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Identifying severe 
community‑acquired pneumonia 
using radiomics and clinical data: 
a machine learning approach
Tianning Yang 1, Ling Zhang 2, Siyi Sun 2, Xuexin Yao 2, Lichuan Wang 1* & Yanlei Ge 2*

Evaluating Community-Acquired Pneumonia (CAP) is crucial for determining appropriate treatment 
methods. In this study, we established a machine learning model using radiomics and clinical features 
to rapidly and accurately identify Severe Community-Acquired Pneumonia (SCAP). A total of 174 
CAP patients were included in the study, with 64 cases classified as SCAP. Radiomic features were 
extracted from chest CT scans using radiomics techniques, and screened to remove irrelevant features. 
Additionally, clinical indicators of patients were similarly screened and constituted the clinical feature 
set. Subsequently, eight common machine learning models were employed to complete the SCAP 
identification task. Specifically, interpretability analysis was conducted on the models. In the end, 
we screened out 15 radiomic features (such as LeastAxisLength, Maximum2DDiameterColumn and 
ZonePercentage) and two clinical features: Lymphocyte (p = 0.041) and Albumin (p = 0.044). Using 
radiomic features as inputs in model predictions yielded the highest AUC of 0.85 on the test set. When 
using the clinical feature set as model inputs, the AUC was 0.82. Combining the two sets of features as 
model inputs, Ada Boost achieved the best performance with an AUC of 0.89. Our study demonstrates 
that combining radiomics and clinical data using machine learning methods can more accurately 
identify SCAP patients.
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SCAP is the most life-threatening form of CAP, characterized by intensive care unit (ICU) admission and high 
morbidity and mortality rates1. Pneumonia severity scales, such as the CURB-65 (CUR-65) scale and the Pneu-
monia Severity Index (PSI), are available for clinical use2,3. However, each scoring system has its advantages and 
disadvantages. The most widely accepted standard for SCAP currently comes from the 2007 Infectious Diseases 
Society of America (IDSA)/American Thoracic Society (ATS) consensus guidelines on the management of 
community-acquired pneumonia in adults4. It has always been difficult but essential in managing patients with 
CAP to recognize SCAP promptly and intervene aggressively5.

The place of CT in assessing pneumonia as a direct objective response to evidence of chest disease is unques-
tionable. A study correlates a correlation between CT signs (pleural effusion, pyothorax) and pneumonia 
severity6. Shifa and his team developed the chest severity score (CT-SS) to assess the severity of COVID-19 
pneumonia patients, with a final positive predictive value of 90.6% and a negative predictive value of 94%7. How-
ever, these studies require experienced radiologists to review all the CT images and extract features from them. 
Yet, the assessment is highly subjective, with results varying clinically depending on the physician’s experience 
and ability, and the process is time-consuming and labor-intensive.

Radiomics was first proposed by Lambin et al.8. This technique is based on the hypothesis that there is still 
untapped information in medical imaging that goes beyond visual interpretation. Radiomics can extract a large 
amount of feature information from medical images, which supplements doctors’ qualitative analyses. Moreover, 
these feature data can be used to train models for predicting specific clinical tasks9. For example, some research-
ers have used radiomics to extract feature information from chest X-rays for diagnosing breast tumors10 and 
predicting the benign or malignant nature of lung nodules using non-invasive methods11. These studies have 
achieved high prediction accuracy.
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In addition, with the development of artificial intelligence, the combination of machine learning and radiom-
ics has further broadened its application. During the COVID-19 pandemic, due to severe shortages of medical 
resources, numerous studies utilized artificial intelligence (AI) to assess the severity of COVID-19 patients12–14. 
These studies trained deep learning models on a large amount of labeled image data, enabling the models to 
learn features within the images. Specifically, Dinh et al. trained five deep learning models using chest X-ray 
images of COVID-19 patients, achieving classification of the patients’ lung infection status12. A study trained a 
model based on the Siamese neural network-based algorithm to automatically measure the severity of chest CT 
in hospitalized patients15. However, the above studies used tens of thousands of high-quality annotated images. 
Because deep learning models have more parameters, they require many samples for practical training. When 
sufficient training samples are not available, overfitting can quickly occur.

