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Greylag goose optimization 
and multilayer perceptron 
for enhancing lung cancer 
classification
El‑Sayed M. Elkenawy 1, Amel Ali Alhussan 2, Doaa Sami Khafaga 2, Zahraa Tarek 3 & 
Ahmed M. Elshewey 4*

Lung cancer is an important global health problem, and it is defined by abnormal growth of the 
cells in the tissues of the lung, mostly leading to significant morbidity and mortality. Its timely 
identification and correct staging are very important for proper therapy and prognosis. Different 
computational methods have been used to enhance the precision of lung cancer classification, 
among which optimization algorithms such as Greylag Goose Optimization (GGO) are employed. 
These algorithms have the purpose of improving the performance of machine learning models that 
are presented with a large amount of complex data, selecting the most important features. As per 
lung cancer classification, data preparation is one of the most important steps, which contains the 
operations of scaling, normalization, and handling gap factor to ensure reasonable and reliable input 
data. In this domain, the use of GGO includes refining feature selection, which mainly focuses on 
enhancing the classification accuracy compared to other binary format optimization algorithms, like 
bSC, bMVO, bPSO, bWOA, bGWO, and bFOA. The efficiency of the bGGO algorithm in choosing the 
optimal features for improved classification accuracy is an indicator of the possible application of this 
method in the field of lung cancer diagnosis. The GGO achieved the highest accuracy with MLP model 
performance at 98.4%. The feature selection and classification results were assessed using statistical 
analysis, which utilized the Wilcoxon signed-rank test and ANOVA. The results were also accompanied 
by a set of graphical illustrations that ensured the adequacy and efficiency of the adopted hybrid 
method (GGO + MLP).
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Lung cancer is a highly significant and fatal illness globally. According to the latest estimates from the World 
Health Organization (WHO), over 7.6 million fatalities occur annually globally as a result of lung cancer. 
Furthermore, the global incidence of cancer is projected to increase, reaching around 17 million cases by 20301. 
Early detection of cancer is crucial since it has a tendency to metastasize and becomes incurable when it spreads 
extensively. Diagnosing lung cancer is challenging due to the manifestation of symptoms at the advanced stage, 
making it very difficult to achieve successful treatment outcomes, Fig. 1 shows Comparison between healthy 
lung and cancer lung. Imaging methods such as Computed Tomography (CT), Positron Emission Tomography 
(PET), Magnetic resonance imaging (MRI), and X-ray are used to take images of lungs for assessment. Lung 
cancer detection employed image processing and deep learning techniques where precision can be enhanced 
by implementing these methodologies. Detecting and determining the form, size, and location of a tumor is 
a challenging undertaking. Early detection is crucial for efficient time management, as it allows for necessary 
medical interventions2. Nevertheless, radiologists continue to have challenges in discerning between malignant 
and benign nodules. Distinguishing between malignant nodules and benign ones by visual inspection is subjective 
and the outcomes vary across various observers and instances. Typically, proficient radiologists have superior 
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accuracy in categorizing nodules compared to novice radiologists. The need for dependable and unbiased analysis 
has spurred the creation of computer-assisted systems3.

The use of Machine Learning (ML) and Neural Networks (NN) in the categorization of Lung Cancer is 
not a new4. Employing machine learning techniques, such as optimizer and ensemble regression models, can 
be advantageous in attaining promising outcomes for both classification and regression problems5. Medical 
image recognition techniques can be applied as an initial diagnostic tool that hints about a potential illness6. 
Choosing appropriate features and building a highly efficient classifier for pulmonary nodules are crucial in the 
development of reliable Content-Based Image Retrieval (CBIR) and Computer-Aided (CAD) systems. Typically, 
CAD systems have two main stages: feature extraction and categorization. CBIR often incorporates a substantial 
number of visual elements, such as texture, form, and granulometry, in order to construct the search index7. 
Constructing machine learning architectures necessitates a proficient amalgamation of hyperparameters to 
enhance classification performance and precision. Tackling combinatorial issues with manual approaches can 
be daunting and hampers efficiency. Nevertheless, metaheuristic algorithms have been suggested as a means 
to optimize the process of acquiring the most optimal combination of hyperparameters needed for enhanced 
performance. Metaheuristic algorithms are optimization methods that draw inspiration from nature. They 
aim to discover optimal solutions characterized by local search, global search, and sometimes randomization. 
These algorithms are known for their great performance in finding acceptable optimization solutions. Swarm 
intelligence algorithms have effectively addressed intricate real-world challenges in engineering, medical sciences, 
and other scientific fields by achieving minimal computational power8. Metaheuristic algorithms are optimization 
approaches that employ iterative strategies to explore a vast search space and identify the optimal solution. The 
metaheuristic method is utilized to get the optimal combination of weights necessary for solving the feature 
extraction and classification challenge9.

Greylag Goose Optimization (GGO) algorithm has demonstrated encouraging outcomes in many 
optimization problems, encompassing feature selection and parameter optimization in several sectors, such 
as healthcare, finance, and engineering. We chose GGO as a metaheuristic optimization technique because of 
its proven track record in comparable optimization problems and its distinctive characteristics that may offer 
benefits over alternative optimization approaches. The purpose of integrating ML methods with a metaheuristic 
algorithm is to optimize the performance of these approaches in terms of accuracy. Enhancing performance in 
illness detection, such as lung cancer, can lead to improved diagnostic precision and prompt treatment. In this 
paper, incorporating the GGO metaheuristic algorithm with MLP can enhance parameter optimization and 
increase its capacity to learn and categorize intricate patterns within the data. Consequently, this work seeks to 
integrate the GGO-MLP algorithm with specific preprocessing strategies in order to enhance the classification 
accuracy of lung cancer textual data. Initially, the input data is subjected to preprocessing, which involves scaling, 
normalization, and removal of null values. Following pre-processing, the subsequent task involves extracting the 
ideal collection of features that might augment the accuracy of lung cancer categorization. The GGO method is 
built using a binary format for the purpose of extraction to find the cancerous lung states. The subsequent step 
is categorizing the lung illness according to the extraction of distinctive features. The classification step utilizes 
many classifiers such as SVC, DTC, RFC, KNC, and MLP. The findings indicated that the Multilayer Perceptron 
(MLP) is the most optimal classifier. The hyperparameter of the MLP model is tuned using GGO, and the 
performance is evaluated against six other optimizers (SC, MVO, PSO, WOA, GWO, and FOA). The GGO with 
MLP model yielded the most optimal outcomes for the classification of lung cancer.

The specific enhancements proposed in our methodology are:

Fig. 1.   Comparison between healthy lung and cancer lung.
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1.	 Normalization and scaling Data normalization and scaling were performed to standardize the input features. 
This step is necessary to ensure that all features contributed equally to the model training process and to 
improve the convergence speed of the optimization algorithms.

