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Diabetes mellitus and metabolic syndrome are closely linked with visceral body composition, but
clinical assessment is limited to external measurements and laboratory values including hemoglobin
Alc (HbAlc). Modern deep learning and Al algorithms allow automated extraction of biomarkers for
organ size, density, and body composition from routine computed tomography (CT) exams. Comparing
visceral CT biomarkers across groups with differing glycemic control revealed significant, progressive
CT biomarker changes with increasing HbAlc. For example, in the unenhanced female cohort, mean
changes between normal and poorly-controlled diabetes showed: 53% increase in visceral adipose
tissue area, 22% increase in kidney volume, 24% increase in liver volume, 6% decrease in liver density
(hepatic steatosis), 16% increase in skeletal muscle area, and 21% decrease in skeletal muscle density
(myosteatosis) (all p < 0.001). The multisystem changes of metabolic syndrome can be objectively and
retrospectively measured using automated CT biomarkers, with implications for diabetes, metabolic
syndrome, and GLP-1 agonists.

Metabolic syndrome, also known as insulin resistance syndrome, affects an increasing proportion of the
population, including more than 1 in 3 adults in the United States'. Metabolic syndrome is a multisystem
condition that increases the risk for many serious health conditions including heart disease, diabetes mellitus,
pregnancy complications, and immune system disorders?>. There are several definitions of metabolic syndrome
with small variations in diagnostic criteria, but an association with body composition is a consistent major
diagnostic criterion based on external anthropometric proxy measurements such as waist circumference, waist/
hip ratio, or body mass index (BMI) which are not direct measurements of body composition’*. Additional
major diagnostic criteria include insulin resistance, hypertension, and hypertriglyceridemia. The World Health
Organization definition included microalbuminuria as a separate criterion, requiring urinalysis and implicitly
adding renal dysfunction to the major criteria®. Of note, although measurements of visceral and ectopic fat
depots (e.g., hepatic steatosis and myosteatosis) are highly relevant to metabolic syndrome, they are not included
in current diagnostic criteria but can be assessed at cross-sectional imaging®.

The clinical biomarkers of metabolic syndrome are widely available through external measurements or
routine laboratory studies. Insulin resistance is typically assessed with impaired fasting glucose or impaired
glucose tolerance, but once patients are diagnosed with diabetes mellitus, they are typically followed by the
measurement of glycosylated serum hemoglobin or Hemoglobin Alc (HbAlc). HbAlc is a commonly available
serum laboratory test that monitors the proportion of glycosylated hemoglobin carried by red blood cells (RBCs).
The constant turnover in red blood cells makes HbAlc a moving average of glycemic control over the last 2-3
months, and is used as a recommended primary efficacy endpoint for clinical trials in diabetes mellitus type
27. This focus on routine and commonly available external and serum values is due in part to their convenience
and accessibility. Historical studies regarding multisystem biomarkers in diabetes mellitus such as organ size,
organ composition, fat composition, or sarcopenia are limited in their power due to practicality and cost. This
information was studied in limited fashion using physical exam, ultrasound, dual-energy x-ray absorptiometry
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(DXA), or cadavers, with links suggested between the diagnosis of diabetes mellitus type 2 or glycemic control
and multisystem changes from increased kidney size to changes in adipose tissue distribution®~!°. However, the
scientific understanding of the overall multisystem effects of metabolic syndrome on the human body remains
limited as these initiatives have been challenged by statistical power and, to date, prior work has been narrowly
focused on individual systems or biomarkers.

Recent advancements in computer science and the technical capabilities of computational hardware have
enabled and rapidly advanced the fields of deep learning and AI, unlocking the potential of algorithmic
assistance in medical image segmentation and analysis'®. These new capabilities supplement onerous and error-
prone human effort with computational time and make possible routine extraction of biomarkers from medical
imaging exams!”!%. Abdominal computed tomography (CT) exams are an ideal candidate for this work, as they
represent cross-sectional volumetric 3-dimensional images of the human body with consistent data values of
X-ray attenuation/density in Hounsfield units (HU)!3-2!. The biomarkers that can be derived from CT exams
have been shown to be understandable, explainable, and reproduciblelg. Several biomarkers obtainable from
abdominopelvic CT exams have clear relevance to metabolic syndrome, including the size and density of visceral
adipose tissue, skeletal muscle, liver, and kidneys. These have been studied in the setting of the diagnosis of
diabetes mellitus type 2!, but potential changes with varying glycemic control are not yet established.