Compared to machine learning methods, deep learning-based feature extraction requires a large amount 
of data and time to build the model, and the features learned by the model are not directly interpretable16,17. 
However, using radiomics-based machine learning models for feature extraction and prediction can somewhat 
mitigate these issues. Consequently, some radiomics-based machine learning algorithms have been widely used. 
For example, Prinzi et al. extracted features from X-ray images using radiomics and employed SVM and random 
forest as classifiers to complete prognostic prediction tasks, achieving an AUC of 0.819 on the test set18.

Therefore, this study aims to use multiple machine learning algorithms for radiomics modeling and to com-
pare the model performance in conjunction with clinical metrics to achieve fast and accurate identification of 
SCAP patients and, at the same time, to explore human-unrecognizable image features in chest CT based on 
artificial intelligence, and to analyze the correlation between the clinical metrics and the image features. Figure 1 
shows the overall flow of this study.

Materials and methods
Study population
To determine the minimum sample size required for the study, power analysis was conducted using G*Power 
3.1.9.719. With a significance level of α = 0.05, an effect size of 0.2, and a statistical power of 0.8, at least 150 
participants were needed to achieve the desired statistical power. Considering the practical needs of the study, 
we ultimately included 174 participants.

Clinical and imaging data of patients diagnosed with CAP were retrospectively collected at the North China 
University of Science and Technology Affiliated Hospital. Among the inclusion criteria were: (1) Patients diag-
nosed with CAP; (2) CT scan was performed during admission; (3) There were lesions in the lungs on CT scan. 
Exclusion criteria were: (1) Patients who lack clinical data; (2) Patients who did not undergo CT scan during 
admission. A total of 174 patients were collected: 110 in the non-SCAP group and 64 in the SCAP group. The 
diagnosis of CAP and SCAP was made by superior physicians according to the Guidelines for the Diagnosis 
and Treatment of Community-Acquired Pneumonia in Chinese Adults (2016 edition) and IDSA/ATS standard 
Guidelines4,20.

CT examinations
All patients were examined using a CT scanner with the exact specifications and parameters. Scanning param-
eters: 130 kV; 120 mA; scanning time 1s; matrix 512 × 512; in the supine position with breath held, scanning 
was performed sequentially from the lung apex to the diaphragm.

CT image segmentation
Currently, there are three main types of medical image segmentation models: manual segmentation, semi-
automatic segmentation, and automatic segmentation. Among them manual segmentation needs to be done 
manually by a specialized radiologist. The segmentation process is time-consuming and labor-intensive, and 
manual segmentation also tends to lose the contour information of the lesion. Therefore, this study used auto-
matic segmentation to assist manual segmentation methods in defining regions of interest (ROI).

No new network (nnU-Net) is a general and adaptive deep learning framework for medical image seg-
mentation. It is developed based on the U-Net architecture, with its main advantage being the simplification 
and automation of the design and adjustment processes for medical image segmentation models21. Specifically, 
nnU-Net automatically generates suitable model network structures and training parameters according to the 
characteristics of the dataset (such as image resolution and image size). Additionally, the model can automati-
cally handle tasks like data processing and data augmentation without requiring the user to process the data 
separately. During model training, nnU-Net manages the training process automatically, including learning rate 
scheduling and early stopping mechanisms. Furthermore, nnU-Net supports various loss functions, including 
Dice loss and cross-entropy loss, and can automatically select the appropriate loss function based on the specific 
task. Overall, nnU-Net is a practical and high-performance segmentation model.

We use publicly available and pre-trained models on lung CT images (https://​zenodo.​org/​recor​ds/​46358​22). 
We perform inference on the image data to obtain a lung lesion mask, ROI. The final examination and processing 
are then carried out by an experienced radiologist, thus ensuring that the lung lesions can be accurately extracted.

Feature extraction
Radiomics feature extraction
To quantify the grey-scale features extracted for each ROI22, an open-source tool, Pyradiomics23 (v3.0, compli-
ant with the Biomarker Standardization Initiative Guidelines24), was used to extract features from the CT scans 
automatically, and the extracted features were further analyzed. All radiomics features were classified into seven 
categories, namely: (i) shape-based features; (ii) first-order features; (iii) gray-level dependence matrix features; 

https://zenodo.org/records/4635822
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(iv) gray-level size zone matrix features; (v) neighboring gray-tone difference matrix features; (vi) gray-level 
run-length matrix features; and (vii) gray-level co-occurrence matrix features.

