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OPEN A PV cell defect detector combined

with transformer and attention
mechanism

Du Lang'*! & Zhenzhen Lv?

Automated defect detection in electroluminescence (EL) images of photovoltaic (PV) modules on
production lines remains a significant challenge, crucial for replacing labor-intensive and costly
manual inspections and enhancing production capacity. This paper presents a novel PV defect
detection algorithm that leverages the YOLO architecture, integrating an attention mechanism and
the Transformer module. We introduce a polarized self-attention mechanism in the feature extraction
stage, enabling separate extraction of spatial and semantic features of PV modules, combined

with the original input features, to enhance the network’s feature representation capabilities.
Subsequently, we integrate the proposed CNN Combined Transformer (CCT) module into the

model. The CCT module employs the transformer to extract contextual semantic information more
effectively, improving detection accuracy. The experimental results demonstrate that the proposed
method achieves a 77.9% mAP50 on the PVEL-AD dataset while preserving real-time detection
capabilities. This method enhances the mAP50 by 17.2% compared to the baseline, and the mAP50:95
metric exhibits an 8.4% increase over the baseline.
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Photovoltaic (PV) solar cells are primary devices that convert solar energy into electrical energy. However, una-
voidable defects can significantly reduce the modules’ photoelectric conversion efficiency and lifespan, leading to
substantial economic losses. Inspecting solar cells during the intelligent manufacturing process can substantially
reduce the impact of defects in photovoltaic (PV) solar cells on the final products"?. Manual electroluminescence
(EL) image inspection is exceedingly cumbersome and necessitates specialized expertise. Consequently, a vision-
based automated inspection process®® is highly desirable.

Electroluminescence (EL) imaging technology” is vital for image acquisition, as certain anomalies are often
embedded within the interior of PV cells, rendering them undetectable by optical or infrared cameras. How-
ever, visual inspection using EL imaging technology enables the easy identification of anomalies in solar cells,
whether caused by external environmental influences such as impacts during the manufacturing process or by
pre-existing material defects.

Computer vision-based methods can effectively meet the urgent demand for quality monitoring across various
fields. Conventional computer vision methods for defect recognition primarily encompass two approaches: filter-
based methods* and handcrafted feature-based methods®. Filter-based methods employ filters to extract defect
features that differ from the background information, thereby achieving defect detection. Handcrafted feature-
based methods manually extract features from images, such as texture, color, and morphological characteristics,
then use trained classifiers to recognize defects. Traditional defect recognition methods require significant effort
in feature extraction, and the extracted features often have limitations. In contrast, deep learning methods can
automatically learn valuable features from data, enabling superior performance in defect recognition.

Deep learning-based methods are gaining increasing popularity in various fields, such as defect
recognition® !, fault diagnosis'>'?, and soft sensing of industrial processes'*'*, owing to their high accuracy,
broad generalization capabilities and malleability compared to traditional methods. This paper focuses exclu-
sively on deep learning methods for defect recognition. CNN modules, such as Defect-Net'® and PreAugNet',
have demonstrated prominent performance in classifying defects in industrial manufacturing. The success of
deep learning has gradually led to replacing traditional pattern recognition techniques with image inspection
tasks. Deitscha et al.'® proposed an end-to-end deep CNN for classifying defects in EL images of solar cells. Chen
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et al.'” developed a novel solar CNN architecture to classify defects in visible light images of solar cells. Han
et al.?’ proposed a deep learning-based defect segmentation method for polycrystalline silicon solar cells. This
method employs an RPN to generate underlying defect regions, which are then resized and fed into an enhanced
segmentation network. Otamendi et al.*! used Faster R-CNN to detect defective regions in PV images, cropped
the defect areas, and classified them using EfficientNet. Although this method exhibits excellent performance, it
is too complex to meet the real-time requirements of the production line. Su et al.*> proposed the complementary
attention network (CAN) to enhance the recognition accuracy of the Faster RCNN algorithm for PV anomaly
detection. Shin et al.>* developed a solar distribution panel anomaly detection system using thermal imaging
based on Faster RCNN. El Yanboiy et al.” implemented real-time solar cell defect detection using the YOLOV5
algorithm, improving the stability and efficiency of solar systems. Jha et al.>* conducted a comprehensive review
of defect detection research, emphasizing the application of high-performance detection algorithms like Faster
RCNN and Cascade RCNN, as well as real-time detection algorithms such as the YOLO series in this domain.