This study compares imaging biomarkers extracted from CT exams with glycemic control as measured by
HbA1lc levels.

Results

The final study cohort included 10,365 adult subjects with available HbAlclab values (4932 females, 5433 males)
within threshold from the date of their CT exam. The median time between the CT and HbA1c measurements
was 3.5 months. The age distribution was nearly normal with mean(+ SD) of 59.3 + 14.4 years. Initially, the range
from 45 to 75 was considered to approximate the middle standard deviation. However, to avoid confounding
effects from coexisting conditions and age-related atrophy, the analyzed cohort age range was decreased by 5
years to an age range of 40-69 years inclusive. The sub-cohorts were female CT without contrast (n=1984),
female CT with contrast (n =2948), male CT without contrast (n=2595), and male CT with contrast (n=2838).
The female CT without contrast cohort will be primarily used for example purposes.

Seven biomarkers of statistical and physiologic interest, as well as the internal control of L1 trabecular density
are shown in Table 1. The null hypothesis was accepted for L1 trabecular density, which lacked variance with Hb
Alc across all sub-groups. The other biomarkers did show significant changes with glycemic control.

Visceral adipose tissue area increased with HbAlc (Fig. 1), a strongly significant relationship, with all
Kruskal-Wallis ANOVA tests and Spearman’s rank correlation coefficients p <0.001. The median VAT area
between the normal and poorly-controlled diabetic female non-contrast CT cohorts increased by 53% (156 cm?
vs. 239 cm?). Pairwise comparisons between groups with differing glycemic control using Dunn’s test revealed
highly significant (p < 0.001) differences for all categories save between the diabetic and poorly-controlled groups,
which were not significant. The pattern was a stepwise increase in VAT area with HbA1c until the diabetic range,
then no further significant change from the diabetic to the poorly-controlled range. These findings were similar
regardless of patient sex or the presence of intravenous contrast, with all subgroups shown in Fig. 1.

Kidney volume increased with HbAlc (Fig. 2), with all Kruskal-Wallis ANOVA tests and Spearman’s rank
correlation coefficients p < 0.001. This was a monotonic increase with all subgroups highly significant for females
with contrast-enhanced CT exams (p <0.001 throughout), and while a similar pattern emerged for all other
groups, not all pairwise tests were significant. The median kidney volume between the normal and poorly-
controlled diabetic female non-contrast CT cohorts increased by 22% (329 mL vs. 400 mL). Similarly, liver
volume overall increased with HbAlc (Fig. 3), with all Kruskal-Wallis ANOVA tests and Spearman’s rank
correlation coefficients p < 0.001. There were significant monotonic increases between all subgroups for females
with contrast enhanced CT exams. For the other subgroups there was no significant difference between the non-
diabetic and prediabetic groups with Dunn’ test, but a significant breakpoint was observed with increased liver
volume between the pre-diabetic and diabetic HbAlc ranges. The median liver volume between the normal and
poorly-controlled diabetic female non-contrast CT cohorts increased by 24% (1650 mL vs. 2050 mL).

Liver density decreased with increasing HbA1c (Fig. 4), with all Kruskal-Wallis ANOVA tests and Spearman’s
rank correlation coefficients p < 0.001. The statistically significant trend is decreased liver density with increasing
HbAlc across sex and regardless of intravenous contrast, though not all pairwise Dunn’s subgroup tests
individually achieved significance. The pattern is best observed in the contrast-enhanced female subgroup.
The median liver density between the normal and poorly-controlled diabetic female non-contrast CT cohorts
decreased by 6% (52.7 HU vs. 49.5 HU).

Skeletal muscle area at the L3 vertebral body level increased with HbAlc (Fig. 5), with all Kruskal-Wallis
ANOVA tests and Spearman’s rank correlation coefficients p <0.001. However, not all individual subgroups
were significant with Dunn’s test. For all groups, this effect appears to plateau at the diabetic level of glycemic
control, with the muscle area in poorly controlled diabetes not statistically higher than in the diabetic group. The
median skeletal muscle area between the normal and poorly-controlled diabetic female non-contrast CT cohorts
increased by 16% (134.4 cm? vs. 156.4 cm?).