We not only extracted features from the original CT scans but also from derived images processed through 
filters. Specifically, the original images were processed using a Laplacian of Gaussian filter. In the Laplacian of 
Gaussian filter, the parameter sigma defines the roughness of the texture intensity. A low sigma emphasizes 
fine textures, while a high sigma emphasizes coarse textures. We chose to set sigma to {1, 2, 3}. Ultimately, 126 
features were extracted from the original images, and 258 features were extracted from the LoG-derived images, 
resulting in a total of 384 features.

Construction of radiomic feature set
The high number of features extracted using the feature extraction tool quickly increases the risk of overfitting the 
model during the subsequent statistical analysis and machine learning modeling process. Reducing the number 
of features is crucial to building effective and generalizable models.

To reduce the dimensionality of the features, we considered various feature selection methods. First, to 
eliminate highly similar redundant features, Pearson’s correlation coefficient was used to measure the similarity 
between these features25. The Pearson correlation coefficient measures the correlation between two features and 

Fig. 1.   The overall process of research.
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ranges from [−1, 1]. When it is close to −1, it indicates a negative correlation between the two features; when it 
is close to 1, it indicates a positive correlation; when it is 0, it indicates no correlation. However, the threshold 
selection for the Pearson correlation coefficient often depends on the specific task. Generally, a threshold greater 
than 0.7 indicates a strong correlation, so we set it to 0.7 in our work26.

Then, two filter-based methods were used: the Mann-Whitney U test and maximal relevance and minimal 
redundancy (mRMR). Both methods are based on statistical measures to select features and have the advantages 
of high computational efficiency and robustness. Specifically, the Mann-Whitney U test does not require the 
data to meet any distribution curve, making it more robust compared to the t-test, which compares means, as 
the Mann-Whitney U test compares medians27. mRMR uses mutual information as a criterion to calculate the 
relevance of the feature subset to the output class and the redundancy among features.

To avoid the risk of overfitting during model training and to improve the generalization performance of the 
model, the construction of the feature set is therefore completed by evaluating the features and identifying those 
that have a significant impact on the target variable before training the classifier using the model-based feature 
screening methods: Random Forest, XGBoost, and Lasso model, respectively. From this, the importance scores 
of the features under the three models are obtained, the three scores are summed, and the features with the top 
15 combined rankings are selected to be constructed as the imaging feature set.

Clinical feature set construction
Considering the influence of clinical characteristics on the target categorical variables, this study collated and 
collected clinical indicators from patients during their admission to the hospital as a clinical dataset. Patients’ 
age, gender, whether they smoked, whether they drank alcohol, and CURB-65 scores were collected; laboratory 
test results: blood urea nitrogen (BUN), Calcitonin (PCT), white blood cell count (WBC), neutrophil (NEU), 
lymphocyte (LYM), Total Plasma Protein (TP), serum albumin (ALB), serum creatinine (Scr), alanine ami-
notransferase (ALT), aspartate transaminase (AST), fibrinogen, D-dimer. We performed a correlation analysis 
between clinical features and imaging features to investigate whether there is information that can be mined 
between clinical features and imaging features. Specifically, the potential relationship between the two types of 
features was further discovered by using Pearson’s correlation coefficient to calculate the correlation coefficient 
between clinical and imaging features and visualization using heat maps. Univariate and multivariate logistic 
analyses were performed on the clinical features to identify statistically significant clinical features.

Establishment of models and performance comparison
Considering the small size of the data set and the high dimension of the features, the eight most mainstream 
machine learning models were selected. Including Ada Boost Classifier Logistic, Regression, Random Forest, 
SVM (Radial Kernel), XGBoost, KNN, Light Gradient Boosting, Naive Bayes, that use the image feature set clini-
cal feature set, and a combination of the two as inputs to the model. For model validation, we employed 10-fold 
cross-validation. Specifically, the data were divided into 10 subsets, with 9 subsets used for model training and 
the remaining subset for testing. This process was repeated 10 times, and the results were averaged to obtain the 
final model performance.

