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For the complexity and difficulty of seismic research on subway station structure system embedded 
in soft soil foundation, the seismic research method is quite different from the ground structure. 
The methods of seismic research on subway station structures in soft soil were summarized, and 
relevant literature on this field in recent years were sorted out. The advanced progress of theoretical 
analysis and quasi-static simplification analysis, model test (shaking table test, centrifuge test), 
numerical simulation (the total stress method, the effective stress method), and dynamic reliability 
of underground structures were mainly introduced for seismic analysis of subway station embedded 
in the soft foundation. The advantages and disadvantages of each method and the development 
direction of this field were proposed briefly in order to better understand seismic analysis of 
underground structure engineering in soft soil.
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Underground structure refers to the structure of the underground part of a building, such as basements, 
underground garages, underground passages, etc1–3. Since the beginning of the twenty-first century, China’s 
urbanization process has been continuously advancing, causing the urban population, scale and living space to 
encounter tremendous pressure. Therefore, the development and utilization of underground space have become 
an effective means to alleviate traffic congestion and improve the pressure of the living environment. The subway, 
which is a fast, efficient and environmentally friendly means of transportation, gradually plays an irreplaceable 
role in modern urban passenger transport. Many underground railways have been built in big cities such as 
Beijing and Shanghai, thus forming an efficient and fast transportation network. Still, some cities are building 
(or preparing for) underground rail transit. In the new era, there is great potential for constructing underground 
space structures, which will be developed to a greater extent1,4,5.

During an earthquake, underground structures often face significant seismic forces and therefore must have 
a certain level of seismic resistance. The large-scale construction of subway stations in high-intensity regions 
started in the past 30 years, and most of them have not been tested by strong earthquakes. Meanwhile, due to the 
constraints of objective factors such as the difficulty of underground structure observation, there haven’t been 
many records of earthquake damage examples6. Before the 1995 Kobe Earthquake in Japan, it was generally 
believed that the seismic capacity of an underground structure was 1 to 3 intensity levels higher than that of 
a ground structure under the same conditions, and the underground structure would not be damaged by the 
earthquake or even did not need seismic design7. However, several major earthquakes (the 1987 Miyamoto 
Earthquake in Japan; the 1995 Kobe Earthquake in Japan; the 1997 Chi-Chi Earthquake in Taiwan; the 1999 
Kocaeli Earthquake in Turkey; the 2007 Malaga Earthquake in Portugal) caused serious damage to subway station 
structures in the earthquake area, which has attracted the attention of scholars all over the world. Therefore, the 
seismic resistance of underground structures has increasingly become a cross-hot issue of concern in the fields 
such as earthquake engineering, geotechnical engineering, and disaster prevention, mitigation and protection 
engineering8–10.

Currently, most of the subways that have been built or are newly built are concentrated in coastal, riverside 
and lakeside areas (developed areas), where deep soft and poor foundation soil layers are widely distributed. 
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It is known that there is a complex genesis of marine, delta, river and lake muddy sedimentary soft soil11,12. It 
belongs to the late Quaternary soil, including fine-grained muddy soil, peaty soil and a small amount of humus. 
Existing underground buildings (structures) have been damaged due to large deformation of soft soil (Xinxie 
Earthquake, 1964; Tangshan Earthquake, 1976; Taiwan Chi-Chi Earthquake, 1999). Especially in the 1995 Kobe 
Earthquake in Japan, the Dakai Station was severely damaged by the earthquake: the middle column was bent 
and collapsed, resulting in the collapse of the roof, which led to the large-scale settlement of the overlying soil 
layer of the subway, and the settlement depth of some sections even reached 2.5 to 4.0m. The earthquake damage 
site is shown in Fig. 1. The underground structure of the subway was expensive, and it was difficult to repair and 
costly due to the concealment of the damage. The cost of repairing the Dakai station alone was as much as 10 
billion Yen13–16.

The basic principle of seismic design for underground structures is to increase the seismic capacity of the 
structure, reduce the impact of earthquake action on the structure, and ensure that the underground structure 
will not collapse or suffer serious damage during an earthquake. Generally, the seismic design of underground 
structures needs to meet the following basic principles: increasing the stiffness of the structure, controlling 
structural deformation, increasing the energy dissipation capacity of the structure, and adopting seismic isolation 
structures. The seismic design of underground structures needs to consider both seismic design parameters and 
structural design parameters. The seismic design methods for underground structures mainly include strength 
design methods, displacement design methods, and capacity design methods17,18.

