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The existing deep estimation networks often overlook the issue of computational efficiency while 
pursuing high accuracy. This paper proposes a lightweight self-supervised network that combines 
convolutional neural networks (CNN) and Transformers as the feature extraction and encoding layers 
for images, enabling the network to capture both local geometric and global semantic features for 
depth estimation. First, depth-separable convolution is used to construct a dilated convolution residual 
module based on a shallow network to improve the shallow CNN feature extraction receptive field. In 
the transformer, a multidepth separable convolution head transposed attention module is proposed 
to reduce the computational burden of spatial self-attention. In the feedforward network, a two-step 
gating mechanism is proposed to improve the nonlinear representation ability of the feedforward 
network. Finally, the CNN and transformer are integrated to implement a depth estimation network 
with a local-global context interaction function. Compared with other lightweight models, this model 
has fewer model parameters and higher estimation accuracy. It also has better generalizability for 
different outdoor datasets. Additionally, the inference speed can reach 87 FPS, achieving better real-
time performance and accounting for both inference speed and estimation accuracy.
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In recent years, with the rapid development of artificial intelligence technology, products such as robots, drones, 
and autonomous vehicles have been widely applied in human life1. These applications require scene perception 
based on depth information, making accurate depth estimation crucial. Depth estimation, a core technology 
for autonomous systems to perceive the environment and estimate their states, provides fundamental depth 
information for research on visual odometry, autonomous driving, robot localization, and 3D reconstruction2–4. 
By utilizing depth estimation for 3D reconstruction, more accurate information such as terrain height can be 
obtained, which is essential for areas such as environmental monitoring, urban planning, and natural disaster 
early warning and is crucial in various robotic systems and applications5. Existing depth sensors such as RGB-D 
cameras, LiDAR, and structured light sensors can provide accurate depth information6; however, these sensors 
have high hardware costs, large volumes, and high power consumption. Stereo cameras can obtain depth 
information through stereo matching methods7; however, such methods involve high computational complexity 
and demanding performance from computing units. Additionally, when temporal or spatial errors exist between 
two cameras in practical applications, the accumulation of errors may accelerate, further increasing algorithm 
requirements. In contrast, monocular depth estimation, which estimates depth maps from single RGB images, is 
a cost-effective and easy-to-deploy method. It does not have high hardware requirements and can obtain depth 
information solely from images. Therefore, methods based on single-image depth recovery have been widely 
studied.

Early research relied on depth cues such as image defocus, focus and defocus, and shadows to extract depth 
information from monocular images. However, such methods often have specific image requirements and may 
not be applicable to all scenes. With the development of machine learning, Saxena et al.8 utilized features to 
construct conditional random fields (CRFs) and Markov random fields (MRFs) to model depth information, 
considering global and long-range information, transforming the problem into a learning problem under a 
random field. However, traditional machine learning typically requires manual design and feature selection, 
making capture complex nonlinear relationships in data and achieving good generalizability is challenging in 
complex environments. In recent years, Eigen et al.9 used convolutional neural networks (CNNs) to perform 
monocular depth estimation tasks, estimating global coarse and local fine depth maps in two stages, realizing 
monocular depth estimation networks based on deep learning and achieving good results. Therefore, an 
increasing number of monocular depth estimation methods based on deep learning have been proposed.
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In deep learning, monocular depth estimation methods can be divided into supervised and self-supervised 
learning methods based on whether real depth information is required during training. Supervised learning 
methods typically achieve high accuracy but require efficient training using large sets of images annotated with 
depth labels. This significantly increases the difficulty and cost of collecting large-scale, accurate, and dense 
ground-truth depth data. In contrast, self-supervised learning methods can avoid using large labelled datasets, 
effectively reducing costs and workload, thus attracting widespread attention in monocular depth estimation. 
Garg et al.10 regarded depth estimation as a novel view synthesis problem. They derived supervisory signals 
from the reprojection of images from different views based on the geometric relationships between consecutive 
frames to replace supervised losses based on depth labels, achieving unsupervised monocular depth estimation. 
Godard et al.11,12 proposed the Monodepth2 network. They introduced left-right disparity consistency and 
minimum reprojection losses to improve prediction accuracy, alleviate occlusion issues, and filter out moving 
objects with the same velocity as the camera using automasking. Many studies have applied transformer models13 
in monocular depth estimation and achieved promising results. For instance, Zhao et al.14 introduced the 
monovision transformer as an encoder to model the global context based on Monodepth2. They progressively 
fused it with a convolutional decoder, enhancing the prediction accuracy by incorporating the transformer into 
the CNN. However, transformers are generally slower than CNNs due to their large number of parameters and 
quadratic complexity of multihead attention calculations, making them unsuitable for real-time tasks, especially 
for mobile robots and embedded devices. Diana et al.15 designed a lightweight network called FastDepth to meet 
real-time depth estimation requirements, which uses depth-separable convolutions throughout the network 
and network pruning to reduce inference time. However, such lightweight models sacrifice depth estimation 
accuracy to improve inference speed and cannot effectively balance speed and accuracy.