A vital characteristic of the human visual system is its inability to process entire scene images simultaneously.
Instead, humans utilize a series of partial glimpses to better capture visual structures, selectively focusing on
salient parts®. Neural networks possess a mechanism akin to the human visual system known as the attention
mechanism. In the industrial field, neural networks have widely applied attention mechanisms to improve per-
formance. Zhao et al.? introduced the Squeeze and Excitation (SE) module into SSD. They proposed the SE-SSD
algorithm to enhance the model’s performance detecting surface defects on fabrics. Chen et al.” designed an effi-
cient LCD defect detection algorithm based on the Efficient Channel Attention (ECA) module and Mask R-CNN,
improving small object detection accuracy. Chen et al.*® combined the Convolutional Block Attention Module
(CBAM) with MobileNetv3 to design a lightweight, high-performance crack detection algorithm to achieve
real-time crack localization. Liu et al.?? proposed Polarized Self Attention (PSA) to model remote dependencies
of high-resolution input/output features, subsequently estimating highly nonlinear pixel semantics. In various
computer vision tasks, models designed using PSA modules have achieved better performance?-*!. The attention
mechanism enhances the performance of deep learning models by prioritizing significant information with high
weights and disregarding irrelevant information with low weights.

Recently, researchers have increasingly utilized transformer-based vision models in diverse computer vision
tasks, including image classification®, object detection®’, and semantic segmentation®*. Leveraging the powerful
contextual information extraction capabilities of Transformers, Transformer-based models have outperformed
pure CNN models across various vision tasks®>. Transformers exhibit impressive performance, yet their compu-
tational efficiency is slow, posing challenges for applications requiring high real-time performance. Introducing
the transformer module into CNN models can enhance performance®.

Leveraging the attention mechanism and transformer, we introduce a novel model based on YOLOv8?
designed to enhance performance in PV defect detection tasks significantly. The primary contributions of this
study include:

(1) We introduce the CNN Combined Transformer (CCT) module, which integrates the Transformer with
CNN to enhance the model’s capability in extracting global contextual information. CCT improves the
mAP50:95 metric of YOLOVS on the validation set by 4.7%.

(2) We employ the Polarized Self Attention (PSA) mechanism to address feature fusion conflicts across various
levels within the deep learning model, thereby enhancing detection accuracy across different detection
heads. PSA improves the mAP50:95 metric of YOLOVS on the validation set by 2.2%.

(3) Weanalyzed the performance metrics, frames per second (FPS), and model size of various PV defect detec-
tion algorithms, demonstrating that our proposed method achieves high-quality real-time monitoring in
the PV cell production process.

The structure of this study is as follows: “Related work” section reviews relevant studies related to the proposed
methodology. “Methodologies” section provides a detailed description of the proposed methods. “Experiments”
section presents an in-depth analysis of the experiments conducted and their interpretations. Finally, “Conclu-
sion” section offers concluding remarks and a discussion.

Related work

YOLOVS8 baseline framework

Real-time object detection has long been a central focus of research in computer vision, aiming to accurately
predict object categories and positions in images with minimal latency. YOLO models have garnered increas-
ing popularity due to their adept balance of performance and efficiency. YOLOv3 identifies the typical detec-
tion architecture comprising three main components: backbone, neck, and head?. YOLOv4* introduces the
CSPNet*, coupled with data augmentation strategies, enhanced PAN, and an expanded range of model scales,
among other improvements. YOLOv6*! presents BiC and SimCSPSPPF for the neck and backbone, respectively,
incorporating anchor-aided training and a self-distillation strategy.