The seismic damage of subway station structure is a complex process with high nonlinearity and continuous 
accumulation and development of damage, which involves complex problems such as multi-phase coupling 
nonlinearity, soil-structure contact nonlinearity, as well as strength and deformation nonlinearity of soil-
structure system. Saturated sand or silt liquefaction and large deformation of soft soil are two typical catastrophic 
instability phenomena of foundation under an earthquake. Domestic and foreign scholars have studied more on 
the dynamic strength deformation of liquefiable sites and had a more comprehensive and in-depth understanding 
of its mechanism19,20. Survey Procedure for Geotechnical Engineering in Soft Soil Areas JGJ83-2011 divides the 
main distribution areas of soft soil in China into three areas: Area I: the northern area, Area II: the central area, 
and Area III: the southern area. The unique complex physical (dynamic) and mechanical properties of soft soil, 
such as high sensitivity, weak permeability, low strength, high compressibility, long consolidation, etc., make 
the seismic research of underground structures on soft foundation sites more complicated. Besides, the research 
in this field started late, increasing the difficulty in seismic research of underground structures, and resulting 
in a lag in comprehensive and in-depth systematic research results21. Therefore, China has not yet stipulated 
a special seismic design code for underground structures. Currently, due to the limited understanding of the 
dynamic disaster mechanism of the interaction system of underground structures in soft soil sites, the current 
relevant seismic code design is not mature enough, and it is relatively rough when especially compared with the 
liquefiable sand foundation site. Moreover, it only provides some qualitative and general provisions, but there 
is still a lack of more in-depth and comprehensive systematic studies that can improve the seismic code design. 
Therefore, it is difficult to adapt to the rapid development of subway construction in China and meet the new 
requirements for the seismic design of underground structures.

Therefore, based on the requirements for urban underground space development and underground 
transportation hub construction, it is necessary to study the dynamics and seismic failure mechanism of 
underground structure system in soft soil sites to solve the unavoidable practical possibility of potential seismic 
threat of underground structures in deep soft soil sites. In this way, it can not only offer an important reference 
for the location of urban subway transportation hubs and lines but also provide an important basis for the 
seismic design of urban underground structures.

Research status of seismic analysis of underground structures at home and abroad
The current seismic analysis methods of subway station structures mainly include theoretical analysis (analytical 
and quasi-static simplified methods), model test (ordinary shaking table and centrifugal shaking table), and 

Fig. 1.  Earthquake damages of Dakai subway station.
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numerical simulation (dynamic total stress and effective stress)22–24. In this paper, the existing research results 
in the field of seismic research of underground structures in soft soil sites in the past ten years were summarized 
and analyzed, and the limitations and future development trends of various methods were pointed out, aiming 
to make the seismic design research of underground structures in soft soil site standardized, systematic and 
practical.

Theoretical analytical method and pseudo-static simplification method
Before entering the twenty-first century, limited by computer hardware and technology, the seismic design 
calculation of underground structures is mainly based on simplified methods. The analytical method is mostly 
proposed for the foundation vibration problem and the dynamic response analysis of underground structures, 
and it can only solve limited problems, but it can still play an important role when coupled with other numerical 
methods. The calculation parameters of the quasi-static simplified method are easy to determine, with a small 
calculation workload, so it is easy to accept. Therefore, it is mainly suitable for the study of plane linear elastic 
problems and qualitatively analyzes the impact of different factors on the dynamic response of underground 
structures. After decades of research and development, analytical or quasi-static simplified methods mainly 
include a series of seismic calculation methods represented by response displacement method, surrounding rock 
strain method, ST. John method, Shukla method, BART method, response acceleration method, underground 
structure Push-over seismic analysis method, and Fujerva method25,26.

Pure theoretical analysis method
Theoretical analysis is the result obtained by extremely simplifying the on-site model, so the results obtained 
cannot be directly used to guide engineering practice. For example, simplifying the structure into beams or 
shells, assuming the soil layer as a homogeneous soil layer, using normal and tangential springs to simulate 
the contact interaction between the stratum and the structure, etc. These assumptions differ significantly from 
the real situation. The analytical method of theoretical derivation cannot consider the nonlinear dynamic 
characteristics of soil due to the limitation of its own conditions, but it is helpful to understand the failure 
modes of underground structures in soft soil sites, so some conclusions and significance obtained are not lose 
generality27–48.

The existing analytical or semi-analytical methods for seismic research of underground structures mostly 
aim at the linear characteristics of underground structures in elastic or viscoelastic media, mainly because 
the theoretical analysis cannot consider the impact of complex factors such as the strength and deformation 
nonlinearity of sites and underground structures, the contact nonlinearity of soil-structure interface, and the 
soil–water coupling (dynamic pore pressure) effect.

Quasi-static simplified method + numerical (or experimental) verification
Since the beginning of the twenty-first century, with the development of computer technology and software 
functions, the numerical analysis method of seismic dynamic calculation of underground structures has made 
rapid progress. As the analytical method is based on certain assumptions, the real validity of its solution remains 
to be verified by numerical calculation and model tests. In particular, after fully absorbing the advantages of the 
existing theoretically analytical methods, the quasi-static semi-analytical method, which effectively combines 
the analytical method with the numerical (or experimental) method, is one of the development directions of the 
practical seismic calculation method of underground structures37,49–63.

