
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20671  | https://doi.org/10.1038/s41598-024-72019-5

www.nature.com/scientificreports

A PV cell defect detector combined 
with transformer and attention 
mechanism
Du Lang 1* & Zhenzhen Lv 2

Automated defect detection in electroluminescence (EL) images of photovoltaic (PV) modules on 
production lines remains a significant challenge, crucial for replacing labor-intensive and costly 
manual inspections and enhancing production capacity. This paper presents a novel PV defect 
detection algorithm that leverages the YOLO architecture, integrating an attention mechanism and 
the Transformer module. We introduce a polarized self-attention mechanism in the feature extraction 
stage, enabling separate extraction of spatial and semantic features of PV modules, combined 
with the original input features, to enhance the network’s feature representation capabilities. 
Subsequently, we integrate the proposed CNN Combined Transformer (CCT) module into the 
model. The CCT module employs the transformer to extract contextual semantic information more 
effectively, improving detection accuracy. The experimental results demonstrate that the proposed 
method achieves a 77.9% mAP50 on the PVEL-AD dataset while preserving real-time detection 
capabilities. This method enhances the mAP50 by 17.2% compared to the baseline, and the mAP50:95 
metric exhibits an 8.4% increase over the baseline.
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Photovoltaic (PV) solar cells are primary devices that convert solar energy into electrical energy. However, una-
voidable defects can significantly reduce the modules’ photoelectric conversion efficiency and lifespan, leading to 
substantial economic losses. Inspecting solar cells during the intelligent manufacturing process can substantially 
reduce the impact of defects in photovoltaic (PV) solar cells on the final products1,2. Manual electroluminescence 
(EL) image inspection is exceedingly cumbersome and necessitates specialized expertise. Consequently, a vision-
based automated inspection process3–6 is highly desirable.

Electroluminescence (EL) imaging technology7 is vital for image acquisition, as certain anomalies are often 
embedded within the interior of PV cells, rendering them undetectable by optical or infrared cameras. How-
ever, visual inspection using EL imaging technology enables the easy identification of anomalies in solar cells, 
whether caused by external environmental influences such as impacts during the manufacturing process or by 
pre-existing material defects.

Computer vision-based methods can effectively meet the urgent demand for quality monitoring across various 
fields. Conventional computer vision methods for defect recognition primarily encompass two approaches: filter-
based methods4 and handcrafted feature-based methods8. Filter-based methods employ filters to extract defect 
features that differ from the background information, thereby achieving defect detection. Handcrafted feature-
based methods manually extract features from images, such as texture, color, and morphological characteristics, 
then use trained classifiers to recognize defects. Traditional defect recognition methods require significant effort 
in feature extraction, and the extracted features often have limitations. In contrast, deep learning methods can 
automatically learn valuable features from data, enabling superior performance in defect recognition.

Deep learning-based methods are gaining increasing popularity in various fields, such as defect 
recognition9–11, fault diagnosis12,13, and soft sensing of industrial processes14,15, owing to their high accuracy, 
broad generalization capabilities and malleability compared to traditional methods. This paper focuses exclu-
sively on deep learning methods for defect recognition. CNN modules, such as Defect-Net16 and PreAugNet17, 
have demonstrated prominent performance in classifying defects in industrial manufacturing. The success of 
deep learning has gradually led to replacing traditional pattern recognition techniques with image inspection 
tasks. Deitscha et al.18 proposed an end-to-end deep CNN for classifying defects in EL images of solar cells. Chen 
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et al.19 developed a novel solar CNN architecture to classify defects in visible light images of solar cells. Han 
et al.20 proposed a deep learning-based defect segmentation method for polycrystalline silicon solar cells. This 
method employs an RPN to generate underlying defect regions, which are then resized and fed into an enhanced 
segmentation network. Otamendi et al.21 used Faster R-CNN to detect defective regions in PV images, cropped 
the defect areas, and classified them using EfficientNet. Although this method exhibits excellent performance, it 
is too complex to meet the real-time requirements of the production line. Su et al.22 proposed the complementary 
attention network (CAN) to enhance the recognition accuracy of the Faster RCNN algorithm for PV anomaly 
detection. Shin et al.23 developed a solar distribution panel anomaly detection system using thermal imaging 
based on Faster RCNN. El Yanboiy et al.7 implemented real-time solar cell defect detection using the YOLOv5 
algorithm, improving the stability and efficiency of solar systems. Jha et al.24 conducted a comprehensive review 
of defect detection research, emphasizing the application of high-performance detection algorithms like Faster 
RCNN and Cascade RCNN, as well as real-time detection algorithms such as the YOLO series in this domain.