In terms of model performance evaluation, AUC is defined as the area surrounded by the ROC curve and 
the lower coordinate axis, which is mainly used to evaluate the accuracy of binary classification problems. In the 
case of data imbalance, AUC still has good stability and can accurately evaluate the performance of the model. 
Therefore, we use AUC as the most important evaluation index to evaluate the model.

Interpretability analysis
Machine learning models are a black-box operation for medical professionals who do not understand the model’s 
decision-making process. Interpretable analysis of machine learning models can provide a deep understanding 
of how the models work and can help identify incorrect decisions made by the models, which is particularly 
important in the medical field. In addition, interpretable analyses can provide valuable insights into medical 
research. For example, in identifying SCAP, which characteristic indicators are more important in the classifica-
tion task, and which clinical or imaging indicators changes tend to worsen the patient’s condition. Therefore, it 
is vital to perform interpretable analyses of the model using relevant tools.

Statistical analysis
The clinical characteristics of the patients were described using univariate analysis. Statistically significant indi-
cators in the training set were subjected to multifactorial logistic regression analysis to screen for independent 
risk factors for SCAP. Statistical significance was defined as p value < 0.05.

Ada Boost, Logistic Regression, Random Forest, SVM, XGBoost, and KNN machine learning models were 
constructed using the "sklearn" package. ROC curves were plotted, and AUC values were calculated to evaluate 
the models’ discrimination. This section was done using Python (version 3.9.6).

Code availability
We open the core code, can be get by visiting https://​github.​com/​COOk9​21/​Ident​ifying-​SCAP-​Using-​Radio​mics.

Results
Patient characteristics
A total of 174 people were enrolled in this study, with 110 patients in the non-SCAP group and 64 in the SCAP 
group. Randomly divide the training and test sets in the ratio of 7:3. Ultimately, the number of non-SCAP and 

https://github.com/COOk921/Identifying-SCAP-Using-Radiomics


5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:21884  | https://doi.org/10.1038/s41598-024-72310-5

www.nature.com/scientificreports/

SCAP patients in the training set was 77 and 45, respectively, and the number of non-SCAP and SCAP patients 
in the test set was 33 and 19, respectively. Table 1 describes the demographic and clinical characteristics of the 
study population. Percentages were used to describe categorical variables. Continuous variables that fit a normal 
distribution are described using X ± S. For constant variables that do not provide a normal distribution, they are 
defined using the median (IQR).

CT image segmentation
Figure 2a shows the original CT image slice. Figure 2b displays the result after automatic segmentation using 
the nnU-Net, where it is evident that the model can accurately identify the lesion area. Figure 2c is the adjusted 
result by a radiologist based on image (b).

Unlike X-ray films, CT scans consist of multiple slices, making ROI delineation more time-consuming. 
According to our statistics, it takes a radiologist approximately 15 min to independently delineate the ROI of 
a lung CT scan. However, if the nnU-Net model is used for initial segmentation, and then a radiologist makes 

Table 1.   Statistical description of patients’ clinical characteristics. * P value < 0.05

Characteristic

Train cohort Test cohort

Non-SCAP (n = 77) SCAP (n = 45) P Non-SCAP (n = 33) SCAP (n = 19) P

Age 62.89 ± 18.67 71.27 ± 14.95 0.015* 62 (34, 78) 76 (69.5, 83.5) 0.015*

Gender, n (%)

Male 43 (56%) 28 (62%)
0.459

20 (61%) 11 (58%)
> 0.999

Female 34 (44%) 17 (38%) 13 (39%) 8 (42%)

Smoking

True 20 (26%) 9 (20%)
0.598

26 (79%) 16 (84%)
0.729

False 57 (74%) 36 (80%) 7 (21%) 3 (16%)

Drinking

True 17 (22%) 6 (13%)
0.341

29 (88%) 18 (95%)
0.641

False 60 (78%) 39 (87%) 4 (12%) 1 (5%)

