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While ventricular shunts are the main treatment for adult hydrocephalus, shunt malfunction remains 
a common problem that can be challenging to diagnose. Computer vision-derived algorithms present 
a potential solution. We designed a feasibility study to see if such an algorithm could automatically 
predict ventriculomegaly indicative of shunt failure in a real-life adult hydrocephalus population. 
We retrospectively identified a consecutive series of adult shunted hydrocephalus patients over 
an eight-year period. Associated computed tomography scans were extracted and each scan was 
reviewed by two investigators. A machine learning algorithm was trained to identify the lateral 
and third ventricles, and then applied to test scans. Results were compared to human performance 
using Sørensen–Dice coefficients, calculated total ventricular volumes, and ventriculomegaly as 
documented in the electronic medical record. 5610 axial images from 191 patients were included for 
final analysis, with 52 segments (13.6% of total data) reserved for testing. Algorithmic performance 
on the test group averaged a Dice score of 0.809 ± 0.094. Calculated total ventricular volumes did 
not differ significantly between computer-derived volumes and volumes marked by either the first 
reviewer or second reviewer (p > 0.05). Algorithm detection of ventriculomegaly was correct in all 
test cases and this correlated with correct prediction of need for shunt revision in 92.3% of test cases. 
Though development challenges remain, it is feasible to create automated algorithms that detect 
ventriculomegaly in adult hydrocephalus shunt malfunction with high reliability and accuracy.
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Ventricular shunts remain a common fixture in modern neurosurgical practice. Despite continued attempts at 
innovation and improvement, shunt failure rates remain high. Some series have estimated lifetime failure rates 
in excess of 40%1,2 with first year failure rates in adults exceeding 15% and annual failure rates of 5% per year 
thereafter3 In addition to patient morbidity, ventricular shunts also present a large economic cost to society. The 
total cost of implanted ventricular shunts in the United States has been estimated to exceed one billion dollars 
per year as far back as the year 2000, with shunt failure accounting for over 40% of inpatient admissions for 
shunts2.

Though most cases of shunt failure can be readily recognized, a small subset can be challenging to diagnose. 
Cases with reduced ventricular compliance, non-classic shunt failure symptoms, a slow onset of failure, or 
unusual shunt morphology all can increase the difficulty of making a good diagnosis. Moreover, though an 
armamentarium of methods, such as radionucleotide studies, direct shunt taps, and thermal flow studies, have 
been developed over the years to help sort through these difficult cases, all have their limitations.

We put forward that machine learning, and specifically computer vision, could potentially help in these 
scenarios. Computer algorithms can easily assess three-dimensional metrics, such as volume and morphology, 
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whereas traditional manual methods, such as Evan’s ratio and third ventricular width, only capture a single 
dimension of the ventricular system4. Previous work has shown that three-dimensional analysis improves 
the sensitivity, inter-rater reliability, and practitioner confidence in detecting changes in ventricular volume5. 
Moreover, computer algorithms, once trained, have the potential to be fast and consistent, enabling functions 
that are impractical for a human evaluator. For example, the marginal time to calculate ventricular volume for 
every scan in a patient’s lifetime is negligible for computerized methods and could allow for a form of longitudinal 
tracking that would not otherwise be available.

In recent years, a number of studies have looked at using computer vision and machine learning techniques 
to assess the ventricles in hydrocephalus. Multani et al. have used computer vision techniques to perform 
“quantitative computed tomography (CT) ventriculography”, demonstrating high sensitivity in predicting 
eventual need for ventricular shunting in patients undergoing external ventricular drain clamp trials in the 
intensive care unit6. Quon et al.7 has also examined this in pediatric hydrocephalus patients, using a computer 
vision model to automatically segment the ventricles of magnetic resonance images (MRI) in pediatric 
hydrocephalus patients. Moreover, Hale et al.8 has examined using neural networks to look at integrating clinical, 
surgical, and radiologic variables at the time of initial placement to predict long-term shunt failure within 5 years 
of placing a shunt, demonstrating high sensitivity for machine learning predictive algorithms.

