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In this research, we study different aspects of collective gravitational quantum excitations in the 
framework of the quantum multistream model. The energy dispersion of collective electrostatic 
(plasmon) and gravitational excitations or as we call gravity quasiparticle (GQ) are derived using the 
nonrelativistic and relativistic models and many parameters such as the effective mass, phase, and 
group speed of quasiparticle excitations are studied, in detail. It is shown that, unlike plasmons with 
a forbidden energy gap, all positive and negative energy values are allowed for GQs. However, unlike 
plasmon with a dual-tone nature of collective excitations, the GQs are found to be single-tone with 
either wave-like or particle-like oscillations being strongly damped. The linear phase-space evolution 
of GQs indicates that they evolve similarly to the classical system of particles in the center of the mass 
frame in which the force due to self-consistent gravitational potential plays the role of interparticle 
forces. It is shown that the damping of wavelike or particle-like excitations in GQ energy dispersion 
leads to three distinct phenomena of gravitational expansion (E > 0), stable matter (E = 0) and 
gravitational collapse (E < 0), respectively. The Hubble-Lemaitre-like relation is obtained from the 
generalized probability current for GQs. The quantum gravitational interference effect is also studied.

Gravity is a fundamental force of nature with a relatively less understood quantum features regarding other 
forces governing the universe. Because of the very large-scale characteristics of gravity, physical theories 
confront a major hierarchy problem leading to huge discrepancies between aspects of the weak force and gravity. 
No evidence has yet been found to explain why gravity which governs the large-scale effects of the universe is 
at least 29 orders of magnitude weaker than the weakest force of nature and 39 orders of magnitude smaller 
than the strong nuclear force. The hierarchy problem is known as the main cause of failure in renormalization1 
of gravity in quantum field theories via the coupling constant in unification attempts. The hierarchy problem is 
also closely related to the naturalness and fine-tuning models of nature. To circumvent the hierarchy problem 
Arkani-Hamed, Dimopoulos, and Dvali proposed the ADD model in 19982 to attribute the weakness of gravity 
to the existence of extra-large dimensions assuming that while the known fields of the standard model are 
confined to our four-dimensional membrane, gravity acts as a multidimensional force in other dimensions large 
compared to the Planck scale. However, no experimental evidence of the existence of extra-large dimensions 
has been reported yet and the results of the Large Hadron Collider (LHC) strongly contrast the theories of 
such predictions3. Randall-Sundrum models, on the other hand, try to solve the hierarchy problem using an 
alternative compactification4 by describing the physical world in terms of warped-geometry higher-dimensional 
universe in which elementary particles are localized in a (3 + 1)-dimensional brane5. Another element of the 
hierarchy problem is the so-called cosmological constant6 problem in which a tiny nonzero constant appears in 
general relativity formulation in an ad hoc manner to account for the accelerating universe. This constant was 
first introduced by Einstein himself to maintain a static universe but later removed after the confirmation of the 
expanding universe by observations of Edwin Hubble7. The modern cosmological constant is closely related to 
the concept of dark energy8.

More than a century after the emergence of two overwhelming modern physics theories, namely quantum 
mechanics and general relativity, a self-consistent theory of quantum gravity is still out of reach. The most basic 
question of why these extremely successful theories cannot be combined in a single theory of quantum gravity 
turns out to be among the hardest questions in all the history of physics. Quantum gravity is a field of research 
where quantum and gravitational effects are supposed to be equally important. Exploration of fundamental 
aspects of our universe, such as its nontrivial existence and evolution, the nature of black hole singularities, 
and the state of matter in extremely dense astrophysical objects like neutron stars strongly relies on a unified 
picture of quantum and gravity. One of the biggest obstacles encountered in developing such a theory is that 
its experimental verification requires extremely high energies which appear to be near the Planck length scale 
of the order of 10−35 meters or smaller which is not in the accessible range of currently operating high energy 
particle accelerators. Therefore, physicists are forced to use their imaginations as thought experiments besides 
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pursuing the mathematical beauty and inherent symmetries of nature. However, new trends to observe effects at 
the Planck lengthscales based on the matter waves decoherence and search for violation of quantum mechanics 
has been previously proposed9,10. The list of theories seeking to incorporate gravity into quantum mechanics is 
rather extensive11 the most popular of which are M-theory and loop quantum gravity. All these theories attempt 
to describe quantum features of gravitational interactions without necessarily aiming at the unification of all 
forces in nature. Among these theories string theory is the one that tries to develop a framework for the unified 
description of fundamental forces. Although the string theory12 is a major attempt to incorporate gravity in a 
unified theory of everything, it has confronted major objections in recent years due to inconsistent predictions13.

Decades of slow developments in the field of quantum gravity, despite extensive efforts, may be an indication of 
the fact that one has to choose a different path in seeking a unified theory. The research is now aligning its engine 
towards different effective approaches in the field within the newly emerging framework of phenomenological 
quantum gravity14. The apparent incompatibility of quantum mechanics with gravity and the failure of quantum 
field theories in the unification of fundamental forces with gravity may be revisited by studying underlying 
dissimilarities between the forces in the first place. While quantum mechanics is a theory with statistical 
representation of experimental results, one is to look for statistical features of gravity as a counterpart to be 
compared with quantum mechanics. To have a statistical view of gravity one has to think of a very large-scale 
universe in which galaxies play the role of particles in a gravitational fluid. Only, in that case, one can grasp the 
statistical effects similar to quantum mechanics. Over the past century, pioneering developments15–31 in the 
field of collective quantum phenomena in environments with electromagnetic interactions has been originated. 
The collective quantum phenomena find numerous applications in the study of electromagnetic interactions in 
complex plasmas in both laboratory32–43 and astrophysical44–49 scales. A similar development has been motivated 
for the investigation of collective gravitational quantum excitations. One such approach is through the so-called 
nonlinear integrodifferential Schrödinger-Newton equation, analogous to the Schrödinger-Poisson50,51 model 
of quantum plasmas, which has been put into attention by Diosi52 for the first time and has been motivated by 
Roger Penrose53 in connection with the wave-function collapse in gravitationally interacting quantum systems. 
Recently, Bahrami et. al54 have argued against the wave-function collapse description of the Schrödinger-
Newton model. Moreover, while quantum mechanics and quantum filed theories have achieved tremendous 
success in description of single-particle behavior at the fundamental level and the Standard Model of particle 
physics, respectively, their interrelating connection regarding the collective behavior of particles has been a 
challenging matter55,56. On the other hand, the spin-statistics theorem57 probably points to our incomplete 
picture of underlying principles, as pointed out by Richard Feynman et al.58. It is however a mandate to improve 
current field theoretical models in order to achieve the desired accuracy before arriving at the unified picture of 
fundamental forces.

The study of the electrostatic quantum excitations (plasmon) within the Schrödinger-Poisson model has 
revealed very interesting collective quantum phenomena59–67. The newly developed quasiparticle model 
of collective excitations has been used for treating the quantum many-body effects in a completely different 
manner68,69. Although the current quasiparticle model is a many-body approach conventionally used in the 
condensed matter field in connection with the energy band structure concept, it has the advantage of allowing 
the comparison of gravity and electrostatic forces as collective interaction fields in an equal footing. There are 
already research showing the emergent gravitational phenomena related to the condensed matter field70 and the 
quantum entanglement71. In the current research, we extend the quasiparticle model to collective gravitational 
quantum excitations called gravity quasiparticles (GQ) in a quite similar manner as in the electrostatically 
interacting electron gas. In doing so we can compare different aspects of collective quantum effects in gravitational 
and electrostatic fluids and discover possible divergence in the unification process. The quasiparticle model for 
gravitationally interacting fluid is presented in section “Gravitational quasiparticle model”. Nonrelativistic and 
relativistic matter wave dispersion is deduced and compared for plasmons and GQs in sections “Nonrelativistic 
matter-wave dispersion” and “Relativistic matter-wave dispersion”, respectively. Propagation of nonrelativistic 
1D gravity excitations is studied in section “Nonrelativistic quasiparticle excitations”. The phase space evolution 
of GQs is analyzed in section “Phase-space evolution of gravitational quasiparticles”. The generalized probability 
current for GQs and Lemaitre-Hubble-like relation is obtained in section “Gravitational quasiparticle probability 
current”. The GQ interference is studied in section “Gravitational quasiparticle interference” and conclusions are 
drawn in section “Conclusion”.

