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Propagation of wave insights 
to the Chiral Schrödinger equation 
along with bifurcation analysis 
and diverse optical soliton 
solutions
Badr Saad T. Alkahtani 

In this study, the modified Sardar sub-equation method is capitalised to secure soliton solutions to 
the (1+ 1)-dimensional chiral nonlinear Schrödinger (NLS) equation. Chiral soliton propagation in 
nuclear physics is an extremely attractive field because of its wide applications in communications 
and ultrafast signal routing systems. Additionally, we perform bifurcation analysis to gain a deeper 
understanding of the dynamics of the chiral NLS equation. This highlights the complex behaviour of 
the system and exposes the conditions under which various types of bifurcations occur. Additionally, 
a sensitivity analysis is performed to assess how small changes in initial conditions and parameters 
influence the solutions, offering valuable perspectives on the stability and dependability of the 
acquired solutions. By employing the above-mentioned methodology, we derive a variety of exact 
solutions, including periodic, singular, dark, bright, mixed trigonometric, exponential, hyperbolic, 
and rational wave solutions. The study’s findings advance our theoretical knowledge of chiral NLS 
equations and have potential applications in optical communication and related fields.

Keywords  (1+ 1)-dimensional Chiral nonlinear Schrödinger equation, Optical solutions, MSSE method, 
Bifurcation analysis, Sensitivity analysis

The majority of systems in the real world are nonlinear and dynamically change over time. We face the difficulty 
of expressing these systems mathematically when time varies, and we typically do so using nonlinear partial 
differential equations (NLPDE). Since they may be used to simulate a wide range of phenomena, such as fluid 
dynamics, wave propagation, and nonlinear optics, these equations are fundamental in many branches of research 
and engineering1,2. Scientists’ interest in comprehending and successfully solving these complex nonlinear models 
has grown over the past few decades. This increased interest originates from the desire to solve problems sur-
rounding dynamic systems and how they affect different scientific domains3,4. NLPDEs produce predictions that 
are more accurate than linear models because they capture the nonlinear interactions in a system, which is crucial 
for developing and managing complex systems. Nevertheless, optical fiber’s capacity and transmission range are 
constrained by the nonlinear effect of fiber optic materials5. Additionally, optical soliton research is essential to 
the study of fiber network communication. The balanced combination of nonlinearly driven self-phase modula-
tion (SPM) and linear group velocity dispersion (GVD) results in an optical soliton, a unique type of envelope 
pulse. In many scientific and technical domains, NLPDEs are essential for comprehending and forecasting the 
behavior of complex systems6,7. Their capacity to represent nonlinear interactions makes them indispensable for 
theoretical developments as well as real-world applications, spurring innovation and scientific and technological 
improvement. Finding exact solutions for these models sparked the curiosity of many experts in this field who 
are interested in better understanding these phenomena. A wide array of potent strategies has been employed to 
solve NLPDEs. These methods include the Hirota bilinear method8, exponential method9, the auxiliary equation 
method10, the variational iteration method11, the scattering method12, the Jacobi elliptic expansion method13, 
and many more14–16. Solitons are localised, stable wave packets that move at constant speeds without losing 
their structure. Because of this characteristic, they are essential to comprehending nonlinear wave phenomena, 

OPEN

Department of Mathematics, College of Science, King Saud University, 11989  Riyadh, Saudi Arabia. email: 
balqahtani1@ksu.edu.sa

RETRACTED A
RTIC

LE

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-72132-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:22650  | https://doi.org/10.1038/s41598-024-72132-5

www.nature.com/scientificreports/

which arise in a variety of physical systems. Solitons are used in fibre optics to send data without distortion over 
great distances. Solitons are perfect for high-speed, long-distance communications because of the fiber’s ability 
to balance dispersion and nonlinearity, which keeps the pulse’s structure intact. It has emerged as the most well-
liked field of research in recent years and is expected to shape high-speed communication systems’ technology 
for the foreseeable future. Scholars have employed these diverse methodologies, each contributing distinctive 
advantages, to tackle the challenges of nonlinear partial differential equations in several scientific fields17,18.