This paper adopts a combination of convolution and transformer structures as feature extractors for images 
and improves upon both CNNs and transformers to ensure both accuracy and improved inference speed. 
Shallow convolutional networks are employed, utilizing depth-separable convolutions16 to increase the receptive 
field of shallow networks. Stacking atrous convolution residual (ACR) modules achieves a shallow convolutional 
network with a larger receptive field. Additionally, an improved self-attention mechanism and feedforward 
network within a transformer are integrated to facilitate global context interaction. In the transformer 
component, a Multi-Dconv head transposed attention (MDTA) module is introduced to apply self-attention 
across feature dimensions, computing interchannel covariance to reduce computational complexity. The MDTA 
module emphasizes the spatial global context and leverages the complementary advantages of convolutional 
operations. It ensures global relationships are modelled between pixels and computes attention maps based on 
covariance. In the feedforward network section, inspired by Zamir et al.17, a two-step gated feedforward network 
(TSGFN) mechanism is proposed to suppress less informative features, focus on finer image features, and output 
high-quality feature maps.

Research methodology
Integration of Atrous convolution residual modules and an enhanced transformer for a 
monocular depth estimation network
The model in this paper consists of an encoder and a decoder, adopting the classic encoder-decoder structure, 
as illustrated in Fig. 1. In the encoder, convolution and transformer fusion are utilized to extract image features 
and multiscale features are aggregated in the encoding layer through four stages.

The input image is passed through the Conv-stem convolution module in the first stage. This module consists 
of two convolutional layers with kernel sizes of 3 × 3 and a stride of 2. The image undergoes two convolutions 
for downsampling and local feature extraction, resulting in feature maps with a size of W/2×H/2× C . To 
compensate for the loss of spatial information caused by changes in feature scale, this paper uses ResNet18 
for initial feature extraction from the input image. The extracted features are then passed through Pose Net to 
output the camera’s rotation matrix (R) and translation vector (t) for estimating the camera’s pose. Finally, the 
extracted results are concatenated with an average pooling module, enabling the network to acquire more spatial 
information from the original image, providing a better understanding of the context and positional information 
of the target. Subsequently, downsampling is performed on the feature maps using a 3 × 3 convolution with a 
stride of 2, resulting in feature maps with a size of H/4×W/4× C . From stage two to stage four, ACR modules 
and local-global transpose self-attention modules are utilized in each stage to extract features of different scales. 
These features are concatenated with the output of the pooling module and fed into the next stage. Finally, 
feature maps with dimensions of H/8×W/8× C  and H/16×W/16× C  are output. In the decoder, only 
one convolutional layer is used to fuse features, further reducing the overall computational burden of the depth 
estimation network. Finally, the inverse depth maps at different resolutions are output by connecting them with 
bilinear upsampling and prediction heads.

