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Cervical cancer begins in the cells lining the cervix and is caused by persistent infection with certain 
types of human papillomavirus (HPV). Initially, it has no symptoms, and later it causes pelvic pain, 
abnormal vaginal bleeding, and pain during intercourse. It is the fourth-ranked cancer among women, 
and many women die from cervical cancer every year, particularly in low-income countries and the 
majority could be prevented with early detection and treatment. In this study, we have taken Cervical 
Cancer DNA Replication and Repair-Related Protein with the PDBID- 3H15, 5VBN, and 6NT9 and 
performed the multitargeted molecular docking with the FDA-approved drug library using HTVS, SP 
and XP docking. Then, the poses were filtered with MM\GBSA for proper computations of free energy, 
identified a multitargeted inhibitor Droxidopa with docking and MM\GBSA scores ranging from − 5.559 
to − 6.835 Kcal/mol and − 26.04 to − 37.33 Kcal/mol, respectively. We also performed interaction 
fingerprints revealing 2VAL, 2LYS, 1ALA, 1ARG, 1ASN, 1CYS, 1GLN, 1GLU, 1ILE, 1MET, 1PHE, 1PRO, 
1SER, and 1THR were most interacted residues and computed the ADMET properties with QikProp 
and DFT with Jaguar, which supported the study and compounds’ suitability. Moreover, we performed 
the 100ns MD simulation in water, showing the controlled deviation and fluctuations of the residues 
with many interactions, and MM\GBSA was performed with the same trajectories, showing a better 
understanding of each frame’s total complex and binding-free energy. The whole study favours 
droxidopa as an inhibitor of cervical cancer DNA Replication and Repair-Related Proteins—however, 
experimental studies are needed before use.
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Cervical cancer stands as a formidable challenge to global public health, particularly impacting women in 
both developed and developing nations. Despite advancements in medical science and technology, it remains a 
leading cause of cancer-related morbidity and mortality among women worldwide1,2. Cervical cancer embodies a 
complex disease paradigm that necessitates multifaceted approaches for effective prevention, early detection, and 
treatment, as it is rooted in the intricate interplay of biological, social, economic, and environmental factors3–6. 
Throughout history, cervical cancer has left an indelible mark on societies, shaping medical practices, public 
health policies, and socio-cultural narratives surrounding women’s health. From the pioneering work of George 
Papanicolaou in developing the Pap smear to the advent of HPV vaccines, the fight against cervical cancer has 
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witnessed significant milestones that have revolutionised prevention and management approaches7,8. However, 
challenges persist, particularly in resource-limited settings where access to screening, vaccination, and treatment 
remains a pressing concern. By unpacking the molecular mechanisms driving cervical carcinogenesis and the 
evolving landscape of therapeutic interventions, we can provide clinicians, researchers, policymakers, and 
stakeholders with a nuanced understanding of the disease spectrum and avenues for collaborative action6,9–12. 
From HPV vaccination initiatives targeting adolescents to comprehensive screening programs for early detection 
of precancerous lesions, preventive interventions hold the key to reducing the burden of cervical cancer on 
global health systems and improving women’s health outcomes. Although multiple treatment options, including 
preventive vaccines, are available, it remains a formidable challenge that demands concerted efforts from the 
scientific community, healthcare providers, policymakers, and society13. By advancing our understanding of 
its complex aetiology, clinical manifestations, and preventive measures, we can pave the way for a future where 
cervical cancer ceases to be a threat to women’s health14–16.

In cervical cancer, the role of proteins such as Replication Initiation Factor MCM10, DNA Polymerase 
Epsilon, and the TANK-binding kinase 1 (TBK1) is pivotal in understanding the underlying molecular 
mechanisms driving tumorigenesis17–19. MCM10, a key regulator of DNA replication, orchestrates the assembly 
and activation of the MCM complex, essential for DNA unwinding and initiation of replication forks, and 
dysregulation can lead to aberrant DNA replication, genomic instability, and tumorigenesis. Similarly, DNA 
Polymerase Epsilon, a critical enzyme involved in DNA synthesis and repair, ensures faithful replication 
of genomic DNA. However, perturbations in DNA polymerase epsilon activity or expression can result in 
replication stress, accumulation of DNA damage, and genomic instability, fostering the development of 
cervical cancer17–19. Furthermore, TBK1 is a crucial component of innate immune signalling, mediating the 
response to cytosolic DNA or RNA sensing, and dysregulated TBK1 signalling in cervical cancer can promote 
immune evasion, inflammation, and tumour progression, highlighting its significance in disease pathogenesis. 
These proteins also share pathways intersecting various cellular processes in cervical cancer development 
and progression. For instance, MCM10 and DNA Polymerase Epsilon are integral components of the DNA 
replication machinery, intersecting with cell cycle regulation, DNA repair, and apoptosis. Dysregulation of these 
pathways can disrupt genomic integrity, accumulating mutations and oncogenic transformations characteristic 
of cervical cancer17–20. Similarly, TBK1 contributes to innate immune surveillance against viral infections and 
cellular stress, intersecting with inflammation, immune evasion, and tumour immunity pathways. Dysregulated 
TBK1 signalling can foster an immunosuppressive tumour microenvironment, enabling tumour cells to evade 
immune surveillance and promote tumour growth17–19. In combating cervical cancer, multitargeted drug design 
emerges as a promising therapeutic strategy, aiming to target multiple proteins or pathways implicated in disease 
pathogenesis concurrently21–23. By leveraging structural insights from protein complexes, we can design small 
molecules or biologics that selectively disrupt specific protein-protein interactions or enzymatic activities critical 
for tumour growth and survival24,25. For example, multitargeted drugs may simultaneously inhibit MCM10 and 
DNA Polymerase Epsilon to disrupt DNA replication and induce synthetic lethality in cancer cells, enhancing 
the efficacy of conventional chemotherapy or radiation therapy26. Additionally, targeting TBK1 signalling 
could augment antitumor immune responses and sensitise cervical cancer cells to immunotherapy or immune 
checkpoint inhibitors, offering a synergistic approach to cancer treatment. Understanding the intricate roles of 
MCM10, DNA Polymerase Epsilon, TBK1, and cervical cancer pathogenesis and their shared pathways provides 
valuable insights for developing multitargeted therapeutic interventions. With structural data and innovative 
drug design approaches, we can potentially reduce the burden of cervical cancer and improve patient outcomes 
through more effective and targeted treatments27–29.

In this study, we selected three important cervical cancer proteins and performed multitargeted docking 
studies to identify a drug candidate that can target all three proteins together and slow the pathways, further 
slowing the cell growth in cervical cancer tissues. We identified the drug candidate with better docking and MM\
GBSA scores, and then we performed molecular interaction fingerprints that showed a pattern for the drug’s 
interactions and performed the ADMET analysis, which favours the study. We extended our studies by DFT and 
MD simulation computations followed by the MM\GBSA computations on the trajectories file.

Methods
The methods of protein searching followed by multiple studies are shown in Fig. 1 to identify and validate the 
multitargeted drug candidate. The detailed methods are as follows-.