2.	 Choosing optimization techniques We used seven different binary optimization algorithms, Binary Greylag 
Goose Optimization (bGGO), Binary Sine Cosine Algorithm (bSC), Binary Mean Variance Optimization 
(bMVO), Binary Particle Swarm Optimizer (bPSO), Binary Whale Optimization Algorithm (bWOA), Binary 
Gray Wolf Optimizer (bGWO) and Binary Falcon Optimization Algorithm (bFOA). Each technique was 
used to identify the most relevant features, thus reducing the dimensionality of the data and improving clas-
sification performance.

3.	 Feature selection using bGGO algorithm Specifically, the bGGO algorithm was used to select the optimal 
subset of features. The goal was to remove irrelevant and redundant features, thus simplifying the input data 
and improving the efficiency and accuracy of the classification models.

4.	 Choosing machine learning classifiers We evaluated several machines learning classifiers, including Support 
Vector Classifier (SVC), Decision Tree (DT), Random Forest Classifier (RFC), K-Nearest Neighbors (KNN), 
and Multi-Layer Perceptron (MLP). This diverse selection allowed us to compare the performance of different 
models with the selected features.

5.	 Parameter tuning using GGO For MLP classifier, we proposed to use the GGO algorithm to optimize its 
parameters. The GGO algorithm iteratively adjusts the parameters to find the optimal configuration that gives 
the highest classification accuracy. The algorithm starts by generating a set of solutions, each representing 
a different set of MLP parameters. Each solution was evaluated based on its performance on the validation 
set and assigned a fitness score.

6.	 Statistical analysis The results of feature selection and classification were evaluated using statistical tests such 
as Wilcoxon signed-rank test and ANOVA test. These tests provided an accurate evaluation of the perfor-
mance improvements achieved by our proposed method.

The structure of this paper is as follows: Section "Related work" provides an overview of relevant state-of-
the-art literature. Section "Material and methods" provides an elaborate depiction of the proposed approach. 
The experimental results as well as discussion are presented in Section "The proposed framework". Section 
"Experimental results" presents the conclusions and future directions.

Related work
Due to the potential for increased survival rates, researchers are primarily focused on developing novel methods 
for the automated identification and diagnosis of significant lung nodules, as early detection is crucial in the 
case of lung cancer. This section presents research findings relating to lung cancer classification, based on ML/
DL and textural/image analysis. Mohamed et al.9 suggested a hybrid convolutional neural network (CNN) and 
metaheuristic algorithm. Initially, they constructed a CNN structure and subsequently calculated the solution 
vector of the model. The obtained solution vector was utilized in the Ebola optimization search algorithm (EOSA) 
to determine the optimal combination of weights and bias for training the CNN model to effectively address the 
classification challenge. Upon completing extensive training of the EOSA-CNN hybrid model, the researchers 
achieved the best configuration, resulting in good performance. The lung cancer dataset from the Iraq-Oncology 
Teaching Hospital/National Center for Cancer Diseases (IQ-OTH/NCCD), which is available to the public, was 
used for experimentation. The results indicated that the EOSA metaheuristic algorithm achieved a classification 
accuracy of 0.9321. In addition, they computed and reported the performance comparisons of EOSA-CNN with 
other approaches, including GA-CNN, MVO-CNN, LCBO-CNN, WOA-CNN, SBO-CNN, and the traditional 
CNN. The findings indicated that EOSA-CNN had a specificity of 0.7941, 0.9328, and 0.97951, as well as a sensi-
tivity of 0.9038, 0.9071, and 0.13333 for normal, malignant, and benign cases, respectively. Ren et al.10 introduced 
is a novel hybrid framework named LCGANT, including of two primary components. The initial component is a 
deep convolutional GAN (Generative Adversarial Network), which is capable of generating synthetic lung cancer 
images. The second component is a VGG-DF model, which incorporates regularization and transfer learning 
techniques, to accurately categorize lung cancer images into three distinct classifications. Their attained result 
for accuracy was 99.84% ± 0.156%, for precision was 99.84% ± 0.153%, for sensitivity was 99.84% ± 0.156%, and 
for F1-score was 99.84% ± 0.156%. Ananya Bhattacharjee et al.11, outlined a precise approach for identifying 
cancerous nodules in computed tomography imaging. They utilized a combination of an optimized random 
forest classifier and a K-means visualization tool to achieve the most accurate findings. The model’s hyperpa-
rameters were fine-tuned to ensure optimal performance, and the visualization tool was used to distinguish 
between malignant and non-malignant clusters. Among the four experiments conducted for hyperparameter 
optimization, the most successful model accurately identified cases as either malignant or non-malignant and 
obtained a 10-Fold cross-validation accuracy of 92.14% on the LIDC-IDRI dataset. Furthermore, the visualiza-
tion configuration that yielded the best results achieved an inertia score of 16.21, which was the lowest, and a 
silhouette score of 0.815, which was the greatest. Vijh et al.12 designed a pulmonary neoplasm diagnostic system 
utilizing a range of image processing methodologies. The Whale Optimization Algorithm (WOA) is utilized to 
pick the most optimal and conspicuous subset of features. They proposed the WOA_SVM, a novel approach 
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for automating the diagnosis of lung CT images to determine their normality or abnormality. The suggested 
methodology’s performance was assessed by measuring accuracy, sensitivity, and specificity. Utilizing a radial 
bias function support vector kernel, the results indicate an accuracy of 95%, sensitivity of 100%, and specificity 
of 92%. Shakeel et al.13 examined biological characteristics associated with lung cancer through the application of 
neural and soft computing methodologies. The pertinent features were chosen based on the redundancy relevancy 
feature criterion and then inputted into the feature spaces and subjected to the Wolf prey searching method. The 
features with the highest fitness value were chosen and utilized as optimized ones to remove the weak classifiers. 
The testing characteristics were classified using the discrete AdaBoost optimized ensemble learning generalized 
neural network (DAELGNN), which effectively trained and classified the features into normal and lung cancer 
features. The system’s efficiency was assessed by examining the testing and training characteristics, resulting in a 
minimum error rate of 0.0212 and a high prediction rate of 99.48%. Nanglia et al.4 suggested technique combines 
a Support Vector Machine with a Feed-Forward Back Propagation Neural Network to develop a hybrid approach 
that effectively reduces the computational complexity of lung cancer classification. Their suggested KASC hybrid 
algorithm approach is implemented by combining the effective SURF feature extraction technology, the efficient 
optimization technique GA, and SVM with the polynomial kernel using FFBPNN. The hybridization approach 
yielded significantly improved performance metrics for lung cancer classification on a dataset of 500 CT images. 
Specifically, the accuracy, average precision, recall, and f-score achieved were 98.08%, 98.17%, 96.5%, and 97%, 
respectively. Nancy et al.14 proposed machine learning may be used in the process of diagnosing lung cancer. 
They employed the CLAHE algorithm to enhance the overall image quality. The K Means approach is used when 
there is a requirement to segment an image. In this instance, feature selection is achieved through the utilization 
of the Particle Swarm Optimization (PSO) method. Subsequently, the images undergo categorization using the 
SVM, ANN, and KNN algorithms to classify them. Compared to other approaches, PSO-SVM has exceptional 
performance in accurately identifying instances of lung cancer, with an accuracy of 97.6% and a specificity of 
99%. Table 1 displays a comparison with state-of-the-art for the most referenced studies.