Skeletal muscle density at the L3 vertebral body level decreased with increasing HbAlc (Fig. 6), with all
Kruskal-Wallis ANOVA tests p <0.003. All the Spearman’s rank correlation coeflicients were highly significant
(p<0.001). While not all individual subgroups significantly differed by Dunn’s test, the trend was decreased
muscular density with increasing HbA I¢, reflecting increased myosteatosis. This was best observed in the female
contrast-enhanced cohort. The median skeletal muscle density between the normal and poorly-controlled
diabetic female non-contrast CT cohorts decreased by 21% (21.3 HU vs. 16.8 HU).
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Fig. 1. Distributions and statistical analysis of visceral adipose tissue (VAT) area at the L3 level between
groups. For this and all similar figures, women are the top row and men the bottom; CT without IV contrast
in the left column and CT with IV contrast in the right column. Box and whisker plots show the median,
interquartile range, and the whiskers extend to the 5th and 95th percentile. All four subplots are shown on a
consistent Y axis range. Statistically significant findings from the Kruskal-Wallis test are indicated with red
font. Except as otherwise noted, all distributions are highly significantly different (p <0.001). The pattern of
significantly increasing VAT with increasing HbAIc to the diabetic category is consistent.
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Fig. 2. Distributions and statistical analysis of segmented kidney volume in cubic centimeters (=mL) between
groups. Except as otherwise noted, all distributions are highly significantly different (p <0.001). The overall
pattern is increasing kidney volume with increasing HbAlc group. From a statistical standpoint this does not
plateau above the diabetic range in all groups and continues to significantly increase in the CT exam groups
with contrast. While there is a statistical plateau in the unenhanced CT groups, the median does continue to
increase but the range broadens slightly.
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Fig. 3. Distributions and statistical analysis of segmented liver volume in cubic centimeters between groups.
The pattern is increasing liver volume with increasing HbA1lc. Except as otherwise noted, all distributions

are highly significantly different (p <0.001). In all groups there is a highly statistically significant difference
between normal and prediabetic groups versus diabetic and poorly controlled diabetic levels of glycemic
control. Only in women with contrast-enhanced CT exams was there also a significant increase in liver
volume comparing normal to pre-diabetic groups. Only in men with contrast-enhanced CT exams was there a
significant increase in liver volume from the diabetic to poorly- controlled diabetic range.
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Fig. 4. Distributions and statistical analysis of the median segmented liver density in Hounsfield Units
between groups. Except as otherwise noted, all distributions are highly significantly different (p <0.001).
The overall trend is decreasing density of the liver, which is likely due to increasing hepatic steatosis. This is

statistically clearer on CT exams with intravenous contrast, owing in part to the decreased enhancement of
steatotic livers.
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Fig. 5. Distributions and statistical analysis of the muscle area in square centimeters at the representative slice
from the L3 vertebral level between groups. Except as otherwise noted, all distributions are highly significantly
different (p <0.001). The overall trend is increasing muscle area, though not all individual subgroups are
significant. In all groups this appears to plateau at the diabetic level of glycemic control, with the muscle area in
poorly controlled diabetes not statistically higher than in the diabetic group.
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Fig. 6. Distributions and statistical analysis of the median segmented muscle density in Hounsfield Units

from the L3 vertebral level between groups. The trend is decreased muscular density with increasing Hb Alc,

reflecting increased myosteatosis.

Discussion

With the exception of BMD, all other analyzed CT body composition biomarkers demonstrated statistically
significant changes in at least one analyzed sub-cohort from normal to prediabetic Hb Alc ranges, as well as
from the prediabetic to diabetic Hb Alc range. The L1 vertebral body trabecular density did not vary with
glycemic control, accepting the null hypothesis (Table 1, also Supplementary Fig. 1), and effectively acting as a
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control variable. Thus, macroscopic physiologic changes of metabolic syndrome observable with CT biomarkers
appear to begin in the pre-diabetic phase.

We observed a significant trend of increasing CT biomarkers for measures of body composition bulk or
amount, including visceral adipose tissue (VAT) area, kidney volume, liver volume, and muscle area, with
increasing HbAlc (Figs. 1, 2, 3 and 5). Across all groups, the biomarker changes were generally stepwise with
increasing HbAlc from normal to pre-diabetic to the diabetic range. However, in at least one sub-cohort, of all
seven biomarkers that statistically significantly varied with HbAlc, the biomarker did not significantly change
further when comparing the diabetic and poorly controlled diabetic groups. This could be due to the physiologic
changes plateauing, biomarker variability from more labile glycemic control in the poorly-controlled group,
or perhaps some changes require additional time. As one example, chronic poorly-controlled diabetic patients
with renal involvement frequently develop renal atrophy, which would increase the data variance in the higher
HbA1lc categories.