Protein preparation
Protein preparation is a crucial step in molecular modelling and drug discovery that involves optimising the 
structure of a protein molecule to ensure accuracy and reliability in subsequent computational analyses such 
as docking and molecular dynamics simulations4,21. This process typically includes removing water molecules, 
adding missing hydrogen atoms, assigning appropriate bond orders, and optimising side-chain conformations. 
Proper protein preparation enhances the quality and validity of computational results, aiding in designing 
effective therapeutic agents4,21. The 3D structure of the protein was downloaded from the Protein Data Bank 
(PDB) database (https://rcsb.org/) with PDBID: 3H15 (replication initiation factor MCM10), 5VBN (human 
DNA polymerase epsilon B-subunit) and 6NT9 (human TBK1) with the resolution of 2.72 Å, 2.35 Å and 3.30 Å, 
respectively17–19,30–32. The downloaded structures were imported to the Schrodinger Maestro and prepared with 
the PPW (protein preparation workflow) tool33,34. The PDBID: 3H15 originally had DNA as chain B and protein 
as chain A with solvents and other metals/ions, and 5VBN originally had Chain A, B, E and F of protein with 
solvents and metals/ions, while the PDBID: 6NT9 has Chain A and B of protein with four native ligands17–19. 
In PPW, we capped the termini, filled in the missing side chains, assigned bond orders to the CCD database, 
replaced hydrogens, created disulphide bonds and zero-order bonds to metals and filled in the loops with Prime 
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and generated hetero-state with Epik at pH 7.4 ± 233,35–37. In the optimisation tab, sample water orientation and 
crystal symmetry were used and optimised using PROPKA38. The minimisation was performed with OPLS4 
forcefield and deleted water beyond 5Å of the protein39,40. After preparing the proteins, we only kept Chain A in 
all the cases and removed solvents and metals/ions to free the protein from miscalculation during docking17–19.

Ligand data collection and preparation
We have downloaded the FDA-approved drug library from https://www.selleckchem.com/ (3109 approved 
drugs) and prepared it with the LigPrep tool in Maestro41,42. Ligand preparation is essential in molecular 
modelling and drug discovery to ensure the accuracy and reliability of computational analyses such as docking 
and virtual screening. It involves optimising the structure of a ligand molecule by removing solvent molecules, 
adding hydrogen atoms, assigning appropriate bond orders, and optimising its conformation. Proper ligand 
preparation enhances the quality of molecular interactions and binding affinity predictions, facilitating the 
identification of potential drug candidates with desired pharmacological properties. We browsed the library 
with the file option, filtered the atoms beyond 500 atoms and used the OPLS4 forcefield40. In the ionisation, we 
have kept generating possible states at a target pH of 7 ± 2, used the classic Epik, generated the tautomers, and 
used Deslat. The stereoisomer computations were kept to retain specified chiralities and to generate 32 per ligand 
in the SDF file to import and use further33,37.

Grid generation and molecular docking
Glide Grid generation is essential before docking to create a 3D grid around the protein binding site, guiding 
ligand placement during docking simulations. This process accounts for the protein’s shape and electrostatic 
properties, ensuring accurate ligand binding predictions. Proper grid generation enhances docking precision, 
facilitating the identification of potential drug candidates. The Receptor Grid Generation tool was used to 
generate the grids on the complete structures of the protein for blind docking, as no native ligand was kept 
during the preparation33,43,44. The Van der Waals radius scaling was kept to a scaling factor of 1 and a partial 
charge cutoff of 0.25. The enclosing box was kept to and displayed to view whether it fitted adequately on 
the protein or not and at the centroid of selected residues, and then the size of dock ligands with length was 
adjusted in each case to make it fit on the proteins, and all the advanced options were kept default33,44. Protein-
ligand docking is a computational technique used in drug design to predict small molecule ligands’ binding 
modes and affinities to protein targets. It simulates the interaction between a protein’s binding site and a ligand 
molecule, predicting their optimal spatial arrangement and binding strength. Docking provides insights into 
ligand-protein interactions, aiding in identifying and optimising potential drug candidates. We used the Virtual 
Screening Workflow tool for the Molecular Docking studies, browsed the prepared ligand file, combined input 
files, redistributed for sub-jobs, and generated unique properties to each compound to filter them. We used 
the QikProp-based descriptor generator, prefiltered the ligand with Lipinski’s rule, and skipped the preparation 
option in the VSW panel33,41,45,46. In the receptor panel, we browsed the prepared grid files, and in the docking 

Fig. 1.  Showing the graphical abstract of the study/followed methodology to identify the droxidopa as a 
multitargeted inhibitor of cervical cancer DNA replication and repair-related protein and its validation through 
various computational methods, including DFT and MD simulation studies.
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panel, all the parameters were set for the High Throughput Virtual Screening (HTVS), Standard Precision (SP) 
and Extra Precise (XP) docking followed by Molecular Mechanics-based Generalised Born Surface Area (MM\
GBSA) computations33,43,44. The Epik state penalties were used for the docking with a scaling factor for the van 
der Waals radii of 0.80 and a partial charge cutoff of 0.1533,37. The 10% output of HTVS was passed to SP, and the 
top 10% of SP’s output was passed to XP, where we kept generating four poses per compound and passed 100% 
output files to MM\GBSA computations. The outputs were taken in the CSV files and analysed to identify which 
compound has interacted with all three protein with maximum (negative) docking scores.

Molecular interaction fingerprints
Molecular Interaction Fingerprint (IFP) is a computational method to represent and analyse molecular 
interactions between a ligand and a protein target. It generates a fingerprint or vector that captures the types and 
frequencies of specific interactions, such as hydrogen bonds, hydrophobic contacts, and electrostatic interactions, 
between the ligand and protein residues. IFP provides valuable insights into ligands’ binding mode and affinity, 
facilitating the design of novel drugs with improved efficacy and specificity22,23. The IFPs were computed using 
the Interaction Fingerprints tool in Maestro33. We selected all three proteins, identified ligands in complexes, 
and selected the receptor-ligand complex option with any contact to make the interaction plot. All sequences 
were then aligned while keeping PDBID: 3H15 as the reference sequence and generated the fingerprints. In the 
interaction matrix, we again went for any contact option and coloured the plot by residue sequence number for 
the N to C terminal of the proteins. We then kept only interacting residues to clarify the plot33.

Density functional theory (DFT)
DFT is a quantum mechanical method used to calculate the electronic structure of molecules, including drugs 
and drug candidates. In drug confirmation studies, DFT is crucial in predicting molecular properties such 
as geometry, energy, and reactivity36. By solving the Schrödinger equation for the electronic wave function, 
DFT provides insights into molecular stability, intermolecular interactions, and spectroscopic properties. This 
information aids in understanding the conformational preferences of drugs, predicting their bioactivity, and 
optimising their pharmacological properties for drug design and development. The DFT computations were 
performed with the Optimisation panel in Maestro, where we selected the B3LYP-D3 theory with a basis set of 
6-41G** and included the workspace entry10,23,33. We kept the DFT option settings in the theory tab, and SCF 
spin treatment was automatic33,35. In the SCF tab, we kept the accuracy level for the Quick and atomic overlap 
for the initial guess. The convergence criteria were kept to 48 iterations with an energy change of 5e-05 Hartree 
with an RMS density matrix change of 5e-06. The convergence methods were kept to SCF level shift to 0.0 
Hartree with no thermal smearing with the converge scheme of DIIS. In the optimisation, the maximum steps 
of 100 were kept, and the criteria were kept to default with the initial Hessian of Schlegel guess and coordinates 
of redundant internals33,35. Further, in the properties computations tab, vibrational frequencies were computed, 
followed by surfaces (molecular orbitals, density and potentials) were computed. We computed the Electrostatic 
potentials in the surfaces, average local ionisation energy (kcal/mol), noncovalent interactions and electron 
densities. The spin density was kept, and Molecular Orbitals for the Alpha and Beta for HOMO and LUMO were 
computed33,35.