Material and methods
Greylag Goose Optimization (GGO) Algorithm
The optimization approach presented in this study is referred to as the Greylag Goose Optimization (GGO) 
algorithm. The GGO method starts by producing a set of individuals in a random manner, as seen in Algorithm 
(1). Every participant presents a potential solution that might be considered as a candidate solution to the 
problem. The GGO population consists of individuals denoted as Yi (i = 1, 2,…, n), where n is the total number 
of individuals in the population, as a gaggle. An objective function, denoted as Fn, is chosen to assess the 
individuals inside the group. By evaluating the objective function for every participant (agent) Yi, the optimal 

Table 1.   A comparison with state-of-the-art for several studies.

Refs Methodology Findings

Nanglia et al.4 SVM with Feed-Forward Back Propagation Neural Network and GA opti-
mization

Accuracy: 98.08%
Precision: 98.17%
Recall: 96.5%
F-Score: 97%

Mohamed et al.9 Hybrid CNN and Ebola Optimization Search Algorithm (EOSA)

Accuracy: 93.21%
Specificity:
- Normal: 79.41%
- Malignant: 93.28%
- Benign: 97.95%
Sensitivity:
- Normal: 90.38%
- Malignant: 90.71%
- Benign: 13.33%

Ren et al.10 Deep Convolutional GAN and VGG-DF model with regularization and 
transfer learning

Accuracy: 99.84% ± 0.156%
Precision: 99.84% ± 0.153%
Sensitivity: 99.84% ± 0.156%
F1-Score: 99.84% ± 0.156%

Bhattacharjee et al.11 Random Forest classifier with K-means visualization
10-Fold Cross-Validation Accuracy: 92.14%
Inertia Score: 16.21 (lowest)
Silhouette Score: 0.815 (highest)

Vijh et al.12 Whale Optimization Algorithm with SVM
Accuracy: 95%
Sensitivity: 100%
Specificity: 92%

Shakeel et al.13 Discrete AdaBoost optimized ensemble learning generalized neural network Error Rate: 0.0212
Prediction Rate: 99.48%

Nancy et al.14 Particle Swarm Optimization with SVM Accuracy: 97.6%
Specificity: 99%

Joshi et al.15 SMOCS (Cuckoo Search followed by Spider Monkey Optimization) and 
CSSMO (Spider Monkey Optimization followed by Cuckoo Search) Accuracy: 100%

Saxena et al.16 A chaotic algorithm based on Marine Predator Algorithm (MPA) called 
Marine Predator Chaotic Algorithm (MPCA)

The proposed MPCA algorithm demonstrates the best graphical visualiza-
tions and statistical analysis

Yaqoob et al.17 Harris hawks optimization and cuckoo search algorithm (HHOCSA) The proposed HHOCSA algorithm gives the best results when compared to 
another methods
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solution (leader) is determined and denoted as Z. The GGO algorithm utilizes the Dynamic Groups behavior 
to categorize individuals into two groups: an exploration group (n1) and an exploitation group (n2). The total 
number of solutions inside each group is dynamically controlled throughout each iteration based on the optimal 
solution. GGO commences the groups with an equal distribution of 50% exploration and 50% exploitation. 
Subsequently, the total number of agents in the exploration group (n1) is reduced, while the number of agents in 
the exploitation group (n2) is raised. However, if the objective function value of the best solution remains same 
for three consecutive iterations, the algorithm will begin to expand the number of agents in the exploration group 
(n1) in order to obtain a different best solution and hopefully avoid local optima18. Exploration has two important 
functions; it helps identify interesting regions inside the search space and prevents stagnation at local optima by 
advancing towards the optimal solution. Striving for optimal resolution by implementing this strategy, the geese 
explorer will actively seek out favorable new areas to investigate in close proximity to its present location. This is 
achieved by iteratively evaluating many potential adjacent choices in order to choose the optimal one based on 
its fitness. The GGO method employs the following equations to do this task, updating the B and D vectors as 
B = 2b.m1 − b and D = 2.m2 throughout iterations with a parameter adjusted linearly from 2 to 0:

where Y(t) presents an individual at iteration t. The Y*(t) denotes the optimal location of the leader (best solu-
tion). The Y(t + 1) represents the adjusted location of the individual. The values of m1 and m2 values are randomly 
changing within the range of 0 to 1.

The equation below will be employed by selecting three random search individuals, referred to as YPaddle1, 
YPaddle2, and YPaddle3, to ensure that the individuals are not influenced by a single leader position, hence promot-
ing greater exploration. The current search agent’s position will be changed as follows for |B| is greater than or 
equal to 1.

where the values of w1, w2, and w3 are adjusted within the range of 0 to 2. The values of w1, w2, and w3 are 
updated within the range of 0 to 2. The parameter p exhibits an exponential decrease and is determined by the 
following equation:

where iteration number is denoted as “t”, and “tmax” specifies the maximum number of iterations.
The second updating procedure is as follows for m3 values greater than or equal to 0.5, where the values of b 

and B vectors values are reduced.

where a is a fixed value, l is a randomly selected value from range of − 1 to 1. The w4 parameter is adjusted within 
the range of 0 to 2, whereas m4 and m5 parameters are modified within the range of 0 to 1.

Exploitation operation
The exploitation group is responsible for enhancing the existing solutions. The GGO determines the individual 
with the best fitness at the end of each round and grants them corresponding recognition. The GGO utilizes two 
distinct strategies in order to accomplish its purpose of exploitation, which is elaborated below.

Moving towards the best solution
The subsequent equation is employed to advance towards the optimal solution. The three sentries (solutions), 
YS entry1, YS entry2, and YS entry3, direct other agents (YNonS entry) to adjust their locations towards the predicted loca-
tion of the prey. The subsequent equations illustrate the updating locations procedure.

where the values of B1, B2, B3 are determined by the equation B = 2b.m1 − b, where b is a constant. Similarly, the 
values of D1, D2, D3 are determined by the equation D = 2m2. The modified population locations, Y(t + 1), can be 
calculated by taking the average of the three solutions: Y1, Y2, and Y3 as follows.

(1)Y(t+ 1) = Y∗(t)− B.|D.Y∗(t)− Y(t)|

(2)Y(t+ 1) = w1 ∗ YPaddle1 + p ∗ w2 ∗ (YPaddle2 − YPaddle3)+
(

1− p
)

∗ w3 ∗ (Y− YPaddle1)

(3)p = 1− (
t

tmax
)
2

(4)Y(t+ 1) = w4 ∗ |Y
∗(t)− Y(t)| · eal · cos(2π l)+ [2w1(m4 + m5)] ∗ Y

∗(t)

(5)

Y1 = YS entry1 − B1 ·
∣

∣D1 · YS entry1 − Y
∣

∣,

Y2 = YS entry2 − B2 ·
∣

∣D1 · YS entry2 − Y
∣

∣,

Y3 = YS entry3 − B3 ·
∣

∣D1 · YS entry3 − Y
∣

∣

(6)Y(t+ 1) =
−

Yi|
3

0
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The Triangle Inequality is the second mathematical lemma that may be employed in the analysis of the GGO 
algorithm throughout the exploitation phase. The Triangle Inequality is a fundamental principle in metric spaces, 
asserting that the length of any side of a triangle is always less than or equal to the sum of the lengths of the 
other two sides. For GGO, this implies that the distance between any two individuals is less than or equal to the 
combined distances of these agents to a third individual in the search space. The most favorable option is situated 
in close proximity to the optimal response (leader) during flight. As a result, certain individuals are motivated 
to seek improvements by exploring areas adjacent to the optimal solution, referred to as YFlock1. In order to 
address the issue of local optima, the GGO employs the aforementioned procedure, which impacts both local 
and global optima, utilizing the subsequent equation.

