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Pollination is critical for crop development, especially those essential for subsistence. This study 
addresses the pollination challenges faced by Actinidia, a dioecious plant characterized by female and 
male flowers on separate plants. Despite the high protein content of pollen, the absence of nectar in 
kiwifruit flowers poses difficulties in attracting pollinators. Consequently, there is a growing interest in 
using artificial intelligence and robotic solutions to enable pollination even in unfavourable conditions. 
These robotic solutions must be able to accurately detect flowers and discern their genders for precise 
pollination operations. Specifically, upon identifying female Actinidia flowers, the robotic system 
should approach the stigma to release pollen, while male Actinidia flowers should target the anthers to 
collect pollen. We identified two primary research gaps: (1) the lack of gender-based flower detection 
methods and (2) the underutilisation of contemporary deep learning models in this domain. To address 
these gaps, we evaluated the performance of four pretrained models (YOLOv8, YOLOv5, RT-DETR 
and DETR) in detecting and determining the gender of Actinidia flowers. We outlined a comprehensive 
methodology and developed a dataset of manually annotated flowers categorized into two classes 
based on gender. Our evaluation utilised k-fold cross-validation to rigorously test model performance 
across diverse subsets of the dataset, addressing the limitations of conventional data splitting 
methods. DETR provided the most balanced overall performance, achieving precision, recall, F1 score 
and mAP of 89%, 97%, 93% and 94%, respectively, highlighting its robustness in managing complex 
detection tasks under varying conditions. These findings underscore the potential of deep learning 
models for effective gender-specific detection of Actinidia flowers, paving the way for advanced robotic 
pollination systems.
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Pollination is a fundamental biological process essential for the development and yield of many crops. This 
process involves the transfer of pollen from the male anthers to the female stigma. Nevertheless, the specific 
characteristics of each plant species can introduce complexities to pollination1. In most flowering plants, 
hermaphroditism is prevalent, with individual flowers containing both male and female reproductive organs. 
However, a minority of species exhibit dioecy, with male and female flowers on distinct plants. For successful 
pollination across different individuals, it is crucial to synchronise the flowering periods of male and female 
plants2.

In Actinidia, a dioecious plant, successful pollination requires the transfer of pollen from the male anthers 
to the female stigma. The female flowers exhibit both female (multi-carpellary stigma) and male (anthers) 
reproductive organs. However, the pollen found in the anthers of female flowers is not viable. In contrast, male 
flowers only possess male reproductive organs (anthers) containing substantial amounts of viable pollen grains3. 
These viable pollen grains from the male anthers can fertilize the ovules of the female flowers, leading to the 
formation of seeds. A higher number of seeds triggers hormone production and leads to larger fruits with a more 
uniform shape3–5, which impacts quality and yield. This critical phase of the vegetative cycle is typically carried 
out by wind (anemophilous pollination) or insects (entomophilous pollination).

Insects are the most extensive group of pollinators, with bees leading the way in pollinating approximately 
71 of the 100 crops that produce 90% of the world’s food6. Bees are recognised as the best pollinators due to the 
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large size of their colonies and their remarkable floral constancy. These characteristics increase the efficiency and 
effectiveness of pollen transfer between flowers of the same species7. Plants can produce two primary resources 
of interest to bees: pollen and nectar. Even though pollen is important for developing larvae, bees are mainly 
attracted to flowers by their nutritious nectar.

Actinidia flowers contain only protein-rich pollen, so pollinators do not tend to seek out these flowers. 
Therefore, Actinidia flowers are not very attractive to insects, especially when there is a diversity of nearby flora, 
leading to deficiencies in the pollination process and, consequently, in the yield and quality of the fruit3,5.

Natural pollination (anemophilous and entomophilous) is considered inefficient in commercial kiwi orchards, 
prompting growers to seek solutions to improve or complement natural pollination. Hence, kiwi producers often 
use assisted pollination techniques to achieve a higher success rate of fertilised flowers, better uniformity of 
fruit shape, and more consistent production. Assisted pollination can occur through the manual or mechanical 
application of pollen, using dry or wet methods, with pollen that has been previously collected and preserved4.

The principal assisted pollination techniques utilised are economically inefficient, pose environmental risks, 
and contribute to biodiversity loss8. In this way, there has been increasing interest in robotic solutions. These 
engineering-based solutions can potentially increase production regularisation, enhance crop quality, and 
decrease the environmental impact of agriculture by reducing the reliance on natural pollinators and increasing 
pollination efficiency9.

A crucial aspect of these robotic solutions for precise pollination is the perception system, particularly in 
accurately detecting the flower and assessing its gender. This capability enables the robotic solution to execute 
precise actions according to the flower’s gender: (1) female flower detection must trigger the robotic solution to 
approach the stigma and release pollen; (2) male flower detection must trigger the robotic solution to approach 
the anthers and collect the pollen.

Computer Vision (CV) is a highly effective and widely used technology for robotic solutions in agriculture, 
capable of extracting valuable information and constructing explicit and meaningful descriptions of physical 
objects from images or videos. In recent years, the development of computer vision and perception algorithms 
has been significantly influenced by the strong learning capabilities of deep learning (DL)10,11. Convolutional 
Neural Networks (CNNs) are the primary DL algorithms used for computer vision tasks and are extensively 
utilised in agriculture12. CNNs can analyse, combine and extract features from images, demonstrating high 
effectiveness and efficiency in classification, localisation and object detection tasks. The literature presents 
multiple CNN-based DL models, such as Faster Region-based Convolutional Neural Networks (R-CNN)13, 
Single Shot Multibox Detector (SSD)14, and You Only Look Once (YOLO)15, among others.

The accessibility and visibility of Actinidia flowers are two significant challenges that CV systems face. 
Problems such as varying light intensity and the overlapping and occlusion of identified flowers make it difficult 
to achieve the desired goal. Unlike traditional methods, DL techniques have been the most robust and accurate 
alternative, offering results with superior metrics in the above-mentioned challenges (occlusion and overlap).

