®, an LR model with the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)
solver was used for simulation. The simulation results for the two-array and four-array circuits yielded 53.72%
and 49.60%, respectively, suggesting that LR did not effectively analyze PUF behavior.

Multilayer perceptron (MLP)

MLP is a neural network used to understand complex relationships within data, particularly in deep learning
applications. Unlike single-layer perceptrons (SLPs), which can only handle linear data, MLPs incorporate hid-
den layers with nonlinear activation functions like ReLU to capture and predict intricate patterns*”>>*. In the
realm of PUF modeling, MLPs play a crucial role in replicating PUF behavior, aiding in the probing of advanced
PUF structures, and evaluating their resilience against machine learning attacks. Like?, an assault simulation
was conducted using an MLP-based model with three hidden layers, each containing 300 neurons, utilizing the
ReLU activation function and the Adam solver on the two-array and four-array PUF circuits. The analysis results
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indicated that the applied model could not decipher the pattern of the proposed PUF circuit, with prediction
accuracies of 53.61% and 49.87%, respectively.

For every challenge, the circuit’s output is only one bit. When there is an even distribution of cases, if the
ML-based algorithms cannot precisely predict the correct responses and instead choose randomly, the predic-
tion rate should remain around 50%. From this, we can conclude that the proposed circuit can withstand these
types of attacks.

Figure 9 depicts the results of ML-based modeling attacks on two 2-array circuits proposed in* and the pro-
posed MPUF in this paper. It is observed that with the same number of CRPs, the circuit presented in?® reaches
a prediction accuracy of approximately 80%. In contrast, the proposed circuit maintains an accuracy of about
54%, indicating its robustness against the conducted attacks.

Figure 10 also illustrates prediction accuracy results for the proposed MPUE, arbiter PUF, and MPUF sug-
gested in?, and the current array PUF proposed in®. For small training sets, arbiter PUF reaches an accuracy
close to 65%, while other PUFs are around 50%. As the training set size increases, arbiter PUF’s accuracy quickly
reaches 99%, while the current array PUF maintains an accuracy of around 60%. Arbiter PUF’s significant
increase in accuracy is due to its poor strict avalanche criterion (SAC), which makes it easily modeled. On the
contrary, the proposed MPUF shows high resistance to ML modeling due to its nonlinearity and grid-like archi-
tecture. The proposed MPUF limits accuracy to about 49.87%, maintaining resistance even with an extensive
training dataset.
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Fig. 9. Results of the ML-attacks on 2-array MPUF proposed in*® and our proposed 2-array MPUF with
different training set sizes.
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DL-based modeling for attack simulation
Deep learning is a special and more complex ML type used in applications with large datasets. CNN, RNN, MLP,
and Larq® are among the most important deep-learning networks.

Convolutional Neural Networks (CNNs)

The CNN-based model has demonstrated superior potential in modeling highly nonlinear data, making it an
effective tool for attacking PUFs by learning patterns and correlations in CRPs. These networks, composed of
convolutional layers, pooling layers, and fully connected layers®, automatically extract features from raw data
for final classification, making them well-suited for modeling PUFs without the need to understand specific
characteristics. CNNs achieve higher prediction accuracy and faster convergence by utilizing resilient back-
propagation as the training algorithm. Although CNN-based attack engines require more computational power
and complexity than other classifiers, they can be deployed on powerful servers where the trained models
are hosted®. This capability allows attackers to replicate authorized nodes, creating malicious nodes that can
compromise PUF security by accurately predicting responses to unseen challenges, especially when the spatial
arrangement of bits or signals is critical.

Larq

Larq is a deep learning framework designed specifically for training and deploying Binarized Neural Networks
(BNNs)¥. BNNs are a type of neural network where weights and activations are constrained to binary values,
making them highly efficient in memory and computation. In the context of PUFs, Larq can be used to develop
lightweight models capable of predicting PUF responses with reduced computational resources. Despite their
simplicity, BNNs trained using Larq can be quite effective in modeling PUF behavior, particularly when the PUF
structure is relatively simple or when the attacker can access many CRPs. This approach can lead to efficient and
fast attacks on PUFs, making them a significant threat.

Recurrent Neural Networks (RNNs)

RNNs are artificial neural networks designed to work with sequential information®. In the context of PUFs,
RNNs can help simulate PUFs whose behaviors are time-dependent or sequentially influenced by earlier
responses. When responding to certain challenges, earlier responses might influence subsequent ones, and
RNN s can adjust for this, thereby improving prediction power. Due to their ability to retain memory from past
inputs, adversaries could develop more sophisticated models for predicting future responses of a PUF, making
it a significant security risk.