Due to the increasing urgency of demand over time, the current networks and infrastructure for telecom-
munication services are becoming ineffective. When fiber-optic connections were first deployed in the late 1970s, 
significant technological advancements made it possible to expand data volume enormously. The evolution of 
the complex envelope of signals propagating in optical fibers is well modeled by the nonlinear Schrödinger equa-
tion; however, to take into account the unavoidable existence of noise along the fiber, a stochastic version of the 
equation must be used19. Numerous strategies listed in20–23 have been put forth in each of the aforementioned 
publications to secure soliton solutions of NLPDEs. Selecting a suitable approach is crucial when utilising these 
analytical techniques. The suggested modified SSEM is one of those methods; it is a dependable and credible 
mechanism to build more general soliton solutions of NLPDEs in the applied sciences and engineering. By using 
this strategy, the researchers are able to express NLPDE soliton solutions in terms of functions that satisfy the 
Riccati equation, which for the MSSE method is (S ′(ξ))2 = κ0 + κ1S (ξ)2 + κ2S (ξ)4 . The primary benefit 
of the selected methodology is that it provides a more flexible, efficient, and universal framework for precisely 
determining answers to optical soliton research problems than previous methods.

The significant distortion of the optical signal makes it extremely difficult to decipher the receiver informa-
tion because of the combined dispersive effects and nonlinear mixing of signal and noise24. Light propagation 
in nonlinear optical fibers is described by the NLS equation, which takes self-phase modulation and other 
nonlinear factors into consideration. For high-speed communication system design and optimization, this is 
essential. A fundamental tool in many academic fields studying nonlinear wave phenomena is the NLS equation. 
Its wide range of applications and importance are demonstrated by its capacity to simulate and forecast intricate 
interactions in fluid dynamics, quantum gases, optical fibers, and plasm25. In addition to advancing theoretical 
knowledge, the NLS equation propels technological advancements in quantum computing, medical imaging, 
and telecommunications.

Therefore, in this paper we consider the (1+1)- dimensional Chiral nonlinear Schrödinger equation under 
the influence of multiplicative noise in the Itô sense.26,27:

where the complex conjugate is denoted by the symbol ∗ , γ is a nonlinear coupling constant, and �(x, t) is a 
complex function of space x and time t. The normal Wiener process B(t) has a time derivative, which is Bt = dB

dt  . 
Brownian motion is another name for the basic Wiener process. The theory of stochastic differential equations 
is based on the stochastic process of Brownian motion. Scottish botanist Robert Brown is credited with coining 
the term “Brownian” after he first documented experimental observations of pollen grains’ erratic behavior in 
1827 after they were hit by water molecules28. Numerous specialists have studied the soliton solution and the NLS 
equation. Nabulsi et al.24 recently used the fractional expansion Riccati method to provide analytical answers 
for the NLS model. In ref.25, the authors manipulate the hydrodynamic technique to find specific analytic solu-
tions. Different solutions in the form of trigonometric functions were obtained by Abdelrahman et al.26 using the 
Riccati-Bernoulli method and He’s semi-inverse method. Furthermore, Badshah et al.27 used a range of analytical 
techniques to ensure multisoliton solutions of the chosen model. Zhu et al.29–31 employed anomalous approaches 
to study the governing model and derive distinct soliton solutions.

However, the main accomplishment of this study is to investigate the (1+ 1)-dimentional chiral NLS equa-
tion by using the MSSE method. In nuclear physics, the chiral NLS equation is very important, especially when 
it comes to modeling some elements of nuclear dynamics, comprehending solitonic behavior, and investigating 
the characteristics of nucleons and other subatomic particles. Additionally, the previously mentioned model’s 
bifurcation, choas, and sensitivity analysis are analyses, which are particularly crucial in dynamical systems. We 
compare our results with those found in26 using the aforementioned methodologies, and we find that the current 
work contains several novel answers. These investigations have produced a wide range of solitary wave solutions 
that have not been reported in earlier literature. Furthermore, a few of the found solutions are shown graphically.