The Law of Large Numbers is the third mathematical concept that may be employed in the investigation of the 
GGO algorithm to effectively address the issue of local optima. The Law of Large Numbers is an essential concept 
in probability theory which asserts that as the size of the sample grows, the average of the sample approaches the 
average of the entire population. Within the framework of GGO, this implies that as the quantity of individuals 
in the swarm grows, the swarm as a collective will progressively approach the global optimum.

The GGO provides outstanding exploration capabilities by employing a mutation approach and scanning 
participants of the exploration group. The GGO has the ability to delay convergence due to its robust exploring 
abilities. Algorithm 1 includes the GGO pseudo-code, as we Initially provide GGO with essential facts, includ-
ing the size of the population, rate of mutation, and number of iterations. The GGO thereafter divides the par-
ticipants into two groups: those engaged in exploratory work and the other involved in exploitative labor. The 
GGO approach adjusts the size of each group while it iteratively searches for the optimal solution. In order to 
introduce diversity and conduct thorough investigation, the GGO employs a random reordering of the responses 
throughout each iteration.

Within a single iteration, a solution parameter from the exploration group may transfer to the exploitation 
group in the manner described below. The GGO’s exclusive approach ensures the leader’s continuous tenure in 
position during the process. The GGO algorithm seeks to update the locations of both the exploration group 
(n1) and the exploitation group (n2). The parameter m1 is modified iteratively according to the equation m1 = 
d(1− t

tmax
) , where t represents current iteration, d denotes a constant, and tmax specifies the number of itera-

tions. After each iteration, GGO modifies the individuals in the search space and randomly shuffles their order 
to shift their roles between the exploration and exploitation groups. During the last stage, GGO retrieves the 
optimal solution.

(7)Y(t+ 1) = Y(t)+ C
(

1+ p
)

∗ w ∗ (Y− YFlock1)
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1: Initialize GGO population Yi (i = 1, 2, ..., n), size n, iterations tmax, objective function Fn.
2: Initialize GGO parameters b, B, D, a, l, d, w, m1 - m5, w1- w4, B1 - B3, D1, - D3, t = 1
3: Calculate objective function Fn for each agents Yi
4: Set Z = best agent position
5: Update Solutions in exploration group (n1) and exploitation group (n2)
6: while t ≤ tmax do
7: for (i = 1 : i < n1 + 1) do
8: if (t%2 = = 0) then
9: if (m3 < 0.5) then
10: if (|B| < 1) then
11: Update position of current search agent as in Equation (1).
12: else
13: Select three random search agents YPaddle1, YPaddle2, and YPaddle3
14: Update (p) by the exponential form as in Equation (3).
15: Update position of current search agent as in Equation (2).
16: end if
17: else
18: Update position of current search agent as in Equation (4).
19: end if
20: else
21: Update individual positions as in Equation (7).
22: end if
23: end for
24: for (i = 1 : i < n2 + 1) do
25: if (t%2 == 0) then
26: Calculate Y1, Y2, Y3 as in Equation (5).

27: Update individual positions as in Equation (6).
28: else
29: Update position of current search agent as in Equation (7).
30: end if
31: end for
32: Calculate objective function Fn for each Yi
33: Update parameters
34: Set t = t + 1
35: Adjust beyond the search space solutions
36: if (Best Fn is same as previous two iterations) then
37: Increase solutions of exploration group (n1)
38: Decrease solutions of exploitation group (n2)
39: end if
40: end while
41: Return best agent Z

Algorithm 1: GGO algorithm. 

Binary GGO Optimization Algorithm
The GGO optimization algorithm is a more effective approach for improving the feature selection of MLP 
parameters. The GGO utilizes the binary format for feature selection.

Feature selection problems revolve around a restricted search space that just encompasses binary values of 0 
and 1. The objective is to determine the significance of a particular feature. Therefore, the ongoing GGO values 
are converted to a binary [0, 1] format in the binary GGO technique suggested in this section, in order to align 



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:23784  | https://doi.org/10.1038/s41598-024-72013-x

www.nature.com/scientificreports/

with the feature selection process. The fundamental purpose of this procedure, as outlined in Eqs. (8, 9), is to 
convert the continuous data into binary data using the following Sigmoid function.

where Bi∗t  represents the best solution at specific iteration t. Algorithm 2 presents the proposed bGGO stages 
utilized to choose the optimal feature set, enhancing the Caries’ case classification accuracy.

1: Initialize GGO population, objective function, and GGO parameters
2: Convert solution to binary [0 or 1]
3: Calculate objective function for each agent and get best agent position
4: Update Solutions in exploration group and exploitation group
5: while t ≤ tmax do
6: for (i = 1 : i < n1 + 1) do
7: if (t%2 == 0) then
8: if (m3 < 0.5) then
9: if (|B| < 1) then
10: Update position of current search agent in exploration group
11: else
12: Update position of current search agent based on three random search agents
13: end if
14: else
15: Update position of current search agent
16: end if
17: else
18: Update individual positions
19: end if
20: end for
21: for (i = 1 : i < n2 + 1) do
22: if (t%2 == 0) then
23: Update position of current search agent in exploitation group
24: else
25: Update position of current search agent
26: end if
27: end for
28: Convert updated solution to binary
29: Calculate objective function
30: Update parameters
31: Adjust beyond the search space solutions
32: Update Solutions in exploration group and exploitation group
33: end while
34: Return best agent

Algorithm 2: bGGO algorithm. 

Multilayer Perceptron (MLP) Model
Multilayer perceptron models, derived from the neural architecture of the human brain, have significant apti-
tude in representing the nonlinear behavior of intricate systems. Moreover, these models provide the capability 
to tackle prediction problems with nonlinear structure. This model functions by acquiring knowledge about 

(8)Bi∗t =

{

1 if sigmoid
(

Bi∗t
)

≥ 0.5

0 otherwise

(9)Sigmoid
(

Bi∗t
)

=
1

1+ e−10(Bii∗−0.5)
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the problem-solving procedure in order to get the desired outcome by identifying the underlying relationship 
inside the process. In order to achieve this objective, a substantial amount of data is utilized during the training 
phase, leveraging the discovered relationship in that phase to compute the desired output. Among several neu-
ral network models, the back-propagation network is the most commonly utilized. This network is composed 
of layers, each containing parallel-acting units known as neurons. Each layer is fully interconnected with the 
preceding and subsequent layers19.