Due to climatic conditions and sedimentary environments, the middle and lower reaches of the Yangtze 
River are widely distributed with floodplain soft soil. Due to the poor engineering properties of soft soil, it 
has brought many problems to the seismic design and construction of subway stations. A two-dimensional 
finite element model of soil structure interaction was established based on the ABAQUS. Nonlinear dynamic 
time history analysis method and underground structure Pushover analysis method were used to analyze the 
seismic resistance of subway stations in different soil stiffness layers Based on the results of nonlinear dynamic 
time history analysis, the influence of soil stiffness on the calculation accuracy of Pushover analysis method 
for underground structures was studied using peak inter story displacement angle and peak internal force64. 
To study the accuracy of simplified method for seismic analysis of underground structures under shallow 
bedrock conditions, the accuracy of the response acceleration method and the response spectrum method for 
the seismic analysis of underground structures under the conditions of homogeneous site and shallow bedrock 
site are compared and analyzed by taking the two storey two span and two storey three span subway station 
structures as examples23. The seismic resilience of underground structures is generally based on the results of 
the seismic fragility analysis and the damage of all the structural components comprehensively. Whereas, the 
seismic behavior of underground structures is greatly influenced by the vertical ground motions. Therefore, a 
new method was proposed to study the seismic fragility of underground structures subjected to both horizontal 
and vertical ground motions, and by considering the damage weight coefficients of the structural components 
to the overall structure. Pushover/pseudo-gravity analyses were conducted to determine the demand measures 
and seismic performance levels of all the structural components65. The seismic performances of underground 
structures with either transverse traditional rigid layout or sliding interior columns are numerically evaluated 
by pushover analyses; both the horizontal and vertical components of the seismic ground motion are taken into 
account66.

The quasi-static simplified method is characterized by simplicity, easy mastering, small calculation workload 
and good calculation accuracy. Meanwhile, it can further consider the nonlinear behavior of strength and 
deformation of underground structures and the nonlinear behavior of interface contact. However, there is a 
lack of consideration of the impact of saturated porous media site coupling (effect) dynamic nonlinearity and 
other factors. The theoretical analysis method has limitations in considering the nonlinear effects of complex 
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factors such as strength deformation of the site and underground structures, soil structure interface contact 
nonlinearity, and soil water coupling (dynamic pore pressure) effects. However, research can help to understand 
the failure modes of subway station structures in soft soil sites, and some conclusions and significance obtained 
from it are also general.

Model test method
Based on the difference in the gravity field environment of the structural system, the model test can be divided 
into the ordinary shaking table test (Fig.  2a) and the centrifuge shaking table test (Fig.  2b). The model test 
can better grasp the seismic response characteristics of underground structures and the dynamic interaction 
characteristics between the foundation and the underground structure, and the cost is relatively low, which 
supplements the insufficiency of prototype observation data to a certain extent.

Ordinary shaking table test
There are many ordinary shaking tables in China, which are the mainstream of experimental research on 
seismic problems of underground structures in soft soil sites. Scholars at home and abroad have carried out 
comprehensively studied on model similarity design, test material selection, and counterweight application in 
this field, and many mature research results have been achieved.

Yang, et al.67,68 carried out the shaking table model test of railway stations in soft soil foundations in China for 
the first time, analyzed the seismic characteristics of the model structure under the action of ground motion, and 
then performed a numerical verification on the test results. In particular, the test puts forward effective solutions 
one by one for the form of the model box, the configuration of model soil, the determination of similarity ratio, 
the type selection and layout of sensors, etc., and summarizes them in detail. The research results and experience 
lay a solid foundation for the follow-up scholars to carry out the model test of underground structures in soft 
soil sites.

Some scholars have also compared the results of shaking table tests with the numerical simulation results 
or the (semi) analytical solutions of the analytical simplified method. The correctness of numerical simulation 
and analytical/simplified method was calibrated by shaking table tests69–73. The ordinary shaking table model 
test was carried out when there was a gravity acceleration of 1g. According to the similarity theory, the stress 
level caused by the self-weight of the soil is reduced by n times when the geotechnical structure is reduced 
by n times. Due to the strong nonlinearity of the soil, the soil parameters are correlated with the confining 
pressure. Therefore, the ordinary shaking table scale model test has a gravity distortion effect, and there are some 
differences between the test results and the real results. Although it is impossible for the ordinary shaking table 
test to completely simulate the real seismic response of the underground structures in the prototype sites, the test 
can not only qualitatively study the vibration law of the dynamic interaction system by controlling the ground 
motion characteristics, selecting the test materials and measuring the changes of various physical quantities in 
the vibration process, but also be used as an effective means of numerical verification74–77.

The ordinary vibration table is tested under a gravitational acceleration of 1g. At present, in the field of seismic 
testing research on underground structures, ordinary vibration tables have a wider range of testing platforms 
and have gained rich and mature experience. Ordinary vibration table model testing is still the mainstream of 
seismic testing research on underground structures in soft soil sites. Although it is impossible to fully simulate 
the actual seismic response of the underground structure in the prototype site due to the gravity distortion 
effect of ordinary vibration table tests, and the test results may differ from the real results to some extent, the 
test can qualitatively study the vibration laws of the dynamic interaction system by controlling the seismic 
characteristics, selecting the test materials, and measuring the changes in various physical quantities during the 
vibration process. It can also be used as an effective means of verifying numerical simulation methods.