The rest of this paper is arranged as follows: In "Description of method" section, we proposed the description 
of selected methodologies. In "Wave transformation of chiral NLS equation" section we discuss the bifurcation, 
chaos, and sensitivity analysis of the chiral NLS equation. "Implementation of MSSE method" section illustrates 
how to apply the MSSE method to Eq. (1) and get soliton solutions. In "Numerical simulations and discussions" 
section the description of graphs is discussed, as is the effect of stochastic parameters. Lastly, in "Conclusion" 
section, conclusions are given.

Description of method
Analytical methods are crucial for solving NLPDEs, because they can provide exact solutions and provide deep 
insights into the physics behind a range of phenomena.To validate numerical approaches and approximations, 
exact solutions are used as standards. They offer a benchmark by which computational solutions’ accuracy can 
be evaluated. The primary steps of a recently established methodology for solving NLPDE will be discussed in 
this section. Assume that we have the NLPDE.

(1)i�t +�xx − iγ (�∗�x −��∗
x)�+ δ�Bt = 0,

(2)G (U , Ut , Ux , Utt , Uxx , · · · ) = 0.
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To get the ordinary differential equation (ODE) of Eq. (2), assume the following wave transformation as:

Where, V(ξ) signifies the amplitude. By inserting Eq. (3) in Eq. (2) we achieve,

The MSSE method
The analytical solution of NLPDEs has advanced significantly with the use of the MSSE method. It is a vital 
instrument in both theoretical and applied sciences because of its capacity to handle complex nonlinearities, 
develop precise solutions, and shed light on a variety of physical processes. It advances knowledge and technology 
in a variety of domains, from biological systems to fluid dynamics, by expanding and improving traditional 
approaches.

Consider the trial solution of Eq. (4) as:

where ωi(i = 0, 1, 2, · · · , n) is determined later. The value of integer n can be obtained by using the balancing 
principle in Eq. (4). From Eq. (5) function S (ξ) is satisfied by the following differential equation

where κ0, κ1, κ2 are unknown variables. Some solutions of Eq. (6) with arbitrary constant τ are as follows:

	 (i)	 If κ0 = 0, κ1 > 0 and κ2  = 0, then

	 (ii)	 For constants g1 , g2 , κ0 = 0, κ1 > 0 and κ2 = 4× g1 × g2 , then

	 (iii)	 For constants r1 , r2 , κ0  =  κ
2
1

4κ2
 0, κ1 < 0 and κ2 > 0 , then

	 (iv)	 If κ0 = 0, κ1 < 0 and κ2  = 0, then

(3)U(x, t) =V(ξ)e(i(κx+βt)), ξ = µ(x − 2κt).

(4)R (V , V ′, V ′′, · · · ) = 0.

(5)V(ξ) = ω0 +
n

∑

i=1

ωiS (ξ)i , ωn �= 0,

(6)(S ′(ξ))2 = κ0 + κ1S (ξ)2 + κ2S (ξ)4.

(7)S1(ξ) = ±
√

−
κ1

κ2

sech
(√

κ1(ξ + τ)
)

.

(8)S2(ξ) = ±
√

−
κ1

κ2

csch
(√

κ1(ξ + τ)
)

.

(9)S3(ξ) = ±
4g1

√
κ1

(

4g21 − κ2

)

sinh
(√

κ1(ξ + τ)
)

+
(

4g21 − κ2

)

cosh
(√

κ1(ξ + τ)
) .

(10)S4(ξ) = ±
√

−
κ1

2κ2

tanh

(
√

−
κ1

2
(ξ + τ)

)

.