Recent studies have focused on enhancing pollination efficiency by improving the recognition of Actinidia 
flowers and stamens. One such investigation employed a modified YOLOv5s model to address flower overlap 
and enhance feature extraction accuracy, ultimately reducing detection errors. The study involved optimizing 
the model to improve overlapping flower recognition, calculating tilt angles more precisely, and accurately 
identifying flower coordinates. These improvements were achieved by augmenting the original dataset from 880 
quality images to 3344 images. The modified YOLOv5s model was then compared with Faster R-CNN ResNet50, 
Faster R-CNN VGG, SSD VGG, and SDD MobiliNet v2, with YOLOv5s achieving a 97% accuracy, the best value 
among the models analysed16.

Further research has explored the real-time detection of Actinidia flowers and buds using YOLOv3 and 
YOLOv4 models for robotic pollination. The study initially used a dataset of 830 images of Actinidia chinensis 
cv. ’Hayward’, later expanded to 3790 images after augmentation. The YOLOv4 model outperformed YOLOv3, 
achieving a 97% of AP for the flower class17.

Another study investigated the detection and segmentation of Actinidia flowers using the SOLOv2 model. 
Initially based on 267 images of Actinidia chinensis cv. ’Hayward’, the dataset was expanded to 1210 images 
after augmentation. The SOLOv2 model’s performance was compared with YOLOv5, Mask R-CNN, SOLO, and 
YOLACT models, with YOLOv5 obtaining the best metrics in flower segmentation with 67% accuracy18.

In a pioneering approach, Deep Neural Networks (DNN) have been integrated into an autonomous robotic 
system for Actinidia flower detection and pollination. This study aimed to explore DNN for the detection of 
Actinidia flowers by investigating two state-of-the-art object detectors, Faster R-CNN and SSD Net, and feature 
extractors, Inception Net V2 and Neural Architecture Search (NAS) Net, with real-world orchard datasets. The 
dataset used has 1,451 manually annotated images. The Faster R-CNN Inception V2 model has the best overall 
metric values with 97% accuracy, 68% recovery, and 79% F1 score19.

Another study evaluated the effectiveness of robotic pollination in kiwifruit production by focusing on 
Actinidia flower detection using deep learning methods. The dataset used has 1451 images, and flower annotation 
was performed manually, with the stigma area on all flowers annotated, including all flowers obscured or 
obstructed by the canopy. The Faster R-CNN Inception v2 model achieved 91% precision, 80% recall, and 85% 
F1 score20.

Finally, research into multiclass detection of Actinidia flowers and their spatial distribution in orchards 
has highlighted the importance of accounting for asynchronous flowering times. The study aimed to identify 
the phenological stages of flowers to optimize pollination strategies. The state of development of each flower 
(phenological stage) plays a crucial role in pollination. Identifying the right flowers to pollinate based on 
phenology and flower distribution is essential for optimising production. For this purpose, 355 images were 
acquired (manually annotated), and by performing augmentation operations, 1704 images were obtained. The 
YOLOv5l model grouped nine classes of flowers and achieved a 93% AP21.
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The article identifies two research gaps: (1) the lack of flower detection according to gender and (2) the 
absence of recent DL models in this context. This study aims to address these gaps through the following main 
contributions:

•	 A comprehensive review of the related work in object detection of Actinidia flowers, with a focus on gender 
detection;

•	 The generation of the Actinidia chinensis cv. ’Hayward’ Flower Dataset 202422, a novel and publicly available 
dataset comprising 556 images with a resolution of 3000× 3000, annotated by flower gender in both Pascal 
VOC and YOLO formats;

•	 The presentation of Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024 (augmented version)23, which in-
cludes the 556 original images and 3332 augmented images with the corresponding annotations (Pascal VOC 
and YOLO format) by flower gender;

•	 Performance analysis of four recent DL models for detecting Actinidia flowers and assessing their gender.

Implementing this innovative approach enables the development of a robotic pollination system to identify male 
Actinidia flowers for pollen collection and then locate female Actinidia flowers for pollination. This method 
ensures precise and efficient pollination, increasing homogeneity and productivity in Actinidia cultivation.

Materials and methods
This section outlines the methodology used in this research, covering the entire process from data collection to 
model training and performance evaluation. Figure 1 gives an overview of the process flow used in the study, 
which is detailed step by step below. (An enlarged version can be found as Suplementary Fig. S1.)

Figure 1 detailed workflow of the research methodology for Actinidia chinensis cv. ’Hayward’ flower detection 
and gender determination. The Actinidia chinensis cv. ‘Hayward’ Flower Dataset 2024 consists of 556 original 
images, which were split into 80% for training and validation (440 images) and 20% for testing (116 images). 
After reducing the resolution, the number of images in the training + validation set was increased to create a 
well-balanced dataset of 3888 images. The Actinidia chinensis cv. ‘Hayward’ Flower Dataset 2024 (augmented 
version) was used for 5-fold cross-validation to ensure robust model training. Finally, the performance of the 
trained model was evaluated using the test set to ensure accurate flower detection and gender determination.

Data collection
The initial step in creating the original dataset for Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024 involved 
systematically collecting data to meet the research objectives. During this study, the data acquisition phase was 
conducted at Quinta do Carrazedo (41.32170534304873, −8.661668130688255), utilizing a single camera of 
iPhone Xr to capture images at a resolution of 3000× 3000 pixels.

A comprehensive assortment of images was deliberately amassed under varying lighting conditions and 
perspectives to form a rich dataset with ample visual information. The collected imagery encompasses both 
individual flowers and floral arrangements, introducing complexity that enables the evaluation of model 
performance in occluded and overlapping flowers, as influenced by diverse plant structures, including leaves, 
stems, trunks, and neighbouring flowers. This image compilation culminated in a total of 556 original images.

This study aimed to detect Actinidia flowers and determine their gender. The dataset collected contains 
detailed information on various flowers under different conditions. Figure 2 illustrates examples of Actinidia 
female and Actinidia male flowers from the dataset.

Data generation
After acquiring the images, each object underwent manual annotation using the Computer Vision Annotation 
Tool (CVAT). Every annotation included specific details of a bounding box, delineating the object and providing 
information about its area, position, and class.