The proposed framework
In this paper, the initial phase involves data processing, which includes removing null values, normalizing, 
and scaling data. The primary focus in this stage is to prepare and expand the input data. This study employed 
feature selection approaches to carry out 7 optimization techniques in binary format- namely, Greylag Goose 
Optimization (GGO)18, Sine Cosine Algorithm (SC)20, Mean variance optimization (MVO)21, Particle Swarm 
Optimizer (PSO)22, Whale Optimization Algorithm (WOA)23, Gray Wolf Optimizer (GWO)24, and Falcon 
Optimization Algorithm (FOA)25. The second phase involves the process of selecting features, using the proposed 
feature selection approach. The pertinent features are subsequently extracted using bGGO. The objective of this 
step is to determine the optimal characteristics that will enable precise classification of the input data. This step 
offers the advantage of diminishing the overall quantity of features by deleting irrelevant ones. The input data 
was classified using ML classifiers, with features picked based on the bGGO. The ML models proposed in this 
study include the Support Vector Classifier (SVC)26, Decision Tree (DT)27, Random Forest Classifier (RFC)28, 
1 K-Nearest Neighbors (KNN)29, and multilayer perceptron (MLP)30. The parameters of the MLP are optimized 
to effectively utilize the proposed optimization technique. The objective of this stage is to choose the optimal set 
of classification parameters. The algorithm begins by producing a collection of solutions for different parameter 
setups. Each key, or individual Greylag Goose, is allocated a fitness score depending on its performance on a 
validation set. In order to identify the optimal solutions, individuals within the population are systematically 
traversed over the search space. GGO utilizes weighted vectors to direct individuals to suitable destinations. These 
vectors are calculated using the fitness ratings of population. The algorithm consistently adjusts the placements 
of the participants to accurately reflect the optimal solution. GGO employs an iterative process to progressively 
improve the solutions with the goal of reaching the ideal configuration of MLP parameters. Once the convergence 
threshold is attained, the algorithm terminates after a specific number of iterations. In this case, the optimal 
solution is chosen based on the parameter configuration with the highest fitness value. This research explores 
how GGO can enhance the tuning parameters of MLP (Multilayer Perceptron). The sequential process of the 
proposed framework is visually depicted in Fig. 2.

Fig. 2.   The proposed lung cancer classification framework.
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Experimental results
This section describes the assessment of the proposed algorithm in several experimental conditions. The tests 
employed traditional mathematical functions as reference points to ascertain their minimum values within a 
designated search area. These functions are frequently utilized in the previous research to evaluate the effective-
ness of optimization strategies, and there are several optimization methods available in the literature. This study 
conducted a comparison analysis to demonstrate the higher performance and effectiveness of the proposed 
algorithm, Greylag Goose Optimization (GGO), compared to six known optimization techniques. The algorithms 
GGO, SC, MVO, PSO, WOA, GWO, and FOA were chosen because to their extensive acknowledgment and 
practical significance. The study platform employed the following technical specifications: a primary memory 
of 16 GB, an Intel Core i7 CPU, anda graphics processing unit (GPU) utilizing a GeForce RTX2070 Super with 
8 GB of RAM. On the other hand, the software specifications were made up of Ubuntu 20.04 as the operating 
system, TensorFlow 1.15, CUDA9.0, Cudnn7.1, and Python 3.7 for the Spider Integrated Development Environ-
ment (IDE).

Dataset description
Machine learning and data science specialists may utilize this dataset to construct prediction models for diag-
nosing lung cancer, examine the influence of different cancer-related characteristics, and devise algorithms to 
enhance cancer therapy and prevention. This research uses a data set termed "Lung Cancer Dataset", which was 
gathered and submitted to Kaggle. The efficacy of cancer classification and prediction systems enables individuals 
to ascertain their susceptibility to cancer at a minimal expense. Moreover, it aids specialists in making informed 
decisions in accordance with their cancer risk profile. The data is gathered from the online lung cancer prediction 
system on the website, available at: https://​www.​kaggle.​com/​datas​ets/​mysar​ahmad​bhat/​lung-​cancer.

The input features of the used dataset consist of Gender, Smoking, Age, Yellow fingers, Peer_pressure, Anxiety, 
Chronic Disease, Swallowing Difficulty, Allergy, Fatigue, Wheezing, Alcohol, Shortness of Breath, Coughing, 
and Chest pain. The attributes count is 16, and there are 284 occurrences. These variables are used to classify the 
output variable, which is Lung Cancer. Figure 3 depicts a scatter plot that showcases the relationship between 
the input and output variables of the Lung Cancer dataset.

Figure 4 exhibits the correlation matrix, which is a helpful statistical instrument for analyzing the relationship 
between variables in the dataset. It often generates a matrix that shows the pairwise correlations between all 
variables. The correlation coefficients, which span from − 1 to + 1, signify the relative significance and direction 
of the interactions. In order to examine the relationships, patterns, and potential predictors within the data, 
we may employ a correlation matrix to discover variables that have positive or negative correlations. This 
information is crucial for predictive modeling as it aids in the selection of pertinent characteristics, the reduction 
of dimensionality, and the identification of multicollinearity difficulties31.

Feature selection results
This study employed feature selection techniques to carry out seven optimization algorithms in binary format, 
specifically: Greylag Goose Optimization (GGO), Gray Wolf Optimizer (GWO), Mean variance optimization 
(MVO), Whale Optimization Algorithm (WOA), Sine Cosine Algorithm (SC), Particle Swarm Optimizer (PSO), 

Fig. 3.   Scatter plot for each feature in the dataset.

https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer
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and Falcon Optimization Algorithm (FOA). Table 2 presents an evaluation of the outcomes attained by different 
feature selection techniques. The table clearly illustrates that the proposed bGGO achieved the best results against 
the other binary feature selection algorithms in the term of average error, average select size, average fitness, best 
fitness, worst fitness and standard deviation fitness. Lower values for average error, average select size, average 
fitness, best fitness, worst fitness and standard deviation fitness indicate the best results. The average error, 
average select size, average fitness, best fitness, worst fitness and standard deviation fitness values are 0.7743031, 
0.7271031, 0.8375031, 0.7393031, 0.8378031 and 0.6598031, respectively.

The Fig. 5 displays a graph that compares the average error of the proposed feature selection technique 
with six other feature selection strategies. The bGGO technique has the lowest average error, so showcasing its 
robustness, as shown in this figure.

Table 3 illustrates the superior performance of the proposed bGGO technique compared to previous feature 
selection strategies across many measures. The p-values were computed by comparing the outcomes of each 

Fig. 4.   A correlation matrix between features in the dataset.