(11)S5(ξ) = ±
√

−
κ1

2κ2

coth

(
√

−
κ1

2
(ξ + τ)

)

.

(12)S6(ξ) = ±
√

−
κ1

2κ2

(

tanh

(
√

−
κ1

2
(ξ + τ)

)

+ isech
(√

−2κ1(ξ + τ)
)

)

.

(13)S7(ξ) = ±
√

−
κ1

8κ2

(

tanh

(
√

−
κ1

8
(ξ + τ)

)

+ icoth

(
√

−
κ1

8
(ξ + τ)

))

.

(14)
S8(ξ) = ±

√

− κ1

2κ2

(

√

r21 + r22 − r1 cosh
(√

−2κ1(ξ + τ)
)

)

r1 sinh
(√

−2κ1(ξ + τ)
)

+ r2
.

(15)S9(ξ) = ±

√

− κ1

2κ2
cosh

(√
−2κ1(ξ + τ)

)

sinh
(√

−2κ1(ξ + τ)
)

+ s
.

(16)S10(ξ) = ±
√

−
κ1

κ2

sec
(√

−κ1(ξ + τ)
)

.
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	 (v)	 If κ0 =  κ
2
1

4κ2
 , κ1 > 0 and κ2 > 0 0 and r21 − r22 > 0 , then

	 (vi)	 If κ0 = 0, κ1 > 0 , then

	 (vii)	 If κ0 = 0, and κ1 = 0 , and κ2 > 0 , then

Putting Eqs. (5) with (6) into Eq. (4), and taking the same operation, we get a system of algebraic 
equations. We are ultimately able to get the precise solutions to Eq. (2) by resolving these equations in 
order to determine the values of the unknowns.

Wave transformation of chiral NLS equation
In this section, we use the three above mentioned approaches to achieve the universal and widespread explicit 
soliton solutions to the examined model. Now, by applying the following wave transformations:

where �(ξ) demonstrates the real function. Where κ , β and µ are nonzero constants and δ is the noise strength. 
We use

Inserting Eqs. (28) and (29) into Eq. (1), decompose into following ODEs:

(17)S11(ξ) = ±
√

−
κ1

κ2

csc
(√

−κ1(ξ + τ)
)

.

(18)S12(ξ) = ±
√

−
κ1

2κ2

tan

(
√

κ1

2
(ξ + τ)

)

.

(19)S13(ξ) = ±
√

−
κ1

2κ2

cot

(
√

κ1

2
(ξ + τ)

)

.

(20)S14(ξ) = ±
√

−
κ1

2κ2

(

tan
(√

2κ1(ξ + τ)
)

− sec
(√

2κ1(ξ + τ)
))

.

(21)S15(ξ) = ±
√

−
κ1

8κ2

(

tan

(
√

κ1

8
(ξ + τ)

)

− cot

(
√

κ1

8
(ξ + τ)

))

.

(22)
S16(ξ) = ±

√

− κ1

2κ2

(

√

r21 − r22 − r1 cos
(√

2κ1(ξ + τ)
)

)

r1 sin
(√

2κ1(ξ + τ)
)

+ r2
.

(23)S17(ξ) = ±

√

− κ1

2κ2
cos

(√
2κ1(ξ + τ)

)

sin
(√

2κ1(ξ + τ)
)

− 1
.

(24)S18(ξ) = ±
4κ1e

√
κ1(ξ+τ)

e2
√
κ1(ξ+τ) − 4κ1κ2

.

(25)S19(ξ) = ±
4κ1e

√
κ1(ξ+τ)

1− 4κ1κ2e
2
√
κ1(ξ+τ)

.

(26)S20(ξ) = ±
1

√
κ2(ξ + τ)

.

(27)S21(ξ) = ±
i

√
κ2(ξ + τ)

.