A vital characteristic of the human visual system is its inability to process entire scene images simultaneously. 
Instead, humans utilize a series of partial glimpses to better capture visual structures, selectively focusing on 
salient parts25. Neural networks possess a mechanism akin to the human visual system known as the attention 
mechanism. In the industrial field, neural networks have widely applied attention mechanisms to improve per-
formance. Zhao et al.26 introduced the Squeeze and Excitation (SE) module into SSD. They proposed the SE-SSD 
algorithm to enhance the model’s performance detecting surface defects on fabrics. Chen et al.27 designed an effi-
cient LCD defect detection algorithm based on the Efficient Channel Attention (ECA) module and Mask R-CNN, 
improving small object detection accuracy. Chen et al.28 combined the Convolutional Block Attention Module 
(CBAM) with MobileNetv3 to design a lightweight, high-performance crack detection algorithm to achieve 
real-time crack localization. Liu et al.29 proposed Polarized Self Attention (PSA) to model remote dependencies 
of high-resolution input/output features, subsequently estimating highly nonlinear pixel semantics. In various 
computer vision tasks, models designed using PSA modules have achieved better performance29–31. The attention 
mechanism enhances the performance of deep learning models by prioritizing significant information with high 
weights and disregarding irrelevant information with low weights.

Recently, researchers have increasingly utilized transformer-based vision models in diverse computer vision 
tasks, including image classification32, object detection33, and semantic segmentation34. Leveraging the powerful 
contextual information extraction capabilities of Transformers, Transformer-based models have outperformed 
pure CNN models across various vision tasks35. Transformers exhibit impressive performance, yet their compu-
tational efficiency is slow, posing challenges for applications requiring high real-time performance. Introducing 
the transformer module into CNN models can enhance performance36.

Leveraging the attention mechanism and transformer, we introduce a novel model based on YOLOv837 
designed to enhance performance in PV defect detection tasks significantly. The primary contributions of this 
study include:

(1)	 We introduce the CNN Combined Transformer (CCT) module, which integrates the Transformer with 
CNN to enhance the model’s capability in extracting global contextual information. CCT improves the 
mAP50:95 metric of YOLOv8 on the validation set by 4.7%.

(2)	 We employ the Polarized Self Attention (PSA) mechanism to address feature fusion conflicts across various 
levels within the deep learning model, thereby enhancing detection accuracy across different detection 
heads. PSA improves the mAP50:95 metric of YOLOv8 on the validation set by 2.2%.

(3)	 We analyzed the performance metrics, frames per second (FPS), and model size of various PV defect detec-
tion algorithms, demonstrating that our proposed method achieves high-quality real-time monitoring in 
the PV cell production process.

The structure of this study is as follows: “Related work” section reviews relevant studies related to the proposed 
methodology. “Methodologies” section provides a detailed description of the proposed methods. “Experiments” 
section presents an in-depth analysis of the experiments conducted and their interpretations. Finally, “Conclu-
sion” section offers concluding remarks and a discussion.

Related work
YOLOv8 baseline framework
Real-time object detection has long been a central focus of research in computer vision, aiming to accurately 
predict object categories and positions in images with minimal latency. YOLO models have garnered increas-
ing popularity due to their adept balance of performance and efficiency. YOLOv3 identifies the typical detec-
tion architecture comprising three main components: backbone, neck, and head38. YOLOv439 introduces the 
CSPNet40, coupled with data augmentation strategies, enhanced PAN, and an expanded range of model scales, 
among other improvements. YOLOv641 presents BiC and SimCSPSPPF for the neck and backbone, respectively, 
incorporating anchor-aided training and a self-distillation strategy.

YOLOv837, the latest iteration in the YOLO series, continues to advance object detection capabilities. Building 
on the success of its predecessors, YOLOv8 employs a multi-category approach and precise positional informa-
tion to facilitate end-to-end model training, resulting in accelerated detection speeds and high average preci-
sion. By incorporating innovative features like Focus42, CSP-Darknet40, and SPP43, YOLOv8 enhances detection 
accuracy and improves overall speed. YOLOv8 comes in n/s/m/l/x versions, each varying in parameters and 
performance; the baseline model used in this study is YOLOv8s.
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Attention module
Methods aimed at directing attention to crucial image regions while disregarding irrelevant parts are called 
attention mechanisms. In a vision system, an attention mechanism is a dynamic selection process that adaptively 
weights features based on input importance. Various attention mechanism modules, including Squeeze-and-
Excitation (SE)26, Convolutional Block Attention Module (CBAM)28, Efficient Channel Attention (ECA)27, and 
Spatial and Channel Squeeze & Excitation (SCSE)44, have been proposed to enhance neural network model 
performance. These methods strengthen expressiveness by employing attention mechanisms that prioritize 
significant features and suppress irrelevant features in channels and spaces. The emphasis or suppression of 
information also contributes to information flow within the network.

The Polarized Self Attention (PSA)29 mechanism introduces polarization into self-attention mechanisms, 
allowing the model to focus on informative elements while suppressing distractions selectively. PSA enhances 
the discriminative power of self-attention mechanisms by assigning polarities to attention weights, thereby 
improving feature representation and task performance. PSA incorporates softmax-sigmoid composition in 
both channel-only and spatial-only attention branches to align with output distributions typical of fine-grained 
regression, thereby benefiting pixel-wise regression tasks.

Transformer
The transformer architecture has revolutionized deep learning, especially in tasks involving natural language 
processing (NLP) and sequence modeling. Introduced by Vaswani et al.45, the transformer model departs from 
traditional recurrent and convolutional neural networks by exclusively utilizing self-attention mechanisms to 
capture dependencies across input sequences. The self-attention mechanism allows the model to evaluate the 
significance of different elements in the input sequence when computing the representation of each component. 
In contrast to traditional recurrent models that process sequences sequentially, self-attention allows for parallel 
computation across all elements in the sequence, thereby enhancing efficiency and scalability.