Pharmacokinetics
ADMET stands for Absorption, Distribution, Metabolism, Excretion, and Toxicity, representing drugs’ 
fundamental pharmacokinetic and pharmacodynamic properties47. Understanding ADMET properties 
is essential in drug discovery and development to assess potential drug candidates’ safety, efficacy, and 
pharmacological profile. ADMET studies evaluate how drugs are absorbed into the body, distributed within 
tissues, metabolised by enzymes, eliminated from the body, and whether they exhibit any toxic effects. Drug 
potency can be enhanced, adverse effects can be reduced, and therapeutic outcomes can be improved by 
optimising ADMET properties. The pharmacokinetics of the identified compound were computed with the 
QikProp tool, which includes multiple descriptors for the ADMET33,41. QikProp offers rapid predictions of 
multiple drug-like properties, facilitating efficient screening of compound libraries and customisable filters, and 
comprehensive analysis enables early-stage assessment and prioritising drugs33,41.

Molecular dynamics simulation and MM\GBSA studies
Molecular Dynamics (MD) simulation is a computational technique that simulates a system’s time-dependent 
behaviour of atoms and molecules. It provides insights into the dynamic behaviour and interactions of 
biomolecules such as protein and nucleic acids, aiding in understanding their structure, function, and dynamics 
at the atomic level. MD simulations can elucidate conformational changes, ligand binding events, and protein-
ligand interactions, offering valuable information for drug discovery, protein engineering, and understanding 
biological processes. The Desmond package (https://www.deshawresearch.com/) in Schrodinger Maestro was 
used for the MD simulation33,48. The System Builder tool in Schrodinger Maestro was used where we selected 
the SPC water model in orthorhombic boundary conditions with box size calculation methods for the buffer in 
10 × 10 × 10 Å and minimised the volume to check whether it fits on the protein-ligand complex or not33,49. We 
have added 3Cl− in PDBID: 3H15, 14Na+ in PDBID: 5VBN and 7Na+ in PDBID: 6NT9 and excluded the ion and 
salt placement within 20Å of ligand. We have not used any custom charges, and the OPLS4 forcefield was used 
to build the system file40. The prepared system builder file was loaded to the Schrodinger Maestro Molecular 
Dynamics panel for the production run with 100ns time and recording intervals of 100ps at 1.2 energy level to 
generate 100 frames. The NPT-ensemble class was used at 300 K temperatures and 1.01325 bar pressure, and 
the system was relaxed before simulation33,50. The Simulation Interaction Diagram tool was used to analyse the 
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deviations, fluctuation and intermolecular interactions among the protein-ligand and other molecules of the 
solute and ions.

Molecular mechanics-based generalised born surface area (MM/GBSA) studies
The MM\GBSA studies were performed on the trajectories of the MD simulation files. The MM\GBSA for 
the computations of binding free energy and total complex energy with the following commands- export 
SCHRODINGER=/opt/schrodinger2022-4/ and $SCHRODINGER/run thermal_mmgbsa.py desmond_md_job_
NAME-out.cms, and the output files in CSV were further filtered to better plot and understand it33,51.

Results
Preparation and reliability studies of protein structures
The protein preparation process for structure PDBID: 3H15 resulted in a meticulously refined model, ensuring 
structural integrity and accuracy. Comprehensive checks for common structural mistakes were conducted, with 
no errors detected, providing a solid foundation for further optimisation. Metal ions were effectively pre-treated 
to guarantee proper coordination and stability within the structure. Hydrogens were strategically removed 
and re-added to optimise hydrogen bonding patterns, enhancing the overall stability of the protein model33,35. 
The protein preparation documents the meticulous process of preparing the protein PDBID: 5VBN structure. 
Initially, common structural mistakes were checked for, but none were found. The next step involved pre-
treating metals, which was completed. Following this, bond orders were assigned, and no changes were needed. 
Hydrogens were then removed and re-added, and metals were treated again. Di-sulphur bonds were created, and 
antibody regions were annotated, with a warning about sequence similarity scores being below a specific cutoff 
for reference sequences. Selenomethionines were converted, and missing loops were filled using Prime33,35. 
The structures were adjusted for pH 7.4 and a minimum probability of 0.01, with details provided for each 
input structure. The process concluded with Epik completing its task, filtering undesired states and idealising 
hydrogen temperature factors33,37. Protonation penalties were recalculated, and the combined total energy was 
reported. Various alternative states for specific residues and their respective energy gaps were identified. We 
optimised hydrogen positions, restrained minimisation, and subsequent refinement levels. The final energy 
reports were documented, providing insights into bond stretch, angle bending, torsion angle, Lennard Jones, 
and electrostatic energies. The results show a detailed process of preparing a protein structure with the identifier 
PDBID: 6NT9. The initial steps involve fixing common structure mistakes, treating metals within the structure, 
assigning bond orders, and adding or removing hydrogens as necessary. Subsequently, the process moves on 
to tasks such as creating disulphide bonds, annotating antibody regions, converting Selenomethionines, and 
filling missing loops using Prime33,35. For each missing loop, the system generates models to fill in the gaps. In 
this case, there were 10 missing loops, each with multiple models generated. After generating and combining 
these models, side chains are optimised, and a minimisation process is carried out. The minimisation process 
involves idealising hydrogen temperature factors and running restrained minimisation using the S-OPLS force 
field40. Following the refinement steps, the system reports the final energy of the system, potential energy, kinetic 
energy, temperature, and various energy contributions from the bond stretch, angle bending, torsion angle, 
1,4 Lennard Jones, 1,4 electrostatic, Lennard Jones, and electrostatic interactions. The refinement process is 
iterated multiple times, reporting progress and energy details until reaching a desired refinement level. Various 
software tools and libraries, such as Schrodinger’s Impact and MMSHARE, perform atom typing, parameter 
assignments, energy and force calculations, and refinement operations. The results provide a comprehensive 
overview of the computational steps in preparing and refining the protein structure to achieve an energetically 
stable conformation suitable for further analysis and simulations. Table 1 comprehensively analyses the energy 
parameters for three distinct protein structures with PDBIDs: 3H15, 5VBN, and 6NT9. Each structure is assessed 
based on various energy components crucial for understanding its stability and behaviour. The total energy, 
comprising both potential and kinetic components, is reported in units of kilocalories per mole (kcal/mol). All 

PDBID 3H15 5VBN 6NT9

Total energy − 442.573 − 4326.17 − 5281.14

Total potential energy − 442.573 − 4326.17 − 5281.14

Total kinetic energy 0 0 0

Temperature (K) 0 0 0

Bond stretch energy 91.994 545.154 661.765

Angle bending energy 417.841 2612.78 2797.33

Torsion angle energy 357.429 2763.46 2276.36

Restraining energy for torsions 0 0 0

1,4 Lennard Jones energy 827.458 5519.37 6215.65

1,4 Electrostatic energy 259.532 2086.1 2243.87

Lennard Jones energy − 1543.52 − 11416.4 − 12503.8

Electrostatic energy − 897.671 − 6630.03 − 7100.5

H-bond energy 0 0 0

Table 1.  Showing the different energy levels (Kcal/mol) during protein preparations.
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structures’ structures, the total kinetic energy and temperature o, indicating a static state typical of molecular 
modelling simulations. The potential energy, which accounts for the interactions among atoms within the 
structure, mirrors the total energy values. Specific energy terms shed light on molecular interactions within the 
protein structures. Bond stretch energy, measured in kcal/mol, represents the energy associated with stretching 
chemical bonds, while angle bending energy (kcal/mol) reflects the energy required to bend these bonds. 
Torsion angle energy (kcal/mol) accounts for the energy in twisting the bonds around their axes. Non-bonded 
interactions are captured by 1,4 Lennard Jones energy (kcal/mol) and 1,4 electrostatic energies (kcal/mol), which 
describe interactions between atoms within a specified distance cutoff. Additionally, Lennard Jones energy (kcal/
mol) and electrostatic energy (kcal/mol) encompass the total non-bonded interactions with short-ures, with 
short- and long-range contributions (Table 1). Notably, hydrogen bond energy is absent in all cases, indicating 
either a lack of hydrogen bonds or their exclusion from the energy calculations. This comprehensive energy 
analysis is treasured into the structural stability and interactions of proteins, providing a foundation for further 
investigations for drug design. Figure 2 is of 3D representation of prepared protein and the Ramachandran plot 
for its quality assessment.