The process of annotating Actinidia flowers according to gender required careful consideration of key 
morphological characteristics. Female flowers are distinguished by their prominent, star-shaped stigma. 
Although these flowers may have anthers, they usually contain minimal amounts of sterile, non-viable pollen3. 
Figure 3a shows the star-shaped stigma shaded in purple and the anthers with non-viable pollen shaded in pink. 
On the other hand, the male flowers only have numerous, well-developed anthers containing abundant viable 
pollen grains3. Figure 3b shows the well-developed anthers typical of the male flower shaded in blue.

Fig. 1.  Workflow of the research methodology with distinct dataset creation, model training and performance 
evaluation phases for Actinidia chinensis cv. ’Hayward’ flower detection and gender determination.
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The Actinidia chinensis cv. ’Hayward’ Flower Dataset 202422 was carefully annotated to include two distinct 
classes related to gender: actinidia_female and actinidia_male. Figure 4 illustrates images from the dataset with 
manual annotations represented by orange bounding boxes for each class. The images were exported from CVAT 
under the Pascal Visual Object Classes (VOC) format, a commonly known format related to the Pascal VOC 
Challenge, where each image file has a linked Extensible Markup Language (XML) file with annotations.

The distribution of images and annotations across individual classes and the aggregated totals within the 
Actinidia chinensis cv. ‘Hayward’ Flower Dataset 2024 is presented in Table 1. Some images include objects from 
both classes, while others lack discernible objects (such as leaves, stems, trunks, or flower components). The 
disparity in object counts across classes is due to the planting environment at Quinta do Carrazedo, where a ratio 
of one male Actinidia plant to six female Actinidia plants is maintained to facilitate pollination. Consequently, a 
higher representation of female flowers in the images is expected.

The Actinidia chinensis cv. ‘Hayward’ Flower Dataset 2024 underwent different operations to optimize data 
for the DL models’ performance. Figure 5 outlines the different processes to acquire the Actinidia chinensis cv. 
’Hayward’ Flower Dataset 2024 (augmented version).

The original resolution of 3000× 3000 pixels resulted in a substantial data volume for neural network 
analysis, increasing complexity and processing time. To address this, the resolution was reduced to 640× 640 

Fig. 3.  Key morphological characteristics of Actinidia chinensis cv. ’Hayward’ flowers according to gender. (a) 
Female Actinidia flowers. The purple shadow indicates the star-shaped stigma. The pink shadow indicates the 
anthers with non-viable pollen. (b) Male Actinidia flowers. The blue shadow indicates well-developed anthers..

 

Fig. 2.  Examples of images from the Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024. (a) Female 
Actinidia flowers. (b) Male Actinidia flowers..
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pixels, thereby decreasing complexity while preserving the aspect ratio. However, this reduction also led to a loss 
of image detail.

Splitting the dataset into training, validation, and test sets is crucial to maximize the robustness and 
generalizability of deep learning models and avoid over-reliance on memorization of the training data. The 
training set serves as the foundation for model learning, while the validation set facilitates hyperparameter 
tuning and prevents overfitting during the training process. Finally, an independent test set objectively assesses 
the model’s performance on previously unseen data, demonstrating its real-world relevance.

While the Actinidia chinensis cv. ‘Hayward’ Flower Dataset 2024 was not used for training the neural 
networks, it was imperative to split the dataset into a training + validation set and a test set in this phase. This 
separation is crucial because all augmentation processes must be applied exclusively to the training + validation 
set. The Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024 was divided into two sets, with 80% dedicated 
to the train + validation set and 20% allocated to the test set. The image allocation aimed to ensure an equitable 
distribution of both classes across the two sets. Table 2 indicates the number of images and annotated objects per 
class within each specified set. In this table, the number indicated for the total number of images in the dataset 
may be less than the sum of the number of images in each class since both classes may appear in one image.

Ensuring optimal performance of the DL models required addressing the dataset imbalance, a critical step 
due to the significant difference between the 386 images with actinidia_female annotations and the 54 images 

Fig. 5.  Workflow to reach the Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024 (augmented version) with 
two distinct lower resolution and dataset balancing phases.

 

Actinidia_female Actinidia_male Total

Images 488 68 556

Annotations 2347 289 2636

Table 1.  Number of images and annotations for each class in the Actinidia chinensis cv. ’Hayward’ Flower 
Dataset 2024.

 

Fig. 4.  Examples of annotations from the Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024. (a) Female 
Actinidia flowers annotation. (b) Male Actinidia flower annotation..
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with actinidia_male annotations. This disparity posed a potential bias towards the majority class, jeopardizing 
the model’s ability to accurately classify and generalize both classes. Rectifying the dataset imbalance aims to 
mitigate bias, enhance accuracy and recovery for the minority class, and fortify the overall robustness and 
generalizability of the model. As DL training models rely heavily on extensive data to effectively process new 
information, it was decided to use augmentation operations in order to equalise the dataset. Therefore, failure 
to execute this step may compromise the accuracy and precision of the models. As a result, a more reliable and 
equitable performance within real-world applications is anticipated. Figure 6 presents the methods utilised to 
achieve class balance in detail.

Before applying thirty-four augmentation operations, images were meticulously selected from the train + 
validation set to create a balanced dataset with the largest possible number of images. All 54 images of male 
flowers were included in the augmentation process, while a carefully chosen subset of 44 images from the 386 
available female flower images was used. This selection ensured that the final dataset contained approximately 
equal numbers of male and female flower images, with 1882 female flower images and 1890 male flower images.

The augmentation operations were performed with the resource of Albumentations24, a Python library 
designed for image augmentations. The operations were carefully selected, and only those generating realistic 
images were applied. Table 3 describes the specified operations performed on the Actinidia chinensis cv. 
’Hayward’ Flower Dataset 2024 and Fig. 7 presents an example of each augmentation operation.