The primary advantage of the transformer lies in its effective capture of long-range dependencies facilitated by 
the self-attention mechanism. This capability renders it particularly suitable for tasks involving modeling complex 
relationships across input sequences, such as machine translation, text generation, and language understanding46. 
In computer vision tasks, the transformer can directly acquire contextual semantic information, a capability 
absent in CNNs. Owing to these advantages, transformer-based models outperform CNN in most computer 
vision tasks47.

Methodologies
Proposed network
Despite the well-designed architecture of YOLOv8 for general object detection, detecting minute objects like 
PV anomaly defects remains highly challenging. In this study, we design an effective PV defect detection model 
leveraging the PSA attention mechanism and transformer architecture. Figure 1 illustrates the overall framework 
of the proposed model. Figure 2 presents the detailed architecture of each module within the YOLOv8 model. 
The Conv module, the most fundamental component, comprises a convolutional layer, a batchnorm layer, and 
the silu activation function. The Bottleneck module consists of multiple Conv units interconnected by residual 
connections. The SPPF module employs maximum pooling with kernels of varying sizes, concatenating the 
outputs to expand the receptive field. The C2f module comprises Bottleneck units linked through dense residual 
concatenation, enabling its output to encapsulate feature information from multiple layers.

Although the introduction of the feature pyramid network (FPN) and path aggregation network (PANet)48 
enhances feature representation in the neck of YOLOv8, it also generates conflicting and redundant informa-
tion due to the direct fusion of multi-level features, thereby impeding detection performance enhancement. To 
address the issue of feature conflicts across different levels, we integrated the PSA attention mechanism, which 
autonomously selects optimal features during parameter optimization, thereby mitigating feature conflict prob-
lems during multi-level feature fusion.

As the number of layers in a convolutional neural network (CNN) increases, the receptive field associated with 
each feature in the deep feature map expands. However, the intrinsic properties of CNNs cause the peripheral 
regions of the receptive field to be less emphasized, thereby diminishing the global semantic information in the 
deep feature map. The transformer adaptively captures long-term dependency information through its multi-
head attention mechanism. However, the computational load of the transformer module is substantial, making 
it challenging for pure transformer models to meet the real-time requirements of various modeling applications. 
We introduce a CNN Combined Transformer (CCT) module following the backbone of the YOLOv8 model to 
extract global semantic information, effectively addressing the issue of diminished global semantic information 
in pure CNN models. Positioning the CCT in the backbone’s final layer minimally increases the model’s overall 
computational burden, ensuring that the real-time performance remains largely unaffected.

CNN combined transformer module
The self-attention mechanism fundamentally empowers the transformer architecture to process input sequences 
in parallel rather than sequentially. This parallelization markedly reduces training times and enhances the model’s 
ability to manage long-range dependencies within the data. The matrices Q (Query), K (Key), and V  (Value) are 
the feature matrices, 1/

√
dk  serving as the scaling factor. The calculation process of the attention mechanism is 

as Eq. (1):
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The computational complexity of the transformer model is contingent upon the dimensions of the input 
patches. In computer vision tasks, the number of patches is typically determined by the product of the width and 
height of the feature map, potentially resulting in substantial computational resource demands for the neural 
network model. To harness the global contextual modeling capabilities of the transformer while mitigating the 
computational complexity, we propose the CNN Combined Transformer (CCT) module. This module takes the 

(1)Attention(Q,K ,V) = softmax

(

QKT

√
dk

)

V .

Fig. 1.   The proposed network.

Fig. 2.   Modules in YOLOv8.
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feature map with the lowest resolution from the backbone as input, significantly reducing the computational 
resource demands introduced by the transformer on the neural network model. Concurrently, it exploits the 
formidable global contextual modeling capabilities of the transformer.

As depicted in Fig. 3, the CCT module initially expands the number of channels and subsequently partitions 
the feature map into two segments. One segment serves as the input to the transformer module, whose output fea-
ture map encompasses global contextual semantic information. The transformer-generated feature map directly 
concatenates with the other segment. The output feature map of the CCT module comprises both the contextual 
features extracted by traditional CNNs and the global features derived from Transformers. Subsequent neural 
network layers can thus learn the most pertinent features from this fused feature map.

Polarized self attention
The neck module of the YOLOv8 architecture integrates the polarized self attention (PSA) mechanism. This 
mechanism is an autonomous module designed to decouple and learn spatial and semantic associations in 
feature graphs. Through the polarization of the feature map, the PSA effectively segregates spatial localization 
information from semantic features. These decoupled features are subsequently recombined with the original 
features to amplify the model’s representational power and perceptual accuracy. This recombination augments 
the representational power of the feature map, enabling the network to more precisely capture target features 
in complex scenes and enhance target localization and regression. Furthermore, incorporating the PSA allows 
the model to concentrate more effectively on crucial regions surrounding the target, thereby enhancing object 
detection accuracy.