Table 2.   Evaluation of the suggested feature selection technique (bGGO) in comparison to other competitive 
techniques.

bGGO bSC bMVO bPSO bWOA bGWO bFOA

Average error 0.7743031 0.791503 0.805103 0.825303 0.825103 0.811603 0.823703

Average Select size 0.7271031 0.927103 0.869503 0.927103 1.090503 0.849903 0.961603

Average Fitness 0.8375031 0.853703 0.865103 0.852103 0.859903 0.859803 0.904003

Best Fitness 0.7393031 0.774003 0.768403 0.832403 0.824003 0.837603 0.822703

Worst Fitness 0.8378031 0.840903 0.883503 0.900103 0.900103 0.913803 0.920303

Standard deviation Fitness 0.6598031 0.664503 0.666103 0.663903 0.666103 0.665103 0.700703
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algorithm pair, revealing that the proposed feature selection technique (bGGO) exhibits statistically significant 
superiority. The null hypothesis and the alternative hypothesis are the primary hypotheses under consideration 
in this study. The null hypothesis, shown as H0, assumes that the mean values (m) of bGGO are equal to the 
mean values of bGWO, bPSO, bWOA, bSC, bMVO, and bFOA. However, the H1 hypothesis does not consider 
the averages of the algorithms. To conduct this inquiry, the Wilcoxon rank-sum test was employed. The results 
of the Wilcoxon rank-sum test are presented in Table 3. The proposed technique has statistical superiority over 
previous techniques, as seen by its lower p-value (p < 0.005). A one-way analysis of variance (ANOVA) test was 
performed to see if there were statistically significant differences between the proposed bGGO technique and the 
other binary optimization techniques. The results of the ANOVA test are presented in Table 4. The results shown 
in these tables confirm the superiority, significance, and effectiveness of the proposed feature selection technique.

The plots in Fig. 6 illustrate the results achieved by the proposed feature selection technique. The figure 
employs residual plots, quartile–quartile (QQ), homoscedasticity, and heatmap to showcase the effectiveness 
and reliability of the proposed technique. The results shown in the QQ plot demonstrate a strong correlation 
with a linear trend, revealing that the selected features are reliable in correctly determining the presence of lung 
cancer. Moreover, the focus on results is further underscored by the reported outcomes in the homoscedasticity 
and residual plots. Additionally, the superiority of the proposed technique is further evidenced by the heatmap 
depicted in Fig. 5, which clearly illustrates that the proposed technique surpassed the other six binary feature 

Fig. 5.   The Average Error of the Results Acquired using bGGO, the Proposed Feature Selection Technique.

Table 3.   The Wilcoxon signed-rank test for evaluating the effectiveness of the proposed feature selection 
technique (bGGO) in comparison to existing binary optimization techniques.

bGGO bSC bMVO bPSO bWOA bGWO bFOA

Theoretical median 0 0 0 0 0 0 0

Actual median 0.7743 0.7915 0.8051 0.8253 0.8251 0.8116 0.8237

Number of values 10 10 10 10 10 10 10

Wilcoxon Signed Rank Test

 Sum of signed ranks (W) 55 55 55 55 55 55 55

Sum of positive ranks 55 55 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0 0 0

P value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact

P value summary ** ** ** ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

 Discrepancy 0.7743 0.7915 0.8051 0.8253 0.8251 0.8116 0.8237

Table 4.   The analysis-of-variance (ANOVA) test for assessing the proposed technique, bGGO.

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.02274 6 0.00379 F (6, 63) = 135.3 P < 0.0001

Residual (within columns) 0.001764 63 2.8E−05

Total 0.02451 69
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selection strategies. The effectiveness of the bGGO technique is confirmed by the heatmap, as it achieved the 
most optimal results compared to other feature selection strategies.

Classification results
A supplementary experiment was conducted to showcase the influence of the feature selection technique on 
the classification findings. Machine learning classifiers were employed to categorize the input data based on 
characteristics chosen according to the bGGO. The bGGO technique was employed to enhance the network’s 
characteristics with the aim of optimizing performance. The classification outcomes for several machine learning 

Fig. 6.   Analysis plots of the obtained outcomes based on bGGO, the proposed feature selection technique.

Table 5.   Various classifiers for the categorization of lung cancer.

Models Accuracy Sensitivity (TRP) Specificity (TNP) Pvalue (PPV) Nvalue (NPV) F-Score AUC​

SVC 0.83389544 0.837171 0.83045 0.83855 0.829016 0.83786 0.874

DT 0.83808724 0.842715 0.833333 0.83855 0.837607 0.84062 0.876

RFC 0.86343993 0.877586 0.84922 0.854027 0.87344 0.86564 0.893

KNN 0.8872 0.877586 0.895522 0.879102 0.894188 0.87834 0.882

MLP 0.91803278 0.926686 0.909091 0.913295 0.923077 0.91994 0.935

Table 6.   Findings of optimization methods MLP model for the classifying lung cancer.

Models Accuracy Sensitivity (TRP) Specificity (TNP) Pvalue (PPV) Nvalue (NPV) F-Score AUC​

GGO + MLP 0.983837 0.977337 0.990237 0.989957 0.977961 0.983607 0.993

SC + MLP 0.966184 0.966387 0.965986 0.965035 0.967302 0.96571 0.975

GWO + MLP 0.960879 0.961003 0.960758 0.959666 0.96206 0.960334 0.972

PSO + MLP 0.951087 0.949106 0.95302 0.951724 0.950469 0.950413 0.964

WOA + MLP 0.94086 0.949106 0.932983 0.931174 0.950469 0.940054 0.957

FOA + MLP 0.937287 0.943912 0.930707 0.931174 0.943526 0.9375 0.953

MVO + MLP 0.927978 0.933694 0.921986 0.926174 0.9299 0.929919 0.937
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models following feature selection are displayed in Table 5. The ML models listed in this table include the 
Support Vector Classifier (SVC), Decision Tree Classifier (DTC), Random Forest Classifier (RFC), K Neighbors 
Classifier (KNC), and multilayer perceptron (MLP). The MLP model achieved the greatest values of 0.9180327, 
0.92668, 0.9091, 0.9133, 0.9231, 0.9199 and 0.935 for accuracy, sensitivity, specificity, p-value, n-value, F-score 
and Area Under the ROC Curve (AUC) respectively. The MLP model acts as a fitness function and is optimized 
using the GGO algorithm and six additional optimization techniques. The outcomes for classification of the 
seven optimization algorithms, using the fitness function of the MLP model, are presented in Table 6. The 
findings of GGO combined with MLP are compared to those of SC, GWO, PSO, WOA, FOA, MVO with MLP to 
demonstrate the superiority of the proposed approach (GGO + MLP). The GGO + MLP approach demonstrated 
superior performance with accuracy, sensitivity, specificity, p-value, n-value F-score and Area Under the ROC 
Curve (AUC) with values of 0.983837, 0.977337, 0.990237, 0.989957, 0.977961, 0.983607 and 0.993, respectively. 
Various optimizers were employed to refine the parameters of the MLP, and the outcomes were investigated and 
assessed. The data shown in this table clearly demonstrates that the proposed approach surpasses the previous 
optimization approaches. These findings clearly show the necessity of feature selection in order to enhance the 
accuracy of the classification results.