The combination of these operations can generate compelling images that enhance the dataset. The first 
four operations (Flip, Downscale, GridDistortion, and SafeRotation) involve displacing or removing pixels 
without altering their values. The remaining six operations (GaussianBlur, MotionBlur, PixelDropout, ISONoise, 
RandomBrightnessContrast, and RandomFog) modify the pixel values. For this reason, was decided to combine 

Operation Description

Flip Mirror the image horizontally, vertically, or both horizontally and vertically

Downscale Decrease the image quality by downscaling and upscaling back

GridDistortion Grid distortion and elasticity transform the image

SafeRotation Rotate the image by an angle selected randomly from the uniform distribution

GaussianBlur Blur the image using a Gaussian filter with a random kernel size

MotionBlur Apply motion blur to the input image using a random sized kernel

PixelDropout Set pixels to 0 with some probability

ISONoise Apply camera sensor noise

RandomBrightnessContrast Randomly changes the brightness and contrast of the image

RandomFog Simulates fog for the image

Table 3.  Description of the augmentation operations selected to increase the Actinidia chinensis cv. ’Hayward’ 
Flower Dataset 2024.

 

Fig. 6.  Workflow to reach dataset balancing with two distinct image selection and augmentation phases.

 

Classes

Train + validation Test

Images Annotation Images Annotations

Actinidia_
female 386 1897 102 450

Actinidia_male 54 219 14 70

Total 440 2116 116 520

Table 2.  Number of images and annotated objects per class in each set of Actinidia chinensis cv. ’Hayward’ 
Flower Dataset 2024.
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the operations based on these two groups, as detailed by Buslaev et al.24. This integration resulted in 34 operations, 
which were applied to a set of 98 selected images, resulting in 3332 augmented images.

The Actinidia chinensis cv. ‘Hayward’ Flower Dataset 2024 (augmented version)23 merged these 3332 
augmented images with the original 440 images, resulting in a comprehensive dataset of 3772 images. Table 4 
indicates the number of images and annotated objects per class within each specified set.

Model configuration and training
The DL models selected for benchmarking include YOLOv5, YOLOv8, RT-DETR, and DETR. These models 
were specifically chosen for their ability to achieve an optimal balance between accuracy and speed, aligning 
with the proposed objective of enabling precise, real-time flower detection and gender assessment15.

The YOLOv5 is a single-stage object detection algorithm that predicts bounding box localization and 
classification probability from the input image. This algorithm is recognized for its exceptional accuracy in 
detecting objects and fast inference speed, making it well-suited for real-time applications. As an evolution of 
the YOLO family, it has been optimized to perform effectively on large-scale datasets. Key attributes of YOLOv5 
include the anchor-free split Ultralytics head, which revolutionizes object detection by removing the need for 
predefined anchor boxes, thereby improving performance across various scenarios. The architecture of YOLOv5 
integrates CSPDarknet53 as the backbone for feature extraction, PANet as the neck for feature aggregation, and 
a custom head for prediction, ensuring a balance between speed and accuracy25.

The release of YOLOv8 signifies a substantial progression within the YOLO series, encompassing 
advancements over its predecessors. These enhancements involve improved handling of small objects and 
augmented generalization capabilities for real-time object detection tasks. In contrast to YOLOv5, YOLOv8 
incorporates advanced backbone and neck architectures that further bolster feature extraction and overall 
detection performance. Moreover, it continues to utilize the anchor-free split Ultralytics head to enhance 
accuracy and efficiency in object detection, distinguishing it from earlier YOLO iterations. Specifically designed 
to achieve a harmonious balance between accuracy and speed, YOLOv8 is well-suited for demanding real-time 
applications in diverse environments26.

Classes

Train + validation Test

Images Annotation Images Annotations

Actinidia_
female 1919 9024 102 450

Actinidia_male 1859 7356 14 70

Total 3772 16,380 116 520

Table 4.  Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024 (augmented version) division into two sets, 
with the number of images and annotated objects per class in each set.

 

Fig. 7.  Augmentation operations applied to Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024. (a) Flip. 
(b) Downscale. (c) GridDistortion. (d) SafeRotation. (e) GaussianBlur. (f) MotionBlur. (g) PixelDropout. (h) 
ISONoise. (i) RandomBrightnessContrast. (j) RandomFog.
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The DEtection TRansformer (DETR) marks a significant breakthrough in object detection, utilizing 
transformer architecture, initially developed for natural language processing, to achieve cutting-edge 
performance. In contrast to traditional object detection models that rely on anchor boxes, DETR introduces 
a transformer-based encoder-decoder framework. This structure allows DETR to process entire images 
and directly predict object bounding boxes and class probabilities without needing heuristic anchors. The 
transformer encoder efficiently encodes the spatial information of the input image into a sequence of feature 
maps. At the same time, the decoder generates a set of object queries and refines their positions through iterative 
self-attention mechanisms. By embracing this approach, DETR streamlines the object detection pipeline and 
enhances accuracy and generalization across diverse datasets. Its capacity to handle objects of different scales 
and aspect ratios consistently makes it well-suited for complex and varied real-world applications27.

The Real-Time DEtection TRansformer (RT-DETR) extends DETR’s capabilities to address real-time 
object detection scenarios. This is achieved by introducing an efficient hybrid encoder architecture, combining 
convolutional neural networks (CNNs) with transformers. This approach optimizes inference speed while 
maintaining precise object localization across various scales and orientations. By leveraging this hybrid 
architecture, RT-DETR significantly accelerates inference times, making it well-suited for applications requiring 
rapid decision-making capabilities, such as autonomous systems and video analytics. RT-DETR represents 
a substantial advancement in high-performance, real-time object detection solutions, building upon the 
foundational achievements of DETR to effectively meet real-time operational requirements28.

In summary, these DL models are all advanced object detection models. Each model has unique strengths 
and features, and the choice of which model to use depends on the project’s specific requirements, such as 
accuracy, speed, deployment constraints, and available resources. Evaluating and comparing their performance 
on the dataset and task is recommended to determine the most suitable model for your needs.

The smaller versions of each DL model, YOLOv5n, YOLOv8n, RT-DETR-L, and DETR 50, were chosen 
to balance performance with computational efficiency. These compact variants offer faster inference times, 
lower memory usage, and efficient object detection for real-time applications like robotic pollination. Despite 
their smaller size, they maintain robust detection performance and are suitable for deployment on resource-
constrained devices in challenging environments.