The pattern of significantly increasing VAT area with increasing HbAlc from the normal range to the
diabetic category is consistent, and within expectations. However, in all groups, the VAT area plateaus in the
diabetic category and does not significantly differ in patients in the poorly controlled category. The related
biomarker ratio of VAT to SAT area related to glycemic control revealed sex-dependent changes in adipose tissue
distribution, discussed in the Supplement. We observe a less strong but significant decrease in liver attenuation
with increasing HbAlc, compatible with hepatic steatosis, also consistent with prior work??. The differences in
liver density between groups were more accentuated after IV contrast as steatotic livers enhance less, in addition
to starting at a lower HU level?. The ratio of VAT to SAT area related to glycemic control was sex dependent,
explored further in the Supplement and illustrated on Supplementary Fig. 2.

We observe increased muscle area but decreased muscle density with increasing HbAlc, suggesting
increased myosteatosis?!. The best analogous prior study to this one compared hepatic steatosis to non-
alcoholic steatohepatitis and agrees with our findings, observing that intermuscular adipose tissue (IMAT) as
approximated by paraspinal CT muscle density at L3 level decreased as liver disease worsened?!. This is further
supported by empiric work with pathologic confirmation showing impaired lipolysis in both adipose tissue
and skeletal muscle in the setting of diabetes mellitus and obesity?”, also in agreement with recently proposed
physiologic mechanisms underlying insulin resistance and ectopic lipid accumulation?®. However, the increased
muscle area we observe differs from some prior works, predominately using DXA to measure skeletal muscle in
various body regions, which reported decreased skeletal muscle with poor glycemic control as an indicator for
high cardiometabolic risk?”-?. The divergence observed could be due to differences in technique, with partial
volume averaging of increased IMAT decreasing the density seen by DXA, or differences in normalization.

We observe increased renal size with increasing HbAlc. This is concordant with complimentary literature,
with the mechanism believed to be compensatory increased glomerular filtration as the kidneys excrete glucose.
Eventually this compensatory effect fails, leading patients with chronic poor glycemic control to end-stage
renal disease (ESRD) and renal atrophy. These atrophic changes may underlie the larger observed renal volume
variance in the poorly controlled cohort.

The indications and thus populations of patients receiving contrast-enhanced CT exams versus unenhanced
CT exams likely differ somewhat. To some degree, patients with unenhanced CT exams are more likely to have
contrast deferred due to chronic kidney disease, which is associated with longstanding diabetes mellitus and
poor glycemic control. We suspect this may account for the widened distribution of kidney volumes seen in the
unenhanced CT groups for both women and men in the poorly controlled category shown in Fig. 2.

Additional limitations of this retrospective study include expected enrichment in patients with or with
suspected metabolic syndrome. Although results for the Kruskal-Wallis and Spearman’s rests were generally
highly statistically significant, the effect sizes were generally small or medium, limiting the interpretation in
individual subjects. Due to retrospective analysis, our cohort is predicated on HbAlc laboratory orders from
routine clinical practice. This allows norms to be established for different ranges of glycemic control, but we
recognize this does not reflect the general population and may limit generalizability. Another limitation is
related to the timing of the HbAlc measurement relative to the analyzed CT exam, which was a median of
3.5 months. This is reasonable for most patients, but in the setting of labile or poor glycemic control a tighter
relationship between CT scan time and HbAlc may be beneficial. These limitations could be addressed in the
future with prospective or multi-center studies. Additionally, all exams in this cohort are from unique patients.
While this was a deliberate choice, future work analyzing pairwise changes in biomarkers from the same patients
at different times with differing levels of glycemic control would be illustrative to confirm these relationships
and explore if they are reversible. The present work also does not attempt to account for the length of time since
diabetic diagnosis, historic glycemic control, or treatment.

The use of HbAlc as our serum biomarker introduces limitations due to lab variability or false elevation in
certain settings such as iron-deficiency or sickle-cell anemia, renal or liver failure, sickle-cell anemia, or recent
transfusion. As shown in Fig. 7, the glycemic control distribution in our cohort is non-parametric. This is to be
expected, with the skewed peak in the well-managed range. However, the tail extends sufficiently into the higher
HbA Ic range for statistically useful comparison groups.