(28)�(x, t) = �(ξ)e(i[κx+βt+δB(t)]), ξ = µ(x − 2κt),

(29)

d�

dt
=(−2µκ�′ + iβ�+ iδ�Bt)e

(i[κx+βt+δB(t)]),

d�

dx
=(µ�′ + iκ�)e(i[κx+βt+δB(t)]),

d�∗

dx
=(µ�′ − iκ�)e(−i[κx+βt+δB(t)]),

d2�

dx2
=(µ2�′′ + 2iµκ�′ − κ2�)e(i[κx+βt+δB(t)]).
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Analysis of bifurcation
In this part, we investigate the system’s bifurcation, including phase portrait analysis for the system characterized 
by Eq. (30). Bifurcation analysis32 is important because it may shed light on qualitative changes in system 
behavior, pinpoint important factors, ensure stability, predict chaos, optimize system design, and explore complex 
dynamics across a range of disciplines. We will solve the dynamic system differential equations listed below:

where C1 = β+κ2

µ2  and C2 = 2γ

µ2 . The gained equilibrium points (EPs) of the system Eq. (31) are as follows:

Also, the Jacobian (31) yields as:

Hence, 

1.	 (�,0) refers as saddle if J(�,P ) < 0,
2.	 (�,0) refers as center if J(�,P ) > 0,
3.	 (�,0) refers as cuspidal if J(�,P ) = 0 . The following describes the possible results that can be obtained by 

changing the settings.

•	 Case-(i) When C1 > 0 & C2 > 0 , under certain parameters, β = 3, γ = 2, κ = 1, µ = 2 , we identify three 
EPs: p1 = (0, 0), p2 = (1, 0), p3 = (−1, 0) . In Fig. 1a the point p1 refers as the saddle point and p2, p3 refers 
as the center point.

•	 Case-(ii) When C1 > 0 & C2 < 0 , under certain parameters, β = 2.5, γ = −2.5, κ = 2.8, µ = 3.0 , we 
identify EP, which is p1 = (0, 0) . This is visually represented in Fig. 1b, with h1 refers as the cusp point.

(30)µ2�′′ + 2γ κ�3 − (β + κ2)� = 0.

(31)











d�
dξ = P (ξ) = R1,

dP
dξ = C1�(ξ)− C2�

3(ξ) = R2,

p1 = (0, 0), p2 =

(
√

C1

C2

, 0

)

, p3 =

(

−

√

C1

C2

, 0

)

.

(32)J(�,P ) =
∣

∣

∣

∣

0 1

C1 − 3C2P
2(ξ) 0

∣

∣

∣

∣

= C1 − 3C2P
2(ξ).

(a) (b)

(c) (d)

Fig. 1.   Phase variation plots of case(i)–(iv), with arbitrary parameters.
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•	 Case-(iii) When C1 < 0 & C2 > 0 , under certain parameters, β = −3.5, γ = 2.5, κ = 0.8, µ = 1.0 , we 
identify EP. h1 = (0, 0) . This EP is represented in Fig. 1c, signifies center-like behavior.

•	 C a s e - ( i v )  W h e n  C1 < 0 & C2 < 0  ,  u p o n  a p p l y i n g  s p e c i f i c  p a r a m e t e r  v a l u e s , 
β = −3.5, γ = −3.5, κ = 0.8, µ = −1.5 , we find points p1 = (0, 0), p2 = (−1, 0) p3 = (1, 0) . This is 
visually represented in Fig. 1c, with p1 signifies the center point while the the remaining two demonstrates 
saddle points. Bifurcation theory enables us to comprehend how dynamical systems alter their behavior in 
response to parameter variations, making phase portraits an effective tool for studying system behavior.