Atrous convolution residual module
The encoding layer adopts a shallow CNN network for training to effectively reduce the model size and training 
parameter count. However, shallow CNNs have certain limitations in terms of the receptive field. The proposed 
ACR module is introduced to improve local feature extraction. This module utilizes depth separable instead of 
traditional convolutions to extract image features. Depth-separable convolution consists of depthwise convolution 
and pointwise convolution. The depthwise convolution extracts features along the channel dimension, while 
the pointwise convolution combines features along the spatial dimension. The feature extraction ability of the 
model improves by increasing the number of feature channels through linear modules, introducing nonlinear 
transformations, reducing computational costs, and capturing image information. This fully leverages the 
advantages of depth-separable convolution, as depicted in Fig. 2, which illustrates the ACR module.
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Several ACR modules with different dilation rates are inserted into different stages, and the ACR modules are 
looped according to the stages to achieve multiscale fusion and aggregation of the local context.

The feature X with dimension .H ×W × C . is used as the input, and the output of the ACR module is as 
follows:

	 X̂ = X + Linear(Gelu(BN(Dconv(Linear(X)))))� (1)

 where Linear denotes a linear transformation, expanding feature channels, Dconv represents a 3 × 3 depthwise 
separable convolution with a dilation rate of  d, BN  denotes a batch normalization layer, Gelu denotes an 
activation function, and finally, the output is obtained by restoring the dimension through a fully connected 
layer.

Using a shallow CNN network and increasing the receptive field can better capture the global information in 
the image; however, it may lead to the inability to effectively capture the local fine structures in the image, 
which may result in the loss or neglect of detailed features. To further optimize the model performance, this 
paper introduces the strategy of pooling cascading18. This module is constructed by an average pooling module 
and 1 × 1 convolution, which cascades multiscale image features after each downsampling. The pooling module 
helps to maintain critical information while reducing dimensionality and enhances the perception of features 

Fig. 2.  The model of ACR.

 

Fig. 1.  Overall structure of the self-supervised monocular depth estimation network.
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at different scales through multiscale fusion. By introducing the pooling cascading strategy, this paper captures 
local features in the image more meticulously while maintaining global information, thus further improving the 
model performance.

Local-global transposed transformer block
Due to the quadratic relationship between the computational complexity of self-attention and the input resolution, 
existing vision transformers face challenges when directly applied to visual tasks with high resolutions, such as 
depth estimation. This paper proposes the MDTA module to alleviate this issue, which significantly reduces the 
computational burden of spatial self-attention using transposed self-attention, improving the shortcomings of 
the original transformer architecture. The MDTA module employs a self-attention mechanism applied across 
channels and calculates cross-channel covariances to generate attention maps encoding the global context, 
thus reducing model complexity in terms of computational dimensions. As another crucial component within 
MDTA, a depthwise separable convolution module is introduced after the linear layer, emphasizing the local 
context before computing feature covariances to generate global attention maps. This helps transformer models 
capture relationships between input data spatial dimensions, enabling better handling of contextual information 
in language sequences and improving model performance. Figure  3 illustrates the specific structure of the 
MDTA module.

Given an input feature with dimension H ×W × C , it is expanded by N × C  into an image sequence, where 
H ×W  represents the image resolution, denotes the total number of pixels in the input space, and C indicates 
the number of image channels. Through fully connected layers and 3 × 3 depthwise separable convolutions, the 
spatial context is encoded channelwise, resulting in a query matrix Q = WQ

d W
Q
L X, a key matrix K = WK

d WK
L X 

and a value matrix V = WV
d WV

L X, each with dimensions N × C , where W (·)
L  denotes the fully connected layers, 

and W (·)
d  represents the 3 × 3 depthwise separable convolutions. Therefore, the self-attention mechanism can be 

expressed as:

	 X̂ = Attention(Q,K,V) +X� (2)

	 Attention(Q,K,V) = V · Softmax
(
KT ·Q

)
� (3)

 where X and X̂ represent the input and output feature maps, respectively. Compared to the original self-attention 
mechanism, this paper reduces the computational complexity from O

(
h/N 2 +Nd

)
 to O

(
d2
/
h +Nd

)
, d is 

the vector dimension and h is the number of attention heads.