The conventional practice of partitioning data into train, validation, and test sets is a prevalent method for 
assessing the efficacy of DL models29,30. Nevertheless, this approach presents limitations, particularly when 
applied to small or augmented datasets. The rigid allocation of data into three distinct sets undermines the 
optimal utilization of available data and introduces variability in performance assessments. Addressing these 
concerns, k-fold cross-validation introduces a dynamic partitioning of the training and validation sets, thereby 
mitigating the aforementioned challenges.

The k-fold cross-validation process begins with shuffling and dividing the complete dataset into k equally 
sized folds31. During each iteration of k-fold cross-validation, one fold assumes the role of the validation set, 
while the remaining k − 1 folds are employed for model training. This rigorous approach ensures exposure to 
a diverse range of training and validation data, thereby significantly enhancing the model’s ability to generalize 
to unobserved datasets and mitigating the risk of overfitting on specific data subsets31. The method furnishes 
a more dependable evaluation of the model’s efficacy by averaging the performance metrics from each fold, 
surpassing the outcomes of a rigid conventional split. Although demanding computationally because of the 
recurrent training and validation cycles, k-fold cross-validation optimizes available data and the creation of 
resilient DL models capable of demonstrating high performance across diverse datasets32.

Selecting a k value of 5 offers an optimal balance between computational efficiency and robust evaluation for 
a dataset comprising 556 original images augmented to 3888 images. This approach divides the train + validation 
set into five subsets of approximately 754 images each, ensuring that every image participates in the validation 
set exactly once across the five iterations33. By rotating the validation set while training on the remaining folds in 
each iteration, the model encounters diverse subsets of data, enhancing its ability to generalize and reducing the 
risk of overfitting to specific augmented samples34. Despite the computational cost inherent in repeated training 
and validation cycles, 5-fold cross-validation balances computational efficiency and robust evaluation, providing 
reliable performance metrics that reflect the model’s effectiveness on unseen data31. This method leverages the 
augmented dataset’s increased variability, ensuring thorough model evaluation and optimizing its capability to 
perform well across different scenarios33.

The train + validation set was utilised as input for the k-fold cross-validation method to precisely define the 
dynamic splits for the train and validation sets. Figure 8 visually represents the 5-fold cross-validation process 
with the Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024 (augmented version).

The graphical representation in Fig. 8 illustrates the rigorous training process undergone by each DL model, 
encompassing five distinct training using different training and validation sets. Table 5 shows the division of the 
dataset into five folders, discriminating the number of images and annotations for each class.

As shown in Table 5, dividing the dataset into five folds did not result in any imbalance in terms of images or 
annotations for any class. This thorough exposure alleviates potential imbalances in individual factors, leading 
to more dependable performance appraisals and augmenting the model’s capacity to generalize effectively to 
novel, unseen data33,34.

Table 6 shows the characteristics of the models during the training. As anticipated, the training of DETR 
and RT-DETR models, due to their greater computational complexity, required significantly more memory and 
longer training times per epoch compared to YOLOv5 and YOLOv8, even when using the same batch size.

To assess each training outcome, the Fiftyone35 platform was used to analyse the predictions made by the 
four networks during the training, allowing comprehensive observation of their detection capabilities. The 
performance of each DL model was characterised by averaging the metrics from the five trainings, ensuring a 
comprehensive and robust evaluation.
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Results
(The metrics utilised are comprehensively analyzed and detailed in the research conducted by Pinheiro et al.36.)

The performance metrics for each training iteration were assessed using the validation set, which was also 
utilised to determine the confidence threshold for inference. The confidence threshold was selected to optimize 
model performance by maximizing the F1 score, thereby balancing precision and recall. A high F1 score ensures 
that the model effectively identifies relevant instances while minimizing both the number of wrong-identified 
instances and reducing the number of unidentified instances. Consequently, the selected confidence threshold 
for each train of every model was chosen to achieve the highest possible F1 score, the best trade-off to identify 
the maximum number of Actinidia flower detections while minimizing the number of incorrect detections. 
Table 7 indicates the best F1 score and the corresponding confidence threshold for each train of each model. 
Figure 9 illustrates the F1 Score curve, visually representing the process of selecting the confidence threshold for 
the YOLOv8 model train 1.

The confidence thresholds led to the best balance between the precision and recall metrics. As shown in Table 
7, all trains performed with every model achieved a maximum F1 score above 90%, indicating a good balance 
between precision and recall.

To evaluate the performance of each model, the test set was utilised for inference, employing an intersection 
over union (IoU) of 50% and a confidence threshold that maximised the F1 score in the validation set. Precision, 
recall, F1 score, and mean Average Precision (mAP) were selected as the key metrics to evaluate model 
performance. A high precision ensures that the model accurately identifies a significant number of relevant 
instances while minimizing the number of wrong-identified instances. A high recall provides a large percentage 
of all relevant instances, thereby reducing the number of instances unidentified. Additionally, mAP quantifies 

Model Memory (GiB) Time per epoch (s) Batch size

YOLOv5 3.7 12 16

YOLOv8 3.8 12 16

DETR 40.3 121 16

RT-DETR 14.1 63 16

Table 6.  Comparison of memory consumption, training time per epoch, and batch size for the selected 
models.

 

Sets Classes

Train 1 Train 2 Train 3 Train 4 Train 5

Images Annotation Images Annotations Images Annotation Images Annotations Images Annotations

Train

Actinidia_female 1506 7124 1529 7187 1565 7364 1525 7133 1551 7288

Actinidia_male 1521 6015 1496 5949 1455 5742 1486 5936 1478 5782

Total 3017 13,139 3017 13,136 3018 13,106 3018 13,069 3018 13,070

Validation

Actinidia_female 413 1900 390 1837 354 1660 394 1891 368 1736

Actinidia_male 338 1341 363 1407 404 1614 373 1420 381 1574

Total 755 3241 755 3244 754 3274 754 3311 754 3310

Table 5.  Actinidia chinensis cv. ’Hayward’ Flower Dataset 2024 (augmented version) division into five folders, 
with the number of images and annotated objects per class in each set.

 

Fig. 8.  Process flow with 5-fold cross-validation method to reach DL models performance.