Gravitational quasiparticle model
Collective excitations under the Hamiltonian action on individual particles interacting via the self-consistent 
potential can be modeled through the quantum multistream concept. In this model, to circumvent the many-
body difficulties, instead of position representation of particles which leads to a Hartree-like product form of 
system wavefunction, we use multistream representation in momentum space to obtain a summed form of the 
total wavefunction68. Using the simplest form of Hamiltonian, H = K + U , where K and U  are respectively the 
kinetic and (self-consistent) potential operators, we have a single-particle Schrödinger equation

	
iℏ
∂Nj(r, t)

∂t
= HNj(r, t),� (1)

where ℏ is the reduced Planck constant. In the case of a gravitational interactions we have UG = mϕG + µ, 
whereas for the electrostatic one, UE = −eϕE + µ, where m is the mass, e is the electric charge and µ represents 
the corresponding chemical potential of the quantum gas, in their respective concepts. Moreover, ΦG and ΦE  
denote the gravitational and electrostatic interaction potentials, respectively. The nonrelativistic Hamiltonian for 
gravitating fluid is HG = −(ℏ2/2m)∆ +mϕG + µ, whereas, for the electron gas is, HE = −(ℏ2/2m)∆− eϕE + µ
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. However, the relativistic case can be treated semiclassically using the square-root Klein-Gordon Hamiltonian of 
HG =

√
m2c4 − ℏ2c2∆+mϕG + µ in which c denotes the speed of light in vacuum. In the quasiparticle model 

of collective excitations the single-particle Schrödinger equations are coupled through the Poisson’s relation

	
∆ϕG(r) = 4πGm




N
j=1

Nj(r, t)N∗
j (r, t)− n0


 ,� (2)

where n0 denotes the static equilibrium background number density. Redefining probability density of the 

collective mode as, N (r, t) =
N∑
j=1

Nj(r, t) and using the standard definition, n =
N∑
j=1

Nj(r, t)N∗
j (r, t), we arrive 

at the following set of coupled differential equations 

	
iℏ
∂N (r, t)

∂t
= HGN (r, t), � (3a)

	
∆ϕG(r) = 4πGm


N (r, t)N∗(r, t)−

N
k ̸=j

Nk(r, t)N∗
j (r, t)− n0


 . � (3b)

 In the limit of large number of particles N ≫ 1, the second term in the rhs of Poisson relation vanishes68,69, 
leading to the system 

	
iℏ
∂N (r, t)

∂t
= HGN (r, t), � (4a)

	
∆ϕ(r) = 4πGm

[
|N (r, t)|2 − n0

]
. � (4b)

 The system (4) is equally valid for nonrelativistic and relativistic Hamiltonian. Other forms of potential and 
quantum effect can be easily incorporated into this quasiparticle model.

The current quasiparticle model should not be confused with the wave-kinetic, Wigner-Poisson kinetic and 
its derivative quantum hydrodynamic theories and Madelung fluid transformation of the Schrödinger-
Poisson and Schrödinger-Newton systems. These models which are categories under a same mathematical 
formalism lead to a generalized Bohm-Gross-type dispersion relation72–75 suggesting the so-called quantum 
Jeans instability phenomenon. While the Jeans instability is originally a classical phenomena, some authors 
have used the quantum hydrodynamic to obtain its quantum version, although, its physical implications are 
not usually discussed. It is important to note that the use of Madelung’s transformations to build collective 
quantum model from single-particle formulation is not mathematically rigorous and these transformations only 
become physically meaningful in connection with the quantum hydrodynamic framework51. The quasiparticle 
model, on the other hand, is a mathematically rigorous framework68 based on a dual lengthscale theory in 
which the self-consistent interaction potential is fully quantized59. This model uses the energy band structure 
concept, a rigorous method in condensed matter physics, which is related to the matter wave energy dispersion. 
Quasiparticles in this model are field-induced particle-like entities that can interact with electrons and charged 
particles in the case of an electrostatic field and with matter in the case of a gravitational one. Due to both 
the wave-like and particle-like nature of quasiparticle excitations, caused respectively by collective and single-
particle oscillations, they are characterized by two distinct de Broglie’s wavelengths related through a simple 
complementarity-like relation63. The dual lengthscale quasiparticle theory has recently emerged due to apparent 
discrepancy in the static charge screening via the generalized Bohm-Gross-type dispersion relation, as predicted 
by the linearized quantum hydrodynamic formulation, which has led to intense debate among researchers of 
related fields over the past decade76–83. It has been shown that the dispersion relation of fast and slow plasmon 
excitations in the degenerate electron gas, consistent with the Lindhard dielectric response theory, is obtained 
by considering the high and low phase-speed expansions of the dielectric function. This consequently leads to 
an extra correction factor to the quantum Bohm term in the hydrodynamic formulation and consequently in 
the generalized Bohm-Gross-type dispersion relation36. However, this correction is usually ignored in most 
quantum hydrodynamic dispersion calculations73,75. The double-tone nature of quantum oscillations suggests 
a dual lengthscale quasiparticle theory for collective quantum plasmon excitations which has led to the 
development of the current quasiparticle model over the past few years. More recently, it has been shown that68 
the linear response theory using the quasiparticle model can go well beyond the random phase approximation 
(RPA) by predicting a dual-tone oscillatory Lennard-Jones-type screening of impurity charges caused by both 
small-scale Friedel oscillations, due to single electron excitations, modulated over the London-type attractive 
potential, due to collective oscillations, around the screened charge. It has also been shown that84 the Bohm-
Gross-type dispersion relation obtained via quantum kinetic and Lindhard dielectric theories is inconsistent 
with the experimental result of the small wavenumber plasmon dispersion of valence electrons in some simple 
alkali metals. The quasiparticle model has been further used to study the semi-classical relativistic quantum 
electron gas excitations using the square-root Klein-Gordon equation to predict a generalized equation of state 
for collective quantum excitations in extremely dense electron gas69. On the other hand, the dual lengthscale 
quasiparticle model has the major advantage over the Wigner-Poisson kinetic approach in which the self-
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consistent potential is approximated by the Taylor series keeping only the leading order term proportional to ℏ2 
in the series. This semiclassical expansion of the Wigner potential in either position or momentum direction, 
keeping the other one fixed, is inconsistent with Heisenberg’s uncertainty principle and is the main cause of the 
aforementioned discrepancy. It has been remarked that85 all terms proportional to the Plank constant in the 
expansion of the Wigner potential are of importance regardless of the ℏ order. Obtaining the classical limit of 
the quantum evolution equation leads to a well-known squeezing effect in quantum statistical distribution which 
is extensively discussed in Ref.86. Recently, the quasiparticle approach to the statistical evolution of electron gas 
using the modified Wigner distribution has been proposed for the phase-space analysis of collective quantum 
excitations without resorting to the Wigner potential or distribution approximation87. The quasiparticle model 
of collective quantum excitations is still in its initial development stages and may be generalized to include full 
electromagnetic interactions and spin-exchange effects. However, in the current analysis, we use the simplified 
version of the model to probe possible dissimilarities between collective quantum electrostatic and gravitational 
excitations. It is shown that, although collective excitations in the gravitational field via the Schrödinger-Newton 
formalism can be quantized similarly to that of the electrostatic field in the Schrödinger-Poisson system, either 
the single-particle or collective branch of gravitational quantum excitations is strongly damped (leading to either 
large-scale expansion or collapse). This may be one of the underlying reasons why gravity apparently defies to be 
unified with other fundamental forces of nature.