Additionally, this paper proposes a TSGFN to achieve better contextual interactions. Similar to MDTA, the 
TSGFN introduces depthwise separable convolutions to encode information from spatially adjacent pixel 
positions. The schematic structure of the TSGFN module is illustrated in Fig. 3. In contrast to a regular multilayer 
perceptron (MLP) feedforward network, where the MLP updates the activation function using only the current 
feature and treats each feature independently, the TSGFN controls the information flow through corresponding 

Fig. 3.  Local-global transposed transformer block.
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hierarchical levels in the pipeline. This allows each level to focus on fine details complementary to other levels, 
updating the current feature in two steps, and facilitating better contextual interactions across the entire text.

The input feature map is expanded through a fully connected layer to increase the number of feature channels. 
Then, image features are extracted using a 3 × 3 depthwise separable convolution to obtain X. The feature map 
is updated in two steps. First, the features are split into two parts, Xf  and Xb, based on the feature channels. 
Part Xf  is multiplied by Xb after passing through the Gaussian error linear unit (GELU) activation function, 
resulting in X̃ after the first-step update. Then, the updated result X̃ is passed through a fully connected layer. 
Using the same approach, the latter half Xb of the original input feature map is used to update the former half 
X̃b of the current feature in the second step. Finally, the image features are restored to their original dimension 
and output as X̂. The TSGFN can be formulated as follows:

	 X = DWConv(Linear(X))� (4)

	 X̃ = Linear(X [Gelu(Xb)⊙Xf ,Xb])� (5)

	
X̂ = Linear(X

[
X̃f , Gelu(Xf)⊙ X̃b

]
)� (6)

 where ⊙ represents elementwise matrix multiplication, and Gelu denotes an activation function. Compared to 
the MLP, the TSGFN module utilizes feature map segmentation and elementwise multiplication operations to 
model contextual information through interactions between feature channels. Elementwise multiplication can 
selectively emphasize or suppress feature responses between different channels, enabling the capture of richer 
feature representations.

Loss function
This paper utilizes the difference between the source and predicted images as the signal for supervising model 
training. Therefore, a loss function is designed based on the difference between the two, constraining network 
training through optical reprojection and edge-aware smoothness loss. By utilizing the intrinsic camera function 
K and the predicted pose P between two adjacent views, a reconstruction target image Î  is obtained as a function 
π of the intrinsic function, pose, source image Is and depth Dt. The loss signal Lss is calculated as a function F  
of inputs Î  and I:

	
Lss

(
Î , I

)
= F (π (Is, P,Dt,K) , I)� (7)

The function F  is typically obtained as a weighted sum between the structural similarity item and the intensity 
difference item, calculated as the sum of the pixelwise structural similarity (SSIM) and the L1 loss between Î  
and I:

	
F
(
Î , I

)
=

α

2

(
1− SSIM

(
Î , I

))
+ (1− α)

∥∥∥Î − I
∥∥∥� (8)

where α is typically set to 0.85. The minimum luminance loss is computed to handle out-of-view pixels in the 
source image and occluded objects:

	
L (p) = min

i∈[1,−1]
F
(
Îi(p), I(p)

)
� (9)

Smoothness loss and edge-aware smoothness loss are used to improve the inverse depth map d:

	 Lsmooth = |∂xd∗t | e−|∂xIt| + |∂xd∗t | e−|∂yIt|� (10)

Finally, both the view reconstruction loss Lss and the smoothness loss Lsmooth  are computed from the output at 
each scale S ∈

{
1,12,

1
4

}
 to achieve full resolution and then averaged to train the network as Ltot:

	
Ltot =

1

3

3∑
s=1

(µLss + λLsmooth)� (11)

where Lss ensures the similarity between the generated depth map and the original image by measuring the 
difference between the output result and the original features. Lsmooth  is used to further smooth the image, 
preventing the impact of excessive detail noise and irregularities, thereby improving the signal-to-noise ratio. 
The weights µ, λ ∈[0,1] adjust the balance between the reconstruction loss and the smoothing loss in different 
models. These two types of losses have the same effect on street scene images, so the weight factors are set to 0.5.