Centrifuge shaking table test
After the 1960s, the United States, Europe and Japan have successively established centrifugal equipment for 
model tests, and the geotechnical centrifuge equipment in China has gradually increased. In the ng gravity 

Fig. 2.  Shaking table test.
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acceleration field provided by the centrifuge shaking table scale test, the stress state of any point is the same 
as that of the corresponding point in the prototype, so it can be considered that the displacement response, 
pore pressure response, failure mode and failure mechanism of the model are similar to those of the prototype. 
At present, centrifuges have been widely used in the study of soil-structure dynamic interaction, and many 
achievements have been made78–92.

Currently, the research on centrifuge shaking table tests is mainly carried out on the seismic performance 
of underground structures in sandy soil foundations, and there are few experimental studies on the seismic 
response characteristics of underground structures in (saturated) soft soil foundations.

Although the centrifuge shaking table has outstanding advantages, due to the large cross-section size of 
the underground structures, it is difficult for the geometric similarity relationship design of the centrifuge 
shaking table to meet the requirements of the same stress level of the prototype and the model. Besides, using 
the centrifuge tests to study the soil-structure interaction of the site also involves complex factors such as soil 
particle size and permeability similarity, pore water viscosity similarity ratio, sensor layout, data test accuracy, 
gravity field effect, and softening soil fluidity along the centrifuge radius surface. In particular, silicone oil and 
other materials are commonly used to replace water in the test, but silicone oil only changes the permeability 
of soil in a limited range. However, when the centrifugal acceleration is large, it is difficult for silicone oil to be 
consistent with the real soil’s permeability coefficient, and the use of silicone oil and other materials may change 
the soil’s dynamic characteristics. As centrifuge shaking table equipment is very expensive, there are few in 
China. Currently, only a few units such as Tsinghua University, Zhejiang University, Tongji University, China 
Institute of Water Resources and Hydropower Research and Hong Kong University of Science and Technology 
have owned it. Meanwhile, the centrifuge shaking table has the Coriolis effect caused by the conversion of the 
inertial coordinate system and the rotating coordinate system, and it is not enough to install sufficient measuring 
equipment due to the limitation of the model ratio. In this way, it is difficult to embody the internal characteristics 
of the structure and the foundation soil.

However, it is very important to design and analyze the test for both ordinary shaking table tests and 
centrifuge vibration tests. If the dynamic principle is not properly understood, there will be serious error results.

Numerical analysis
The above analytical and quasi-static simplification methods are mainly applicable to linear viscoelastic 
problems, while the soft soil foundation and underground structure show obvious elastic–plastic strong 
nonlinear mechanical behavior under earthquake. At this time, the dynamic numerical simulation method can 
more truly simulate the dynamic nonlinear interaction of the underground structure-foundation system under 
earthquake action. With the rapid development of computational theory and hardware (software) conditions, 
numerical simulation technologies with lower cost than model tests are more and more applied to the study 
of the seismic performance of underground structures in soft soil sites. As shown in Fig. 3, the finite element 
calculation model of the soft soil foundation of the Hanshin earthquake Daikai Station is presented. As shown in 
Fig. 4, the finite element calculation model of the underground structure of the Daikai Station is presented93,94.

Numerical analysis method of dynamic total stress
Some scholars have simplified the seismic resistance of underground structures into a plane assumption 
research95–99.

It is necessary to consider the spatial effect of sites and structures to study the seismic response laws of 
underground structures and analyze the comprehensive influence of different ground motion fields for the 
underground structures under complex geological and topographic conditions or large underground space 
structures with complex forms. Meanwhile, it is also necessary to adopt the three-dimensional integral model of 
underground structures100.

The above studies are carried out on the seismic performance of typical underground structures (subway 
tunnels/stations) in soft soil sites. With the development of rail transit and the maturity of subway construction 
technology, more and more subway lines are interspersed with each other, and the number of transfer stations 
is increasing. Meanwhile, the spatial cross structure of stations is becoming more and more common, so 
the inevitable trend of subway development in the future is the diversification of subway structures and the 
combination of spatial structures. Facing the current situation of large-scale construction of subway underground 
engineering, some scholars have also studied the ground motion response of composite underground structure 
systems101–105.

As the displacement distribution of the intersection of the underground structure of the subway, which 
represents the future trend, is different from that of the surrounding area, it is more likely to produce large 
uneven deformation and significant interaction than the general underground structure, and the deformation 

Fig. 3.  Numerical calculation model.
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and stress state are more complicated and the damage consequence is more serious. Moreover, the transverse 
shear deformation caused by seismic waves in one tunnel will cause another tunnel to be in a complex stress 
state of longitudinal tension and compression or bending and even cause the two to be separated. In particular, 
the cross-close structure changes the site conditions of the existing subway tunnel, and there is an inevitable 
interaction between the tunnels, which will significantly affect the seismic response characteristics of the existing 
tunnel106–115.