Nonrelativistic matter-wave dispersion
Considering the nonrelativistic quasiparticle excitations in a gravitating quantum fluid, we have the following 
system 

	
iℏ
∂N
∂t

= − ℏ2

2m
∆N +mϕGN + µN , � (5a)

	
∆ϕG = 4πGm

[
|N |2 − n0

]
. � (5b)

 We now linearize the system keeping the first-order terms in the perturbed variables, N =
√
n0 +N1, 

ϕG = 0 + ϕG1, µ = µ0, which leads to 

	
iℏ
∂N1

∂t
= − ℏ2

2m
∆N1 +mϕG1

√
n0 + µ0N1, � (6a)

	 ∆ϕG1 = 4πGm
√
n0N1. � (6b)

 We then Fourier analyse using the operations, ∇ → ik and ∂/∂t → −iω, to get 

	
iℏωN1 =

ℏ2k2

2m
N1 +mϕG1

√
n0 + µ0N1, � (7a)

	 − k2ϕG1 = 4πGm
√
n0N1. � (7b)

 Using a scaled wavefunction N1 →
√
n0Ψ and ϵ = ℏω, we get new set of equations 

	
(ϵ− µ0)Ψ =

ℏ2k2

2m
Ψ +mϕG1, � (8a)

	 − k2ϕG1 = 4πGmn0Ψ. � (8b)

 Final normalization of the potential as ϕG1 → E0ΦG/m where E0 = ℏ
√
4πGρ0, for GQ, with ρ0 = mn0 being 

the equilibrium mass density, results in

	 2EΨ = k2Ψ + ΦG, −k2ΦG − Ψ = 0,� (9)

where E = (ϵ− µ0)/2E0 and the wavenumber is scaled to the characteristic value of k0 =
√
2mE0/ℏ. Solving 

the system (9) gives the energy dispersion relation as E = k2/2− 1/2k2. A quite similar dispersion for plasmon 
in electron gas has been found59 in the form E = k2/2 + 1/2k2 where the energy is normalized to 2Ep with 
E0 = ℏωp (ωp =

√
4πe2n0/me) being the characteristic plasmon energy and the wavenumber being scaled 

to the plasmon wavenumber k0 =
√
2meEp/ℏ. One should note that for the electron gas, me represents the 

electron rest mass whereas m for GQ can represent particle masses, i.e., average masses of large-scale objects such 
as stars and galaxies depending on the scale-length of the fluid. The unified form of matter-wave dispersion is 
written in the form of E = k2/2∓ 1/2k2, where minus/plus signs refer to the gravity/electrostatic quasiparticle 
dispersion. The first common term in the dispersion is due to the single-particle excitations whereas the second 
term represents the large-scale wave-like excitations63.
The unified nonrelativistic matter-wave dispersion along with the effective mass, phase, and group speeds of 
quasiparticle(collective) excitations are shown in Fig. 1 for both gravitational as well as electrostatic fluids. 
Figure 1a shows the matter-wave dispersion plasmon (thin curve), GQ (thick curve), and parabolic free particle 
(dashed curve) quasiparticle excitations. The electrostatic quasiparticle dispersion has an energy gap above the 
Fermi level (E = 0)62. The ground state energy orbital E = 1 leads to the quantum beating effect. For larger 
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energy values E > 1 there are distinct dual length scale particle-like and wave-like excitations corresponding 
respectively to the wavenumbers k1 =

√
E −

√
E2 − 1 and k2 =

√
E +

√
E2 − 1. Note that a complementarity-

like relation holds between the two de-Broglie’s wavelength k1k2 = 1, in normalized form. It is noted that 
electrostatic excitation dispersion approaches the free electron value for large energies. As for the gravitational 
collective excitations, quasiparticles which are called GQs, the dispersion relation indicates the single-tone 
nature, unlike the electrostatic case. The characteristic wavenumbers in this case are k1 =

√
E −

√
E2 + 1 

and k2 =
√
E +

√
E2 + 1 satisfying the relation k1k2 = i. This dissimilar aspect of GQs has far-reaching 

consequences for gravitational interactions as will be noted later in this analysis. This fundamental feature may 
also be the reason that prohibits GQs from second quantization like electromagnetic interactions. It is also 
remarked that GQs can take zero or negative energy values. The imaginary part of dispersions corresponding to 
Fig. 1a are shown in Fig. 1b. The imaginary dispersion branches indicate instability of collective excitations in the 
system in either the form of damping or growing. It has been recently shown that in the half-space excitations, the 
growing instability can lead to a photo-plasmonic effect65. For GQs, the instability occurs for wave-like branches 
for positive energies E > 0, whereas, it takes place for particle-like branches for negative GQ energies. For the 

Fig. 1.  (a) The real part of matter-wave dispersion of electrostatic (thin curves), gravitational (thick curves) 
and free particle (dashed curve) nonrelativistic quasiparticle excitations. (b) The imaginary part of matter-
wave dispersion of electrostatic (thin curves) and gravitational (thick curves) nonrelativistic quasiparticle 
excitations. (c) Effective mass (thick curve), phase speed (dashed curve), and group speed (thin curve) of 
nonrelativistic electrostatic quasiparticles (plasmons). (d) Effective mass (thick curve), phase speed (dashed 
curve), and group speed (thin curve) of nonrelativistic gravitational quasiparticles (GQ).
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zero energy orbital, no instability exists. Figure 1c shows the variations in effective mass (thick curve), phase 
speed (dashed curve), and group speed (thin curve) of collective electrostatic excitations. The speeds are given 
in normalized unit v0 = ℏk0/m. The effective mass vanishes at the long wavelength limit and approaches the free 
particle value in the small wavelength limit. The phase speed has a minimum value at the characteristic plasmon 
wavenumber k ≃ 1.316kp. The group speed has negative/positive values below/above the plasmon wavenumber 
k = kp. Figure 1d depicts the variations in effective mass (thick curve), phase speed (dashed curve), and group 
speed (thin curve) of collective gravity excitations. It is remarked that the effective mass of GQs is negative/
positive below/above the critical wavenumber k ≃ 1.316kp. Mechanics in the universe containing negative mass 
have been investigated by Bonner as early as 198888. The cosmological attribution of negative mass to dark 
energy and dark matter has also been suggested89 and criticized90. The effective negative mass of electrons in 
plasma electron oscillations has been recently reported91. Figure 1d shows that the phase speed has a positive/
negative value above/below the characteristic wavenumber k = k0, whereas, the group speed is always positive 
and has a minimum value at k ≃ 1.316k0.