YOLOVS8?, the latest iteration in the YOLO series, continues to advance object detection capabilities. Building
on the success of its predecessors, YOLOv8 employs a multi-category approach and precise positional informa-
tion to facilitate end-to-end model training, resulting in accelerated detection speeds and high average preci-
sion. By incorporating innovative features like Focus*?, CSP-Darknet*, and SPP*, YOLOv8 enhances detection
accuracy and improves overall speed. YOLOV8 comes in n/s/m/l/x versions, each varying in parameters and
performance; the baseline model used in this study is YOLOv8s.
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Attention module

Methods aimed at directing attention to crucial image regions while disregarding irrelevant parts are called
attention mechanisms. In a vision system, an attention mechanism is a dynamic selection process that adaptively
weights features based on input importance. Various attention mechanism modules, including Squeeze-and-
Excitation (SE)?¢, Convolutional Block Attention Module (CBAM)?, Efficient Channel Attention (ECA)?’, and
Spatial and Channel Squeeze & Excitation (SCSE)*, have been proposed to enhance neural network model
performance. These methods strengthen expressiveness by employing attention mechanisms that prioritize
significant features and suppress irrelevant features in channels and spaces. The emphasis or suppression of
information also contributes to information flow within the network.

The Polarized Self Attention (PSA)?’ mechanism introduces polarization into self-attention mechanisms,
allowing the model to focus on informative elements while suppressing distractions selectively. PSA enhances
the discriminative power of self-attention mechanisms by assigning polarities to attention weights, thereby
improving feature representation and task performance. PSA incorporates softmax-sigmoid composition in
both channel-only and spatial-only attention branches to align with output distributions typical of fine-grained
regression, thereby benefiting pixel-wise regression tasks.

Transformer

The transformer architecture has revolutionized deep learning, especially in tasks involving natural language
processing (NLP) and sequence modeling. Introduced by Vaswani et al.**, the transformer model departs from
traditional recurrent and convolutional neural networks by exclusively utilizing self-attention mechanisms to
capture dependencies across input sequences. The self-attention mechanism allows the model to evaluate the
significance of different elements in the input sequence when computing the representation of each component.
In contrast to traditional recurrent models that process sequences sequentially, self-attention allows for parallel
computation across all elements in the sequence, thereby enhancing efficiency and scalability.

The primary advantage of the transformer lies in its effective capture of long-range dependencies facilitated by
the self-attention mechanism. This capability renders it particularly suitable for tasks involving modeling complex
relationships across input sequences, such as machine translation, text generation, and language understanding®.
In computer vision tasks, the transformer can directly acquire contextual semantic information, a capability
absent in CNNs. Owing to these advantages, transformer-based models outperform CNN in most computer
vision tasks*’.

Methodologies

Proposed network

Despite the well-designed architecture of YOLOvV8 for general object detection, detecting minute objects like
PV anomaly defects remains highly challenging. In this study, we design an effective PV defect detection model
leveraging the PSA attention mechanism and transformer architecture. Figure 1 illustrates the overall framework
of the proposed model. Figure 2 presents the detailed architecture of each module within the YOLOv8 model.
The Conv module, the most fundamental component, comprises a convolutional layer, a batchnorm layer, and
the silu activation function. The Bottleneck module consists of multiple Conv units interconnected by residual
connections. The SPPF module employs maximum pooling with kernels of varying sizes, concatenating the
outputs to expand the receptive field. The C2f module comprises Bottleneck units linked through dense residual
concatenation, enabling its output to encapsulate feature information from multiple layers.

Although the introduction of the feature pyramid network (FPN) and path aggregation network (PANet
enhances feature representation in the neck of YOLOVS, it also generates conflicting and redundant informa-
tion due to the direct fusion of multi-level features, thereby impeding detection performance enhancement. To
address the issue of feature conflicts across different levels, we integrated the PSA attention mechanism, which
autonomously selects optimal features during parameter optimization, thereby mitigating feature conflict prob-
lems during multi-level feature fusion.

As the number of layers in a convolutional neural network (CNN) increases, the receptive field associated with
each feature in the deep feature map expands. However, the intrinsic properties of CNNs cause the peripheral
regions of the receptive field to be less emphasized, thereby diminishing the global semantic information in the
deep feature map. The transformer adaptively captures long-term dependency information through its multi-
head attention mechanism. However, the computational load of the transformer module is substantial, making
it challenging for pure transformer models to meet the real-time requirements of various modeling applications.
We introduce a CNN Combined Transformer (CCT) module following the backbone of the YOLOvV8 model to
extract global semantic information, effectively addressing the issue of diminished global semantic information
in pure CNN models. Positioning the CCT in the backbone’s final layer minimally increases the model’s overall
computational burden, ensuring that the real-time performance remains largely unaffected.