Experimental dataset and evaluation metrics
This section evaluates the algorithm’s accuracy on the KITTI dataset19 and its generalizability on the Make 3D 
dataset8 to validate the effectiveness of the proposed method and its generalizability across different scenarios. 
Simultaneously, ablation experiments are conducted on various components proposed in this paper to verify the 
contributions of each module to the overall network.
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Experimental dataset and parameter configurations
The KITTI dataset comprises 61 road scenes for autonomous driving and robotics research, captured using 
devices mounted on vehicles equipped with LiDAR sensors. This paper employs image segmentation as in Eigen 
et al.9 to train and evaluate the proposed method, where there are 39,180 images for training, 4424 for validation, 
and 697 for testing. All images used the same camera intelligence, with the camera principal point set to the 
image centre and the focal length set to the average of all focal lengths in KITTI. During testing, the predicted 
depths are constrained to the range of [0, 80] metres.

The Make 3D dataset is a monocular depth estimation dataset consisting of 534 pairs of RGB-D images, with 
400 pairs used for training and 134 pairs used for testing. Towards the end of this paper, the model trained on 
the KITTI dataset is evaluated on 134 test images to assess the generalizability of the algorithm across various 
outdoor scenes.

The model in this paper is implemented on the PyTorch deep learning platform, utilizing Adam as the model 
optimizer, setting the number of epochs to 30, the batch size to 12, and the input image resolution to 640 × 192. 
The initial learning rate is set to 0.0001, with a 10x decay after the first 15 epochs, and the weight decay is set to 
0.0001. Initializing the network with parameters trained on the ImageNet dataset enables rapid convergence. The 
experiments were conducted on an NVIDIA RTX6000 GPU with 24 GB of memory, and the training lasted for 
18 h, achieving the highest accuracy on the network at the 29th epoch.

Evaluation metrics
The training results on the KITTI dataset are quantitatively analysed using the evaluation metrics proposed by 
Eigen et al.9 to validate the effectiveness of the model proposed in this paper. The primary accuracy metrics are 
as follows:

Absolute relative error:

	
AbsRel =

1

N

∑
y∈N

|y − y∗|
y∗ � (12)

Squared relative error:

	
SqRel =

1

N

∑
y∈N

(y − y∗)2

y∗ � (13)

Root mean square error:

	
RMSE =

√
1

N

∑
y∈N

(y − y∗)2� (14)

Log root mean square error:

	
RMSElog =

√
1

N

∑
y∈N

(log y − log y∗)2� (15)

where y represents the depth predicted by the depth network, y∗ represents the ground-truth depth, and N 
denotes the total number of pixels with available ground-truth depth.

Experimental results and comparative analysis
Experimental results on the KITTI dataset
The model is evaluated on the KITTI dataset and compared with mainstream algorithms to validate the 
effectiveness of the algorithm proposed in this paper. The comparative experimental results are shown in Table 1. 
The first four metrics are errors, the middle three metrics indicate the model accuracy at different thresholds, 
and the last metric represents the model parameter count, which is one of the indicators for evaluating how 
lightweight the model is.