Deep Multilayer Perceptrons (Deep MLPs)

MLPs with multiple layers can handle nonlinear dependencies and correlations present in large datasets, thanks
to their fully interconnected structures. When used for PUF attacks, deep MLPs can learn the complexities of
challenge-response interactions®!. The increased depth of these networks enables attackers to capture more subtle
behaviors or inconspicuous correlations in a true PUF prototype. This is particularly effective against complex
PUFs or when the relationship between challenge and response is strongly nonlinear.

The number of parameters used in deep learning is more than that used in machine learning, so it requires a
more extensive training dataset and more training time®. Several hyperparameters have been carefully selected to
optimize the model’s performance in training a deep learning network for binary classification. Table 3 illustrates
the critical hyperparameters used in this simulation, tailored to the dataset, which is of binary and single-class
type. A learning rate of 0.001 facilitates the adjustment of model parameters during training iterations. The
Adam optimizer, known for its efficiency and adaptability, helps to optimize the network’s weights and biases.
Binary cross-entropy, chosen as the loss function, quantifies the disparity between predicted and actual class
labels. Rectified Linear Unit (ReLU) activation functions are employed in the hidden layers due to their simplicity
and effectiveness in mitigating the vanishing gradient problem. The Sigmoid activation function is utilized for
the output layer to produce probabilistic outputs within the range (0, 1), suitable for binary classification tasks.

For this reason, in the proposed 25 x 25 two-array MPUF, a CRP-balanced dataset of 868,000 with a training
set size of 650,000 is used to simulate the DL-based modeling attack (similar to what was done in ML). Table 4
outlines the structure of networks and presents the simulation results of the proposed circuit’s resilience against
DL attacks. From the accuracy value, it can be concluded that the network was unsuccessful in attacking the
proposed design, and the predictions were random.

Hyperparameter Values

Learning rate 0.001

Loss function Binary cross entropy
Optimizer Adam

Activation function of hidden layers | ReLU

Activation function of the last layer Sigmoid

Table 3. Important hyperparameters for DL-based attack.
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Network Structure Prediction accuracy (%)
MLP Nine Fully hidden connected layers and one output layer 50.31
CNN Three Convolutional layers, three MaxPooling layers, eight fully connected layers, and one output layer 50.31
RNN Two LSTM layers, and eight fully connected layers, and one output layer 50.25
L Three Convolutional layers, two MaxPooling layers, twelve BatchNorm. layers, eight
arq 50.31
fully connected Layers, and one output layer

Table 4. Structure of networks and prediction accuracies.

Corner simulations

In PUF design, it is imperative to assess the robustness and reliability of the circuit in the various fabrication
corners®, considering the intricate nature of MRAM-based PUFs and their vulnerability to process variations.
For corner simulations, critical parameters of the proposed MPUF are chosen using the corner value indicated
in Table 5.

Table 6 illustrates the simulation results evaluating resistance against ML-based classification attacks for the
proposed circuits in both the 60-cell 2-array and the 31-cell 4-array architecture in all eight possible corners.
These results signify that the proposed MPUF maintains robust performance even under the worst-case scenarios
arising from the variations in the fabrication process.

Comparison

Table 7 shows the simulation results of the proposed MPUF and the other state-of-the-art PUFs. The results of
this table show the proposed MPUF superiority, particularly in terms of energy and area compared to other PUFs.
Regarding the CRP space and transistor count, for a proposed circuit without ASC consisting of 4 MTJ cells,
similar to Fig. 6, there are 625 CRP states and 192 transistors. In comparison, for the circuit in*® with an equal
number of MTJ cells and no ASC, the CRP space is limited to 16 with 240 transistors, indicating the advantage
of the proposed circuit over the previous work (without considering the state of MTJs).

Corner value

Description Typical value (T) | Slow (S) Fast (F)
MTJ

Tunnel magnetoresistance ratio 200% 220% 180%

Thickness of the oxide barrier 0.85 nm 0.8925nm | 0.8075 nm

The thickness of the Free layer 1.3 nm 1.235 nm 1.365 nm

Diameter of the MT] 64 nm 59.392nm | 68.61 nm

Resistance area product 10 Q pm? 11.5Qum? | 8.5 Q pm?
FinFET

Fin thickness 7 nm 6.5 nm 7.5 nm

Fin height 32nm 28 nm 36 nm

Gate length 21 nm 25nm 17 nm

Oxide thickness 2.1 nm 2.31 nm 1.89 nm

Table 5. Corner values of important device parameters.