The PSA integrates two pivotal designs, polarized filtering and high dynamic range (HDR), to enhance PV 
defect feature extraction. In this study, polarized filtering sustains high internal resolution in channel and spatial 
attention computations of PV defect features. It converts input features to corresponding dimensions, enabling 
simultaneous spatial and channel attention computations, thus reducing computational complexity. Softmax 
normalization of the smallest feature tensor within the attention module, facilitated by high dynamic range in 
PV defect detection, broadens the attention range and enhances information capture, efficiently isolating critical 
defective features. This operation directs attention to essential regions, accentuates faulty parts, and suppresses 
background noise, improving detection accuracy and robustness. Subsequently, projection mapping using a 
sigmoid function refines model output, bringing it closer to real-world observations. PSA enables more precise 
identification of minor and complex defects in PV images, improving detection accuracy and effectiveness. 
Applying high dynamic range processing within the polarized self-attention mechanism significantly enhances 
the model’s capacity to manage PV defects, rendering detection results more detailed and precise.

In Fig. 4, the input feature X transforms into Wq and Wv via 1 × 1 convolution. Wq undergoes full channel 
compression while Wv maintaining a relatively high dimension (C/2). Given the compressed nature of Wq , HDR 
augmentation is crucial, achieved through Softmax. Following this, Wq and Wv undergo matrix multiplication, 

Fig. 3.   Transformer and CNN combined transformer.
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succeeded by 1 × 1 convolution and layer normalization, expanding the channel dimension from C/2 to C. Lastly, 
a sigmoid function confines all parameters within the range of 0–1. The PSA module comprises outputs from 
two parallel branches, as depicted in Eq. (2):

Here, Ach(X) ∈ RC×1×1 represents the expression of the channel attention mechanism, detailed in Eq. (3):

Wq , Wk , and Wv refer to 1 × 1 convolutional layers, σ1 and σ2 act as reshape operators, FSM signifies the softmax 
operator, and × denotes the matrix dot product operation. The number of internal channels between Wv and Wq , 
denoted as Wz , is C/2 and ⊙ch serves as the channel multiplication operator. Asp(X) ∈ R1×H×W represents the 
expression for the spatial attention mechanism, outlined in Eq. (4).

σ1, σ2 and σ3 denote the three reshape operators, FSM signify the softmax operator, and FGP(·) stand for the 
global pooling operator. ⊙sp symbolizes the spatial multiplication operator. FSM denotes the sigmoid operator.

Experiments
Dataset
This study derives the dataset from the PVEL-AD49 dataset, which consists of 4500 annotated images at a resolu-
tion of 1024 × 1024 pixels. It encompasses 12 distinct defect categories, including crack, finger, black_core, thick_
line, star_crack, corner, fragment, scratch, horizontal_dislocation, vertical_dislocation, printing_error, and short_cir-
cuit. Figure 5 depicts visual examples of the dataset. The dataset is partitioned into training and validation sets 
in an 8:2 ratio, comprising 3600 images for training and 900 images for validating the model’s performance.

The dataset encompasses 12 defect categories, and Table 1 summarizes the distribution of defects across these 
categories. Of the 4500 images, there are 7842 annotated defective instances, with fewer instances noted in corner, 

(2)PSAp(X) = Zch + Zsp = Ach(X)⊙ch X + Asp(X)⊙sp X.

(3)Ach(X) = FSG[WZ|θ1((σ1(Wv(X))))× FSM(σ2(Wq(X)))].

(4)Asp(X) = FSG[σ3(FSM(σ1(FGP(Wq(X))))× σ2(Wv(X)))].

Fig. 4.   Parallel distributed structure of PSA.

Fig. 5.   Dataset examples.
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fragment, scratch, and printing_error categories. Figure 6 illustrates further details regarding the distribution of 
defect categories in the training set.

Evaluation metric
To demonstrate the effectiveness of our method, we evaluate our model on the split validation dataset. We 
present the classical confusion matrix comprising true positives (TP), false positives (FP), true negatives (TN), 
and false negatives (FN). In anomaly detection tasks, TP indicates the number of true defective objects correctly 
predicted as defective, FP indicates the number of true normal objects correctly predicted as normal, and FN 
indicates the number of true defective objects incorrectly predicted as normal. Once determined, precision and 
recall can be calculated using Eqs. (5) and (6). Precision indicates how many of the objects predicted as defective 
by the model are truly defective, while recall indicates how many of the truly defective objects are predicted as 

Table 1.   Statistical overview of the PVEL-AD dataset.

Category

Anomaly object 
number

Image numberTrain Val Total

crack 992 268 1260

4500

finger 2398 560 2958

black_core 812 216 1028

thick_line 807 174 981

star_crack 108 27 135

corner 8 1 9

fragment 6 1 7

scratch 4 1 5

horizontal_dislocation 627 171 798

vertical_dislocation 105 32 137

printing_error 16 16 32

short_circuit 386 106 492

All 6269 1573 7842 4500

Fig. 6.   The distribution of each defect category objects.
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defective by the model. Finally, the F1 score (Eq. (7)) serves as the ultimate indicator, representing the harmonic 
average of precision and recall.