Since the twenty-first century, with the rapid development of economy, national defense and other 
undertakings, more and more large-span and large section underground space structures have emerged, and such 
projects are gradually developing towards ultra long spans. Conducting seismic response analysis of ultra large 
span underground space structures is of great significance. For large-span underground structures, due to the 
significant traveling wave effect, partial coherence effect, attenuation effect, and local site effect caused by seismic 
waves in the process of propagation and incidence to structures, the earthquake motion has obvious differences 
in spatial distribution. If the consistent seismic input is still used, there will be obvious differences in the actual 
situation. Therefore, the seismic response analysis of large-scale structures also needs to consider the spatial 
non-uniform characteristics. In this way, the seismic response analysis of large-span underground structures 
considering non-uniform excitation input is more in line with the actual situation and more reasonable, and 
scholars have also carried out relevant studies in this field116–130.

Currently, most dynamic constitutive models are established in the framework of continuum mechanics, so 
they are constrained by the assumption of continuum mechanics that does not conform to the actual structure 
of the soil. To deeply understand the seismic mechanical response mechanism of underground structures in soft 
soil sites, there have been many studies on the dynamic response indexes such as internal force, deformation and 
displacement of underground structures under seismic excitation. It is known that the underground structure 
system in soft soil sites may have a large deformation under seismic excitation, and at this time, the theory based 
on the small deformation assumption is no longer applicable. Therefore, it is necessary to study the interaction 
between the foundation and the underground structure by employing numerical calculation under a large 
deformation assumption or multi-element mixed (coupling) method131,132.

The numerical solution method of dynamic total stress is extensively used in the seismic field of underground 
structures in soft soil sites in diversified forms. The dynamic total stress analysis method can consider the 
nonlinearity and hysteresis characteristics of the soil, but it cannot consider the growth, diffusion and dissipation 
process of the excess pore pressure during the vibration process as well as its impact on the dynamic stress–strain 
characteristics of the soil. Therefore, the excess pore pressure generated during the vibration process and the 
permanent deformation after the dissipation of the excess pore pressure cannot be directly obtained. Compared 
with the quasi-static simplified method, the dynamic total stress calculation method can further consider 
the inertial effect of the underground structure interaction system, the nonlinearity of dynamic strength and 
deformation, as well as the nonlinear behavior of the soil-structure contact interface in complex condition sites, 
but it cannot take into account the impact of the coupling effect of soil skeleton and pore water on the mechanical 
behavior of large deformation seismic damage in saturated porous media sites. Currently, the research on the 
dynamic problem of single-phase medium is relatively mature. For saturated soil, the problem becomes more 
complicated due to the coupling effect of soil skeleton and pore water. However, after several years of efforts, 
people have made some progress in the study of saturated soil dynamics and proposed corresponding analysis 
methods for different geotechnical dynamic problems133–139.

Numerical analysis method of dynamic effective stress
Under the action of seismic excitation, there is a strong coupling between soil particles and water in soft soil 
layers, and the excess pore pressure is higher due to the lack of drainage, which reduces the force between soil 
particles and degrades the stiffness of soil, eventually resulting in soil softening and strength degradation. As 
the numerical solution method of dynamic total stress cannot take into account the impact of the distribution 

Fig. 4.  Subway station structures.
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change of dynamic excess pore water pressure and the foundation soil is a porous medium, the coupling effect 
of pore water and soil skeleton stress and deformation should be further considered in the seismic dynamic 
response analysis of underground structures in saturated sites. The fluid–solid coupling two-phase medium 
dynamic model considers the coupling relationship between solid phase and fluid dynamic response in saturated 
soil, which is a relatively perfect calculation model in terms of strength. Therefore, the method based on the 
fluid–solid coupling two-phase medium dynamic model has a solid theoretical foundation and is a more 
accurate calculation and analysis method. The dynamic effective stress analysis method can be divided into 
simplified decoupled effective stress (quasi-effective stress) and real effective stress method based on fluid–solid 
coupling two-phase medium dynamic model. At present, there is no deep research on the dynamic problem 
of underground structures in saturated soil based on the dynamic model of fluid–solid coupling two-phase 
medium.

	(1)	�  Quasi-effective stress method.

The quasi-effective stress analysis method quantitatively solves the generation, diffusion or dissipation process of 
pore pressure through coupling of the pore pressure development model under dynamic load under undrained 
conditions and Terzaghi consolidation theory or Biot consolidation theory based on the equivalent linear 
dynamic response analysis.