Protein-ligand interaction analysis
Protein-ligand docking or interaction studies in drug design predict how small molecules bind to target 
protein using computational algorithms and scoring functions by evaluating binding poses and interactions. 
The interaction between the Droxidopa and Protein MCM10 (PDBID: 3H15) has produced a docking score 
of − 5.559 Kcal/mol and MM\GBSA score of − 26.04 Kcal/mol and formed two hydrogen bonds in contact 
with LYS351, LYS353 residues with different OH ligand atom and two salt bridges contact with GLU358, and 
ARG310 residues with N+H3 ligand’s atom, and O− atom (Fig. 3A,B). It has also generated the potential energy 
(S-OPLS) is calculated at − 222.474 kcal/mol, with bend energy (S-OPLS) of 424.47 kcal/mol, an LJ-14 energy 
(S-OPLS) of 852.365 kcal/mol, and dihedral energy (S-OPLS) of 405.957 kcal/mol (Table 2). This indicates a 
favourable interaction between Droxidopa and MCM10. The negative values for energy parameters suggest 
stable binding interactions. The high potential and dihedral energy indicate strong molecular interactions, likely 
contributing to the observed docking and MM/GBSA scores. The Human DNA polymerase epsilon B-subunit 
(PDBID: 5VBN) has shown a docking score of − 6.835 Kcal/mol and MM/GBSA score of − 37.33 Kcal/mol and 
formed six hydrogen bonds interactions among ASN491 and N+H3, PHE242, THR245, and SER447 residues 
with three OH atoms, ASN491 residue with O atom, and formed a salt bridge contact among LYS443 residue and 
O− atom of the Droxidopa ligand (Fig. 3C,D). The potential energy (S-OPLS) is much higher at − 2637.703 kcal/
mol, reflecting a more energetically favourable interaction. The bending energy (S-OPLS) is 2631.907 kcal/mol, 
LJ-14 energy (S-OPLS) is 5651.879 kcal/mol, and dihedral energy (S-OPLS) is 2915.993 kcal/mol. The docking 
score is − 6.835 kcal/mol, with an MM/GBSA score of − 37.33 kcal/mol, indicating a strong binding affinity 
between Droxidopa and the B-subunit of Human DNA polymerase epsilon. The high potential energy and LJ-14 
energy suggest significant van der Waals interactions, contributing to the stability of the complex (Table 2). The 
interaction of TANK-binding kinase 1 (TBK1) (PDBID: 6NT9) showed a docking score of − 6.436 Kcal/mol 
and an MM\GBSA score of − 20.05 Kcal/mol and has formed seven hydrogen bonds interaction among VAL265 
and CYS267 residues with the N+H3 atom, CYS267, LEU269, and ARG427 residues with two OH atoms and 
TYR427 and ARG427 residues with the O atom of the Droxidopa ligand (Fig. 3E,F). The complex has generated 
potential energy (S-OPLS) is also high at − 4824.668 kcal/mol, with bend energy (S-OPLS) of 2791.588 kcal/mol, 
LJ-14 energy (S-OPLS) of 6229.301 kcal/mol, and dihedral energy (S-OPLS) of 2330.94 kcal/mol, indicating a 
favourable interaction (Table 2)40. The high LJ-14 energy suggests strong van der Waals interactions, contributing 
to the stability of the complex. The energy parameters provide valuable insights into the stability and strength of 
the molecular interactions observed in the docking studies. The negative values indicate favourable interactions, 
with higher negative values suggesting stronger binding affinities. Understanding these energy parameters can 
help predict the effectiveness of potential drug candidates and optimise their molecular structures for enhanced 
binding interactions.

Molecular interaction fingerprints
IFPs aid in drug design by capturing and quantifying the unique patterns of molecular interactions between 
drugs and target proteins. These fingerprints provide insights into binding modes, key interactions, and 
structural motifs, guiding the design of novel compounds with optimised pharmacological properties and 
enhanced therapeutic efficacy. The residues that interact with the ligand Droxidopa are crucial in determining 
its binding affinity and specificity, and those residues are 2VAL, 2LYS, 1ALA, 1ARG, 1ASN, 1CYS, 1GLN, 1GLU, 
1ILE, 1MET, 1PHE, 1PRO, 1SER, 1THR (Fig.  4). Ala (Alanine) residues provide hydrophobic interactions, 
contributing to the drug’s stability within the binding site. Arg (Arginine) residues can form hydrogen bonds 
with the ligand, enhancing binding affinity through electrostatic interactions. ASN (Asparagine) residues can 
participate in hydrogen bonding, aiding in specific interactions with the ligand. CYS (Cysteine) residues might 
form covalent bonds with the ligand, potentially leading to irreversible binding and modulation of drug activity. 
Gln (Glutamine) residues can engage in hydrogen bonding and hydrophobic interactions, contributing to the 
stability of the drug-receptor complex. Glu (Glutamic Acid) residues may participate in ionic interactions with 
the ligand, influencing binding affinity and specificity. Ile (Isoleucine) residues contribute to hydrophobic 
interactions, stabilising the drug within the binding pocket. Lys (Lysine) residues can form hydrogen bonds 
and salt bridges, facilitating electrostatic solid interactions with the ligand. Met (Methionine) residues provide 
hydrophobic interactions and can participate in hydrogen bonding with the ligand. Phe (Phenylalanine) residues 
contribute to hydrophobic interactions, enhancing the stability of the drug-binding site complex. Pro (Proline) 
residues may induce conformational changes in the binding site, affecting the orientation and stability of the 
ligand. Ser (Serine) residues can form hydrogen bonds with the ligand, contributing to specific interactions 
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within the binding pocket. THR (Threonine) residues provide hydrogen bonding and hydrophobic interactions, 
influencing the binding mode and affinity of the drug. VAL (Valine) residues contribute to hydrophobic 
interactions, stabilising the drug within the binding pocket (Fig. 4). The diverse interactions between Droxidopa 
and these residues contribute to its binding affinity, specificity, and pharmacological effects. Understanding these 
interactions is crucial for optimising the design of drugs targeting the same or similar binding sites, potentially 
leading to improved therapeutics.