We utilize Average Precision (AP) and mean Average Precision (mAP) to evaluate defect detection results. 
AP evaluates individual class objects, while mAP represents the mean AP across all classes. The Precision/Recall 
(P/R) curve provides an intuitive visualization to assess anomaly detection’s effectiveness directly. Precision, 
recall, and Intersection over Union (IoU) calculate the AP value. We derive the AP value by computing the area 
under the Precision/Recall (P/R) curve. We assess AP across various IoUs, calculating it for 10 IoU thresholds 
ranging from 50 to 95% in 5% increments, typically reported as AP50:95. We use parameters and frames per 
second (FPS) as metrics to evaluate temporal efficiency.

Experimental environment
We conduct experiments on the curated PVEL-AD dataset, training model parameters on the training set, and 
validation on the validation set. To ensure experimental fairness, identical hardware and software configurations 
are employed across all experiments. The experimental hardware includes an Intel® Core™ i9-12900 K Processor, 
32 GB RAM, a single RTX 3060 GPU, and the Windows 11 operating system.

We trained all experimental models using identical hyperparameters. Hyperparameters include a maximum of 
100 epochs, a base learning rate of 0.000625, a batch size of 16 for a single RTX 3060 GPU, an AdamW optimizer, 
and an input resolution of 640 × 640 for model training and evaluation.

Ablation study
To demonstrate the effectiveness of the PSA module, we employ Gradient Class Activation Mapping (Grad-
CAM)50 to visualize the learned features of the model in the dataset. Figure 7 depicts the results of feature map 
visualization using Grad-CAM for the YOLOv8 and YOLOv8 model incorporating the PSA module, highlighting 
the enhanced focus on defective regions within the PV images.

To illustrate the effectiveness of the proposed model, we assess the performance metrics of the YOLOv8 vari-
ants, encompassing mAP50, F1 score, and mAP50:95. Table 2 presents the experimental results. As shown in 
Table 2, including the CCT module in YOLOv8 enhances the mAP50 metric by 5.4% and the mAP50:95 metric 
by 4.7% compared to the baseline YOLOv8. Incorporating the PSA module into YOLOv8 enhances the mAP50 

(5)precision =
TP

TP + FP
,

(6)recall =
TP

TP + FN
,

(7)F1 score =
2× precision× recall

precision+ recall
.

Fig. 7.   Gradient Class Activation Mapping (Grad-CAM) visualization results (Grad-CAM is available at: 
https://​github.​com/​jacob​gil/​pytor​ch-​grad-​cam). We compare the visualization results of our proposed method 
PSA-integrated network (YOLOv8 with PSA) with the baseline network (YOLOv8) on the validation dataset.

https://github.com/jacobgil/pytorch-grad-cam
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metric by 0.8% and the mAP50:95 metric by 2.2% compared to the baseline YOLOv8. The YOLOv8 with CCT 
and PSA modules improves the mAP50 metric by 13.9% and the mAP50:95 metric by 8.6% over the original 
YOLOv8. The ablation study demonstrates that our CCT and PSA modules enhance the detection accuracy of 
YOLOv8 in photovoltaic cell anomaly detection tasks.

Results comparison and analysis
Our primary objective is to develop an algorithm suitable for defect detection on industrial production lines. 
Despite the outstanding performance of Faster RCNN and Cascade RCNN, their detection speeds are insuf-
ficient for production lines with constrained computing resources. Therefore, we center our analysis on YOLO 
algorithms capable of real-time defect detection.

We compared the proposed model with Faster RCNN, Faster RCNN with CAN22, Cascade RCNN, 
YOLOv3, YOLOv5u, YOLOv6u, and YOLOv8 in Table 3. Compared to YOLOv3-tiny/YOLOv5u-s/YOLOv6u/
YOLOv8, the proposed method significantly improves F1 score by 8.4%/2.4%/6.5%/8.7%, increases mAP50 by 
15.5%/17.2%/20%/16.9% and mAP50:95 by 22.1%/8.4%/9.7%/8.6%. Based on the experimental results, our pro-
posed method achieves a mAP50 of 77.9%, surpassing YOLOv8, which achieves 61.0% mAP50, demonstrating 
superior performance in F1 score, mAP50, and mAP50:95 compared to other YOLO detectors. Although the 
FPS of the proposed method slightly decreases compared with the baseline, it still meets the real-time demands 
of production lines and achieves a significant performance improvement.

Figure 8 depicts the progression of mAP50 and mAP50:95 metrics across YOLOv3-tiny, YOLOv5u-s, 
YOLOv6u-s, YOLOv8s, and our proposed model during training on the validation set. It is apparent that as the 
metrics stabilize, our proposed model consistently surpasses the others in both mAP50 and mAP50:95 metrics.

Table 4 presents the mAP50:95 metrics of various models across each category in the validation set. We 
attribute the suboptimal detection performance for corner, fragment, scratch, and vertical_dislocation across all 
models to the limitations of the training samples and the model’s difficulty in learning the corresponding features. 
The proposed model consistently outperforms others in the remaining categories.