The existing dynamic numerical analysis is mostly performed by the decoupling effective stress solution 
method based on the pore pressure mode, and the constitutive model employed is mainly the viscoelastic model 
and the static Mohr–Coulomb elastoplastic constitutive model. The dynamic viscoelastic constitutive model has 
some limitations when considering the impact of dynamic residual deformation in applying the soft soil’s large 
deformation. Meanwhile, the Mohr–Coulomb constitutive model also has inherent defects and deficiencies in 
reasonably reflecting the dynamic deformation behavior of soil under cyclic loading. The decoupled effective 
stress dynamic calculation method carries out the “coupling of “pore pressure” based on the pore pressure stress 
model or the pore pressure strain model. The pore pressure stress model is established basd on the constant 
amplitude stress condition in the laboratory, while the site stress condition is more complex and can neither 
solve the shape residual deformation under undrained conditions nor reflect the reverse shear shrinkage 
characteristics of the soil. The pore pressure strain model solves the contradictions in the pore pressure stress 
model to a certain extent, but in principle, it is only suitable for the soil in the static compression state and the 
dynamic shear or pure shear state but cannot describe the real change mechanism. In this way, the decoupled 
effective stress dynamic calculation method based on the pore pressure model has some limitations when 
describing the coupled stress and deformation characteristics of pore water and soil skeletons under complex 
stress states. The fully coupled real effective stress dynamic numerical solution method can better reflect the 
coupled stress and deformation behavior of soil skeleton and pore water under dynamic cyclic loading140.

	(2)	� Coupled effective stress method.

On this basis, Zienkiewicz et al. established a real effective stress dynamic calculation method that can couple the 
diffusion and dissipation of pore water pressure with the dynamic reflection analysis by combining the dynamic 
Biot theory. In the framework of the dynamic consolidation equation, the generation, dissipation and diffusion 
of pore pressure are completely coupled with the deformation of the soil. The fully coupled analysis methods, 
represented by Biot’s dynamic consolidation theory, can consider the nonlinear, large deformation and elastic–
plastic behavior of soil skeletons. The fully coupled numerical method based on the dynamic consolidation 
equation is the current mainstream and development direction, and many scholars have developed fully coupled 
dynamic calculation programs according to the needs and successfully applied them to solve the dynamic 
problems caused by earthquakes95,96,141,142.

The fully coupled effective stress dynamic numerical analysis method can better describe the coupled stress 
deformation behavior of soil skeleton and pore water in saturated soil under dynamic cyclic loading. It is a 
relatively complete calculation model in terms of strength and an accurate calculation method. Compared with 
the dynamic total stress analysis and the decoupled effective stress dynamic analysis method based on pore 
pressure mode, due to the complexity of numerical implementation and solution, it is less applied in seismic 
research of underground structures in soft soil sites.

However, due to the complexity of the seismic research of underground structures, until now, there has 
been no means that can fully explain the dynamic response mechanism of underground structures in soft soil 
sites. Usually, the actual phenomenon is partially or qualitatively reproduced by the model test, and the physical 
mechanism can be explained, the change process can be inferred, the characteristic law can be summarized, and 
the disaster consequences can be analyzed. On this basis, a reasonable mathematical analysis model that can 
reflect the actual soil-structure dynamic interaction law is established, forming the corresponding numerical 
analysis method, which is then compared with the model test or prototype observation results. Later, the 
different seismic design schemes are calculated and analyzed to reproduce and simulate the actual dynamic 
response as much as possible, study the seismic performance, and further put forward the corresponding 
seismic countermeasures. This is a reasonable and effective way to study and evaluate the seismic performance 
of underground structures.

Dynamic reliability evaluation method and prefabricated underground structure
The dynamic reliability of underground structures refers to the probability that the underground structures 
complete the predetermined function within the specified conditions and time under the action of random 
dynamic load. Seismic excitation is an accidental random load, and it is an inevitable trend to adopt the reliability 
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optimization method in the seismic design of underground structures. As we know, due to the characteristics of 
earthquake source and wave propagation, the complexity of engineering geological conditions, the variability of 
underground structure resistance, and the error of response analysis model, there are more uncertain factors in 
the dynamic stability analysis and design of underground structure system than that of ground structure, making 
the dynamic reliability analysis of the engineering more difficult. Therefore, it can only be described by the 
probability that the underground structure may be in a certain state143–151. Using theoretical analysis, numerical 
simulation and model tests, many scholars both at home and abroad have studied the seismic performance of 
subway station structures and achieved many valuable scientific research results. While acquiring the dynamic 
response characteristics of subway station structures, at present, how to evaluate the dynamic reliability of 
subway station structures under earthquakes is a difficult problem when studying subway stations152–156.

Dynamic reliability is one of the complex problems in reliability theory, which will become completely 
complicated especially when considering both the randomness of seismic load and the randomness of structural 
material parameters. In particular, for complex geotechnical engineering structures, it is often difficult to write 
an explicit expression of the performance function, and there is a large workload when directly using the Monte 
Carlo method for numerical simulation. Generally, the dynamic reliability problem can be studied by the 
frequency domain analysis method and time domain analysis method, but the research in the time domain is 
more complicated than that in the frequency domain. The frequency domain analysis method for earthquake 
vulnerability analysis is to establish a frequency domain transfer function for controlling multi degree of freedom 
systems through the concept of substructures, which is used to evaluate the overall seismic performance of multi 
degree of freedom systems. Seismic resistant system for underground structures on soft soil foundation are 
established based on the finite element platform. The frequency domain method in elastic half-space theory 
is used to obtain ground motion rotation through three-way translational ground motion components. The 
incremental dynamic analysis of near-field and multi-dimensional ground motions is performed on the example, 
and the probabilistic seismic demand analysis method is used to draw the seismic vulnerability curves. When 
taking into account the randomness of structural materials, if the stochastic finite element is simply used in the 
time domain, the structure will diverge after one cycle, and the degree of divergence becomes more and more 
serious with time. The study of analyzing and calculating the random dynamic response of multi-degree-of-
freedom large-scale structures in the time domain is still in the exploratory stage in the world157–163.