)48

CNN combined transformer module

The self-attention mechanism fundamentally empowers the transformer architecture to process input sequences
in parallel rather than sequentially. This parallelization markedly reduces training times and enhances the model’s
ability to manage long-range dependencies within the data. The matrices Q (Query), K (Key), and V (Value) are
the feature matrices, 1/+/dj serving as the scaling factor. The calculation process of the attention mechanism is
as Eq. (1):
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Fig. 1. The proposed network.
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The computational complexity of the transformer model is contingent upon the dimensions of the input
patches. In computer vision tasks, the number of patches is typically determined by the product of the width and
height of the feature map, potentially resulting in substantial computational resource demands for the neural
network model. To harness the global contextual modeling capabilities of the transformer while mitigating the
computational complexity, we propose the CNN Combined Transformer (CCT) module. This module takes the
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feature map with the lowest resolution from the backbone as input, significantly reducing the computational
resource demands introduced by the transformer on the neural network model. Concurrently, it exploits the
formidable global contextual modeling capabilities of the transformer.

As depicted in Fig. 3, the CCT module initially expands the number of channels and subsequently partitions
the feature map into two segments. One segment serves as the input to the transformer module, whose output fea-
ture map encompasses global contextual semantic information. The transformer-generated feature map directly
concatenates with the other segment. The output feature map of the CCT module comprises both the contextual
features extracted by traditional CNNs and the global features derived from Transformers. Subsequent neural
network layers can thus learn the most pertinent features from this fused feature map.

Polarized self attention

The neck module of the YOLOVS architecture integrates the polarized self attention (PSA) mechanism. This
mechanism is an autonomous module designed to decouple and learn spatial and semantic associations in
feature graphs. Through the polarization of the feature map, the PSA effectively segregates spatial localization
information from semantic features. These decoupled features are subsequently recombined with the original
features to amplify the model’s representational power and perceptual accuracy. This recombination augments
the representational power of the feature map, enabling the network to more precisely capture target features
in complex scenes and enhance target localization and regression. Furthermore, incorporating the PSA allows
the model to concentrate more effectively on crucial regions surrounding the target, thereby enhancing object
detection accuracy.

The PSA integrates two pivotal designs, polarized filtering and high dynamic range (HDR), to enhance PV
defect feature extraction. In this study, polarized filtering sustains high internal resolution in channel and spatial
attention computations of PV defect features. It converts input features to corresponding dimensions, enabling
simultaneous spatial and channel attention computations, thus reducing computational complexity. Softmax
normalization of the smallest feature tensor within the attention module, facilitated by high dynamic range in
PV defect detection, broadens the attention range and enhances information capture, efficiently isolating critical
defective features. This operation directs attention to essential regions, accentuates faulty parts, and suppresses
background noise, improving detection accuracy and robustness. Subsequently, projection mapping using a
sigmoid function refines model output, bringing it closer to real-world observations. PSA enables more precise
identification of minor and complex defects in PV images, improving detection accuracy and effectiveness.
Applying high dynamic range processing within the polarized self-attention mechanism significantly enhances
the model’s capacity to manage PV defects, rendering detection results more detailed and precise.

In Fig. 4, the input feature X transforms into W, and W, via 1 x 1 convolution. W, undergoes full channel
compression while W, maintaining a relatively high dimension (C/2). Given the compressed nature of W;, HDR
augmentation is crucial, achieved through Softmax. Following this, W, and W, undergo matrix multiplication,
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Fig. 3. Transformer and CNN combined transformer.
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Fig. 4. Parallel distributed structure of PSA.

succeeded by 1 x 1 convolution and layer normalization, expanding the channel dimension from C/2 to C. Lastly,
a sigmoid function confines all parameters within the range of 0-1. The PSA module comprises outputs from
two parallel branches, as depicted in Eq. (2):

PSAN(X) = Z + 2 = AN(X) 0 X + AP (X) OF X. @)

Here, A (X) € RE*1¥1 represents the expression of the channel attention mechanism, detailed in Eq. (3):

AM(X) = FsaIWzpe, ((01(Wy(X)))) x Fsar (02(Wa(X)))]. 3)

Wy W, and W, refer to 1 x 1 convolutional layers, o1 and o2 act as reshape operators, Fsys signifies the softmax
operator, and x denotes the matrix dot product operation. The number of internal channels between W, and W,

denoted as W, is C/2 and O serves as the channel multiplication operator. A?(X) € R>H*W represents the
expression for the spatial attention mechanism, outlined in Eq. (4).