Relativistic matter-wave dispersion
Let us now consider relativistic quasiparticle excitations in a gravitational quantum system of particles using 
the square-root Klein-Gordon (SRKG) Hamiltonian. The use of the semiclassical model of SRKG instead of 
the Klein-Gordon and Dirac models is due to the straightforward quantization of the electrostatic field in the 
Hamiltonian formalism from one hand and the similar form of the resulting energy band structure to the 
nonrelativistic case for close comparison from the other. The wave-kinetic approach to relativistic quantum 
plasmas has been developed in92. More recently the SRKG model has been used to study the relativistic collective 
quantum excitations and some thermodynamic quantities in the electron gas69. The SRKG system for GQs is 
given as follows 

	
iℏ
∂N
∂t

=
√
m2c4 − ℏ2c2∆N +mϕGN + µN , � (10a)

	
∆ϕG = 4πGm

[
|N |2 − n0

]
. � (10b)

 Linearizing the system by keeping the first-order terms in perturbed variables, N =
√
n0 +N1, ϕG = 0 + ϕG1

, µ = µ0, leads to 

	
iℏ
∂N1

∂t
=
√
m2c4 − ℏ2c2∆N1 +mϕG1

√
n0 + µN1, � (11a)

	 ∆ϕG1 = 4πGm
√
n0N1. � (11b)

 Using the Fourier analysis by the operations, ∇ → ik and ∂/∂t → −iω, we get 

	
ℏωN1 = mc2

√
1 +

ℏ2k2
m2c2

N1 +mϕG1
√
n0 + µN1, � (12a)

	 − k2ϕG1 = 4πGm
√
n0N1. � (12b)

 We then scale the wavefunction as N1 →
√
n0Ψ and use ϵ = ℏω to get new set of equations 

	
(ϵ− µ)Ψ = mc2

√
1 +

ℏ2k2
m2c2

Ψ +mϕG1Ψ, � (13a)

	 − k2ϕG1 = 4πGρ0Ψ. � (13b)

 Note that the factor 
√
1 + v2/c2 appears as a quantum mechanical operator in the first term in rhs of (10) and 

implicitly in (12) and (13) through the definition v = ℏk/m. This quantity which may be called the relativistic 
energy factor (not to be confused with the relativistic gamma factor) also appears in Ref.72 through the wave-
kinetic approach. By normalization ϕ1G → EgΦG/m where Eg = mgc

2 (where mg is the galactic mass, for 
instance) is the rest energy of the particle and the wavenumber to k → mgck/ℏ, we get

	 EΨ =
√
1 + k2Ψ + ΦG, k2ΦG + ΓΨ = 0,� (14)

where E = (ϵ− µ0)/Eg. Solving the system (14) gives the relativistic GQ energy dispersion relation as 
E =

√
1 + k2 − ΓG/k

2 where ΓG = 2E0/Eg (E0 = ℏ
√
4πGρ0, for GQ). A quite similar dispersion for relativistic 

plasmon in electron gas has been found69 in the form of E =
√
1 + k2 + ΓE/k

2 where ΓE = 2E0/Ee (E0 = Ep, 
for plasmon) with Ee = mec

2 being the rest energy of electrons. The unified form of matter-wave dispersion can 
be written in the form of E =

√
1 + k2 ± Γ/k2.

The relativistic matter-wave dispersion along with the effective mass, phase, and group speeds of 
quasiparticle(collective) excitations are shown in Fig. 2 for both gravitational as well as electrostatic collective 
excisions for the simple choice of Γ = 1. The normalization units for energy here are E1 = {mgc

2,mec
2} and for 

wavenumber are k1 = {ℏ/mgc, ℏ/mec} and the corresponding speed units are v1 = ℏk1/m. Figure 2a depicts 
the real part of relativistic excitations for gravity (thick curve), electrostatic (thin curve), and free particle (dashed 
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curve). The only difference between Fig. 2a with 1a is that for the relativistic dispersions, the higher energy limit 
approaches the photon lines. Figure 2b shows the imaginary parts of the relativistic dispersion relations. It is 
remarked that for electrostatic excitations the imaginary wavenumbers reside in negative energy values which 
are ruled out in the electron gas with positive energy values. Moreover, the relativistic GQs are found to be stable 
for all energy orbital. Figure 2c shows the effective mass (thick curve), the phase speed (dashed curve), and the 
group speed (thin curve) for relativistic plasmons. The effective mass vanishes at the long wavelength limit but 
increases unboundedly in the small wavelength limit. The phase is always positive approaching the light speed 
in vacuum for k → ∞. The group speed is negative/positive below/above k = k0 approaching the speed of light 
as k → ∞. Figure 2d shows the effective mass (thick curve), the phase speed (dashed curve), and the group 
speed (thin curve) for relativistic GQs. It is interesting to find that relativistic GQs have negative effective mass. 
Furthermore, the group speed of relativistic GQs is positive and higher than the speed of light in vacuum but 
approaching the light speed as k → ∞. The phase speed, on the other hand, can be either positive or negative 
approaching the light speed as k → ∞.

Fig. 2.  (a) The real part of matter-wave dispersion of electrostatic (thin curves), gravitational (thick curves) 
and free particle (dashed curve) relativistic quasiparticle excitations. (b) The imaginary part of matter-wave 
dispersion of electrostatic (thin curves) and gravitational (thick curves) relativistic quasiparticle excitations. 
(c) Effective mass (thick curve), phase speed (dashed curve), and group speed (thin curve) of relativistic 
electrostatic quasiparticles (plasmons). (d) Effective mass (thick curve), phase speed (dashed curve), and group 
speed (thin curve) of relativistic gravitational quasiparticles (GQ).
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Nonrelativistic quasiparticle excitations
The nonrelativistic normalized linear Schrödinger-Poisson system admits a simple set of solutions. For instance, 
consider the following 1D pseudoforce system 

	
iℏ
dφ(t)

dt
= ϵφ(t), � (15a)

	
d2Ψ(x)

dx2
∓ Φ(x) + 2EΨ(x) = 0, � (15b)

	
d2Φ(x)

dx2
− Ψ(x) = 0, � (15c)

 where the wavefunction is assumed to be separable in the form N (x, t) = Ψ(x)φ(t) and minus/plus signs 
refer to gravitational/electrostatic excitations with their corresponding normalization units. The quasiparticle 
solution then reads

	

[
Φ(x)

Ψ(x)

]
=

1

2α

[
Ψ0 ∓ k22Φ0 −

(
Ψ0 ∓ k21Φ0

)
−
(
Φ0 + k21Ψ0

)
Φ0 + k22Ψ0

] [
exp(ik1x)

exp(ik2x)

]
,� (16)

in which the minus/plus sign in the wavefunction corresponds to the GQ/plasmon case with Φ0 and Ψ0 are the 
initial values assuming, Φ′(0) = Ψ′(0) = 0, for simplicity. The de Broglie’s wavenumbers read

	 k1 =
√
E − α, k2 =

√
E + α, α =

√
E2 ∓ i2,� (17)

where again minus/plus signs refer to gravitational/electrostatic excitations. Note that the complementarity-like 
relation between the de Broglie’s matter wavenumbers is k1k2 =

√
∓1.

Figure 3 shows the space variation of the solutions assuming initial conditions Φ0 = Ψ0 = 1. Figure 3a depicts 
the density variations for electrostatic mode in orbital E = 5. The corresponding variation in electrostatic energy 
is shown in Fig. 3b which indicates the dual-tone nature of electrostatic potential variations. As it is remarked 
the fine/large structure shown in Fig. 3b corresponds to the particle-like/wave-like nature. Figure 3c, d show 
the corresponding variations for gravitational excitations at the same energy orbital. The monotonic variation 
is apparent from these plots in addition to the damping effect for the gravitational field at larger distances in 
Fig. 3d.Figure 4 shows the wavefunction variations at different orbital. Plot 4a shows the electrostatic mode 
at energy orbital E = 2 (for comparison) revealing the dual-tone nature of space variations. The gravitational 
mode at the same orbital is shown in Fig. 4b lacking the large-scale variations (as compared to Fig. 4a). This is 
due to an unstable wave-like branch of collective gravitational excitations for positive energy values as shown 
from the dispersion in Fig. 1a. This feature marks a primary difference between plasmon and GQ leading to 
remarkable dissimilarities between these two fundamental types of excitations. It is seen that for gravity the 
long-range interactions become ineffective due to this feature. Figure 4c depicts the wavefunction for E = 0 in 
which k1 = i and k2 = 1. This state may be considered as the ground state in which particle-like and wave-like 
oscillations are complex conjugate of each other. However, at this energy orbital, the damping effect vanishes and 
this orbital is completely stable. Figure 4d shows the GQ wavefunction at negative energy orbital. For negative 
energy values the particle-like/wave-like excitations become stable/unstable quite contrary to the case of positive 
energy excitations. The amplitude of single-tone oscillations in this orbital is greatly reduced showing sharp 
damping of particle-like oscillations with the (wave-like) excitation wavelength increased. In the negative energy 
orbital collective gravitational excitations possess only a wave-like nature and as is depicted in Fig. 1d the GQ has 
a negative effective mass.Figure 5 shows the potential energy of excitations corresponding to values used in Fig. 
4. For electrostatic excitations shown in Fig. 5a the variations are clearly of dual length-scale nature. However, 
for corresponding gravitational potential energy at the same positive energy orbital, the wave-like oscillations 
are transient, and only particle-like oscillations persist at long ranges. The zero-energy orbital shown in Fig. 5c 
is a long-wavelength excitation with monotone stability. The negative orbital GQ potential energy variations are 
shown in Fig. 5d which shows only wave-like oscillations.