 

Scientific Reports |        (2024) 14:24452 9| https://doi.org/10.1038/s41598-024-73035-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the model’s effectiveness in ranking relevant instances across all classes, reflecting the overall detection quality. 
Table 8 indicates the average metrics of each model, with the best result achieved in each metric in bold. For 
detailed information about metrics results of each train iteration, consult Suplementary Table S1.

The results indicate strong performance across all considered models on the test set. YOLOv8 achieves the 
highest precision at 96%, while DETR excels in recall with 97% and in mAP with 94%. RT-DETR demonstrates 
the best F1 Score at 95%, reflecting an optimal balance between precision and recall. Although YOLOv5 and 
YOLOv8 show competitive precision and recall, respectively, their mAP scores are slightly lower than those of 
DETR and RT-DETR. These results highlight the distinct strengths of each model.

Figure 10 displays examples of common flower detections between YOLOv5, YOLOv8, DETR and RT-
DETR in the different trainings for each class. The examples presented demonstrate successful detections under 
challenging conditions, including overlapping flowers, varying lighting conditions, and different distances.

Model Precision (%) Recall (%) F1 Score (%) mAP (%)

YOLOv5 95 94 94 86

YOLOv8 96 93 94 85

DETR 89 97 93 94

RT-DETR 95 96 95 89

Table 8.  Average metrics results with the test set for each model.

 

Fig. 9.  A visual representation of the F1 Score curve for the determination of the confidence threshold that 
optimizes the F1 Score for the YOLOv8 model train 1.

 

Model Metrics Train 1 Train 2 Train 3 Train 4 Train 5

YOLOv5
Confidence threshold (%) 72 71 72 79 65

F1 Score (%) 99 99 99 100 99

YOLOv8
Confidence threshold (%) 78 66 79 78 77

F1 Score (%) 99 99 99 99 99

DETR
Confidence threshold (%) 96 72 90 85 97

F1 Score (%) 94 95 94 95 94

RT-DETR
Confidence threshold (%) 80 76 80 81 74

F1 Score (%) 99 99 99 100 99

Table 7.  Best F1 score value and the corresponding confidence threshold for each train of every model in the 
validation set.
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The metrics for each class were analysed individually to gain a deeper understanding of the results. Table 
9 displays the average performance metrics for each model per class, with the best value for each metric per 
class highlighted in bold. For detailed information about metrics results per class of each train iteration, consult 
Suplementary Table S2.

The results indicate that, across recall, F1 score, and AP, the models generally perform better for female 
Actinidia flowers than male flowers. The key findings from these results are that YOLOv8 achieves the highest 
precision and AP for both classes, while DETR shows notable strength in recall, F1 score and AP for male 
Actinidia flower. DETR was the model that achieved the most consistent results overall, with a range of values 
between 88 and 97%.

Precision-recall curves could provide valuable insight into the AP of each class. For precision-recall curves of 
each train iteration of YOLOv5, YOLOv8, DETR and RT-DETR consult Suplementary Figs. S2–S5, respectively. 
The precision-recall curves for each train of every model utilised in this study are shown in the annexes. For 
every model, the actinidia_male curve consistently shows lower precision than the actinidia_female curve, 
resulting in a lower AP. Notably, the DETR model demonstrates a reduced disparity between the two classes.

For the best model performance, the key is to maximize true positives (TP) and average precision (AP) while 
minimizing false positives (FP) and false negatives (FN). High TP and AP show effective and accurate detection 
and classification of relevant instances while reducing FP and FN, which indicates fewer classification errors and 
missed detections. Hence, achieving this balance ensures that the model performs reliably and accurately. To 
better understand the precision and recall metrics, it is crucial to analyse the number of FP and FN, respectively, 
and the number of TP. On the other hand, studying the AP for each class led to a better understanding of the 
mAP. Table 10 indicates the number of each type of detection and the corresponding AP for each class of each 
model, with the best value for each metric per class highlighted in bold. For detailed information about detection 
results per class of each train iteration, consult Suplementary Table S3.

Model Class Precision (%) Recall (%) F1 Score (%) AP (%)

YOLOv5
actinidia_female 95 97 96 96

actinidia_male 97 77 86 75

YOLOv8
actinidia_female 96 96 96 96

actinidia_male 98 76 85 75

DETR
actinidia_female 90 97 93 95

actinidia_male 88 95 91 91

RT-DETR
actinidia_female 95 98 96 96

actinidia_male 96 82 88 81

Table 9.  Average metrics with the test set for each model per class.

 

Fig. 10.  Examples of commom flower detections between YOLOv5, YOLOv8, DETR and RT-DETR in the test 
set. (a–d) Female flower detections. (e–h) Male flower detections.
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The results for each model with the test set should detect 521 objects, including 455 female Actinidia and 66 
male Actinidia flowers (Table 4). YOLOv8 performs notably well, achieving the lowest false positives for both 
classes, as expected, given high precision scores. Despite having a relatively high number of FP, DETR excels 
with the highest TP and the lowest FN for male Actinidia flowers. RT-DETR achieves the highest number of TP 
and the lowest number of FN for the female Actinidia flowers. Overall, DETR was the most consistent model, 
achieving the highest TP and the lowest FN for male Actinidia flowers, which was the most critical class.

Analyzing FP and FN across train iterations and models is crucial for comprehensively understanding 
models’ performance and reliability. By systematically evaluating FP and FN, specific scenarios or conditions 
under which the models consistently fail can be identified, thus highlighting potential weaknesses in detection 
capabilities. This deeper insight facilitates targeted improvements in model architecture and training processes, 
ultimately leading to enhanced precision and recall. Additionally, examining FP and FN across multiple models 
and training runs provides a robust assessment of generalization performance, ensuring that the model’s 
strengths and limitations are thoroughly understood and addressed.

Figure 11 presents examples of FP in the test set for female Actinidia flowers in the four models across all 
training iterations.

All the examples illustrate instances where the models have identified a female Actinidia flower without 
visual access to the flower’s centre, where the female flower’s stigma should be. The presence of the stigma is 
crucial for differentiating between male and female Actinidia flowers. If this area of the flower is not present in 
the image, the flower should not be detected by the models.