A (X) = Fsglos(Fsm (o1 (Fgp(Wy(X)))) x o2 (Wy(X)))]. (4)

01,07 and o3 denote the three reshape operators, Fsys signify the softmax operator, and Fgp(-) stand for the
global pooling operator. ©P symbolizes the spatial multiplication operator. Fsys denotes the sigmoid operator.

Experiments

Dataset

This study derives the dataset from the PVEL-AD* dataset, which consists of 4500 annotated images at a resolu-

tion of 1024 x 1024 pixels. It encompasses 12 distinct defect categories, including crack, finger, black_core, thick_

line, star_crack, corner, fragment, scratch, horizontal_dislocation, vertical_dislocation, printing_error, and short_cir-

cuit. Figure 5 depicts visual examples of the dataset. The dataset is partitioned into training and validation sets

in an 8:2 ratio, comprising 3600 images for training and 900 images for validating the model’s performance.
The dataset encompasses 12 defect categories, and Table 1 summarizes the distribution of defects across these

categories. Of the 4500 images, there are 7842 annotated defective instances, with fewer instances noted in corner,

Fig. 5. Dataset examples.
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Anomaly object

number
Category Train | Val | Total | Image number
crack 992 268 | 1260
finger 2398 560 | 2958
black_core 812 216 | 1028
thick_line 807 174 981
star_crack 108 27 135
corner 8 1 9
fragment 6 1 7 00
scratch 4 1 5
horizontal_dislocation 627 171 798
vertical_dislocation 105 32 137
printing_error 16 16 32
short_circuit 386 106 492
All 6269 1573 | 7842 | 4500

Table 1. Statistical overview of the PVEL-AD dataset.

fragment, scratch, and printing_error categories. Figure 6 illustrates further details regarding the distribution of
defect categories in the training set.

Evaluation metric

To demonstrate the effectiveness of our method, we evaluate our model on the split validation dataset. We
present the classical confusion matrix comprising true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). In anomaly detection tasks, TP indicates the number of true defective objects correctly
predicted as defective, FP indicates the number of true normal objects correctly predicted as normal, and FN
indicates the number of true defective objects incorrectly predicted as normal. Once determined, precision and
recall can be calculated using Egs. (5) and (6). Precision indicates how many of the objects predicted as defective
by the model are truly defective, while recall indicates how many of the truly defective objects are predicted as
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Fig. 6. The distribution of each defect category objects.
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defective by the model. Finally, the F1 score (Eq. (7)) serves as the ultimate indicator, representing the harmonic
average of precision and recall.

TP 5
precision = TP & FP’ (5)
I P 6
recall = —,
TP + FN ©)
2 x precision X recall
F1 score = (7)

precision + recall

We utilize Average Precision (AP) and mean Average Precision (mAP) to evaluate defect detection results.
AP evaluates individual class objects, while mAP represents the mean AP across all classes. The Precision/Recall
(P/R) curve provides an intuitive visualization to assess anomaly detection’s effectiveness directly. Precision,
recall, and Intersection over Union (IoU) calculate the AP value. We derive the AP value by computing the area
under the Precision/Recall (P/R) curve. We assess AP across various IoUs, calculating it for 10 IoU thresholds
ranging from 50 to 95% in 5% increments, typically reported as AP50:95. We use parameters and frames per
second (FPS) as metrics to evaluate temporal efficiency.

Experimental environment
We conduct experiments on the curated PVEL-AD dataset, training model parameters on the training set, and
validation on the validation set. To ensure experimental fairness, identical hardware and software configurations
are employed across all experiments. The experimental hardware includes an Intel® Core™ i9-12900 K Processor,
32 GB RAM, a single RTX 3060 GPU, and the Windows 11 operating system.

We trained all experimental models using identical hyperparameters. Hyperparameters include a maximum of
100 epochs, a base learning rate of 0.000625, a batch size of 16 for a single RTX 3060 GPU, an AdamW optimizer,
and an input resolution of 640 x 640 for model training and evaluation.