Phase-space evolution of gravitational quasiparticles
The real-valued stationary solution of 1D gravitational collective quantum excitations for x > 0 is given as

	

[
Φ(x)

Ψ(x)

]
=

1

2α

[
Ψ0 − k22Φ0 −

(
Ψ0 − k21Φ0

)
−
(
Φ0 + k21Ψ0

)
Φ0 + k22Ψ0

] [
exp(ik1x)

cos(k2x)

]
.� (18)

Here we are interested in time evolution in phase space86 for GQ starting from the initial stationary states given 
in (18). To this end, we start with the normalized time-dependent system of equations, 

	
2i
∂N
∂t

= −∂2N
∂x2

+ Φ + µ0N , � (19a)

	
∂2Φ

∂x2
−N = 0, � (19b)
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 where the factor 2 appears in (19) because the time is normalized to 1/(2ωp) and Φ represents the gravitational 
potential. On the other hand, by the standard definition of Wigner function93 we have in normalized form

	
W (x, v) =

∫ +∞

−∞
e−ivsN

(
x +

s

2

)
N∗

(
x− s

2

)
ds,� (20)

Using the linearized time-dependent Schrödinger equation, we have

	
2
∂N0

∂t
= i

∂2N0

∂x2
− iΦ0 − iµ0N0,� (21)

where N0 = N (x, t) and Φ0 = Φ(x). The time evolution of the Wigner function is then given by

	

∂W

∂t
=

+∞∫

−∞

e−ivs

(
N+

∂N∗
−

∂t
+N∗

−
∂N+

∂t

)
ds,� (22)

Fig. 3.  (a) Density profile of 1D plasmon excitation at energy orbital E = 5. (b) Potential profile of 1D 
plasmon excitation at energy orbital E = 5. (c) Density profile of 1D GQ excitation at energy orbital E = 5. (d) 
Potential profile of 1D GQ excitation at energy orbital E = 5.
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where N± = N (x± s/2, t). It is readily found that 

	
2
∂N∗

−
∂t

= −i
∂2N∗

−
∂x2

+ iΦ∗
− + iµ0N∗

−, � (23a)

	
2
∂N+

∂t
= i

∂2N+

∂x2
− iΦ+ − iµ0N+, � (23b)

 where Φ± = Φ(x± s/2). Consequently, we have 

	
2N+

∂N∗
−

∂t
+ 2N∗

−
∂N+

∂t
= � (24a)

	
− i

(
N+

∂2N∗
−

∂x2
−N∗

−
∂2N+

∂x2

)
+ i

(
N+Φ

∗
− − Φ+N∗

−
)
, � (24b)

 Finally, we arrived at 

Fig. 4.  (a) Density profile of 1D plasmon excitation at energy orbital E = 2. (b) Density profile of 1D GQ 
excitation at energy orbital E = 2. (c) Density profile of 1D GQ excitation at energy orbital E = 0. (d) Density 
profile of 1D GQ excitation at energy orbital E = −10.
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2
∂W

∂t
= −i

+∞∫

−∞

e−ivs

(
N+

∂2N∗
−

∂x2
−N∗

−
∂2N+

∂x2

)
ds + i

+∞∫

−∞

e−ivs
(
N+Φ

∗
− − Φ+N∗

−
)
ds. � (25a)

 Now using the integrations by parts, one obtains 

	

+∞∫

−∞

e−ivsN+
∂2N∗

−
∂x2

ds = −2iv

+∞∫

−∞

e−ivsN+
∂N∗

−
∂x

ds +

+∞∫

−∞

e−ivs∂N+

∂x

∂N∗
−

∂x
ds, � (26a)

	

+∞∫

−∞

e−ivsN∗
−
∂2N+

∂x2
ds = 2iv

+∞∫

−∞

e−ivsN∗
−
∂N+

∂x
ds +

+∞∫

−∞

e−ivs∂N∗
−

∂x

∂N+

∂x
ds, � (26b)

 which leads to

Fig. 5.  (a) Potential energy profile of 1D plasmon excitation at energy orbital E = 2. (b) Potential energy 
profile of 1D GQ excitation at energy orbital E = 2. (c) Potential energy profile of 1D GQ excitation at energy 
orbital E = 0. (d) Potential energy profile of 1D GQ excitation at energy orbital E = −10.
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2
∂W

∂t
+ 2v

∂W

∂x
= i

+∞∫

−∞

e−ivs
(
N+Φ

∗
− − Φ+N∗

−
)
ds.� (27)

The Poisson’s equation is now used to calculate the first term in the RHS of (27)

	
∂2Φ+

∂x2
= N+,

∂2Φ∗
−

∂x2
= N∗

−,� (28)

We then have

	
N+Φ

∗
− − Φ+N∗

− = Φ∗
−
∂2Φ+

∂x2
− Φ+

∂2Φ∗
−

∂x2
.� (29)

Using (29) in (27), we arrive at

	

2
∂W

∂t
+ 2v

∂W

∂x
= i

+∞∫

−∞

e−ivs

(
Φ∗
−
∂2Φ+

∂x2
− Φ+

∂2Φ∗
−

∂x2

)
ds.� (30)

The first term in the RHS of (30) can be treated similar to (26) 

	

+∞∫

−∞

e−ivsΦ+
∂2Φ∗

−
∂x2

ds = −2iv

+∞∫

−∞

e−ivsΦ+
∂Φ∗

−
∂x

ds +

+∞∫

−∞

e−ivs∂Φ+

∂x

∂Φ∗
−

∂x
ds, � (31a)

	

+∞∫

−∞

e−ivsΦ∗
−
∂2Φ+

∂x2
ds = 2iv

+∞∫

−∞

e−ivsΦ∗
−
∂Φ+

∂x
ds +

+∞∫

−∞

e−ivs∂Φ
∗
−

∂x

∂Φ+

∂x
ds, � (31b)

 giving the following result

	
∂W (x, v, t)

∂t
+ v

∂W (x, v, t)

∂x
+ v

∂Z(x, v)

∂x
= 0.� (32)

with a new definition

	
Z(x, v) =

∫ +∞

−∞
e−ivsΦ

(
x +

s

2

)
Φ∗

(
x− s

2

)
ds.� (33)

which leads to the generalized time evolution of collective quantum gravitational excitations in the form

	
∂W (x, v, t)

∂t
+ v

∂ [W (x, v, t) + Z(x, v)]

∂x
= 0.� (34)

By definition of a modified Wigner function, M(x, v, t) = W (x, v, t) + Z(x, v), one may write

	
∂M(x, v, t)

∂t
+ v

∂M(x, v, t)

∂x
= 0.� (35)

Equation (35) describes the evolution of free GQ and indeed is similar to the case of a free classical system 
of particles in the absence of external forces. It is concluded that the gravitation forces acting between 
particles do not affect the linear evolution of collective excitations. However, there should be a nonlinear 
effect which may be explored using the nonlinear system. The solution to the evolution equation is given as 
M(x, v, t) = M(x− vt, v, 0), where