CURB-65

0~2 69 (90%) 29 (64%)
0.009 *

28 (85%) 11 (58%)
0.047*

≥ 3 8 (10%) 15 (33%) 5 (15%) 8 (42%)

BUN (mmol/L) 5.35 (3.82, 7.93) 5.75 (4.53, 10.74) 0.03* 5.03 (4.2, 9.83) 7.27 (6.26, 9.26) 0.073

PCT (ng/mL) 0.1 (0.05, 0.67) 0.34 (0.09, 1.51) 0.116 0.18 (0.05, 0.98) 0.12 (0.08, 0.92) 0.614

WBC (x 10^9) 8.1 (6.3, 11.9) 8.5 (5.9, 14.5) 0.924 7.2 (5.4, 12.1) 9.1 (5.9, 15.5) 0.337

Neutrophil (x 10^9) 5.87 (3.58, 9.58) 6.92 (4.03, 11.89) 0.421 5.8 (3.8, 9.18) 7.25 (4.27, 11.93) 0.345

LYM(x 10^9) 1.45 (1.01, 1.98) 0.87 (0.63, 1.2) < 0.001* 1.23 (0.95, 1.91) 1.02 (0.56, 1.48) 0.082

TP (g/L) 68.4 ± 10.61 63.45 ± 11.18 0.018 * 69.9 (63.7, 75.7) 61.7 (55.9, 69) 0.01*

ALB (g/L) 37.1 (33.4, 46.1) 34.6 (28.7, 37.7) < 0.001* 45.1 (32.3, 47) 33.8 (29.15, 36.9) 0.003*

SCr (umol/L) 67 (55, 83) 71 (56, 93) 0.199 67 (59, 88) 57 (53.5, 88.5) 0.776

ALT (U/L) 18 (12, 36) 18 (12, 27) 0.509 20 (13, 35) 26 (18, 31) 0.419

AST 20 (16, 31) 22 (19, 33) 0.287 21 (17, 36) 24 (20.5, 31.5) 0.682

Fibrinogen (g/L) 5.19 ±1.65 5.48 ± 2.05 0.428 5.28 ± 1.44 4.73 ± 1.53 0.217

D-Dimer (ng/mL) 734.53 (434.26, 1706.89) 1138.64 (520.01, 2143.72) 0.133 669.24 (430.1, 1315.01) 973 (562.5, 2704) 0.162

Fig. 2.   CT image segmentation.
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adjustments based on that, the time is reduced to 3 min. This significantly improves the efficiency of image 
segmentation. In terms of segmentation accuracy, since the radiologist further adjusts the ROI, the final seg-
mentation accuracy is greatly ensured.

Image feature set construction
By automatically and manually segmenting the pneumonia mask, we first extracted 384 quantitative radiomics 
features. The number of features was initially reduced from 384 to 28 after an initial screening of image features 
by U-test, Pearson’s correlation coefficient, and mRMR techniques. The features are then evaluated deeply using 
model-based feature screening methods: Random Forest, XGBoost, and Lasso. Figure 3 shows the combined 
scores for each feature under the three assessment methods. The final selection includes 15 high-scoring radi-
omics features, including 6 First Order Features that mainly describe the shape and grayscale characteristics of 
the image, 6 Gray Level Co-occurrence Matrix (GLCM) Features, 1 Gray Level Run Length Matrix (GLRLM) 
Features, 2 Gray Level Size Zone Matrix (GLSZM) Features.

Clinical feature set construction
The heat map was developed to investigate further the correlation between clinical features and clinical and 
imaging features (Fig. 4). Characteristics with correlation coefficients greater than 0.7 are summarised in Table 2. 
The strong correlations were mainly between imaging features. There were only two pairs of features with correla-
tions greater than 0.7 between clinical features: neutrophils and leukocytes, CURB-65 score and age. However, 
the correlation coefficients for imaging and clinical features were relatively low. As shown in Fig. 4, the lower 
left part of the heat map (upper right part) has no too dark or too light color blocks. This means that there is no 
strong correlation between clinical features and imaging features.