Ablation study

To demonstrate the effectiveness of the PSA module, we employ Gradient Class Activation Mapping (Grad-
CAM)* to visualize the learned features of the model in the dataset. Figure 7 depicts the results of feature map
visualization using Grad-CAM for the YOLOv8 and YOLOv8 model incorporating the PSA module, highlighting
the enhanced focus on defective regions within the PV images.

To illustrate the effectiveness of the proposed model, we assess the performance metrics of the YOLOV8 vari-
ants, encompassing mAP50, F1 score, and mAP50:95. Table 2 presents the experimental results. As shown in
Table 2, including the CCT module in YOLOVS8 enhances the mAP50 metric by 5.4% and the mAP50:95 metric
by 4.7% compared to the baseline YOLOVS. Incorporating the PSA module into YOLOv8 enhances the mAP50

Images
YOLOvVS8s
(il
YOLOvVS8s L
With PSA i
|

(a) (b) (c) (d) (e

Fig. 7. Gradient Class Activation Mapping (Grad-CAM) visualization results (Grad-CAM is available at:
https://github.com/jacobgil/pytorch-grad-cam). We compare the visualization results of our proposed method
PSA-integrated network (YOLOvS with PSA) with the baseline network (YOLOV8) on the validation dataset.
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Method CCT | PSA | Flscore | mAP50 (%) | mAP50:95 (%)
0.61 0.64 0.41
v 0.667 0.694 0.457
YOLOv8
v 0.679 0.648 0.432
v v 0.697 0.779 0.496

Table 2. Ablation study.

metric by 0.8% and the mAP50:95 metric by 2.2% compared to the baseline YOLOv8. The YOLOv8 with CCT
and PSA modules improves the mAP50 metric by 13.9% and the mAP50:95 metric by 8.6% over the original
YOLOVS. The ablation study demonstrates that our CCT and PSA modules enhance the detection accuracy of
YOLOVS8 in photovoltaic cell anomaly detection tasks.

Results comparison and analysis

Our primary objective is to develop an algorithm suitable for defect detection on industrial production lines.
Despite the outstanding performance of Faster RCNN and Cascade RCNN, their detection speeds are insuf-
ficient for production lines with constrained computing resources. Therefore, we center our analysis on YOLO
algorithms capable of real-time defect detection.

We compared the proposed model with Faster RCNN, Faster RCNN with CAN?, Cascade RCNN,
YOLOV3, YOLOvV5u, YOLOv6u, and YOLOVS in Table 3. Compared to YOLOvV3-tiny/YOLOv5u-s/YOLOv6u/
YOLOVS, the proposed method significantly improves F1 score by 8.4%/2.4%/6.5%/8.7%, increases mAP50 by
15.5%/17.2%/20%/16.9% and mAP50:95 by 22.1%/8.4%/9.7%/8.6%. Based on the experimental results, our pro-
posed method achieves a mAP50 of 77.9%, surpassing YOLOVS8, which achieves 61.0% mAP50, demonstrating
superior performance in F1 score, mAP50, and mAP50:95 compared to other YOLO detectors. Although the
FPS of the proposed method slightly decreases compared with the baseline, it still meets the real-time demands
of production lines and achieves a significant performance improvement.

Figure 8 depicts the progression of mAP50 and mAP50:95 metrics across YOLOv3-tiny, YOLOv5u-s,
YOLOv6u-s, YOLOVSs, and our proposed model during training on the validation set. It is apparent that as the
metrics stabilize, our proposed model consistently surpasses the others in both mAP50 and mAP50:95 metrics.

Table 4 presents the mAP50:95 metrics of various models across each category in the validation set. We
attribute the suboptimal detection performance for corner, fragment, scratch, and vertical_dislocation across all
models to the limitations of the training samples and the model’s difficulty in learning the corresponding features.
The proposed model consistently outperforms others in the remaining categories.