Fig. 2.  Showing the 3D structure of the prepared protein with PDBID (A) 3H15, (C) 5VBN and (E) 6NT9, and 
Ramachandran plot for PDBID (B) 3H15, (D) 5VBN and (F) 6NT9.
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DFT and pharmacokinetics
DFT computations aid drug design by predicting molecular properties crucial for ligand stability, and analysing 
HOMO and LUMO levels provides insights into electronic structure and reactivity, guiding the selection of 
stable ligands. Electron density maps reveal charge distribution, while electrostatic potential maps highlight 
regions prone to interactions, aiding in ligand optimisation. This comprehensive approach ensures the selection 
of stable ligands for effective drug design. The DFT computations performed using the Jaguar program reveal 

Fig. 3.  Showing the 3D ligand-interaction of droxidopa with PDBID (A) 3H15, (C) 5VBN and (E) 6NT9, and 
2D ligand interactions of droxidopa with (B) 3H15, (D) 5VBN and (F) 6NT9.
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significant insights into the properties of Droxidopa as a potential multitargeted inhibitor for cervical cancer 
proteins. The spin multiplicity of 1 indicates a stable electronic configuration. Employing the UDFT(b3lyp-d3)/
SOLV method with a 6–31 g** basis set, the gas phase energy is calculated as − 780.492658 kcal/mol, while 
the solution phase energy is slightly lower at − 780.52904  kcal/mol. The solvation energy, − 22.83  kcal/mol, 
highlights the impact of the surrounding environment on the molecule’s stability (Fig.  5A). Relative energy 
refers to the difference in energy between different conformations or states within a system, providing insights 
into stability and reactivity. Grad Max and Grad RMS represent the energy gradient’s maximum and root mean 
square values, respectively, indicating the molecular structure’s magnitude and overall stability, as shown by 
the proper graphs in Fig.  5A. Disp Max and Disp RMS denote the maximum and root mean square values 
of the displacement of atoms, offering information on molecular flexibility and conformational changes. 
Unsigned dE represents the unsigned difference in energy between consecutive optimisation steps, highlighting 
the convergence of computational methods and the accuracy of results. These parameters collectively impact 
the reliability and accuracy of computational simulations, guiding the interpretation of molecular properties 
and behaviour in various environments or biological contexts. Analysis of molecular orbitals shows the alpha 
HOMO and LUMO at − 0.213568 and − 0.011152, respectively, indicating favourable electronic properties for 
reactivity (Fig. 5A,B). Similarly, the beta HOMO and LUMO exhibit similar energy levels. Electrostatic potential 
maps reveal a minimum of − 52.62 kcal/mol and a maximum of 67.88 kcal/mol, indicating regions of attraction 
and repulsion, respectively. The overall mean electrostatic potential is 3.02 kcal/mol, with a balanced distribution 
between positive and negative regions. The ALIE analysis further elucidates the molecule’s interaction with its 
surroundings, with a mean energy of 275.62  kcal/mol. These comprehensive computational results provide 

Fig. 4.  Molecular interaction fingerprints of all three protein interacted with the ligand Droxidopa, where the 
Blue to red colour shows the N to C terminal of the proteins, the upper bars show the interacting residues and 
the right bars show the count of ligand interactions.

 

PDB ID
PDB 
Resolution

gridbox 
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gridbox 
ycent

gridbox 
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gridbox 
xrange

gridbox 
yrange

gridbox 
zrange

P-Energy-S-
OPLS

Bend 
Energy-S-
OPLS

LJ-14 
Energy-S-
OPLS

3H15 2.72 31.437 42.108 8.883 36.289 36.289 36.289 − 222.474 424.47 852.365

5VBN 2.35 75.367 125.808 70.409 76 76 76 − 2637.703 2631.907 5651.879

6NT9 3.3 124.824 101.557 122.728 76 76 76 − 4824.668 2791.588 6229.301

PDB ID

DH 
Energy-S-
OPLS

State 
Penalty

Prime 
Energy

Docking 
Score XP GScore

XP 
HBond

MMGBSA 
dG Bind

Complex 
Energy

ligand 
efficiency 
sa

ligand 
efficiency ln

3H15 405.957 0.0052 − 6926.25 − 5.559 − 5.564 − 2.695 − 26.04 − 6926.246 − 2.604 − 7.023

5VBN 2915.993 0.0052 − 21772.76 − 6.835 − 6.84 − 0.96 − 37.33 − 21772.761 − 3.733 − 10.068

6NT9 2330.94 0.0052 − 26783.36 − 6.436 − 6.441 − 1.97 − 20.05 − 26783.361 − 2.005 − 5.407

Table 2.  Grid sizes, docking scores, and other computed scores during the molecular docking studies.
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valuable insights into Droxidopa’s suitability as a multitargeted inhibitor for cervical cancer proteins, aiding in 
its further optimisation and development as a potential therapeutic agent (Fig. 5A,B).

Droxidopa, a pharmaceutical compound, exhibits various pharmacokinetic properties determined through 
computational analysis using tools such as QikProp33,41. The descriptors reveal various characteristics crucial for 
understanding its behaviour within biological systems. Firstly, considering its molecular structure, Droxidopa 
comprises 15 atoms, including 6 ring atoms, and forms 15 bonds with 7 rotors. Such structural information 

Fig. 5.  (A). The DFT computations using the Jaguar Program showed various energy, including the relative 
energy, which converged around 28 steps. (B) Showing DFT computations using the Jaguar Program showing 
the HOMO-LUMO (α & β) sites, electron density map and electrostatic potential throughout the Droxidopa 
structure.
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provides insights into its overall size and complexity, which can impact its pharmacokinetics. The compound 
demonstrates solubility with a logarithm of the partition coefficient between octanol and water (QPlogPo/w) 
of − 2.773, indicating its potential for distribution between lipid and aqueous phases. Additionally, its polar 
surface area (PSA) of 129.458 square angstroms further characterises its interaction potential with biological 
membranes and transport proteins. Droxidopa exhibits moderate lipophilicity, as indicated by its logarithm of 
the octanol-water partition coefficient (QPlogPw) of 14.137, suggesting a tendency for distribution into lipid-rich 
environments. This is complemented by its QPlogBB value of − 1.63, indicating a slight ability to cross the blood-
brain barrier, essential for drugs targeting the central nervous system (Table 3). Furthermore, the compound 
displays favourable characteristics related to gastrointestinal absorption, with a human oral absorption percentage 
of 3.026%. This parameter is crucial for understanding orally administered drugs’ bioavailability and potential 
therapeutic efficacy. In terms of its electronic properties, Droxidopa exhibits molecular polarizability (QPpolrz) 
of 16.613 cubic angstroms, reflecting its ability to induce temporary dipoles in response to an external electric 
field. Such polarizability contributes to the compound’s intermolecular interactions and solvation behaviour. 
Moreover, the compound displays a dipole moment of 2.491 Debye, indicating a degree of charge separation 
within the molecule, which can influence its interaction with biological targets and transport proteins. In addition 
to physicochemical properties, Droxidopa also demonstrates characteristics related to molecular geometry and 
connectivity. For instance, it exhibits an average eccentricity of 6.333 and an average vertex distance degree 
of 49.333, highlighting the distribution of atoms within the molecule and their spatial relationships (Table 3). 
The compound’s topological parameters, such as the Balaban distance connectivity index and the connectivity 
chi-1, provide further insights into its molecular structure and connectivity patterns, which are relevant for 
understanding its biological activity and pharmacological effects. The comprehensive analysis of Droxidopa’s 
pharmacokinetic properties reveals its potential as a pharmaceutical agent, with characteristics conducive to 
absorption, distribution, metabolism, and excretion within biological systems. These insights are valuable for 
guiding further experimental studies and optimising the compound’s therapeutic utility in clinical applications.