Figure 9 illustrates the confusion matrix depicting the detection results of the proposed model on the vali-
dation dataset, offering detailed insights into its performance across different categories. The horizontal axis 
represents the number of defects in each category within the validation set, while the vertical axis shows the 
number of defects predicted by the model. It demonstrates the model’s ability to detect defects such as crack, fin-
ger, black_core, thick_line, star_crack, horizontal_dislocation, printing_error, and short_circuit across most targets. 
However, it also indicates instances where the model may misidentify or fail to detect targets in specific other 
categories. For further comparative analysis across models, Fig. 10 showcases the prediction results of different 
models on three distinct PV defect images. The figure demonstrates that our proposed model achieves detection 
results closer to the ground truth (GT) across different images. Compared to other models, ours exhibits fewer 
erroneous and missed detections.

Although deep learning-based defect detection algorithms generally achieve good results, difficult cases still 
occur under certain conditions. Figure 11 illustrates the problematic cases detected by various models on PV 
defect images. The most frequent types of difficult cases are missed detections and misclassifications. As shown 

Table 2.   Ablation study.

Method CCT​ PSA F1 score mAP50 (%) mAP50:95 (%)

YOLOv8

0.61 0.64 0.41

✓ 0.667 0.694 0.457

✓ 0.679 0.648 0.432

✓ ✓ 0.697 0.779 0.496

Table 3.   The metrics of models.

Method FPS Params (M) F1 score mAP50 (%) mAP50:95 (%)

Faster RCNN 15.06 41.4 0.73 68.6 47.0

Faster RCNN_CAN 12.54 42.1 0.82 77.9 51.9

Cascade RCNN 9.832 69.2 0.77 79.7 44.9

YOLOv3-tiny 136.41 8.7 0.61 62.4 27.5

YOLOv5u-s 151.52 9.1 0.67 60.7 41.2

YOLOv6u-s 140.13 16.3 0.63 57.9 39.9

YOLOv8s 149.22 11.7 0.61 61.0 41.0

YOLOv8s_CCT​ 142.81 12.1 0.66 69.4 45.7

YOLOv8s_PSA 135.15 11.9 0.67 64.8 43.2

Ours 133.33 12.9 0.69 77.9 49.6
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in Fig. 11a, missed detection occurs when the model fails to detect defects due to significant differences in visual 
features, such as uneven brightness distribution, between the image and the rest of the dataset. Figure 11b,c depict 
misclassifications, where the model fails to accurately identify defects due to the scarcity of training samples 
for specific defect types, such as corner and fragment defects. Current models exhibit poor performance when 
there is a significant difference between the distribution of prediction data and training data or when training 
samples are minimal. These two scenarios pose a substantial challenge for the industrial application of deep 
learning technology. Nevertheless, developing zero-shot and few-shot learning techniques may provide new 
solutions to these issues.

Conclusion
This paper proposes a novel PV defect detection method using attention mechanisms and transformers within 
the YOLOv8 object detection framework. The method enhances spatial and semantic information by employing 
the polarization self-attention mechanism during feature extraction, which integrates with original features to 
augment the network’s representative capacity. Furthermore, the CCT module enhances the model’s capability 
to extract contextual information, thereby improving the localization accuracy of PV defects and enhancing 
detection performance. Experimental results on the PVEL-AD dataset demonstrate that our method enhances 
the mAP50 metric by 13.9%, mAP50:95 by 8.6%, and F1 by 8.7% compared to the baseline. Existing methods still 
face significant limitations when there is an inconsistent distribution between predicted and training samples 
and when training samples are limited, highlighting a valuable problem to address.

In conclusion, our method exhibits the potential for direct deployment in actual production lines. The code 
is available at https://​github.​com/​justld/​PV-​Detec​tor.

Fig. 8.   The change process of mAP50 and mAP50:95 metrics of different models on the validation dataset 
across epochs.

Table 4.   mAP50:95 for different PV detection models on the validation dataset.

Defeat classes Yolov5u-s Yolov6u-s Yolov8s Ours

crack 0.479 0.498 0.47 0.526

finger 0.557 0.551 0.542 0.559

black_core 0.956 0.962 0.96 0.965

thick_line 0.49 0.486 0.5 0.493

star_crack 0.483 0.504 0.455 0.491

corner 0.0225 0.0995 0.398 0.126

fragment 0.0221 0.0663 0.0193 0.796

scratch 0 0 0 0

horizontal_dislocation 0.328 0 0 0.376

vertical_dislocation 0 0 0 0

printing_error 0629 0.639 0.62 0.641

short_circuit 0.983 0.982 0.955 0.984

All 0.412 0.399 0.41 0.496

https://github.com/justld/PV-Detector
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Fig. 9.   The confusion matrix of the proposed model.

Fig. 10.   The predicted results of different models on different defect images.
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Data availability
The datasets analysed during the current study are available in the [PVEL-AD] repository [https://​github.​com/​
binyi​su/​PVEL-​AD].

Received: 8 July 2024; Accepted: 3 September 2024

References
	 1.	 Fuyuki, T. & Kitiyanan, A. Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence. Appl. Phys. A 96, 

189–196 (2009).
	 2.	 Dallan, B. S., Schumann, J. & Lesage, F. Performance evaluation of a photoelectric–thermoelectric cogeneration hybrid system. 