Figure 9 illustrates the confusion matrix depicting the detection results of the proposed model on the vali-
dation dataset, offering detailed insights into its performance across different categories. The horizontal axis
represents the number of defects in each category within the validation set, while the vertical axis shows the
number of defects predicted by the model. It demonstrates the model’s ability to detect defects such as crack, fin-
ger, black_core, thick_line, star_crack, horizontal_dislocation, printing_errot, and short_circuit across most targets.
However, it also indicates instances where the model may misidentify or fail to detect targets in specific other
categories. For further comparative analysis across models, Fig. 10 showcases the prediction results of different
models on three distinct PV defect images. The figure demonstrates that our proposed model achieves detection
results closer to the ground truth (GT) across different images. Compared to other models, ours exhibits fewer
erroneous and missed detections.

Although deep learning-based defect detection algorithms generally achieve good results, difficult cases still
occur under certain conditions. Figure 11 illustrates the problematic cases detected by various models on PV
defect images. The most frequent types of difficult cases are missed detections and misclassifications. As shown

Method FPS Params (M) | F1score | mAP50 (%) | mAP50:95 (%)
Faster RCNN 15.06 | 414 0.73 68.6 47.0
Faster RCNN_CAN 12.54 | 42.1 0.82 779 51.9
Cascade RCNN 9.832 1 69.2 0.77 79.7 44.9
YOLOvV3-tiny 136.41 8.7 0.61 62.4 27.5
YOLOV5u-s 151.52 9.1 0.67 60.7 41.2
YOLOv6u-s 140.13 | 16.3 0.63 57.9 39.9
YOLOVS8s 149.22 | 11.7 0.61 61.0 41.0
YOLOv8s_CCT 142.81 |12.1 0.66 69.4 45.7
YOLOv8s_PSA 135.15 | 11.9 0.67 64.8 432
Ours 133.33 | 129 0.69 77.9 49.6

Table 3. The metrics of models.
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Fig. 8. The change process of mAP50 and mAP50:95 metrics of different models on the validation dataset
across epochs.

Defeat classes Yolov5u-s | Yolov6u-s | Yolov8s | Ours
crack 0.479 0.498 0.47 0.526
finger 0.557 0.551 0.542 0.559
black_core 0.956 0.962 0.96 0.965
thick_line 0.49 0.486 0.5 0.493
star_crack 0.483 0.504 0.455 0.491
corner 0.0225 0.0995 0.398 0.126
fragment 0.0221 0.0663 0.0193 0.796
scratch 0 0 0 0

horizontal_dislocation | 0.328 0 0 0.376
vertical_dislocation 0 0 0 0

printing_error 0629 0.639 0.62 0.641
short_circuit 0.983 0.982 0.955 0.984
All 0.412 0.399 0.41 0.496

Table 4. mAP50:95 for different PV detection models on the validation dataset.

in Fig. 11a, missed detection occurs when the model fails to detect defects due to significant differences in visual
features, such as uneven brightness distribution, between the image and the rest of the dataset. Figure 11b,c depict
misclassifications, where the model fails to accurately identify defects due to the scarcity of training samples
for specific defect types, such as corner and fragment defects. Current models exhibit poor performance when
there is a significant difference between the distribution of prediction data and training data or when training
samples are minimal. These two scenarios pose a substantial challenge for the industrial application of deep
learning technology. Nevertheless, developing zero-shot and few-shot learning techniques may provide new
solutions to these issues.

Conclusion
This paper proposes a novel PV defect detection method using attention mechanisms and transformers within
the YOLOVS object detection framework. The method enhances spatial and semantic information by employing
the polarization self-attention mechanism during feature extraction, which integrates with original features to
augment the network’s representative capacity. Furthermore, the CCT module enhances the model’s capability
to extract contextual information, thereby improving the localization accuracy of PV defects and enhancing
detection performance. Experimental results on the PVEL-AD dataset demonstrate that our method enhances
the mAP50 metric by 13.9%, mAP50:95 by 8.6%, and F1 by 8.7% compared to the baseline. Existing methods still
face significant limitations when there is an inconsistent distribution between predicted and training samples
and when training samples are limited, highlighting a valuable problem to address.

In conclusion, our method exhibits the potential for direct deployment in actual production lines. The code
is available at https://github.com/justld/PV-Detector.
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Fig. 9. The confusion matrix of the proposed model.
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Fig. 10. The predicted results of different models on different defect images.
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Fig. 11. Difficult cases predicted by different models on different defect images.

Data availability
The datasets analysed during the current study are available in the [PVEL-AD] repository [https://github.com/
binyisu/PVEL-AD].
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