The lifecycle of tunnel structures includes construction phase, usage phase, and aging phase. Numerous 
theoretical studies and engineering practices have shown that the reliability of engineering structures is 
relatively low during the construction and aging stages throughout their entire lifecycle. At present, the research 
on reliability of both ground and underground structures mainly focuses on the usage stage of the structure. 
The combination of BIM technology and GIS technology, which has been rapidly promoted in recent years, 
has become the application trend of urban underground structures. BIM + GIS technology can play a dynamic 
simulation and decision support role in underground structures, and has an irreplaceable role in resource 
sharing, monitoring and management. Therefore, its application in the field of underground structures has been 
increasing year by year. The collaborative application of BIM + GIS technology can integrate comprehensive 
professional models throughout the entire lifecycle of pipe galleries, and use them as a carrier to correlate 
multidimensional information such as cost, quality, contract, and schedule at different stages of pipe galleries, 
providing comprehensive data support for pipe gallery projects, achieving the goals of deepening design, 
optimizing progress, and reducing construction changes. The collaborative application of BIM + GIS and other 
new technologies has broad prospects in future engineering, which will inevitably promote China’s construction 
industry to enter a more intelligent era164–168.

With the deep popularization and development of the Internet and the deep integration with mobile 
communication technology, the application mode of BIM and GIS technology will be completely changed, 
and various concepts such as “GIS sharing and switching cloud platform” and “BIM + ” will emerge. The deep 
integration of these emerging technologies will enable convenient and rapid information exchange between 
macro and micro fields, and bring new opportunities for the development of various industries.

.In the past two decades, many scholars have systematically studied the seismic performance of general 
cast-in-place concrete underground structures using different research methods from different perspectives. 
They have basically explored the seismic response law and seismic damage mechanism of such underground 
structures, providing important scientific basis and practical analysis methods for the seismic design of 
underground structures at present. Prefabricated underground structures adopt modular design and production, 
which can ensure construction quality and reduce environmental pollution, and have incomparable advantages 
over traditional cast-in-place stations. At present, the seismic research on prefabricated underground structures 
is still in its infancy, and there are no relevant specifications for seismic design of prefabricated tunnels. There is 
insufficient systematic research on their seismic design and analysis. However, ensuring the seismic safety of the 
structure helps to save social resources, protect the ecological environment, and meets the strategic requirements 
of contemporary sustainable development169–186.

Urban subway stations are typical representatives of large-scale underground engineering. Since 2012, 
Changchun Metro Line 2 has been the first to carry out research and application of prefabricated construction 
technology for open cut subway stations, paving the way for the construction of prefabricated subway stations. 
As of now, Changchun Metro has successfully built 8 prefabricated stations, and 10 more are under construction. 
The successful construction of prefabricated subway stations in Changchun has played a good demonstration 
role. According to preliminary statistics, as of now, 9 cities in China, including Changchun, Beijing, Jinan, 
Shanghai, Guangzhou, Harbin, Qingdao, Shenzhen, and Wuxi, have conducted research and application of 
prefabricated station construction technology from different perspectives, with nearly 40 stations implemented.

Prefabricated subway stations have grown from scratch, from a single construction mode to the coexistence 
of multiple modes, forming a cluster of nearly 40 prefabricated station constructions in China. The construction 
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technology of prefabricated stations is gradually moving towards an industrialized construction concept and 
mode centered on design standardization, factory production, construction machinery automation, and 
management informatization.

Conclusion
In summary, the seismic research of underground structures in soft soil sites has developed from linear 
to nonlinear, from frequency domain to time domain, from quasi-static to time history analysis, from two-
dimensional to three-dimensional, from single structure to complex composite structure system, from total 
stress to effective stress, from continuous medium to discontinuous medium and failure theory, from single 
theory to hybrid method, as well as from the arisen dynamic reliability evaluation method to the life cycle design 
method.

Currently, the research on the seismic response of underground structures in soft soil sites is still in the 
preliminary stage. The existing studies roughly consider the dynamic characteristics of the soil and don’t 
systematically study the seismic performance of underground structures under complex soft site conditions. The 
relevant research results are far from enough to guide the comparison and selection of engineering schemes and 
seismic design of underground structures in complex soft sites. Therefore, the author suggests that the following 
aspects should be emphasized to study the frontiers of disciplines and key scientific and technological research 
issues.