Chaotic structure of the proposed system
In this section, we will study the chaotic behaviours shown by the model being investigated. To analyze these 
patterns, we aim to introduce an external force ϑ1cos(ϑ2) into the system (31). In this context, the variable 
ϑ1 represents the degree of strength or magnitude, while the symbol ϑ2 signifies the rate or occurrence of the 
disturbed term. Thus, the modified system depicted as follows:

The system (33) has been analyzed to determine its quasi-periodic and chaotic qualities using various tech-
niques such as 3D, 2D phase plots. Various arbitrary values for physical parameters are evaluated to determine 
the dynamic behaviors of the disrupted system. In order to observe the impact of ϑ1 and ϑ2 , we will then define 
all other physical parameters for the considered model. The chaotic and quasi-periodic dynamics of system 
(33) are shown in Figs. 2 and 3 with the aid of different ϑ1 and ϑ2 values together with other allowable physi-
cal parameters. The dynamical system (33) is not affected by the periodic signal and has a periodic solution as 
depicted in Figs. 2 and 3, when we consider frequency and amplitude terms that are ϑ2

1 + ϑ2
2 �= 0 . Throughout 

the rest of the scenarios, we set ϑ1 , ϑ2  = 0 , and monitor the systems’ responses as shown in the Figs. 2 and 3 
show the quasi-periodic, super-nonlinear, and periodic patterns resulting from using the the RK4 technique. 

(33)











d�
dξ = P (ξ) = R1,

dP
dξ = C1�(ξ)− C2�

3(ξ)+ ϑ1 cos(ϑ2t) = R2,

Fig. 2.   Dynamical visualization of 2D and 3D chaotic structure of the system (33).
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These findings finally pave the way for more accurate and knowledgable forecasts of the behavior of the proposed 
dynamical system under different conditions by providing a more thorough understanding of how frequently 
small alterations could change its pathways.

Sensitivity analysis
In this part, we elaborates the Runge-Kutta numerical technique to assess the sensitivity and responsiveness 
of the system exploited in Eq. (31). The two and three solution are compared and reviewed as demonstrate 
in Fig. 4, 5 and 6, using different parameter values β = 0.4, κ = 0.7, γ = 3.2, µ = 0.33 . In Fig. 4, represents 
two solutions: (R1,R2) = (1.9, 0) in yellow curve, (R1,R2) = (0, 1.06) in red curve. In Fig. 5, represents two 
solutions: (R1,R2) = (0.01, 0) in yellow line, (R1,R2) = (0, 0.01) in red line. Similarly, Fig. 6 shows three solu-
tions: (R1,R2) = (0.91, 0) in green line, (R1,R2) = (0, 0.99) in yellow line, (R1,R2) = (1.29, 1.29) in red line. 
The dynamics of the system change significantly in response to small changes in the initial values. The gener-
ated trajectories vividly demonstrate this sensitivity by showing the different directions the system can follow 
depending on minute variations in its initial condition. This sensitivity shows that the system is nonlinear, and 

(a) ϑ1 = 2.2, ϑ2 = 6.4 (b) ϑ1 = 2.2, ϑ2 = 6.4

(c) ϑ1 = 2.5, ϑ2 = 4.2 (d) ϑ1 = 2.5, ϑ2 = 4.2

Fig. 3.   Dynamical visualization of 2D and 3D chaotic structure of the system (33).
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it emphasises how crucial it is to characterise initial circumstances precisely in order to accurately forecast the 
system’s behaviour.

Fig. 4.   Dynamics of the proposed system (31) with initial conditions (R1,R2) = (1.9, 0) in yellow curve, 
(R1,R2) = (0, 1.06) in red curve.

Fig. 5.   Dynamics of the proposed system (31) with initial conditions (R1,R2) = (0.01, 0) in yellow line, 
(R1,R2) = (0, 0.01) in red line.