	

MG =

+∞∫

−∞

e−ivs
[
Ψ
(
x− vt +

s

2

)
Ψ
(
x− vt− s

2

)
+ Φ

(
x− vt +

s

2

)
Φ
(
x− vt− s

2

)]
ds.� (36)

The corresponding modified Wigner function for plasmon is given as87

	

ME =

+∞∫

−∞

e−ivs
[
Ψ
(
x− vt +

s

2

)
Ψ
(
x− vt− s

2

)
− Φ

(
x− vt +

s

2

)
Φ
(
x− vt− s

2

)]
ds.� (37)

Figure 6 shows the modified Wigner function for electrostatic and gravitational excitations. Figure 6a 
shows the distribution profile of plasmon in momentum space for E = 2 at initial time. The momentum has 
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four distinct peaks at the intersection of energy level with the nonrelativistic plasmon dispersion curve shown 
in Fig. 1a. Figure 6b shows the probability density distribution corresponding to values in Fig. 6a showing 
the characteristic dual-tone feature of plasmon. Figure 6c depicts the velocity distribution of gravitational 
excitations at the same orbital as in Fig. 6a. Other than velocity peaks in the intersections of energy level with 
the GQ dispersion in Fig. 1a, there is a strong peak at the center which indicates the localization of the majority 
of particles in collective gravity excitations due to ineffective wave-like momentum transfer in gravitational 
fluids. Figure 6d indicates the decay of probability distribution due to wave-like excitation damping of gravity 
excitations for positive energy values.Figure 7 shows the modified distribution profile for parameter values used 
in Fig. 6 at a later time t = 1. It is remarked that at small later times the v = 0 probability distribution of Fig. 
7b, d are not changed, significantly. It is however noted that the time evolution of GQ velocity distribution has 
a significant effect on spreading the particle velocity to higher positive values. This is caused by the quantum 
uncertainty effect where the space decay of collective mode acts as the confinement of particles around near 
x = 0 spreading the momentum to higher values in exchange. This feature is quite similar to the tunneling 
of electrons at the half-space metal surface where the wavefunction shows the decaying effect.Figure 8 shows 
the modified distribution at time t = 0 for different values of quasiparticle energy. The electrostatic excitations 
distribution profile at orbital E = 2 is shown in Fig. 8a indicating dominant velocity strips as white lines. There 

Fig. 6.  (a) The modified Wigner function profile in momentum space for plasmon excitation at orbital E = 2 
at time t = 0. (b) The modified Wigner function profile in position space for plasmon excitation at orbital 
E = 2 at time t = 0. (c) The modified Wigner function profile in momentum space for GQ excitation at orbital 
E = 2 at time t = 0. (d) The modified Wigner function profile in position space for GQ excitation at orbital 
E = 2 at time t = 0.
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are strong variations between the inner velocity strips which is called the violent region. The bubble structures 
show the distribution peaks caused by collective excitations. The smaller/bigger bubbles are due to particle-like/
wave-like oscillations in quasiparticles. Figure 8b shows the GQ distribution profile at orbital E = 2. Particle-
like small bubbles are packed around the zero-velocity region. Figure 8c shows the modified function profile 
at GQ orbital E = 0. Two distinct velocity strips confine the violent region in which bubbles are neither wave-
like nor particle-like. The modified Wigner function profile for negative energy GQ is shown in Fig. 8d. There 
are very large bubble structures caused by the wave-like excitations. This is because for negative energy values 
the particle-like excitations are strongly damped.Figure 9 shows the evolved distribution function profiles 
corresponding to values used in Fig. 8 at time t = 20. Figure 9a shows that time evolution has a grinding effect 
on bubbles in the violent region which is reminiscent of the Landau damping effect in the electrostatic system. A 
similar feature is found for GQ at the same energy orbital. However, it is remarked that the momentum spread 
in Fig. 9a leads to a new kind of gravitational quantum instability. Such an effect has also been recently seen to 
occur for half-space surface spill-out electron excitations87 as a manifestation of the Heisenberg uncertainty 
principle and is interpreted as the quantum tunneling effect. The latter effect has also been attributed to the 
theoretically predicted66 hot electron generation at the surface of metals and semiconductors. The presence of 
a similar effect for GQs may indicate large-scale expansion of matter under the influence of damped collective 

Fig. 7.  (a) The modified Wigner function profile in momentum space for plasmon excitation at orbital E = 2 
at time t = 1. (b) The modified Wigner function profile in position space for plasmon excitation at orbital 
E = 2 at time t = 1. (c) The modified Wigner function profile in momentum space for GQ excitation at orbital 
E = 2 at time t = 1. (d) The modified Wigner function profile in position space for GQ excitation at orbital 
E = 2 at time t = 1.
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gravity branch for positive energy dispersion band (and not the predicted Jeans collapse as suggested by previous 
quantum kinetic and hydrodynamic and wave-kinetic models72–75). This is a very interesting prediction of 
the gravitational quasiparticle model which is consistent with the well-known experimental observations of 
universal expansion7. This effect is caused by the divergent feature of collective damping of gravity quasiparticle 
excitations as compared to the electrostatic counterpart. This momentum spread due to the ineffectiveness of 
wave-like excitations should lead to the expansion of the gravitational fluid at positive GQ energy values. Figure 
9c shows the time evolution of zero energy GQ excitation. Note that, while the grinding of a large bubble structure 
is also present in this case, the momentum spread is absent. This is because neither wave-like nor particle-like 
damping is present in collective mode at E = 0 (e.g. see Fig. 4c). Figure 9d reveals that momentum spread is 
also present for negative energy GQ orbital. It can be seen that for E > 0 only the particle-like branch is stable 
and the instability of the collective branch leads to the expansion of matter. For E = 0 the system is completely 
stable and neither expands nor collapses, whereas, for E < 0 the instability arises for the particle-like branch and 
the collective branch becomes stable therefore the negative energy band may indicate the gravitational collapse 
effect in the current model. In the relativistic case, the critical wavenumber for E = 0 where wavelike de Broglie’s 
wavelength coincides with that of particle-like, is given by

Fig. 8.  (a) The modified Wigner function phase-space profile for plasmon excitation at orbital E = 2 at time 
t = 0. (b) The modified Wigner function phase-space profile for GQ excitation at orbital E = 2 at time t = 0. 
(c) The modified Wigner function phase-space profile for GQ excitation at orbital E = 0 at time t = 0. (d) The 
modified Wigner function phase-space profile for GQ excitation at orbital E = − 2 at time t = 0.
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kc =

√
1

3

(
β1/3 + β−1/3 − 1

)
, β =

3
√
3

2
ΓG

√
27Γ2

G − 4 +
27Γ2

G

2
− 1,� (38)

where ΓG = 2EJ/mc2 contains three fundamental physical constants. While fundamental differences 
expected from dispersion relations of Ref.72 and current model, it may be instructive to compare the critical 
Jeans wavenumber values obtained from these models in the nonrelativistic quantum regime. By the standard 
definition, the Jeans energy is EJ = ℏωJ  with ωJ =

√
4πGρ0 being the Jeans frequency and vJ =

√
2EJ/m 

the corresponding Jeans speed. The quantum Jeans wavenumber is then the solution of the limiting non-
relativistic matter wave energy dispersion relation, ϵ = µ0 + k2/2− 1/(2k2) = 0, in the normalized form which 
leads to the following dimensional equation ℏ2k4/(4m2) + µ0k