(1) It is worthy of studying the consolidation time effect of underground structures in soft soil foundations 
after earthquakes. Under the action of earthquakes, the generation of excess pore pressure in the soil results in 
the destruction of some soil skeletons, and the shear strength and stiffness of the softened soil are reduced, which 
weakens the overall strength and stiffness of the soil. After the earthquake, the stress in the soil is redistributed, 
and the pore water pressure is also redistributed, which finally makes more soil softened. After the soil is 
softened, the shear strength and stiffness will decrease, which will affect the internal force and deformation of 
the underground structure of the subway. After the earthquake, the saturated soft soil will produce consolidation 
deformation due to the dissipation of excess pore water pressure in the soil, which will further destroy the 
engineering structure located in the soft soil site. The pore water pressure of saturated soft soil foundation 
dissipates after the post-earthquake consolidation seismic action stops. The dissipation of pore water pressure 
will be accompanied by the volume compression deformation of the soil, and the redistribution of pore water 
pressure in the site may still cause damage to the soil.

(2) It is more urgent to study the seismic response characteristics of underground cross structures close to 
subways, which is not only of great theoretical value and practical significance but also an urgent problem to be 
solved in the seismic research and design of subways. In the limited urban underground space, the construction 
of necessary projects such as urban underground transportation networks and underground pipelines will 
inevitably increase the engineering amount of underground structures crossing each other, and the spatial 
staggered structure between tunnels and stations, between tunnels, and between stations will become more 
and more common. For subway transfer stations or transportation hubs, coupled with the connection channels 
between each other, the subway station structure forms such as wide column spacing, large span and special-
shaped columns will appear in future subway stations to constitute an intricate and interactive underground 
space structure. The traditional design method of subway crossing is to retain 2–10 m interlayer soil between 
the two tunnels to reduce the deformation of the upper tunnel, but this method produces very large structural 
deformation, so it can no longer meet the development needs of subways. However, at present, there is no clear 
seismic response of subway structures under the condition of spatial intersection and interaction between the 
upper and lower structures, which cannot guide the seismic design.

(3) How to reproduce the interaction response between these complex foundations and underground 
structures in the shaking table test is a key issue in the vibration model test of large-span underground 
structures. Currently, the test is still challenging due to some factors such as the oblique incidence of earthquake 
motion and complex geological conditions. However, numerical simulation and theoretical analysis can be 
employed to systematically analyze the dynamic response of underground structures considering single-point, 
multi-point and non-uniform earthquake motion input as well as complex geological conditions. At present, 
most of the shaking table tests treat foundation soils simply and do not reproduce the interaction between 
complex foundations and structures, especially the actual complex foundation conditions such as faults, soft soil 
interlayers, and uneven-layered foundations, which are often encountered in practical engineering.

(4) Most of the previous studies have focused on the seismic performance of underground structures in soft 
soil sites, while there are few studies concentrate on its mechanism. Based on the shaking table test, the damage 
degree, state and mechanism of underground structures in horizontal soft soil sites under strong earthquakes are 
reproduced. Further, through combining numerical simulation with tests, some important understandings of the 
main characteristics, basic process, mechanism and general laws of the dynamic characteristics of foundation-
structure under strong earthquakes are acquired, which can not only accumulate data for the numerical platform 
of future shaking table test and finally make technical preparations for the application of the shaking table test 
to the actual site, but also provide a reliable basis for the seismic design of underground structures in horizontal 
soft soil sites and is of great significance to ensure the seismic stability and safety of underground structures in 
soft soil sites.

(5) However, there are still many problems that need to be solved urgently. The construction technology of 
prefabricated stations in China has just begun, the technical system needs to be improved, and the technical 
standards need to be formed; The technical route and engineering plan need to be decided according to 
the characteristics of underground engineering and tailored to local conditions; In terms of improving 
standardization and industrialization, increasing structural assembly rate, developing high-end construction 
equipment, enhancing construction efficiency and social benefits, the advantages of prefabricated assembly 

Scientific Reports |        (2024) 14:21883 9| https://doi.org/10.1038/s41598-024-73122-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


construction technology should be fully utilized. Moreover, the cost of prefabricated subway stations is 
relatively high, and it is necessary to effectively reduce the project cost through reducing some taxes and fees, 
optimizing technical solutions and engineering design, maximizing the number of engineering applications, and 
reducing cost amortization fees. Although the government is actively advocating for the assembly of buildings, 
we are all aware that the process of assembly still needs to overcome many obstacles and barriers, including 
traditional concepts, extensive construction models, construction costs, new issues, and new talents. In short, 
the development of prefabricated assembly technology has a long way to go and requires the entire industry and 
society to face it together and continuously strive and contribute to it.

Studying and resolving the above issues have great scientific significance and engineering application value 
for improving the seismic theoretical analysis method and experimental research technology of underground 
structures in soft soil sites and obtaining the seismic response law and disaster mechanism and failure mode and 
mechanism of large underground structures in soft soil sites.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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