Table 7 demonstrates the parameter settings for Greylag Goose Optimization (GGO), Gray Wolf Optimizer 
(GWO), Mean variance optimization (MVO), Whale Optimization Algorithm (WOA), Sine Cosine Algorithm 
(SC), Particle Swarm Optimizer (PSO), and Falcon Optimization Algorithm (FOA).

Table 7.   Parameter settings for the algorithms used in this study.

Algorithm Parameter Values

GGO Population size 50

Inertia weight 0.9

Iterations 100

WOA
Population size 200

Iterations 100

GWO
Iterations 100

Wolves 20

FOA
Iterations 100

Population size 150

SC
Initial amplitude 2

Iterations 100

PSO
Particles 80

Iterations 100

MVO
Aversion parameter (λ) 0.6

Iterations 100

Fig. 7.   Assessing the accuracy of the GGO + MLP approach and optimization algorithms using the MLP model, 
considering the objective function.
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The efficacy of the proposed GGO + MLP approach for optimizing the objective function is confirmed 
by a comparative analysis with other optimization algorithms utilizing the MLP model. The accuracy and 
histogram of the results obtained using GGO + MLP are presented in the accuracy plots depicted in Figs. 7 
and 8, correspondingly. The accuracy plot demonstrates that the proposed approach surpassed the other six 
optimization algorithms while using the MLP model. In addition, the accuracy histogram plot demonstrates 
the effectiveness of the proposed GGO + MLP approach in accurately classifying lung cancer cases in the input 
dataset.

The statistical differences between the proposed algorithm and other competing algorithms are evaluated 
using ANOVA and Wilcoxon’s rank-sum tests. The ANOVA results for the proposed GGO + MLP approach are 
presented in Table 8. The Wilcoxon’s rank-sum test, as presented in Table 9, is employed to evaluate the pres-
ence of a statistically significant difference in the outcomes produced by the algorithms. A p-value below 0.05 
indicates statistically significant supremacy. The outcomes reveal that the GGO + MLP approach is superior and 
shows the statistical significance of the approach.

Fig. 8.   Histograms of the accuracy results achieved by GGO + MLP approach as well as alternative 
combinations of optimization techniques with MLP models.

Table 8.   The outcomes of the ANOVA of the proposed GGO algorithm with MLP model for lung cancer 
classification.

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.02191 6 0.003652 F (6, 63) = 184.1 P < 0.0001

Residual (within columns) 0.00125 63 1.98E−05

Total 0.02316 69

Table 9.   The Wilcoxon signed-rank test findings of the proposed approach, (GGO + MLP), with various 
configurations of other optimization algorithms with the MLP model for lung cancer classification.

GGO + MLP SC + MLP GWO + MLP PSO + MLP WOA + MLP FOA + MLP MVO + MLP

Theoretical median 0 0 0 0 0 0 0

Actual median 0.9838 0.9662 0.9609 0.9511 0.9409 0.9373 0.928

Number of values 10 10 10 10 10 10 10

Wilcoxon Signed Rank Test

 Sum of signed ranks (W) 55 55 55 55 55 55 55

Sum of positive ranks 55 55 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0 0 0

P value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact

P value summary ** ** ** ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

 Discrepancy 0.9838 0.9662 0.9609 0.9511 0.9409 0.9373 0.928
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The statistical findings in Table 8 demonstrate the comparative efficiency of the GGO + MLP approach com-
pared to other five optimizers (SC, GWO, PSO, WOA, FOA, and MVO) with MLP model on benchmark func-
tions. Table 9 illustrates that the GGO + MLP approach outperformed the other six optimizers using the MLP 
model due to its employment of two separate exploitation procedures in each cycle. The initial procedure entails 
progressing towards the most optimal solution identified at a specific point, whereas the second approach involves 
aggressively pursuing superior solutions in close vicinity. The GGO + MLP approach can get exceptional results by 
implementing these procedures to effectively use the search space. In order to achieve optimal use, it is imperative 
to maintain a harmonious equilibrium between exploration and exploitation within the search domain. Further-
more, it is crucial to initiate the exploitation process at an early stage in every iteration and gradually augment 
the total number of the participants in exploitation group. In general, the GGO algorithm demonstrated superior 
performance compared to other optimizers on most of the unimodal benchmark functions.

Figure 9 exhibits the residual plot, QQ plot, heteroscedasticity plot, and heat map for this scenario. The figure 
employs residual plots, quartile-quartile (QQ) plots, and homoscedasticity to showcase the effectiveness and 
robustness of the proposed GGO + MLP approach. The efficacy of the selected features in case categorization is 
demonstrated by the values depicted in the QQ plot, which approximately fit to a linear trend. The data shown in 
the residual and homoscedasticity plots provide more evidence to support these results. Moreover, the superiority 
of the proposed approach is further evidenced by the heatmap depicted in Fig. 5, which clearly illustrates that 
the proposed approach outperformed the other six binary feature selection techniques. The effectiveness of the 
GGO + MLP approach is confirmed by the heatmap, as it achieved the most optimal results compared to other 
feature selection strategies. The analysis plots shown in Fig. 8 demonstrate the effectiveness of the proposed 

Fig. 9.   Analysis plots of the obtained results using the proposed GGO + MLP approach.

Table 10.   Results of GGO algorithm compared to others optimization algorithms using Rastrigin function.

Metric Rastrigin (bGGO) Rastrigin (bSC) Rastrigin (bMVO) Rastrigin (bPSO) Rastrigin (bWOA) Rastrigin (bGWO)
Rastrigin 
(bFA)

Average error 0.473 0.485 0.496 0.516 0.545 0.553 0.571

Average Select size 0.454 0.472 0.481 0.497 0.522 0.536 0.554

Average Fitness 0.518 0.538 0.568 0.583 0.598 0.624 0.646

Best Fitness 0.485 0.513 0.546 0.563 0.581 0.616 0.636

Worst Fitness 0.532 0.562 0.574 0.592 0.615 0.628 0.643

Standard deviation 
Fitness 0.324 0.347 0.361 0.378 0.393 0.416 0.435
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GGO + MLP approach in addressing the optimization concerns for categorizing lung cancer patients discussed 
in this article.

To verify the performance of the proposed model, we used two benchmark functions, namely, Rastrigin 
function and Ackley function. Table 10 demonstrates the results of GGO algorithm compared to others 
optimization algorithms using Rastrigin function using the metrics, average error, average select size, average 
fitness, best fitness, worst fitness and standard deviation fitness. As demonstrated in Table 10, GGO algorithm 
gives the best results in terms of average error, average select size, average fitness, best fitness, worst fitness and 
standard deviation fitness.

Table 11 demonstrates the results of GGO algorithm compared to others optimization algorithms using 
Ackley function using the metrics, average error, average select size, average fitness, best fitness, worst fitness 
and standard deviation fitness. As demonstrated in Table 11, GGO algorithm gives the best results in terms of 
average error, average select size, average fitness, best fitness, worst fitness and standard deviation fitness.

Table 12 demonstrates a performance comparison of proposed work with a recent existing system.