Comparing the algorithms in Table 1, it is evident that the algorithm proposed in this paper has the least 
parameter count (3.0 M). Compared to Monodepth2 with a ResNet-18 backbone, the RMSE decreases by 7%, 
the accuracy improves by 16% on the < 1.25 metric, and the parameter count decreases by 79%. Compared to 
the lightweight FastDepth network, which has a faster inference speed, the proposed algorithm performs better 
across all the metrics. Compared to recent lightweight networks such as R-MSFM6, Lite-HR-Depth, and Lite-
Mono, the proposed algorithm falls only slightly behind Lite-Mono in the Sq Rel error metric but outperforms 
in accuracy and other error metrics. Compared to the latest MonoFormer, the proposed algorithm performs 
better in all the metrics except for Abs Rel while reducing the model parameter count by 87%. In summary, the 
algorithm proposed in this paper can control the model parameter count within a low range while ensuring 
network accuracy without producing significantly greater errors.

Several lightweight algorithms are subjected to visual analysis to evaluate the advantages of the algorithm 
proposed in this paper. Figure 4 illustrates the visualization results on the KITTI dataset, showing the clearer 
boundary information extraction capability of the proposed algorithm compared to other lightweight networks. 
In the fourth experiment group, Monodepth2 exhibits blurred boundary extraction for road signs, failing to define 
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their boundaries clearly, whereas our algorithm is able to extract the boundaries of road signs more accurately, 
showing superior boundary clarity. In the fifth experiment group, other algorithms failed to identify distant 
signs, while the proposed algorithm identified both signs relatively well, demonstrating better performance in 
recognizing distant objects with higher accuracy. Moreover, in the sixth experiment group, other algorithms 
confused the boundary information of the ground landmarks, while the proposed algorithm provided more 
accurate boundary information for each separately. This is attributed to the ability of the proposed algorithm 
to capture both local geometry and global semantic information in the environment through the local-global 
transposed transformer module, controlling the flow of effective information. This experiment demonstrates 
that the proposed algorithm can provide more accurate depth information for small but important objects in 
autonomous driving scenarios, such as signs, traffic lights, and barriers, thus exhibiting superior monocular 
depth estimation performance with significant implications for autonomous driving and related areas.

Generalization validation results on the make 3D dataset
In this paper, generalization experiments are conducted on the Make 3D dataset to evaluate the ability of the 
model to generalize to different real-world scenarios. Initially trained on the KITTI dataset using input images 
with a resolution of, the model is directly evaluated on the Make 3D dataset without any modifications following 
the evaluation method provided in Monodepth2. Figure 5 presents the visualization results of various algorithms 
on the Make 3D dataset. Despite no further training on this dataset, the proposed algorithm maintains relatively 
accurate depth extraction precision, with good detail features observed at the boundaries of some objects. Table 2 
compares the generalization results between the proposed algorithm and other depth estimation algorithms. 
The experimental results indicate that compared to Monodepth2, the proposed algorithm achieves a decrease 
of 0.5 in RMSE and a decrease of 0.295 compared to R-MSFM6. Additionally, the proposed algorithm exhibits 
the lowest errors across all other error metrics. A quantitative and qualitative analysis of experimental results 
shows that the proposed algorithm can perform well on different outdoor datasets, demonstrating its strong 
generalizability.

Model complexity evaluation
In this paper, experiments were conducted on a Raspberry Pi 3 Model B, an edge device Syncbotic SBC-T800, 
and an Nvidia Titan X. The test images used were from the KITTI dataset with a resolution of 640 × 192. The 

Fig. 4.  Visualization results on the KITTI dataset.

 