In the test set for Actinidia female flowers, there were only two images where all models obtained FP at 
different training iterations. These suggest that each model identifies and learns distinct features from the 
training set.

Figure 12 presents examples of FP in the test set for male Actinidia flowers in the four models across all 
training iterations.

Most of the examples demonstrate instances in which the models have detected a male Actinidia flower 
without visual access to the centre of the flower, which has the presence or not of the female flower’s stigma. 
Identifying the presence of the stigma is essential for distinguishing between female and male Actinidia flowers. 
Therefore, if this flower region is missing in the image, the models should not detect the flower.

The first image of DETR presents a distinct case in which a female Actinidia flower was mistakenly classified 
as a male Actinidia flower. This model constantly detected the female as a male Actinidia flower across all 
training iterations.

Evaluating YOLOv8’s performance across five training iterations on male Actinidia flowers, the model 
identified a total of seven FP. Notably, each FP was unique, suggesting that the model progressively adapted to 
the diverse examples more frequently encountered within the dataset used for training.

In the test set for Actinidia male flowers, there was no single image where all the models across all training 
iterations resulted in FP. This finding was in line with expectations (Table 10), as within this class, YOLOv5, 
YOLOv8, and RT-DETR each reported FP, with counts of two, one, and two, respectively.

Figure 13 presents examples of FN in the test set for female Actinidia flowers in the four models across all 
training iterations.

Examples of FN in the test set for female Actinidia flowers by YOLOv5 and YOLOv8 were often due to the 
occlusion of the stigma, a critical feature for distinguishing between female and male flowers. Even when this key 
region is only partially visible in an image, the models should ideally detect the female Actinidia flower.

In the case of DETR, the image shows a female Actinidia flower misclassified as a male Actinidia flower, 
corresponding to the example of DETR’s FP for the male Actinidia flower. The misclassification between the two 
classes generates an FP and an FN.

Lastly, RT-DETR demonstrates two distinct cases. The first involves an image depicting a female Actinidia 
flower, characterized by a reduced number of petals, which remained undetected. Despite the flower being in an 
advanced phenological stage, with a visible stigma, the model should have detected the female Actinidia flower. 
The second case involves an image where the stigma was partially obscured during blooming, yet RT-DETR 
should have been capable of detecting the female Actinidia flowers.

In the test set, no images were common among the FN obtained by all the models across all training iterations 
for both female and male Actinidia flowers.

Model Class TP FP FN

YOLOv5
actinidia_female 435 22 15

actinidia_male 54 2 16

YOLOv8
actinidia_female 432 18 18

actinidia_male 53 1 17

DETR
actinidia_female 438 50 12

actinidia_male 66 9 4

RT-DETR
actinidia_female 439 26 11

actinidia_male 57 2 13

Table 10.  Average detection results with the test set for each model per class.
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Figure 14 presents examples of FN in the test set for male Actinidia flowers in the four models across all 
training iterations.

In the provided examples of FN in the test set for male Actinidia flowers across all models, the orientation 
of male Actinidia flowers results in their nondetection by the different models. Conversely, a female Actinidia 
flower in an identical orientation would present a visible stigma, resulting in the model incorrectly detecting 
the flower as a male Actinidia flower. In the test set for Actinidia male flowers, there were no images where all 

Fig. 11.  Examples of false positives in the test set for female Actinidia flowers across all training iterations. 
(a–d) YOLOv5. (e–h) YOLOv8. (i–l) DETR. (m–p) RT-DETR.
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models obtained FN at different training iterations. These suggest that each model identifies and learns distinct 
features from the training set.

Discussion
In the evaluation of the DL models for Actinidia flower detection and gender classification, various architectures 
were assessed, including YOLOv5, YOLOv8, DETR, and RT-DETR. The performance metrics used to measure 
model effectiveness included precision, recall, F1 score, and mAP. The average results (Table 8) of all models for 
Actinidia flower detection and gender assessment presented satisfactory results above 85% across all metrics. 

Fig. 13.  Examples of false negatives in the test set for female Actinidia flowers across all training iterations. 
(a–c) YOLOv5. (d–e) YOLOv8. (f) DETR. (g–h) RT-DETR.

 

Fig. 12.  Examples of false positives in the test set for male Actinidia flowers across all training iterations. (a) 
YOLOv5. (b) YOLOv8. (c–f) DETR. (g) RT-DETR.
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Optimizing the confidence threshold to maximise the F1 score proved essential for harmonising the metric 
results, leading to a significant decrease in FP. The models can detect Actinidia flowers and their gender in 
several complex scenarios, even considering occlusions, overlaps and variations in lighting conditions.

However, the average results (Table 9) of the Actinidia flower detection and gender assessment dataset in the 
test set for each class presented results above 75% across all metrics, with the metrics results for male Actinidia 
flowers being the lowest. Although YOLOv8 achieved the highest precision and AP for both classes, DETR 
showed notable strength in recall, F1 score and AP for male Actinidia flower. As DETR was the model that 
achieved the most consistent results (with a range of values between 88 and 97%), it was considered the model 
with the best performance.

Analyzing FP and FN across all training iterations for each model was crucial for understanding model 
performance and reliability. This evaluation identifies consistent failure scenarios, revealing potential weaknesses 
and guiding targeted model architecture and training process improvements. Most of the errors were common 
between all models, implying a need for new images of these specific cases to complement the dataset.

Evaluating YOLOv8’s performance across five training iterations on male Actinidia flowers revealed unique 
FP. This pattern suggests that the model progressively adapted to the diverse examples encountered in the 
training dataset. The slight increase in the dataset with images of male Actinidia flowers could increase YOLOv8 
metrics, surpassing DETR.

Although DETR was considered the best network under the conditions presented, YOLOv8 was considered a 
very promising network with an increase in the dataset of images of male Actinidia flowers. In this way, YOLOv8 
could become more interesting, as it has a shorter training time and less need for GPU memory (Table 6).

Table 11 summarizes the results from both the state-of-the-art literature and those obtained in this study, 
facilitating a comparison of model performances. This comparison is crucial for evaluating the significance of 
the results and identifying potential areas for improvement. Notably, none of the existing studies in the literature 
have addressed the task of detecting flowers by gender-a more complex challenge than merely detecting flowers. 
Gender classification requires first detecting the flowers and then accurately categorizing them based on gender.