Fig. 6.   Dynamics of the proposed system (31) with initial conditions (R1,R2) = (0.91, 0) in green line, 
(R1,R2) = (0, 0.99) in yellow line, (R1,R2) = (1.29, 1.29) in red line.
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Implementation of MSSE method
By using the balancing principle between the highest derivative �′′ with the the largest power of nonlinear term 
�3 on Eq. (30), we get, n = 1 . Hence, from Eq. (5), we determine:

Substituting Eqs. (34) and (6) in Eq. (30), we retrieve a system of algebraic equations of same powers of S . By 
solving them, we retrieve the following solution set:

Case − 1 :

Inserting these solutions into Eq. (30), we recovered the following solutions:
• If κ0=0, κ1 > 0 and κ2  = 0 , we drive bright and singular solitons

• For constants g1,  g2,  κ0=0, κ1 > 0 and κ2 = 4× g1 × g2 , then combo solitons as:

• For constants r1 , r2 , κ0 =  κ
2
1

4κ2
 , κ1 < 0 and κ2 > 0 , we find dark and singular wave solutions as:

The combo solitons as:

• If κ0= 0, κ1 < 0 and κ2  = 0, we get trigonometric function solutions as:

(34)�(ξ) = ω0 + ω1S (ξ).

(35)ω0 → 0, ω1 →
i
√
κ2

√

β + κ2
√
γ
√
κ
√
κ1

, µ → −
√

β + κ2
√
κ1

.

(36)�1(x, t) =
[ i
√

−κ1

κ2

√
κ2

√

β + κ2sech
(√

κ1(ξ + τ)
)

√
γ
√
κ
√
κ1

]

× ei(δB(t)+βt+κx).

(37)�2(x, t) =
[ i
√

−κ1

κ2

√
κ2

√

β + κ2csch
(√

κ1(ξ + τ)
)

√
γ
√
κ
√
κ1

]
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• If κ0 =  κ
2
1

4κ2
 , κ1 > 0 and κ2 > 0 0 and r21 − r22 > 0 , then trigonometric function solutions as:

The mixed trigonometric function solutions as:

• If κ0 = 0, and κ1 > 0 , then exponential solution as:

• If κ0 = 0, and κ1 = 0 , and κ2 > 0 , then rational solutions as:
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.

Numerical simulations and discussions
The nonlinear chiral NLS equation expands the basic ideas of quantum mechanics to include nonlinear phe-
nomena, which are important in many fields of study and engineering, through condensed matter physics, 
plasma physics, and optics. Recently, the author26 examined the governing model in a prior work in order to 
use a unified strategy to get hyperbolic, trigonometric, and rational wave solutions. Additionally, He’s semi-
inverse approach and the Riccati-Bernoulli method were employed by Abdelrahman et al.27 in their investiga-
tion. Furthermore, upon conducting a comparative analysis between our obtained results and those obtained 
through alternative methodologies28–31, it becomes evident that while certain solution types have been previously 
documented in the literature, the majority are novel, thus underscoring the novelty of our work. Nonetheless, 
we can achieve some comparable outcomes if we give the relevant components varied values. As previously 
indicated, the goal of the work is to apply the MSSE scheme to find novel optical soliton solutions to the chiral 
NLS equation, assuring validity and providing more in-depth understanding. Furthermore, the model’s bifurca-
tion analysis which is particularly crucial in dynamical systems is also looked at. Both bifurcation theory and 
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chaos theory are fundamental concepts in many scientific fields and are useful for comprehending complex 
systems. Understanding the durability and long-term behavior of solitons in many physical systems depends 
on this research. A detailed investigation of the guided model’s sensitivity analysis under different initial con-
ditions has been conducted. Our research is comprehensive and includes a comparison of the quantitative 
correctness of different methodologies, which makes it unique. With our variety of solutions and graphical 
depictions, we offer deeper insights into the nonlinear dynamics and wave aspects inherent in the chiral NLS 
equation. By providing methodical and flexible methods for resolving intricate NLPDEs, the The analytical 
results provide physical representations of the extracted solutions, which are displayed in Figs. 7, 8, 9, 10 and 
11. 3-dimensional plots along with the projection of contour plots and 2-dimensional plots are used to illus-
trate the results that have been demonstrated. These graphic depictions are painstakingly created, paying close 