In summary, this work represents the largest cohort analysis to date demonstrating the multisystemic
physiologic effects of diabetes mellitus and metabolic syndrome at differing levels of glycemic control. Through
a suite of quantitative imaging body composition biomarkers extracted from CT exams, we show the effects of
metabolic syndrome largely begin in pre-diabetes and continue into the diabetic range as measured by HbAlc.
We confirm several imaging trends with high statistical power and further support the importance of inter- and
intra-muscular adipose tissue as a biomarker in metabolic syndrome, which CT is ideal to measure. This and
future related work offer the potential to augment and improve the definition and measurement of metabolic
syndrome. All of these imaging biomarkers may be repurposed opportunistically from abdominal CT scans
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Fig. 7. Histogram of the nearest Hb Alc value to CT scan in our cohort of over 10,000 adults, color coded by

the four categories named “Normal” (1 =1984), “Pre-Diabetes” (n=2948), “Diabetes” (n=2595), and “Poorly
Controlled” (n=2838). The distribution has an expected peak near the upper limit of normal and pre-diabetic
range, reflecting the pre-test probability for ordering Hb Alc in routine practice.

performed for any indication, adding value through understanding the physiologic effects of metabolic syndrome
and glycemic control, potentially predicting which patients scanned for other reasons would benefit from
biochemical evaluation and endocrinology referral, and providing insights into the physiology of new therapies
such as glucagon-like peptide 1 (GLP-1) agonists and sodium glucose cotransporter 2 (SGLT-2) inhibitors*>*".

Methods

This consecutive patient series represents a retrospective study which was HIPAA-compliant, approved by the
Institutional Review Board at the University of Wisconsin-Madison, and was carried out in accordance with
relevant guidelines and regulations. Informed consent was waived for this minimal risk retrospective study.
Inclusion criteria required adults aged 18 or older with an available abdominal CT exam (without or with
intravenous contrast in the portal venous phase) and a HbAlc lab draw within 2 years of the CT exam. Patients
were divided into four categories of glycemic control according to the closest HbAlc measurement to the time
of their CT exam, defined as: normal: <5.7%; pre-diabetes: 5.7-6.4%; diabetes: 6.5-8.9%; and poorly controlled
diabetes: >9.0%. For patients where more than one CT was available meeting these criteria, the earliest was
included; every CT exam thus represents a unique patient. The proportion of our dataset in each glycemic
category is illustrated in Fig. 7. Women and men were analyzed separately, and within these groups unenhanced
and contrast-enhanced CT scans were also separately analyzed.

Abdominal CT biomarkers were extracted from these exams using a validated pipeline of fully-automated
algorithms using methodology previously described?®?!. Patient examples of the CT segmentations for each
glycemic control group are illustrated in Fig. 8. The individual CT biomarker tools were previously developed
and validated on separate cohorts, with subsequent improvements in algorithm performance and efficiency
(see supplementary methods). Biomarkers from a standardized 2D slice at the L3 vertebral level were utilized
for visceral adipose tissue (VAT) area, superficial adipose tissue (SAT) area, skeletal muscle (SM) area, and SM
density (in HU). The L1 vertebral body was utilized for trabecular bone mineral density (BMD). Volumetric
biomarkers included 3D segmentations of the liver and kidneys, which allowed calculation of the organ volumes
and median density (in HU).

All CT biomarker measurements were adjusted for age to the mean cohort age of 55 years. The adjusted
biomarker results for each HbA1lc group were then compared using the non-parametric Kruskal-Wallis ANOVA
test with post-test pairwise comparisons performed with Dunn’s test. Multiple comparisons were accounted for
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Fig. 8. Representative images illustrating the AI algorithm segmentation and body composition extraction
from routine CT exams. For this figure, contrast-enhanced CTs of female patients from each HbAlc category
were selected (rows) and segmented axial images with color overlay from the L1 level (left column), L3 level
(middle column), and maximum intensity projection (MIP) images in coronal projection (right column) are
shown. Color code: Blue is superficial fat, yellow is visceral fat, red is skeletal muscle, brown is liver, orange is
spleen, and green is vertebral trabecular region. Progressive changes related to visceral fat and liver volume are
most visually apparent from this composite figure.
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using the Holm-Sid4k stepwise adjustment with an overall significance level of a° = 0.053!. Overall trends of
individual HbAlc levels with adjusted biomarker results were assessed using the non-parametric Spearman’s
rank correlation coefficient with p <0.05 considered statistically significant.

Data availability

Access to limited or deidentified data sets may be obtained after receipt of institutional review board approval
and enactment of Data Use Agreements to ensure protection of patient data. Please direct requests to the corre-
sponding author.
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