2/m− ω2
J = 0 in quasiparticle model resulting 

in kJ =
(
2m/ℏ2

)1/2√√
µ2
0 + ℏ2ω2

J − µ0 in which µ0 denotes the chemical potential. The Jeans wavenumber 

obtained from our model looks quite similar to the one obtained using equation Eq. (33) of Ref.72 in the same 

limit, i.e., kJ =
(
2m/ℏ2

)1/2
√√

9m2⟨u2⟩2 + ℏ2ω2
J − 3m ⟨u2⟩. They only differ in the term containing the average 

Fig. 9.  (a) The modified Wigner function phase-space profile for plasmon excitation at orbital E = 2 at time 
t = 20. (b) The modified Wigner function phase-space profile for GQ excitation at orbital E = 2 at time t = 20
. (c) The modified Wigner function phase-space profile for GQ excitation at orbital E = 0 at time t = 20. (d) 
The modified Wigner function phase-space profile for GQ excitation at orbital E = − 2 at time t = 20.
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speed arising from the statistical pressure. The results of the both models correctly reduce to the same value of 
kJ =

√
2mEJ/ℏ in the absence of the statistical pressure. This comparison proves that the E < 0 quasiparticle 

band corresponds to the matter collapse in quantum regime quite analogous to the Jeans instability phenomenon. 
However, there no phenomenon associated with the positive energy band appear in previous models. Moreover, 
while there may be similarities of this kind in the results of the models, such a naive comparison of technical 
aspects of fundamentally different quantum kinetic, quantum hydrodynamic and the Lindhard response models 
which rely on single phase-speed (plane-wave) approximations with those of the dual phase-speed (dual plane-
wave) quasiparticle model, based on the matter-wave energy dispersion, is not appropriate at all. This is because 
the quasiparticle’s collective dispersion branch unlike that of the previous models diverges at the long-wavelength 
limit. Although the two models predict approximately that same value for the critical Jeans wavenumber, 
however, the calculations based on quantum hydrodynamic or wave-kinetic approaches add first-order quantum 
correction to classical dispersion relation beside the quantum statistical pressure effect and therefore still remain 
semiclassical. On the other hand, in the current quasiparticle model the gravitational field is quantized leading 
to quantized values of energy eigenvalues59. The later can have fundamental consequences for negative energies 
leading probably to bound state in the star or even black-hole formation, which needs further developments. 
Note that the key ingredient in current model which advances the previous ones is the introduction of a new de 
Broglie’s wavelength which leads to quantization at the long wavelength limit and also its simple relation to the 
single particle excitations through the complementarity-like relation, k1k2 = i.

As previously mentioned the dual lengthscale nature of quasiparticle theory of collective quantum excitations 
predicts results for effects such as the plasmon dispersion relation, the charge screening, the structure factor68 
and the phase-space structures87 which are fundamentally different from those of Wigner-Poisson, quantum 
hydrodynamic and Lindhard dielectric based on random phase approximation. These differences are related 
to the quantization of the interaction field in current model via the electrostatic coupling of particle-like 
oscillations to the collective oscillations through a second de Broglie wavenumber, from one hand, and the self-
consistent treatment of Wigner potential and avoiding the semiclassical expansion which leads to the violation 
of uncertainty principle, from the other. It is concluded that the Jeans instability result obtained in previous 
works72–75 does not reflect the complete picture of gravitational excitations due to shortcoming in basic models 
used in the analysis, as discussed in Sec. II. However, current GQ model is a more general approach, which 
by considering a self-consistent treatment of Wigner potential87, predicts three distinct regimes of expanding 
(E > 0), stable (E = 0) and collapsing (E < 0) matter under gravitational quantum interactions and clearly 
contains more information compared to previous models based on quantum hydrodynamic and wave-kinetic 
approaches72–75 which account only for Jeans instability (collapsing in current analysis). This is because the 
previous models only capture the wave-like nature of quantum systems (E < 0 in current model) leaving-out 
the particle-like aspect due to semiclassical expansion of Wigner potential or function (considering the long 
wavelength limit), hence, fail to correctly account for dual lengthscale wave- and particle-like aspects in a unified 
picture. This may be compared to the similar case of the quantum charge screening68 and failure of capturing 
the well-known Friedel oscillations in hydrodynamic approach which has led to inconsistent result with density 
functional and the Lindhard linear dielectric response theories36 which fail to correctly capture the London-type 
dispersion, leading to an intense debate over the past decade76–83.

Gravitational quasiparticle probability current
In this section, we obtain a generalized probability current density for GQ using the standard procedure. We 
start with linearized time-dependent Schrödinger-Poisson equation 

	
2i
∂N (r, t)

∂t
= −∆N (r, t) + Φ(r) + µ0N (r, t), � (39a)

	 ∆Φ(r)−N (r, t) = 0. � (39b)

 Note that Φ may contain a phase factor due to normalization. The continuity equation is

	
∇ · J(r, t) = −∂n

∂t
= −∂N (r, t)N∗(r, t)

∂t
= −N (r, t)

∂N∗(r, t)

∂t
−N∗(r, t)

∂N (r, t)

∂t
.� (40)

Algebraic manipulation of time-dependent Schrödinger-Poisson equation leads to the following equations 

	
2N∗(r, t)

∂N (r, t)

∂t
= iN∗(r, t)∆N (r, t)− iN∗(r, t)Φ(r)− iµ0N∗(r, t)N (r, t), � (41a)

	
2N (r, t)

∂N∗(r, t)

∂t
= −iN (r, t)∆N∗(r, t) + iN (r, t)Φ∗ + iµ0N (r, t)N∗(r, t). � (41b)

 Combining the relations (40) and (41), we arrive at

	 2∇ · J(r, t) = i [N (r, t)∆N∗(r, t)−N∗(r, t)∆N (r, t)] + i [N∗(r, t)Φ(r)−N (r, t)Φ∗(r)] .� (42)

From Poisson’s relation, we deduce
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	 [N∗(r, t)Φ(r)−N (r, t)Φ∗(r)] = Φ(r)∆Φ∗(r)− Φ∗(r)∆Φ(r),� (43)

which in combination with (40) leads to

	 2∇ · J(r, t) = i [N (r, t)∆N∗(r, t)−N∗(r, t)∆N (r, t)] + i [Φ(r)∆Φ∗(r)− Φ∗(r)∆Φ(r)] ,� (44)

consequently resulting in the generalized form of probability current density

	
J(r, t) =

i

2
[N (r, t)∇N∗(r, t)−N∗(r, t)∇N (r, t)] +

i

2
[Φ(r)∇Φ∗(r)− Φ∗(r)∇Φ(r)] .� (45)

The time-independent probability current density is given as

	
JG(r) =

i

2
[Ψ(r)∇Ψ∗(r)− Ψ∗(r)∇Ψ(r)] +

i

2
[Φ(r)∇Φ∗(r)− Φ∗(r)∇Φ(r)] .� (46)

A similar form can be obtained for electrostatic excitations as

	
JE(r) =

i

2
[Ψ(r)∇Ψ∗(r)− Ψ∗(r)∇Ψ(r)]− i

2
[Φ(r)∇Φ∗(r)− Φ∗(r)∇Φ(r)] .� (47)

Gravitational quasiparticle interference
Moreover, the generalized system of equations (39) (with plus/minus signs referring to electrostatic/gravitation 
case) admit a 3D time-independent solution of the form61

	

[
Φ(r)

Ψ(r)

]
=

Q

2αr

[
Ψ0 ∓ k22Φ0 −

(
Ψ0 ∓ k21Φ0

)
−
(
Φ0 + k21Ψ0

)
Φ0 + k22Ψ0

](
eik1r

eik2r

)
,� (48)

where Q is the corresponding pole (mass/charge) quantity and the characteristic wavenumbers are the same as 
for 1D excitations. Using the polar solution (48) in (46) and (47), we obtain

	
JG(r) =

(
1 +

√
E2 + 1

)
k2

r2
√
E2 + 1

, JE(r) =
(1 + E) (k2 − k1)

r2
√
E2 − 1

.� (49)