A number of challenges still remain, however, in translating these techniques to detecting shunt failure in 
adult hydrocephalus patients. First, much previous work has been done in pediatric hydrocephalus patients, but 
it remains unclear if similar approaches are applicable to the shunted hydrocephalus adult population as they 
generally have a different pathology underlying hydrocephalus (e.g., subarachnoid hemorrhage)7,8. In addition, 
much work has mostly focused on predicting eventual shunt failure6,8 and has not investigated the detection of 
shunt failure at the point of care, which focuses on a specific use case for the technology. Moreover, most previous 
work has utilized MRI data as opposed to CT scans, which are more commonly used in adult patients and 
present their own set of unique challenges in processing including a smaller set of images to make predictions, 
as well as a unique set of distortion artifacts (e.g., hemorrhage, streak artifact from implanted devices) that 
algorithms must know how to handle7. Finally, many previous attempts are reliant on inputs that require a 
human to manually extraction specific parameters from either the clinical chart or imaging data8. This effort is 
time-intensive and limits the clinical applicability of such algorithms when deployed at scale.

Here, we propose a method for fully automated shunt failure detection that derives directly from the imaging 
data. This is implemented through training a convolutional neural network for automated segmentation of the 
lateral and third ventricles, which in turn is used to calculate ventricular volumes for comparison. Our goal was 
to investigate and highlight how such a method could be applied to an adult hydrocephalus population and serve 
as a basis for future development and implementation at scale.

Methods
Patient selection
We retrospectively identified a consecutive series of adult hydrocephalus patients (ages 18 and older) who had 
a history of ventricular shunt implantation at our institution. All serial non-contrasted head CT scans were 
obtained from these patients that occurred between January 2010 and December 2020. As the nature of our 
method involved comparison of serial scans, we excluded patients with only one CT scan, as two or more 
CT scans were needed for comparison in our study. We did not include MRI scans or CT angiography scans. 
No exclusion was based on gender, underlying etiology of hydrocephalus, length of shunt implantation, or 
ventricular configuration/morphology.

Scan screening and data partitioning
These scans were then manually segmented by two human reviewers each. Segmentations were performed by 
either a senior medical student or neurosurgical resident and verified by an attending neurosurgeon. For each 
scan, the reviewer first confirmed the presence of a ventricular shunt and ensured the study quality allowed for 
visualization of the third and bilateral lateral ventricles. Thereafter, each human reviewer labeled the ventricular 
system (i.e., manual segmentation) consisting of the third ventricle and the bilateral lateral ventricles. Reviewers 
were given a standardized, written set of instructions on how to perform the segmentation to produce as much 
consistency as possible.

Sørenson–Dice coefficients (i.e., Dice scores) were calculated between the two reviewers’ segmentations. 
Sørensen–Dice coefficients (i.e., Dice scores) are a commonly used metric for the quality of segmentation that 
accounts for baseline differences in the class frequency. Scores range from 0.0 to 1.0, with higher scores indicating 
better performance. For any scan where there was significant disagreement, defined as either disagreement on 
if the scan was of sufficient quality or if Dice scores between the two humans was less than 0.7, a third human 
reviewer segmented the scan. Only if two human reviewers could segment the ventricles of a scan with Dice 
score agreement between themselves greater than 0.7 was the scan included for final analysis. Scans not meeting 
this threshold were analyzed and possible contributing reasons (e.g., gross ventricular dysmorphia, acute 
hemorrhage, slit ventricle syndrome, etc.) were recorded.

Once a set of acceptable quality scans was thus identified, 10% of the scans were pseudorandomly selected 
via a computerized random number generator and reserved for final testing. The remaining 90% were used to 
train a convolutional neural network, a form of artificial neural network designed for computer vision tasks, for 
automated ventricular segmentation as specified below.