A total of six clinical indicators in the training set with P < 0.05 on univariate analysis were Age, CURB-65, 
BUN, LYM, TP, and ALB. Multivariate analyses were performed on these characteristics, considering the inter-
action of multiple characteristic independent variables on the dependent variable. Two of them, LYN and ALB, 
had P < 0.05 and were combined into a clinical feature set (Table 3).

Establishment of models and performance comparison
Table 4 summarises the performance of the eight machine-learning models for the three feature sets. AUC was 
used as the primary evaluation index, and indexes such as accuracy, recall, and precision were used as secondary 

Fig. 3.   Significance of features under the three screening methods.
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evaluation indexes. It can be seen that higher AUC values and prediction accuracies are obtained for the imaging 
feature set compared to the clinical feature set. However, combination features performed the best in the classifi-
cation task with an AUC value of 0.89 and a prediction accuracy of 0.84. Figure 5A–E illustrates the histograms 
of various evaluation metrics for different models with different feature sets, Fig. 5F ROC curves for the eight 
models under the combined feature set, and Fig. 6 shows its confusion matrix.

Fig. 4.   Feature-related heat map.

Table 2.   Correlation between features.

Characteristic I Characteristic II Correlation coefficient

Neutrophil WBC(white blood cell) 0.9123

original_glcm_JointEnergy original_glcm_Imc1 −0.7906

log-3D_glcm_Id log-3D_glrlm_RunLengthNonUniformityNormalized −0.7984

original_firstorder_Entropy log-3D_firstorder_Entropy 0.7628

log_glcm_MaximumProbability log-3D_glrlm_RunLengthNonUniformityNormalized 0.7352

log-3D_glszm_ZonePercentage log-3D_glcm_Id −0.7631

original_shape_LeastAxisLength original_shape_Maximum2DDiameterColumn 0.7636

original_shape_MajorAxisLength original_shape_Maximum2DDiameterColumn 0.7739

original_glcm_Contrast log-3D_glrlm_RunLengthNonUniformityNormalized 0.7080

CURB65 Age 0.7112
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Interpretability analysis
We used the SHAP tool to perform interpretability analyses of the constructed models28. SHAP is a tool for 
interpreting "black box models" by calculating the marginal contribution of features to the model. At the heart 
of SHAP is the SHAP value. In all the samples, there is a SHAP value for each feature. It indicates how much this 
feature affects the prediction results in this sample. When the SHAP value is 0, the features under the sample do 
not influence the prediction results; when the absolute value of the SHAP value is more significant, it means that 
the features under the sample have more influence on the prediction results. When the SHAP value is positive, 
it indicates a positive gain to the prediction, and vice versa; there is a negative gain.

Figure 7 plots the feature density scatter plot. In the graph, the horizontal coordinate indicates the SHAP 
value and the vertical coordinate indicates each feature (both clinical and imaging features) in the classification 
task. The dots in the graph represent each sample, and the dot’s color indicates the magnitude of the value for 
that sample for that feature. It can be seen that among the image features, the absolute value of SHAP value of 
the midpoints of "MajorAxisLength","Maximum2DDiameterColumn" and "shape_LeastAxisLength" are more 
significant, indicating that they play an essential role in the classification task. The clinical features "Lymphocyte" 
and "Albumin" were ranked fourth and fifth. In addition, more information can be extracted from it. For exam-
ple, when the value of the "Albumin" feature is more significant, it is less likely to cause the patient to become 
a severe illness. This is because the red sample points in the "Albumin" feature have a SHAP value of less than 
0, which negatively affects the prediction. This figure allows the clinical expert to gain further insight into the 
prediction process of the model.

Table 3.   Multifactorial logistic regression analysis of clinical characteristics.

Characteristic

Age CURB-65 BUN LYM TP ALBIndex

P 0.974 0.274 0.601 0.032* 0.758 0.030*

OR 0.999 1.926 1.025 0.542 1.008 0.908

OR lower 95%CI 0.969 0.599 0.935 0.298 0.956 0.828

OR upper 95%CI 1.031 6.421 1.127 0.901 1.063 0.983

Table 4.   Model performance evaluation. The bolded data is the optimal value of each evaluation index.