Molecular dynamics simulation
Desmond package in Schrodinger Maestro was used to conduct a 100 nanosecond MD simulation of Droxidopa 
in a complex with all three protein33,48. Analysis revealed dynamic interactions between Droxidopa and proteins, 
highlighting potential binding modes and stability over time. This simulation helps understand the behaviour 
of Droxidopa in complex biological environments. The droxidopa in complex with PDBID: 3H15 has generated 
28,910 atoms, the droxidopa in complex with PDBID: 5VBN has generated 73,117 atoms, and the droxidopa in 
complex with PDBID: 6NT9 has generated 110,088 atoms which were loaded and kept for the production run. 
The detailed results are as follows-.

Root mean square deviation
The Root Mean Square Deviation (RMSD) measures the average distance between the atoms of two superimposed 
molecules. In the context of molecular dynamics simulations, RMSD quantifies the deviation of atomic positions 
from a reference structure over time. It is a crucial metric for assessing the stability and convergence of protein-
ligand complexes during simulations. Droxidopa in complex with MCM10 protein (PDBID: 3H15) initially 
deviated to 1.69 Å in the case of protein, while the ligand deviated to 2.30 Å at 0.10 ns. After that, the complex 
showed a stable performance during the complete simulation period and at 100 ns, protein deviation was 4.01 
Å while ligand deviation was noted to be 22.33 Å, and after neglecting the initial deviations, RMSD of protein 
showed acceptable deviations (Fig.  6A). The human DNA polymerase epsilon B-subunit (PDBID: 5VBN) 
complex with Droxidopa at the beginning deviated to 1.44 Å for protein, while the ligand to 0.66 Å at 0.10 ns 
and it keeps deviating and, at 100 ns, the protein deviation was 2.73 Å, and the ligand deviation was 5.44 Å, 
showing stability after ignoring the initial deviation (Fig. 6B). The TANK-binding kinase 1 (TBK1) (PDBID: 
6NT9) in complex with droxidopa initially deviated to 1.60 Å and the ligand to 1.32 Å, at 0.10 ns, and it keeps 
showing the deviation, and at 100 ns, the protein deviated to 4.19 Å while the ligand deviated to 2.38 Å, and 
after ignoring the first 1ns complex, it displayed acceptable performance (Fig. 6C). In the case of Droxidopa 
complexes with MCM10 (PDBID: 3H15), human DNA polymerase epsilon B-subunit (PDBID: 5VBN), and 
TANK-binding kinase 1 (TBK1) (PDBID: 6NT9), initial deviations were observed. However, after disregarding 
these, all complexes displayed acceptable stability, with fluctuations in RMSD over time indicating dynamic 
interactions between the ligand and proteins. Overall, RMSD analysis offers insights into the behaviour and 
convergence of protein-ligand complexes during simulations.

Root mean square fluctuations
Root Mean Square Fluctuation (RMSF) calculates the average deviation of atomic positions from their average 
positions throughout a molecular dynamics simulation. It provides insight into the flexibility and dynamics 
of individual residues within a protein or protein-ligand complex, aiding in identifying regions undergoing 
significant conformational changes. The complex of MCM10 protein (PDBID: 3H15) with Droxidopa has shown 
some fluctuating residues beyond 2Å are- GLN235, TYR236, SER252-GLU255, ARG258, LYS259, PRO297-
LYS304, LYS353-GLU358, ALA383-GLN393, ASP399, and TYR405-VAL407 and the most interacting residues 
were ACE234-LYS240, ARG245, LYS248, SER254-ARG258, ARG267, GLN270, LYS293, SER299, ASN301, 
ASN302, LYS304, PHE306, ARG310, LEU314-LYS319, SER322, PHE324, PHE326, ASP328, LYS331, GLN338, 
ASN348, MET350-GLU358, SER362, ASP364, VAL376, ASP377, LEU378, THR380-GLN393, and LEU397-
VAL407 (Fig. 6D). The complex of Human DNA polymerase epsilon B-subunit (PDBID: 5VBN) with Droxidopa 
has shown some fluctuating residues beyond 2Å are- HIS84, ASN113, GLU145, PHE147-SER161, THR175-
LYS177, GLU192, GLY193, GLU281, SER432-ASN434, GLY526, PHE527, SER2150-PHE2163, LYS2171, 
SER2174-VAL2181, CYS2187-ALA2192, LYS2223, CYS2224, SER2237-ALA2239, PRO2282 and many of them 
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Descriptors Droxidopa Descriptors Droxidopa