Note that the field-density probability currents give the correct dependence on r, since, ∇ · J = 0 for stationary 
solutions. Note also that in the large value of energy E ≫ 1 both current densities reduce to the free particle 
value J = k2 in normalized form. It can be easily checked that the conventional definition of probability current 
density based solely on the wavefunction, Ψ(r) does not produce a consistent result. It is concluded that for 
an interacting gas of particles, the generalized relation for field-density probability current must be used. It is 
further noted that for a conserved number of particles N in the spherical volume, the relations JG = ρmvG and 
JE = ρevE  with ρm ∝ r−3 and ρe ∝ r−3 lead to the Hubble-like relations vG = HGr and vE = HEr in which the 
corresponding Hubble constants read

	
HG =

(
1 +

√
E2 + 1

)
k2

√
E2 + 1

, HE =
(1 + E) (k2 − k1)√

E2 − 1
.� (50)

Figure 10 shows the energy dependence of probability current and Hubble’s constant for both plasmon and 
GQ. Figure 10a shows the probability current density of plasmon. It is remarked that current density increases 
with the increase of quasiparticle energy. The current density of gravity quasiparticle excitations is depicted in Fig. 
10b showing that the current density of negative energy GQs is relatively lower compared to those with positive 
ones. The same dependence on the quasiparticle energy is also present in the corresponding Hubble constants 
shown in Fig. 10c, d.Figure 11 shows the quasiparticle excitations in mono-polar forms with a unit central 
mass/charge at orbital. For electrostatic excitations the variations in both density and potential are dual-tone. 
It has been shown that the wave-particle interactions in electrostatic excitations lead to an oscillatory Lennard-
Jones-type attractive potential around the central charge68. The mono-polar density-potential distributions are 
depicted in Fig. 11b for the same energy orbital. It is remarked that in this case, the wave-like oscillations are 
missing leading to a monotonic decrease of the density and fast oscillatory profile for potential around the 
central mass. The profiles for ground state GQ level E = 0 are shown in Fig. 11c. In this case, while the density 
varies quite similar to the case in Fig. 11b, the potential oscillations are stronger with larger wavelengths. This 
effect is rather amplified for the negative energy-valued gravity excitations, shown in Fig. 11d.

The quasiparticle system, in the cartesian coordinate, has the following form 

	
∂2Ψ(x, y, z)

∂x2
+

∂2Ψ(x, y, z)

∂y2
+

∂2Ψ(x, y, z)

∂z2
∓ Φ(x, y, z) = −2EΨ(x, y, z), � (51a)

	
∂2Φ(x, y, z)

∂x2
+

∂2Φ(x, y, z)

∂y2
+

∂2Φ(x, y, z)

∂z2
− Ψ(x, y, z) = 0, � (51b)
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 where r =
√
x2 + y2 + z2 and the dipole(multipole) solution admits the following more general form61

	

Φ =

(
1∓ k22

)
exp

[
ik1

√
(x− a)2 + y2 + z2

]
−
(
1∓ k21

)
exp

[
ik2

√
(x− a)2 + y2 + z2

]

2α
√
(x− a)2 + y2 + z2

� (52a)

	

+

(
1∓ k22

)
exp

[
ik1

√
(x + a)2 + y2 + z2

]
−
(
1∓ k21

)
exp

[
ik2

√
(x + a)2 + y2 + z2

]

2α
√
(x + a)2 + y2 + z2

, � (52b)

	

Ψ =

(
1 + k21

)
exp

[
ik2

√
(x− a)2 + y2 + z2

]
−
(
1 + k22

)
exp

[
ik1

√
(x− a)2 + y2 + z2

]

2α
√
(x− a)2 + y2 + z2

� (52c)

Fig. 10.  (a) The probability current density of plasmon excitation as a function of quasiparticle energy and 
distance. (b) The probability current density of GQ excitation as a function of quasiparticle energy and 
distance. (c) The Hubble’s constant of plasmon excitation as a function of quasiparticle energy. (d) The Hubble’s 
constant of GQ excitation is a function of quasiparticle energy.
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+

(
1 + k21

)
exp

[
ik2

√
(x + a)2 + y2 + z2

]
−
(
1 + k22

)
exp

[
ik1

√
(x + a)2 + y2 + z2

]

2α
√
(x + a)2 + y2 + z2

, � (52d)

 where we have chosen Q = 1 and Φ0 = Ψ0 = 1 and Φ′
0 = Ψ′

0 = 0, for simplicity.
Figure 12 shows the bipolar density profiles using the solutions (52) for electrostatic and gravity excitations. 

Figure 12a shows the interference pattern forming around two charges of the same sign separated at distance 
d = 2a at energy orbital E = 2. The formation of complex density structures around poles is due to quantum 
interference between wave-like and particle-like excitations in the electrostatic case. In the case of gravity 
excitations with positive energy value and the same dipole separation, the interference pattern is quite different 
due to wave-like damping of positive energy GQs. For the zero-energy orbital, the poles are isolated as compared 
to Fig. 12b whereas they are merged for negative energy orbital GQ, shown in Fig. 12d. The dissimilar profiles 
of these dipole GQ effects may be compared to related cosmological events.Figure 13 shows the stream plots of 
planar probability current density for electrostatic and gravitational dipole structures. The quantum trajectories 
correspond to the optimal mass/charge transport around the gravitational/electrostatic dipole. Figure 13a shows 

Fig. 11.  (a) The radial density and electrostatic potential distribution of mono-pole plasmon excitation with 
unit charge at orbital E = 2. (b) The radial density and gravitational potential distribution of mono-pole GQ 
excitation with unit mass at orbital E = 2. (c) The radial density and gravitational potential distribution of 
mono-pole GQ excitation with unit mass at orbital E = 0. (d) The radial density and gravitational potential 
distribution of mono-pole GQ excitation with unit mass at orbital E = − 2.
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the quantum back-flow effect (curved backward flow paths) arising due to the dual-tone nature of electrostatic 
excitations. The back-flow effect is absent for the gravitational excitations shown in Fig. 13b with similar 
parameter values as in Fig. 13a. However large distortions in the midway paths around the poles are still present. 
Figure 13c for ground state GQ orbital shows less distortions, however. The inflow mass trajectories of negative 
energy GQ are shown in Fig. 13d revealing many little curved paths around the gravity poles.

Conclusion
In this research, we studied the gravitational collective quantum excitations (GQ) in the framework of the 
quasiparticle excitation model where each particle is assumed to be and stream localized in momentum space 
rather than position space. These streams are then coupled through the effective Poisson’s relation with local 
density defined through the single-particle wavefunctions. The similarities and differences between the plasmon 
and GQs were remarked through the nonrelativistic and relativistic matter-wave dispersion of these excitations. 
The phase space evolution of the modified Wigner function was investigated which revealed that GQs similar 
to plasmon excitations in the absence of external potential evolve similar to a classical system of interacting 
particles in the absence of external forces. It was shown that due to either the particle-like or wave-like damping 
nature of GQs, the phase space evolution of gravitational fluid leads to momentum spreading to positive values 

Fig. 12.  (a) The unit charge electrostatic dipolar density distribution of plasmon excitation at energy orbital 
E = 2. (b) The unit mass gravitational dipolar density distribution of plasmon excitation at energy orbital 
E = 2. (c) The unit mass gravitational dipolar density distribution of plasmon excitation at energy orbital 
E = 0. (d) The unit mass gravitational dipolar density distribution of plasmon excitation at energy orbital 
E = − 2.

 

Scientific Reports |        (2024) 14:21717 21| https://doi.org/10.1038/s41598-024-72928-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


as a consequence of quantum uncertainty, which is quite analogous to electron tunneling through the half-space 
confinement of electron gas. The generalized field-density probability current density relation was derived which 
leads to the Hubble-Lemaitre-like velocity law. The current study reveals some interesting peculiarities of GQs 
which can have fundamental applications in quantum cosmology.

Data availibility
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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