Feature set Model name AUC​ Accuracy Recall Precision F1

Radiologic features

Ada boost classifier 0.8517 0.7308 0.8421 0.5926 0.6957

Logistic regression 0.8469 0.7885 0.6842 0.7222 0.7027

Random forest 0.8293 0.75 0.4737 0.75 0.5806

SVM (Radial kernel) 0.8158 0.7692 0.4737 0.8182 0.6

XGBoost 0.7885 0.8293 0.6316 0.75 0.6857

KNN 0.7584 0.7115 0.4211 0.6667 0.5161

Light gradient boosting 0.7257 0.6346 0.3158 0.5 0.3871

Naive bayes 0.7177 0.7115 0.4737 0.6429 0.5455

Clinical features

Ada boost classifier 0.8222 0.7115 0.5263 0.625 0.5714

Logistic regression 0.7624 0.7115 0.5263 0.625 0.5714

Random forest 0.7998 0.6923 0.5263 0.5882 0.5556

SVM (Radial kernel) 0.7472 0.6923 0.4737 0.6 0.5294

XGBoost 0.8132 0.75 0.7368 0.6364 0.6829

KNN 0.8057 0.7115 0.5789 0.6111 0.5946

Light gradient boosting 0.7616 0.6731 0.5263 0.5556 0.5405

Naive bayes 0.7352 0.6731 0.6842 0.5417 0.6047

Combination features

Ada boost classifier 0.8947 0.8077 0.7368 0.7368 0.7368

Logistic regression 0.8628 0.8462 0.6842 0.8667 0.7647

Random forest 0.8844 0.8462 0.5789 0.9421 0.7333

SVM (Radial kernel) 0.8612 0.7885 0.6316 0.75 0.6857

XGBoost 0.8628 0.8077 0.6316 0.8 0.7059

KNN 0.8158 0.7692 0.6316 0.7059 0.6667

Light gradient boosting 0.823 0.6923 0.5789 0.5789 0.5789

Naive bayes 0.8086 0.75 0.7895 0.625 0.6977
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Discussion
The previous scoring of the pneumonia severity has focused more on physiological indicators such as oxygena-
tion index, blood pressure, etc. Once a patient goes into shock or has severe respiratory failure, it is an extreme 
case. However, patients who appear to be non-SCAP and then deteriorate cannot be ignored. New biomarkers 
for the assessment of severity have also emerged over the years. Pathological changes in patients can be quickly 
and accurately localized to the lungs by chest CT features, and this study found that the radiomics model con-
structed using machine learning algorithms had a high accuracy in identifying patients with SCAP. Radiomics 
was used in our research to extract features hidden in lesions on CT images of patients’ lungs to form a robust 
imaging feature set. In addition to this, the patient’s clinical feature data is combined into a clinical feature set. 
The combination of the two together achieves the prediction of SCAP identification. Compared to traditional 
pneumonia severity scoring systems, such as CURB-65, this study uses radiomics to more fully consider the 
impact of hidden features in medical images on the extent of the condition.

Fig. 5.   (A–E) are the evaluation metrics under three feature sets and eight machine learning models, 
respectively; (F) is the ROC curve of the eight machine learning models under the combined features.

Fig. 6.   Confusion matrix for eight machine learning models with combined features.
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The ROI in the image must be extracted before extracting the features in the image using the radiomics tools. 
The accuracy of the ROI extraction is crucial for the availability of the radiomics features. Currently, there are 
three main types of image segmentation: manual segmentation, semi-automatic segmentation, and automatic 
segmentation29. Where manual segmentation means that the segmentation task is done manually by the rel-
evant experts. This approach is very time-consuming, and there is disagreement among different experts on the 
description of ROI30. Semi-automatic segmentation assists humans in segmentation through tools developed to 
characterize images31. Automatic segmentation has benefited from the recent development of image segmentation 
techniques in deep learning, and most medical image segmentation models are now developed and improved 
based on U-net32. Medical image segmentation based on deep learning can accomplish various segmentation 
tasks, such as tumor segmentation, organ segmentation, etc., with strong applicability. Automatic segmentation 
also avoids intra- and inter-observer variability of radiomics features. In our study, the extraction of ROI is 
accomplished using automatic segmentation in concert with manual segmentation. The deep learning segmenta-
tion model nnU-net is first used to make an initial sketch of the lesion in the image, which is then refined with 
the help of an experienced radiologist30. Through such a series of operations, the lesion can be extracted more 
quickly and accurately, laying the foundation for subsequent image information extraction.