Solar Energy 118, 276–285 (2015).
	 3.	 Anwar, S. A. & Abdullah, M. Z. Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion 

filter and image segmentation technique. EURASIP J. Image Video Process. 2014, 1–17 (2014).
	 4.	 Mukherjee, S. & Acton, S. T. Oriented filters for vessel contrast enhancement with local directional evidence. In 2015 IEEE 12th 

International Symposium on Biomedical Imaging (ISBI) 503–506 (IEEE, 2015).
	 5.	 Chen, H., Song, M., Zhang, Z. & Liu, K. Detection of surface defects in solar cells by bidirectional-path feature pyramid group-wise 

attention detector. IEEE Trans. Instrum. Meas. 71, 1–9 (2022).
	 6.	 Gan, D., Quan, L., Zhu, F., Xie, K. & Bai, J. Orthogonal modulation based light beam induced current method for anti-noise defect 

detection in photovoltaic cells. Solar Energy 245, 158–164 (2022).
	 7.	 El Yanboiy, N. et al. Enhancing the reliability and efficiency of solar systems through fault detection in solar cells using electro-

luminescence (EL) images and YOLO version 5.0 algorithm. In Sustainable and Green Technologies for Water and Environmental 
Management 35–43 (Springer, 2024).

	 8.	 Mery, D. & Arteta, C. Automatic defect recognition in X-ray testing using computer vision. In 2017 IEEE Winter Conference on 
Applications of Computer Vision (WACV) 1026–1035 (IEEE, 2017).

	 9.	 Chen, J., Wen, Y., Nanehkaran, Y. A., Zhang, D. & Zeb, A. Multiscale attention networks for pavement defect detection. IEEE Trans. 
Instrum. Meas. 72, 1–12 (2023).

	10.	 Huang, H., Tang, X., Wen, F. & Jin, X. Small object detection method with shallow feature fusion network for chip surface defect 
detection. Sci. Rep. 12, 3914 (2022).

	11.	 Wang, X., Gao, H., Jia, Z. & Li, Z. BL-YOLOv8: An improved road defect detection model based on YOLOv8. Sensors 23, 8361 
(2023).

	12.	 Gawde, S. et al. Multi-fault diagnosis of industrial rotating machines using Data-driven approach: A review of two decades of 
research. Eng. Appl. Artif. Intell. 123, 106139 (2023).

	13.	 Jiang, J. et al. A digital twin auxiliary approach based on adaptive sparse attention network for diesel engine fault diagnosis. Sci. 
Rep. 12, 675 (2022).

	14.	 Jia, M., Xu, D., Yang, T., Liu, Y. & Yao, Y. Graph convolutional network soft sensor for process quality prediction. J. Process Control 
123, 12–25 (2023).

	15.	 Liu, S. & Sun, W. Attention mechanism-aided data-and knowledge-driven soft sensors for predicting blast furnace gas generation. 
Energy 262, 125498 (2023).

	16.	 Abbes, W., Elleuch, J. F. & Sellami, D. Defect-Net: A new CNN model for steel surface defect classification. In 2024 IEEE 12th 
International Symposium on Signal, Image, Video and Communications (ISIVC) 1–5 (IEEE, 2024).

	17.	 Farady, I., Lin, C.-Y. & Chang, M.-C. PreAugNet: Improve data augmentation for industrial defect classification with small-scale 
training data. J. Intell. Manuf. 35, 1233–1246 (2024).

	18.	 Deitsch, S. et al. Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy 185, 
455–468 (2019).

Fig. 11.   Difficult cases predicted by different models on different defect images.

https://github.com/binyisu/PVEL-AD
https://github.com/binyisu/PVEL-AD


13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20671  | https://doi.org/10.1038/s41598-024-72019-5

www.nature.com/scientificreports/

	19.	 Chen, H., Pang, Y., Hu, Q. & Liu, K. Solar cell surface defect inspection based on multispectral convolutional neural network. J. 
Intell. Manuf. 31, 453–468 (2020).

	20.	 Han, H. et al. Polycrystalline silicon wafer defect segmentation based on deep convolutional neural networks. Pattern Recogn. Lett. 
130, 234–241 (2020).

	21.	 Otamendi, U. et al. Segmentation of cell-level anomalies in electroluminescence images of photovoltaic modules. Solar Energy 
220, 914–926. https://​doi.​org/​10.​1016/j.​solen​er.​2021.​03.​058 (2021).

	22.	 Su, B. et al. Deep learning-based solar-cell manufacturing defect detection with complementary attention network. IEEE Trans. 
Ind. Inform. 17, 4084–4095. https://​doi.​org/​10.​1109/​tii.​2020.​30080​21 (2021).

	23.	 Shin, K.-S., Kim, J.-C. & Shin, S.-Y. Anomaly detection system for solar power distribution panels utilizing thermal images. J. Inf. 
Commun. Converg. Eng. 22, 1 (2024).