#acid 1.00 Geometric_Topological 1.78

#amide 0.00 Harmonic_Topological 1.58

#amidine 0.00 Simple_Topological 8.67

#amine 1.00 PEOE1 83.42

#in34 0.00 PISA 109.90

#in56 6.00 Pogliani 35.50

#metab 6.00 Polarity 22.00

#NandO 6.00 PSA 129.46

#noncon 0.00 QPlogBB − 1.63

#nonHatm 15.00 QPlogHERG − 2.59

#ringatoms 6.00 QPlogKhsa − 1.01

#rotor 7.00 QPlogKp − 7.39

#rtvFG 0.00 QPlogPC16 8.12

#stars 1.00 QPlogPo/w − 2.77

% HumanOralAbsorption 3.03 QPlogPoct 15.67

accptHB 5.20 QPlogPw 14.14

ACxDN^0.5/SA 0.03 QPlogS − 0.42

ALOGP10 39.74 QPPCaco 1.97

Atom_Count 15.00 QPPMDCK 0.83

Atoms_in_Ring_System 6.00 QPpolrz 16.61

Average_eccentricity 6.33 Quadratic 9.00

Balaban_centric 0.00 Quasi_Wiener 316.67

Bond_Count 15.00 Dipole_X − 5.72

Bonds_in_Ring_System 6.00 Dipole_Y − 5.11

Centralisation 215.00 Dipole_Z − 2.26

Chirality_count 2.00 HOMO_Energy − 9.22

CIQPlogS − 0.81 Ionization_Energy 9.22

CNS − 2.00 LUMO_Energy − 0.57

Cyclomatic_number 1.00 Radial_centric 2.21

dip^2/V 0.01 Ramification 6.00

dipole 2.49 bridge_count 0.00

donorHB 5.00 complexity_index 1.00

EA(eV) − 0.15 Fusion_degree 1.00

Eccentric_connectivity 181.00 Fusion_density 0.00

Eccentricity 95.00 perimeter 6.00

E-state_topological_parameter 48.18 RuleOfFive 1.00

First_Zagreb 72.00 RuleOfThree 1.00

FISA 263.80 s_mopac_SE PM7

FOSA 31.48 SAamideO 0.00

glob 0.90 SAfluorine 0.00

Gutman_Molecular_Topological 1285.00 SASA 405.18

Harary 42.21 Schultz_Molecular_Tpl 1459.00

HumanOralAbsorption 1.00 Second_Mohar 2.73

Hyper-distance-path_index 1015.00 Second_Zagreb 82.00

IP(eV) 8.80 Solvation_index_chi-5 2.20

Jm 0.00 Spanning_tree_number 1.79

Kier_benzene-likeliness_index 0.83 Square_reci_distance 24.65

Kier_flexibility 3.39 Superpendentic 10.46

Kier_Hall_electronegativity 7.50 Total_structure_connectivity 0.01

Log_of_product_of_row_sums 25.28 Type Small

Lopping_centric 0.00 Unipolarity 35.00

Mean_Wiener 3.52 VsW_surface_area 220.91

Modified_Randic_connectivity 44.76 Variation 30.00

mol_MW 213.19 volume 654.98

Molecule_cyclized_degree 0.40 Wiener 370.00

MR8 199.73 WPSA 0.00
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has interacted with droxidopa are PHE147, HIS214, SER215, TYR218, PHE240, PHE242, PRO243, PRO244, 
THR245, ASN434, ASN439, LYS443, THR444, SER447, THR490, ASN491, and THR492 (Fig. 6E). The TANK-
binding kinase 1 (TBK1) (PDBID: 6NT9) in complex with Droxidopa has shown many fluctuating residues 
beyond 2Å are- MET1-ASN6, SER12, LYS29-ASP33, ILE43-ARG54, GLU75-HIS81, GLY146-GLN150, GLU165, 
ASP166, ASP167, SER172, LEU173, MET184-LYS197, PHE224-ARG228, LYS251-GLY255, ASP288, -LYS291, 
SER328-HIS369, HIS403-ASP409, CYS471-GLN581, and PHE638-LEU658, and the interacting residues are 
TYR105, GLU109, ASP262-GLY272, GLN274, ALA321, HIS322, LYS323, GLN342, GLY391, LEU392, ILE393, 
TYR424, ARG427, ILE428, THR431, TYR435 (Fig. 6F). The fluctuations in residues during molecular dynamics 
simulations can be attributed to several factors, including conformational changes, solvent exposure, and 
interactions with the ligand or neighbouring residues. Conformational changes in the protein structure, such as 
loop movements or side-chain rotations, can lead to fluctuations in residue positions. Solvent exposure may also 
influence residue fluctuations, as residues on the protein surface are more susceptible to solvent interactions and 
fluctuations. Interactions with the ligand or neighbouring residues can significantly impact residue fluctuations. 
Residues directly involved in binding interactions with the ligand may experience fluctuations as they adjust their 

Fig. 6.  Showing the root mean square deviation (RMSD) of droxidopa in complex with (A) PDBID: 3H16, (B) 
PDBID: 5VBN, (C) and PDBID: 6NT9 where red shows the ligand deviations, blue shows the Cα deviations 
and side chains are also shown. Also, the root mean square fluctuations (RMSF) of droxidopa in complex with 
(D) PDBID: 3H16, (E) PDBID: 5VBN, (F) and PDBID: 6NT9, where blue shows the fluctuation in Cα, and 
green lines shows the residues interacting the ligand.

 

Table 3.  Showing the pharmacokinetics properties of droxidopa.
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conformations to optimise binding. Additionally, neighbouring residues that indirectly interact with the ligand 
or undergo allosteric changes due to ligand binding can also exhibit fluctuations. In the case of the MCM10 
protein complex with Droxidopa (PDBID: 3H15), fluctuating residues beyond 2Å include regions involved in 
ligand binding, suggesting dynamic interactions between the protein and ligand. Similarly, in the complexes 
of human DNA polymerase epsilon B-subunit (PDBID: 5VBN) and TANK-binding kinase 1 (TBK1) (PDBID: 
6NT9) with Droxidopa, fluctuating residues are observed, indicating dynamic behaviour of these complexes 
during simulations. The most fluctuating residues are often located in flexible protein regions, such as loops or 
termini, where structural changes are more likely to occur. Additionally, residues involved in ligand binding sites 
or regions undergoing conformational changes due to ligand binding tend to exhibit higher fluctuations.

Simulation interaction diagrams
A Simulation Interaction Diagram (SID) visually represents the interactions between a ligand and a protein 
during molecular dynamics simulations. Various interactions, such as hydrogen bonds, hydrophobic contacts, 
and electrostatic interactions, are illustrated throughout the simulation. SIDs are valuable for understanding 
the dynamic behaviour of protein-ligand complexes and identifying key interaction patterns that contribute to 
binding affinity and stability. The MCM10 protein (PDBID: 3H15) in complex with Droxidopa interacts with 
many hydrogen bonds among LYS315, ASP316, CYS391, GLN404 residues, and CYS381, ASP318 residues with 
water molecules along N+H3 atom, THR392, TYR402 residues, and LEU314 residue with water molecule along 
OH atom and ARG384, CYS391, residues and LYS385 residue with water molecules along two O atom. Also, it 
forms a salt bridge that contacts ASP316 residue with the N+H3 atom of the ligand (Fig. 7A,B). The Human DNA 
polymerase epsilon B-subunit (PDBID: 5VBN) in complex with Droxidopa interacts with hydrogen bonds along 
THR245, PHE242 residues, and SER215, ASN491, THR492 residues with water molecules along three OH atoms 
and LYS443, ASN491, SER215 residues with two O atoms. Additionally, two pi-cation contacts HIS214 residue 
with N+H3 atom and LYS443 residue with the benzene ring and form a salt bridge contact LYS443 residue with 
O atom of the ligand (Fig. 7C,D). Interaction between the TANK-binding kinase 1 (TBK1) (PDBID: 6NT9) 
and Droxidopa involves fifteen water molecules that act as water bridges. The hydrogen bonds among CYS267, 
VAL265, LEU269 residue with N+H3 atom, ILE369, ARG271, PRO264, GLN274, GLY391 residues with water 
molecules interact with three OH atoms and TYR424, ARG427 residues, and SER268, ILE393 residues with 
water molecules along two O atoms of the Droxidopa ligand (Fig. 7E,F). Analysis of Droxidopa complexes with 
MCM10, DNA polymerase epsilon B-subunit, and TANK-binding kinase 1 reveals diverse interaction patterns, 
including the H-bonds, water bridges, pi-cation, and salt bridges contribute to complex stability, highlighting the 
intricate molecular interactions essential for ligand binding.

MM\GBSA studies
The Molecular Mechanics Generalised Born Surface Area (MM/GBSA) method is a powerful tool to estimate 
biomolecular complexes’ binding free energy, such as protein-ligand interactions. By analysing the results 
obtained from MM/GBSA calculations performed using Schrodinger Maestro, where 100 nanosecond molecular 
dynamics (MD) simulations were conducted for each protein-ligand complex, we can gain insights into the 
performance of the method as the number of frames increases. As the number of frames increases from 0 to 1000, 
the MM/GBSA method provides a comprehensive understanding of the energetics of protein-ligand binding 
(Fig. 8). At frame 0, the complex energies for all three complexes, 3H15, 5VBN, and 6NT9, are relatively high, 
indicating unfavourable interactions between the protein and ligand. This is reflected in the negative binding free 
energy values, suggesting weak or non-existent binding between the molecules. As the simulation progresses, the 
complex energies fluctuate, reflecting the dynamic nature of the protein-ligand complexes within the simulated 
environment. Notably, for complex 3H15, there is a gradual decrease in complex energy over the first few frames, 
indicating a stabilisation of the protein-ligand complex (Fig. 8). This is accompanied by a corresponding increase 
in the binding free energy, suggesting a strengthening of the protein-ligand interaction. However, for complexes 
5VBN and 6NT9, the complex energies remain relatively high throughout the simulation, indicating persistent 
unfavourable interactions between the protein and ligand. Despite fluctuations in energy values, there is no clear 
trend towards stabilising or strengthening the protein-ligand complex. Overall, the performance of the MM/
GBSA method varies depending on the specific protein-ligand complex analysed. While it demonstrates the 
ability to capture dynamic changes in the energetics of protein-ligand interactions, its effectiveness in predicting 
binding affinities may be limited by the complexity of the molecular system and the accuracy of the force field 
parameters used in the simulations. In conclusion, the MM/GBSA method provides valuable insights into the 
energetics of protein-ligand binding, but its performance can vary depending on the specific molecular system 
studied. Further refinement and validation of the method may be necessary to improve its predictive accuracy 
for drug discovery and design applications.