Methods Abs Rel Sq Rel RMSE RMSE log δ< 1.25 δ< 1.252 δ< 1.253 Params

GoNet[20] 0.149 1.060 5.567 0.226 0.796 0.935 0.975 31.6 M

DDVO[21] 0.151 1.257 5.583 0.228 0.810 0.936 0.974 28.1 M

Monodepth[11] 0.148 1.344 5.927 0.247 0.803 0.922 0.964 20.2 M

Monodepth2[12] 0.115 0.903 4.863 0.193 0.877 0.959 0.981 14.3 M

FastDepth[15] 0.150 0.890 5.321 0.207 0.808 0.945 0.981 3.96 M

R-MSFM6[22] 0.112 0.806 4.704 0.191 0.878 0.960 0.981 3.5 M

Lite-HR-Depth[23] 0.116 0.845 4.841 0.190 0.866 0.957 0.982 3.1 M

MonoFormer[24] 0.104 0.846 4.580 0.183 0.891 0.962 0.982 23.9 M+

Lite-Mono[25] 0.107 0.765 4.561 0.183 0.886 0.963 0.983 3.1 M

Ours 0.105 0.810 4.506 0.183 0.891 0.963 0.983 3.0 M

Table 1.  Depth accuracy and error of different methods on the KITTI dataset. Significant values are in bold.
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model speed and complexity were evaluated based on parameters, frames per second (FPS), and floating point 
operations (FLOPs). Figure 6 illustrates the inference speed of different algorithms on three different devices. 
The algorithms positioned towards the top-right corner exhibit higher efficiency and accuracy, highlighting 
the advantages of the proposed algorithm. None of the algorithms achieved real-time depth estimation due 
to the lower configuration and absence of GPU deployment on the Raspberry Pi 3 Model B. However, when 
deployed on the edge device SBC-T800 without a GPU, the proposed algorithm achieved real-time performance. 
Furthermore, it maintained high inference speed on more advanced GPUs while demonstrating good 
performance in terms of estimation accuracy and error metrics.

Table  3 presents the quantitative analysis results of the complexity and inference speed of the proposed 
algorithm compared to those of other algorithms. The proposed algorithm significantly outperforms FastDepth, 
which is based on a lightweight CNN architecture and exhibits higher real-time performance, in depth estimation 
accuracy and RMSE metrics. While FastDepth achieves higher real-time performance through pruning, the 
proposed algorithm maintains superior accuracy. Monodepth2 and the proposed algorithm share similar 
real-time performance; however, Monodepth2 has twice the number of FLOPs and 5.1 times the number of 
parameters of the proposed algorithm, indicating higher model complexity. Despite its smaller parameter count, 
R-MSFM6 has the slowest inference speed in all experiments, lacking real-time performance, especially on edge 
devices. Compared to Lite-Mono, which shares a similar CNN-Transformer fusion architecture, the proposed 
algorithm achieves fewer parameters through depth-separable convolutions and exhibits higher accuracy and 
stronger inference capabilities by improving the transformer component.

In summary, the proposed algorithm achieves high accuracy while maintaining lower model complexity and 
faster inference speed. It is deployable on edge devices and meets real-time requirements.

Ablation experiments
Ablation experiments were conducted on each module proposed in this paper to understand better the effect of 
the proposed modules on network performance. All experiments were conducted on the KITTI dataset, with the 
image resolution set to 640 × 192. The experimental results are shown in Table 4.

Depth-separable convolution: In this paper, depth-separable convolutions are employed in the encoding 
layers to extract features. In the ablation experiment, the dilation rate was set to 1, and the subsequent pointwise 
convolution was removed to convert it into a regular convolution. The visualized result for Model A is shown in 
Fig. 7. The network parameter count decreased by 0.165 M, and the inference speed of the model decreased by 
3 FPS. This ablation experiment resulted in the largest decrease in accuracy. The reason lies in the significance 
of the ACR module in expanding the receptive field of shallow networks, which is crucial for improving local 

Methods Abs Rel Sq Rel RMSE RMSE log

Monodepth 0.544 10.94 11.760 0.193

Monodepth2 0.322 3.589 7.417 0.163

R-MSFM6 0.334 3.285 7.212 0.169

Lite-Mono 0.305 3.060 6.981 0.158

Ours 0.295 3.042 6.917 0.150

Table 2.  Evaluation results on the make 3D dataset. Significant values are in bold.

 

Fig. 5.  Visualization results on the make 3D dataset.
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feature extraction. Image features cannot be effectively extracted by relying only on shallow CNNs, leading to a 
decrease in model accuracy.