Fig. 7.   The distinct graphical structure of soolution (36) which is demonstrated with arbitrary parameters 
κ0 = 0, κ1 = 1.4, κ2 = 0.7, κ = 0.8, τ = 1, B(t) = sin(t), γ = 0.34, β = 0.45.
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attention to choosing suitable parameter values. Fig. 7 showcase the the dark solutionof Eq. (36) by using the 
values of a parameter are κ0 = 0, κ1 = 1.4, κ2 = 0.7, κ = 0.8, τ = 1, B(t) = sin(t), γ = 0.34, β = 0.45 . 
Figure  8 illustrate the multi periodic wave solution of Eq. (39) under parameters values 
κ1 = −0.7, κ2 = 2.7, κ = 1.9, β = 0.34, γ = 0.8, ρ = 0.5, τ = 1, µ = −0.6, B(t) = cos(t)   . 
F igure   9 ,  repres ents  the  comb o s olut ion  of  Eq.  (41)  with  arbit rar y  parameters 
κ1 = −2.7, κ2 = 0.4, γ = 0.9, κ = 0.3, β = 0.4, δ = 0.41, B(t) = cos(t), τ = −1 . Figure 10 shows 3D and 
2D with a density view of the solutions in Eq. (43) which is the periodic soliton solution for the parametric values 
κ1 = −3.2, κ2 = 2.9, δ = 0.65, κ = 2.1, µ = 4.8, γ = 0.4, r1 = 0.5, r2 = −2.7;β = −0.29, B(t) = sin(t), τ = −1 . Figure 11 shows 3D and 2D 
with a density view of the solutions in Eq. (53) which is the interaction of exponential wave soliton for the para-
metric values κ0 = 0, κ1 = −2.99, κ2 = 0.13, κ = 0.5, β = 0.56, δ = 1.71, B(t) = cos(t), γ = 0.4, τ = −0.1.

Fig. 8.   The distinct graphical structure of soolution (39) which is demonstrated with arbitrary parameters 
κ1 = −0.7, κ2 = 2.7, κ = 1.9, β = 0.34, γ = 0.8, ρ = 0.5, τ = 1, µ = −0.6, B(t) = cos(t).
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Conclusion
In this study, we have successfully explored the (1+ 1)-dimensional chiral NLS equation to derive optical 
solutions using the MSSE method. Both the bifurcation and sensitivity analysis conducted has shed light on 
the intricate behaviors and transitional dynamics of the chiral NLS equation. These analyses are essential to 
comprehending the stability and potential chaotic nature of the system. A comprehensive visualisation of 
the found solutions is provided by the graphical profiles in 3D, density, and 2D that are created by selecting 
appropriate parameter values. These graphical profiles depict the interaction periodic, singular, dark, bright, 
mixed trigonometric, exponential, hyperbolic, and rational wave solution through MSSE technique. Therefore, 
it is shown that applied techniques appear as a potent instrument to handle higher dimensional, more complex 
nonlinear dynamical models encountered in advanced research and engineering fields. According to the results, 
the strategies employed are clearly more effective and capable than the traditional methods employed in previous 
research. Future research endeavours may involve attempting to obtain the soliton solutions of the examined 
model by the incorporation of various fractional derivatives and nonlinearities, as these remain unexplored 
avenues.

Fig. 9.   The distinct graphical structure of soolution (41) which is demonstrated with arbitrary parameters 
κ1 = −2.7, κ2 = 0.4, γ = 0.9, κ = 0.3, β = 0.4, δ = 0.41, B(t) = cos(t), τ = −1.
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Fig. 10.   The distinct graphical structure of soolution (43) which is demonstrated with arbitrary parameters 
κ1 = −3.2, κ2 = 2.9, δ = 0.65, κ = 2.1, µ = 4.8, γ = 0.4, r1 = 0.5, r2 = −2.7;β = −0.29, B(t) = sin(t), τ = −1.
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