The models proposed for detecting flowers and assessing gender demonstrated superior performance over 
several state-of-the-art models that are limited to flower detection, as evaluated across various metrics. Notably, 
the DETR model outperformed all other models in achieving the highest F1 score and mAP. Although precision 
was exceeded by models from Zhou et al.16, Li et al.17 and Williams et al.20, DETR maintained strong overall 
performance, with consistent results ranging between 89% and 97% across all evaluated metrics. This consistency 
emphasizes DETR’s robustness and efficacy in executing tasks related to flower and gender detection.

Fig. 14.  Examples of false negatives in the test set for male Actinidia flowers across all training iterations. 
(a–d) YOLOv5. (e–g) YOLOv8. (h) DETR. (i–l) RT-DETR.
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While previous research has focused predominantly on general flower detection, our study introduces a novel 
dimension by incorporating flower gender assessment. This advancement represents a significant innovation in 
the field. Our experiments demonstrated that the DETR delivered the highest recall and balanced performance 
across metrics. These findings underscore the effectiveness and originality of our approach in both flower 
detection and gender classification, marking a substantial advancement beyond the scope of existing literature.

The results were achieved using the acquired dataset, which is very diverse, with different perspectives and 
lighting conditions. This diversity of information is crucial for developing a robust dataset. The selection of 
augmentation operations was also a fundamental aspect of obtaining the metrics presented. Compared to the 
other displayed articles, the datasets acquired do not include 5000 images, and some do not use augmentation 
operations.

Conclusions
This study advances beyond previous research by focusing on detecting Actinidia flowers and assessing their 
gender. This capability is crucial for optimizing pollination practices. By distinguishing between male and female 
flowers, it becomes possible to collect pollen from males for future pollination of females, reducing production 
costs and mitigating the risks associated with disease transmission between plants.

In this paper, we outline a comprehensive methodology for acquiring images and applying four pretrained 
models to identify and classify the gender of Actinidia flowers (actinidia_female or actinidia_male). Considering 
class balance, an augmented dataset comprising 3,888 images of Actinidia flowers was developed as the DL 
training models require extensive data. K-fold cross-validation was implemented for model validation, thereby 
augmenting the reliability of our findings and facilitating a thorough evaluation of model performance across 
various data subsets.

In the evaluation of DL models for Actinidia flower detection and gender assessment, YOLOv5, YOLOv8, 
DETR, and RT-DETR were assessed using metrics such as precision, recall, F1 score, and mAP. All models 
demonstrated relevant performance, with average results exceeding 85% across these metrics, effectively 
detecting Actinidia flowers and their gender under complex conditions, including occlusions, overlaps, and 
varying lighting.

Despite these, the test set results showed that performance for male Actinidia flowers was lower than female 
Actinidia flowers, with all metrics remaining above 75%. YOLOv8 achieved the highest precision and AP for 
both classes, while DETR excelled in recall, F1 score, and AP for male flowers. DETR’s consistent performance, 
with results ranging from 88% to 97%, marked it as the top-performing model.

YOLOv8 showed unique FP for male Actinidia flowers, which suggests that can adapted progressively to 
diverse examples in the training dataset. Increasing the dataset with additional male Actinidia images could 
further enhance YOLOv8’s performance, making it a promising alternative given its shorter training times and 
lower GPU memory requirements than DETR.

Future research initiatives should precede expanding the dataset to encompass a more balanced representation 
of male flowers. Integrating public datasets is imperative to enhance variability and mitigate potential risks of 
overfitting. Furthermore, the separate classification of anthers and stigmas by gender can significantly enhance 
the efficiency of pollen collection and pollination activities. This contribution aims to reinforce the sustainable 
development and high-quality production of Actinidia fruits by optimizing the essential pollination phase, 
directly influencing fruit size and quality.

Application DL models

Results

Article

Precision (%) Recall (%)

F1 score (%)

AP (%)

mAP (%)Flower Flower Flower

Flower and stamen 
detection

Modified YOLOv5s 96.7 89.1 – – 90.1

16

Faster R-CNN + ResNet50 57.4 98.9 – – 92.6

Faster R-CNN + VGG 68.5 98.9 – – 92.6

SDD + VGG 76.6 87.4 – – 82.3

SDD MobileNetv2 86.7 70.2 – – 81.1

Flower and bud detection
YOLOv4 – – – 92.47 91.49

17

YOLOV3 – – – 85.73 80.98

Flower detection

Faster R-CNN NAS 96.8 68.0 79.0 – –
19Faster R-CNN Inception v2 90.4 75.8 82.0 – –

SDD Inception v2 78.5 61.2 68.1 – –

Flower detection Faster R-CNN Inception v2 91 80 85 – – 20

Flower and bud detection YOLOv5l – – – 93.12 93.23 21

Flower and gender detection

YOLOv5 95 94 94 – 86

Proposed
YOLOv8 96 93 94 – 85

DETR 89 97 93 – 94

RT-DETR 95 96 95 – 89

Table 11.  Comparison between the proposed models and the state-of-the-art DL for flower detection.
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The detection of flowers and gender assessment remains a relatively underexplored area, underscoring the 
need to delineate future work, which can be bifurcated into two key steps. Firstly, augmenting the male flower 
dataset is imperative to rectify class imbalances. The assimilation of public datasets is essential for augmenting 
variability and mitigating the risk of model overfitting. Subsequently, the gender-based segmentation of 
anthers and stigmas is poised to enhance the efficiency of pollen collection and pollination tasks. This effort is 
designed to bolster sustainable development and facilitate the high-quality production of Actinidia fruits. These 
advancements are instrumental in ensuring the success of the pollination phase, a pivotal stage in this plant’s 
lifecycle, given that the quantity of pollinated seeds directly influences the size and quality of Actinidia fruits.

Data availability
The data presented in this study are openly available in the digital repository Zenodo: Actinidia chinensis cv. 
’Hayward’ Flower Dataset 2024 (augmented version)—https://doi.org/10.5281/zenodo.13692222 (accessed on 5 
September 2024).
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