Transformer Module: In the ablation experiment results, when the transformer module was removed, the 
model’s parameter count decreased by 0.206 M, and the inference speed increased by 5 FPS. However, model 
accuracy significantly decreased. Additionally, the model’s ability to extract object boundaries also decreased, 
as shown in Model B in Fig. 7. The LGTF module provides global context information interaction for the entire 
network, improving the inherent locality of feature extraction in CNN networks. When removed, the model 
relies solely on shallow networks for global information extraction, which has limitations in capturing global 
information, leading to a decrease in model accuracy.

TSGFN Module: To further verify the role of the two-step gated feedforward network module in the 
transformer, an ablation experiment was conducted by replacing this module with a MLP feedforward neural 
network. After the replacement, the parameter count and inference speed remained largely unchanged; however, 
there was a slight decrease in model accuracy. This module in the transformer controls the feature responses 
between different channels, selectively emphasizing or suppressing image features. When this part of the 

Model Dconv LGTF TSGFN Abs Rel Sq Rel RMSE δ < 1.25 Params (M) FPS

Ours √ √ √ 0.105 0.810 4.506 0.891 3.041 87.71

A × √ √ 0.112 0.873 4.704 0.879 2.876 84.59

B √ × √ 0.114 0.853 4.856 0.882 2.835 97.36

C √ √ × 0.112 0.842 4.783 0.883 2.990 78.25

Table 4.  Ablation experiment results. Significant values are in bold.

 

Methods Params (M) FLOPs (G) RMSE δ< 1.25

FPS

Raspberry Pi SBC-T800 Titan X FPS

FastDepth 3.96 3.6 5.321 0.808 11.39 57.68 116.20

Monodepth2 14.3 8.3 5.927 0.877 9.96 47.16 90.37

R-MSFM6 3.8 31.2 4.704 0.876 5.87 19.87 43.84

Lite-Mono 3.1 5.1 4.561 0.886 7.66 35.45 67.92

Ours 3.0 4.6 4.506 0.891 8.79 40.95 87.71

Table 3.  Model complexity and speed evaluation of different methods. Significant values are in bold.

 

Fig. 6.  The running speed of algorithms on different devices.
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module is replaced, the flow of information in the network is not affected by the gating mechanism, leading to 
uncontrolled noise information in the network, resulting in increased model error.

Conclusion
The inference speed and estimation accuracy of monocular depth estimation networks are crucial metrics for 
evaluating algorithms. However, there must be a balance between inference speed and estimation accuracy. 
A lightweight self-supervised monocular depth estimation method is proposed by integrating an improved 
transformer to address the issues of large model parameters and low computational efficiency in existing 
monocular depth estimation networks. This paper validates the effectiveness of the proposed method on two 
outdoor datasets, namely, the KITTI and Make 3D datasets, and conducts model complexity and real-time 
verification on three types of devices. The experimental results demonstrate that the proposed method has a 
model parameter count of only 3.0 M. On the KITTI dataset, it achieves an accuracy of 89.1% on the < 1.25 
metric and performs optimally on the Make 3D dataset, indicating good generalizability. Visualization results 
from both datasets illustrate the ability of the network to effectively extract boundary information of objects 
such as signs and obstacles in the scene. With an inference speed of 87 FPS on the Nvidia Titan X, real-world 
experiments on edge devices confirm that the proposed algorithm can be deployed on edge devices, meeting real-
time requirements. Compared to other lightweight networks, this proposed network achieves a better balance 
between accuracy and network inference speed. Through experiments, it was demonstrated that the proposed 
algorithm can maintain high accuracy while improving computational efficiency, realizing a lightweight self-
supervised monocular depth estimation approach.

Data availability
The datasets analysed during the current study are available in the KITTI dataset and Make 3D dataset, [https://
www.cvlibs.net/datasets/kitti] [http://make3d.cs.cornell.edu/data.html].
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