Proposed 2-array Proposed 4-array
MT] | FinFET | MLP (%) |LR (%) |SVM (%) |MLP (%) |LR (%) |SVM (%)
SS 53.62 53.31 54.38 51.88 48.16 51.37
SF 53.62 53.31 53.31 51.88 48.16 51.37
s FS 53.62 53.31 53.31 51.88 48.16 51.37
FF 53.62 53.31 53.31 51.88 50.12 50.32
T TT 53.61 53.72 54.04 49.87 49.60 49.60
SS 57.31 57.39 57.39 50.57 48.16 50.32
SF 57.31 57.18 57.18 50.57 49.40 50.32
F FS 57.31 57.18 57.18 50.57 49.50 50.32
FF 56.80 57.47 57.47 50.37 49.36 48.98

Table 6. Results of the corner simulations.
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Proposed in this
PUF 30 7 2 29 28 paper
Technology 130 nm 65 nm 40 nm 40 nm 28 nm 7 nm 7 nm
PUF Type Current array Memristive crossbar STT-MRAM STT-MRAM STT-MRAM STT-MRAM
Number of CRPs 3.7x 10" NA NA NA 2Mx 2" Xz 2¥x2Yxz
Inter-HD (%) 49.9 47.5 47 49~51 49.76 49.30 49.96
Intra-HD (%) 5.8 10 2.25 3~4 0.447 2.04 0.98
?&I;—Predlctlon Accuracy 60 58 NA NA 538 4987
Energy (f]/bit) 11000 106600 20000 3400 870 24.42 9.57
Area (um?) 44700 NA 6.74 6061.2 4.5 13.12 7.96

Table 7. Comparative analyses of the proposed MPUE. m =Number of MT] cells in even arrays. n = Number of
MT] cells in odd arrays. x=Number of charge-discharge paths in even arrays. y=Number of charge-discharge
paths in odd arrays. z=Number of possible ASC challenge configurations.

The findings presented in Table 7 underscore the proposed MPUF’s significant advantages compared to the
design outlined in?. Specifically, the intra-HD of the proposed MPUF is demonstrated to be at least two times
lower than the design mentioned above in the same technology, highlighting superior performance in terms of
reliability. Moreover, due to the value of inter-HD in the proposed circuit, a slight improvement in uniqueness
is observed. Furthermore, the energy efficiency of the proposed MPUF stands out, as it consumes less energy
per bit. Additionally, using the ASC and a judicious number of MTJs enables the proposed MPUF to provide an
impressive quantity of CRPs, further enhancing its versatility and potential applications.

Conclusion and future work

This paper proposed an ML and DL modeling attack immune MPUFs circuit with a large number of CRPs.
The proposed MPUF is based on the intrinsic variation of the MTJs during fabrication. This feature provides
unique characteristics in each fabricated PUF. Thanks to the grid-like structure and the utilization of ASC of
the proposed MPUE, the proposed MPUF offers high security and ML and DL modeling immunity. ML attack
simulation shows a prediction accuracy of 53.61% for the two-array circuit and 49.87% for the four-array circuit,
indicating the immunity of the proposed MPUF to ML modeling. In addition, DL modeling attacks are also
simulated to demonstrate the reliability of the circuit against CNN, RNN, MLP, and Larq with an accuracy result
of 50.31%, 50.25%, 50.31%, and 50.31%, respectively. Considering other evaluation metrics such as reliability,
uniqueness, and uniformity, the proposed MPUF offers intra- and inter-HD of 0.98% and 49.96%, respectively,
and diffuseness with a mean of 49.09%. Additionally, the proposed MPUF excels the state-of-the-art PUFs in
energy consumption. Moreover, corner simulation validates the robust performance of the proposed MPUF even
in the presence of the fabrication process variation.

Despite these strengths, the proposed MPUF faces scalability challenges, environmental sensitivity, and
increased complexity. However, its robust security features make it highly suitable for applications in IoT device
authentication, secure key storage, anti-counterfeiting, and supply chain security. Its energy efficiency and com-
pact design also make it ideal for integration into mobile devices such as wearable devices, particularly in
healthcare, where the amount of available energy is limited. However, at the same time, secure and reliable data
transmission is critical. Future research can explore enhancing the capabilities of this circuit and increasing the
CRP to improve its performance and application further.

Data availability

Data related to the current study are available from the corresponding author upon reasonable request.
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