Discussion
The comprehensive analysis presented in this study delves into various aspects of protein structure preparation, 
protein-ligand interactions, molecular interaction fingerprints, DFT computations, pharmacokinetics, 
MD simulations, and MM/GBSA studies. Each of these components contributes treasured insights into 
understanding the molecular interactions between the drug Droxidopa and its target protein (MCM10, 
Human DNA polymerase epsilon B-subunit, and TANK-binding kinase 1), aiding in the rational design 
and optimisation of therapeutic agents. The protein preparation process for structure PDBID: 3H15 yielded 
a meticulously refined model, free of errors, ensuring structural integrity and accuracy. Metal ions were pre-
treated for proper coordination and stability, while strategic hydrogen optimisation enhanced bonding patterns 
and stability. Antibody regions were annotated, missing loops filled, and termini capped, ensuring completeness 
and accuracy. Extensive refinement included hydrogen bond network optimisation and pKa recalibration 

Scientific Reports |        (2024) 14:24301 14| https://doi.org/10.1038/s41598-024-72770-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


for physiological relevance. Restrained minimisation with S-OPLS force field further refined the structure, 
yielding an optimised protein model for drug design projects. Similarly, for PDBID: 5VBN, the process involved 
thorough checks, metal pre-treatment, hydrogen optimisation, and loop filling. For PDBID: 6NT9, the steps 
included fixing structure mistakes, treating metals, hydrogen adjustments, disulphide bond creation, and loop 
filling. Iterative refinement, including restrained minimisation, ensured energetically stable conformations. 
Software tools like Schrodinger’s Impact and MMSHARE facilitated atom typing, parameter assignments, and 
energy calculations throughout the process. The protein-ligand interaction analysis elucidates the molecular 
mechanisms underlying the binding of Droxidopa to its target proteins. By employing computational algorithms 
and scoring functions, the study predicts binding poses and interactions, providing valuable insights into the 
binding affinity and specificity of the drug-protein complexes. The docking and MM/GBSA scores indicate 

Fig. 7.  Showing the simulation interaction diagram (SID) of droxidopa in complex with (A) PDBID: 3H16, 
(C) PDBID: 5VBN, (E) and PDBID: 6NT9 and the bar graph shows the count of different interaction types of 
(B) PDBID: 3H16, (D) PDBID: 5VBN, (F) and PDBID: 6NT9, where blue shows water bridges, red shows the 
ionic interactions, grey shows the hydrophobic and the green shows the H-bonds.
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strong interaction affinities among Droxidopa and the target proteins, supported by salt bridges, hydrogen 
bonds, and van der Waals interactions. Moreover, the analysis of energy parameters, such as potential energy, 
bending energy, and LJ-14 energy, highlights the stabilising forces driving the formation of the protein-ligand 
complexes. These findings underscore the importance of understanding the molecular basis of protein-ligand 
interactions in rational drug design, guiding the selection and optimisation of potential drug candidates for 
therapeutic intervention. The molecular interaction fingerprints provide a detailed characterisation of the 
key residues involved in the binding of Droxidopa to its target proteins. By capturing the unique patterns of 
molecular interactions, the fingerprints offer valuable insights into the binding modes, key interactions, and 
structural motifs essential for ligand recognition and binding. The diverse interactions observed, including salt 
bridges, hydrophobic interactions, hydrogen bonds, and pi-cation contacts, underscore the complex nature 
of protein-ligand interactions. Understanding these interactions is crucial for optimising the design of novel 
compounds with enhanced pharmacological properties and therapeutic efficacy. The comprehensive analysis 
of molecular interaction fingerprints provides a roadmap for the rational design of drugs targeting the same or 
similar binding sites, offering potential avenues for developing improved therapeutics.

The DFT computations and pharmacokinetic analysis shed light on the molecular properties and 
pharmacological characteristics of Droxidopa. The study offers insights into the drug’s pharmacokinetic profile 
by predicting molecular properties crucial for ligand stability and analysing electronic structure and reactivity. 
The analysis of HOMO and LUMO levels provides valuable information about electronic properties relevant 
to ligand reactivity and interaction with biological targets. Moreover, examining physicochemical properties, 
such as solubility, lipophilicity, and gastrointestinal absorption, offers insights into the drug’s bioavailability and 
distribution within biological systems. The comprehensive characterisation of Droxidopa’s pharmacokinetic 
properties provides a foundation for understanding its behaviour in vivo and guiding further experimental 
studies to optimise its therapeutic utility.

The MD simulations provide dynamic insights into the stability and behaviour of Droxidopa-protein 
complexes in 100ns. By analysing RMSD, RMSF, and simulation interaction diagrams, the study elucidates the 
dynamic interactions between the ligand and protein during simulation. The fluctuations observed in RMSD 
and RMSF highlight the dynamic nature of protein-ligand complexes, with residues undergoing conformational 
changes and fluctuations in response to ligand binding. The simulation interaction diagrams reveal diverse 
interaction patterns, including hydrogen bonds, salt bridges, and water bridges, contributing to the stability and 
specificity of the protein-ligand complexes. It offers valuable insights into the dynamic behaviour of Droxidopa-
protein complexes, providing a deeper understanding of their structural dynamics and stability. The MM/
GBSA studies provide a quantitative assessment of the binding free energy of protein-ligand complexes, offering 
insights into the energetics of protein-ligand interactions. The study evaluates the stability and strength of 
protein-ligand binding by analysing complex energies and binding free energy values throughout the simulation. 
The fluctuations observed in complex energies reflect the dynamic nature of protein-ligand complexes, with 
variations in binding free energy indicating changes in the stability of the complexes over time. The MM/GBSA 
method offers a powerful tool for estimating binding affinities and guiding the selection of potential drug 

Fig. 8.  Showing the molecular mechanics of generalised born surface area (MM/GBSA) studies conducted 
on MD simulation trajectories. The blue bard shows the total complex energy, whereas the orange shows the 
binding free energy of the complex.
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candidates for further development. However, the method’s effectiveness may be influenced by the complexity of 
the molecular system and the accuracy of force field parameters.

Conclusion
The comprehensive computational analyses conducted in this study provide valuable insights into the structural, 
energetic, and dynamic aspects of PL interactions involving Droxidopa with cervical cancer DNA Replication 
and Repair-Related Proteins, which were identified after extensive computations. Through protein structure 
preparation, molecular docking studies, molecular interaction fingerprints, DFT computations, pharmacokinetic 
evaluations, molecular dynamics simulations, and MM/GBSA studies, we gained a deeper understanding of 
these complexes’ binding mechanisms, energetics, and stability. The docking and MM\GBSA scores ranged from 
− 5.559 to − 6.835 Kcal/mol and − 26.04 to − 37.33 Kcal/mol, respectively, and interaction fingerprints revealed 
the most interacted residues were 2VAL, 2LYS, 1ALA, 1ARG, 1ASN, 1CYS, 1GLN, 1GLU, 1ILE, 1MET, 1PHE, 
1PRO, 1SER, and 1THR. The findings highlight the diverse interactions and dynamic behaviour exhibited by 
the protein-ligand complexes, underscoring the complexity of drug-protein interactions in rational drug design. 
These insights contribute to designing and optimising Droxidopa with improved pharmacological properties 
and therapeutic efficacy. Further experimental validation and refinement of computational models will be 
crucial for translating these findings into practical applications in drug discovery and development.

Data availability
All data generated or analysed during this study are included in this published article.
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