Statistical analysis of reference models results
Among the visualization methods applied in statistics of the results of this prototypical approach, the description 
of the distribution of the results is performed. A KDE Plot is given in Fig. 10, which is comprehensive in analyzing 
models’ accuracy. This graph output measures differences in both norms and fluctuations between various models 

Table 11.   Results of GGO algorithm compared to others optimization algorithms using Ackley function.

Metric Ackley (bGGO) Ackley (bSC) Ackley (bMVO) Ackley (bPSO) Ackley (bWOA) Ackley (bGWO) Ackley (bFA)

Average error 0.327 0.363 0.371 0.378 0.415 0.443 0.451

Average Select size 0.314 0.345 0.353 0.358 0.394 0.416 0.424

Average Fitness 0.482 0.516 0.535 0.541 0.552 0.559 0.563

Best Fitness 0.471 0.502 0.515 0.519 0.526 0.534 0.542

Worst Fitness 0.517 0.553 0.573 0.578 0.587 0.594 0.605

Standard deviation 
Fitness 0.263 0.292 0.302 0.307 0.318 0.326 0.332

Table 12.   Comparison of proposed work with a recent existing system.

Refs Methodology Accuracy

Ref4 SVM with Feed-Forward Back Propagation Neural Network and GA optimization Accuracy: 98.08%

Ref9 Hybrid CNN and Ebola Optimization Search Algorithm (EOSA) Accuracy: 93.21%

Ref11 Random Forest classifier with K-means visualization Accuracy: 92.14%

Ref12 Whale Optimization Algorithm with SVM Accuracy: 95%

Proposed work GGO + MLP Accuracy: 98.4%

Fig. 10.   KDE plot of accuracy of reference models results.
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of the algorithm in question. The role of observation is vital in enhancing the efficacy of such models since it 
helps to identify the particular models that are performing well.

The KDE (Kernel Density Estimation) plots help to estimate the probability density function of a continu-
ous random variable. Here, the graph shows the error levels of the reference models in the x-axis and then the 
number of times an error level happens in the y-axis. The KDE plot assists researchers in understanding the 
distribution behavior of the accuracy by identifying frequent routines, examples of modes and often some clusters 
of high-performant models.

Therefore, a Box Plot with Swarm Overlay illustrates the distribution of precision in addition to the reference 
models in Fig. 11. This way, it is not only a short description of the accuracy values but also a comparison of 
the models, depicting the median, quartiles, and possibly the outliers. Annotations on individual parts of data 
clouds are added, including united data. This detail lifts the level of resolution and provides information about 
the accuracy and deviations from the most common form of an example.

Figure 12 shows a Pairplot with Regression Lines for the Reference Models Results. The network diagram 
technique thus helps examine the interrelation of all the variables considered to be of particular interest, such as 
accuracy, sensitivity, specificity, and so forth, for all the considered reference models. Each relation between the 
variables is sketched as a scatterplot, with the lines representing regression (showing the trend between these 
variables) as well.

Figure 13 is the representation of a Regression Plot; this illustration reveals the relationship between Accuracy 
and F-Score when using the Reference Models Results. These two observations graphically demonstrate the 
relationship between these two most important metrics, thus helping researchers quantify the matter of a tradeoff 
between accuracy and F-score. The regression line is fitted to the inter-connected data plots, which advertises the 
direction and the strength of Accuracy, and F-Score link relative to different reference models.

Statistical analysis of optimization results
The KDE chart in Fig. 14 highlights the accuracy distribution from the specimen of the optimization process. 
The visualization will show the levels of dispersion and measure a central tendency for the reference models, 
just like a KDE plot. This will help with understanding the variability and accuracy. The curve shape and density 
analyses provide a way to see the trends and patterns in the optimization outcomes so that different strategies 
may be compared.

Figure 15, which KDE Plot powers, is supplemented by another Box Plot demonstrating the distribution of 
error levels of optimization models. The visualization technique very well captures the composite values like the 
median, the percentiles and, could be, the outlier of the accuracy values in order to compare them to different 
optimization schemes.

Rounding off the metrics evaluation, Fig. 16 ranks optimization models using different metrics such as 
Accuracy, Sensitivity, Specificity, PPV, NPV, and F1 Score. The performance of all the optimization models is 
evaluated comprehensively using multiple performance metrics, which help in selecting the most appropriate 
model, tuning its parameters, and finally in process improvement.

Fig. 11.   Box plot with swarm overlay: accuracy by reference models.
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Fig. 12.   Pairplot with Regression Lines for Reference Models Results.

Fig. 13.   Regression Plot: Accuracy vs. F-Score for Reference Models Results.
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Limitations
GGO algorithm study in improving lung cancer classification shows good results, especially in improving feature 
selection and classification accuracy. However, there are several limitations and directions for future work that 
can be addressed to further improve the effectiveness of GGO in this field:

•	 The performance of the GGO algorithm was tested on one dataset only that may not represent the variety of 
real-world scenarios. Results may vary across different datasets, which may affect the generalizability of the 
results.

•	 Classification accuracy depends largely on the quality and completeness of the input data. Any inconsistencies 
or missing values in the data can affect the results.

Fig. 14.   KDE plot of accuracy of optimization results.

Fig. 15.   Box plot with swarm overlay: accuracy by optimization models.
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Conclusion and future work
The GGO algorithm was introduced in this work with the objective of improving the accuracy of lung cancer 
case classification. In the beginning, data preparation techniques such as scaling, normalization, and removal 
of null values are carried out. In addition, the feature selection is performed utilizing the binary format of GGO 
(bGGO). The GGO algorithm’s binary format is specifically intended to choose the most optimum combination 
of features that can improve classification accuracy when compared to six other binary optimization algorithms 
(SC, MVO, PSO, WOA, GWO, and FOA). The classification phase utilizes many classifiers, such as SVC, DTC, 
RFC, KNC, and MLP. The findings indicated that the Multilayer Perceptron (MLP) emerged as the most effec-
tive classifier, achieving an accuracy rate of 91.8%. The hyperparameter of the MLP model is tuned using GGO, 
and the outcome is compared to six alternative optimizers. The GGO with MLP model generated the highest 
result, with an accuracy of 98.4%. The statistical analysis employed the Wilcoxon signed-rank test and ANOVA 
for the feature selection and classification outcomes. Furthermore, a set of visual representations of the results 
was created to confirm the robustness and effectiveness of the proposed approach. Overall, the experimental 
and statistical results clearly indicate that the proposed approach outperforms other competing approaches for 
classifying lung cancer. The effective selection of cancer features, and the reduction of feature dimensionality 
enhanced the overall prediction accuracy and successfully mitigated the problem of overfitting in cancer features 
analysis. Enhancing the early prediction rates of lung cancer may be achieved by acquiring and analyzing sensor 
data, then employing an optimum approach in the future. The performance of the GGO algorithm was tested on 
specific dataset for lung cancer classification, so in the future, several large datasets can be used for generalizing 
the results. Also, in the future several optimization models and deep learning models32–34 can be used for lung 
cancer classification.
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