	24.	 Jha, S. B. & Babiceanu, R. F. Deep CNN-based visual defect detection: Survey of current literature. Comput. Ind. 148, 103911 (2023).
	25.	 Larochelle, H. & Hinton, G. E. Learning to combine foveal glimpses with a third-order Boltzmann machine. Adv. Neural Inf. 

Process. Syst. 23, 1 (2010).
	26.	 Zhao, H. & Zhang, T. Fabric surface defect detection using SE-SSDNet. Symmetry 14, 2373 (2022).
	27.	 Chen, M., Chen, S., Wang, S., Cui, Y. & Chen, P. Accurate segmentation of small targets for LCD defects using deep convolutional 

neural networks. J. Soc. Inf. Display 31, 13–25 (2023).
	28.	 Chen, L., Yao, H., Fu, J. & Ng, C. T. The classification and localization of crack using lightweight convolutional neural network 

with CBAM. Eng. Struct. 275, 115291 (2023).
	29.	 Li, T., Xu, H. & Bai, J. A lightweight safety helmet detection network based on bidirectional connection module and polarized 

self-attention. In International Conference on Neural Information Processing 253–264 (Springer, 2023).
	30.	 Wang, H.-K., Zhu, P.-J., Du, J. & Zhang, X. EPF-Net: An anomaly detection model with an enhanced polarized self-attention. In 

13th International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2023) 500–504 (IET, 
2023).

	31.	 Wu, P., Hua, Z. & Li, J. PATN: Polarized attention based transformer network for multi-focus image fusion. KSII Trans. Internet 
Inf. Syst. 17, 4 (2023).

	32.	 Dosovitskiy, A. et al. An image is worth 16 × 16 words: Transformers for image recognition at scale (2020).
	33.	 Carion, N. et al. End-to-end object detection with transformers. In European Conference on Computer Vision 213–229 (Springer, 

2020).
	34.	 Xie, E. et al. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 

34, 12077–12090 (2021).
	35.	 Liu, Z. et al. Swin transformer: Hierarchical vision transformer using shifted windows. In Proc. IEEE/CVF International Conference 

on Computer Vision 10012–10022 (2021).
	36.	 Mehta, S. & Rastegari, M. J. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer (2021).
	37.	 Sohan, M., Sai Ram, T., Reddy, R. & Venkata, C. A review on YOLOv8 and its advancements. In International Conference on Data 

Intelligence and Cognitive Informatics 529–545 (Springer, 2024).
	38.	 Redmon, J. & Farhadi, A. Yolov3: An incremental improvement (2018).
	39.	 Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. Yolov4: Optimal speed and accuracy of object detection (2020).
	40.	 Wang, C.-Y. et al. CSPNet: A new backbone that can enhance learning capability of CNN. In Proc. IEEE/CVF Conference on 

Computer Vision and Pattern Recognition Workshops 390–391 (2020).
	41.	 Li, C. et al. Yolov6 v3.0: A full-scale reloading (2023).
	42.	 Tian, Z., Chu, X., Wang, X., Wei, X. & Shen, C. Fully convolutional one-stage 3d object detection on lidar range images. Adv. Neural 

Inf. Process. Syst. 35, 34899–34911 (2022).
	43.	 He, K., Zhang, X., Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. 

Pattern Anal. Mach. Intell. 37, 1904–1916 (2015).
	44.	 Yan, P. et al. Detection of coal and gangue based on improved YOLOv5.1 which embedded scSE module. Measurement 188, 110530 

(2022).
	45.	 Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 1 (2017).
	46.	 Choi, S. R. & Lee, M. Transformer architecture and attention mechanisms in genome data analysis: A comprehensive review. 

Biology 12, 1033 (2023).
	47.	 Wang, X. & Zhu, Z. Context understanding in computer vision: A survey. Comput. Vis. Image Understand. 229, 103646 (2023).
	48.	 Liu, S., Qi, L., Qin, H., Shi, J. & Jia, J. Path aggregation network for instance segmentation. In Proc. IEEE Conference on Computer 

Vision and Pattern Recognition 8759–8768 (2018).
	49.	 Su, B., Zhou, Z. & Chen, H. PVEL-AD: A large-scale open-world dataset for photovoltaic cell anomaly detection. IEEE Trans. Ind. 

Inform. 19, 404–413. https://​doi.​org/​10.​1109/​tii.​2022.​31628​46 (2023).
	50.	 Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proc. IEEE International 

Conference on Computer Vision 618–626 (2017).

Author contributions
Du Lang wrote the main manuscript text and completed all the experiments. Zhenzhen Lv drew the figures in 
the manuscript. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.solener.2021.03.058
https://doi.org/10.1109/tii.2020.3008021
https://doi.org/10.1109/tii.2022.3162846
www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20671  | https://doi.org/10.1038/s41598-024-72019-5

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​
licen​ses/​by-​nc-​nd/4.​0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	A PV cell defect detector combined with transformer and attention mechanism
	Related work
	YOLOv8 baseline framework
	Attention module
	Transformer

	Methodologies
	Proposed network
	CNN combined transformer module
	Polarized self attention

	Experiments
	Dataset
	Evaluation metric
	Experimental environment
	Ablation study
	Results comparison and analysis

	Conclusion
	References