Radiomics is an emerging field that aims to extract information from medical images to support clinical 
decision-making accordingly33. In the SCAP recognition task, traditional severity scoring systems focus on 
physiological features and use less of the image’s information. Identifying patients with COVID-19 pneumonia 
was a significant challenge at the beginning of the COVID-19 epidemic. Investigators performed quantitative 
analyses of chest CTs to assess lung involvement in patients, ultimately demonstrating that quantitative CT scores 
are effective in diagnosing COVID-19 pneumonia, determining disease severity, and predicting mortality34. This 
shows the need for radiomics features as an aid to clinical decision-making. In our study, 384 original images 
and their derived image features were mined using the radiomics feature extraction tool pyradiomics. Next, 
feature screening methods were used to filter out valuable features to the task, resulting in 15 imaging features.

Fig. 7.   Scatterplot of feature density.
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In our study, a total of eight machine learning algorithms were selected for evaluation, mainly including 
integrated learning based Ada Boost, XGBoost, Random Forest, and LightGBM35–37; Support vector machines 
based on kernel functions38; Instance-based learning algorithm KNN39; Naive Bayes based on Bayes’ theorem 
and the assumption of conditional independence of features40. Next, we used the imaging features, the clinical 
features, and the combination of the two as inputs to the machine learning models, respectively, and trained 
24 sets of models. A comparative analysis revealed that when using a combination of features as inputs to the 
machine learning model, the model obtained the highest AUC value on the test set: 0.89. We also found that 
models trained using imaging features outperformed those using clinical features. This is further evidence of 
the importance of features in images.

This finding is also validated by other researchers. For example, Wang et al. found in their study on prog-
nosis prediction in COVID-19 patients that the AUC was 0.843 when using radiomic features; 0.813 when 
using clinical features; and when using both combined features, the AUC was higher than the former, reaching 
0.86541. Additionally, we found that some researchers used deep learning models to extract features from images, 
achieving better results than clinical features13,42. Although we must acknowledge that this method can yield 
excellent results, the features extracted are difficult to understand and interpret. In contrast, the features we use 
for prediction are specific and meaningful. These multimodal features used for prediction offer both predictive 
performance and interpretability43.

Finally, we performed an interpretable analysis of the model using XAI methods (SHAP). This method 
effectively identifies the specific features that drive the model’s decisions. In contrast, the features obtained by 
deep learning models are often directly understandable and usable by humans44. Moreover, in our work, using 
SHAP, we discovered the features that most significantly impact the model’s classification results. Some clinical 
studies have validated our findings18:

•	 "Lymphocyte" indicates the number of white blood cells in a patient’s blood. Studies have found that a decrease 
in lymphocyte count is a critical factor for patients transitioning to SCAP, which is consistent with our SHAP 
analysis results45.

•	 "Albumin" is a routine indicator reflecting a patient’s nutritional status and systemic inflammation. In our 
interpretable model, higher albumin levels in patients make them more likely to be predicted as having mild 
symptoms. Conversely, lower levels indicate a higher likelihood of deterioration. This aligns with existing 
research conclusions46.

In addition to the clinical features mentioned above, the study of radiomic features is equally valuable. We 
found that the most important features belong to shape features, which describe the shape of the region of inter-
est. These features abstract the shape of pulmonary CT lesions and are crucial for the model to make accurate 
predictions.

Our study also has some limitations. Firstly, our study involves a small number of samples, which is prone 
to overfitting during the training of machine learning models. Secondly, the model’s predictive performance is 
not high enough; in the follow-up work, more data will be collected, the model will be optimized and adjusted, 
and better performance will be achieved.

Conclusions
In conclusion, we used radiomics tools to measure radiological features from chest CT, combined them with 
patient clinical features, and obtained good performance in identifying patients with SCAP. Meanwhile, our 
experimental study suggests that the research methodology of using radiomics tools to explore features hidden 
in medical images and unrecognizable by humans deserves to be explored and investigated in depth.

Data availability
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