Patients included in the test set were characterized by demographics and clinical variables. These included 
baseline age, sex, reasons for original shunting, catheter position, type of valve (programmable vs. fixed pressure), 
presenting symptoms, whether there was ventriculomegaly documented by the treating clinical team in the 
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electronic medical record, whether the patient went on to have a shunt exploration/revision within 7 days of the 
scan in question, and whether original symptoms resolved after shunt revision if it was performed.

Deep learning specifications and image pre- and post-processing specifications
Our image processing pipeline is demonstrated in Fig. 1. Our overall approach was to separate each CT scan 
into axial components for training and classification, and then re-combining them to yield a final volume. 
For each CT scan, we first separated it out into its individual two-dimensional axial slices. We then trained a 
convolutional neural network based on the total population of axial slices. During testing, each axial slice was 
segmented separately, and then the axial images were reassembled to yield a ventricular volume. This is similar 
to prior two-dimensional convolutional neural network models for ventricular deep learning segmentation7,9.

To standardize images for training of our model, raw three-dimensional head CT images were imported 
and then windowed to maximize contrast between brain parenchyma and ventricular spaces. Scans were 
cropped to a central region consisting of 320 × 320 × 17 voxels based on empiric testing, and then the scans were 
disaggregated in the axial plane and each axial image was in turn down-sized to a 256 × 256-pixel region for 
training and eventual segmentation. During segmentation a three-dimensional scan, these axial images were 
then re-expanded back to original size, re-aggregated, and then re-padded to return them the original scan 
dimensions.

Our specific convolutional neural network was structured as a two-dimensional U-net, which is currently 
one of the state-of-the-art models for image classification 10. Input images were obtained via random patch 
extraction (188 × 188 size patches, 8 patches per image), where specific random subsets of images are used to 
train the model to reduce memory limitations and avoid overfitting. Each training patch was further augmented 
with one of the following transformations: 90-degree rotation clockwise, 90-degree rotation counterclockwise, 
vertical reflection, and horizontal reflection. This was done to prevent overfitting of the model to any particular 
orientation or configuration of the nearby brain parenchyma and increase its robustness to translation and 
rotations during the testing phase.

The specific optimization function for training the network was cross-entropy loss weighted by median 
class label frequencies, which was empirically found to achieve the best results. The network was trained over 
50 epochs, with an adaptive moment estimation (adam) optimizer, a form of stochastic gradient descent used 
to find optimal values in a high dimensional space (learning rate 0.001, piecewise learning rate, with a drop 
learning drop factor of 0.95 every epoch, size 50 mini-batches). Segments were put through post-processing 
after re-aggregation, including morphologic smoothing and removal of small islands. Skull stripping, where the 
skull is automatically removed from images to help with certain computer vision tasks for CT scans of the head, 
was not performed.

Model performance and shunt failure evaluation
We targeted 10% of our data to set aside for final testing. Notably, these scans all consisted of consecutive pairs of 
scans for a given patient to allow detection of interval change in evaluating for shunt failure. The segmentations 
from both human reviewers were also excluded from training to minimize over-fitting of the convolutional 
neural network.

Fig. 1.  Outline of image processing pipeline and deep learning model.
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To evaluate the performance of our model, we performed ventricular segmentation on each scan in our 
testing set. Scans were then compared to each human reviewer’s segmentation using Dice scores and calculated 
total ventricular volume.

For the purposes of shunt failure detection, we examined the most recent of each pair of scans. We then 
looked in the medical record to see if the patient required an operative shunt revision within 7 days of that scan, 
which we considered a shunt failure for the purposes of this study. We then compared the computer-calculated 
total ventricular volume from the most recent scan to its antecedent scan. Changes in volume (as a percent of 
total volume) were identified and used to set a threshold for declaring a shunt failure.

Analysis methods and materials
Dice scores and ventricular volumes were summarized with means and standard deviations. Dice scores were 
analyzed for normality using the Shapiro-Wilk test, and when found to significantly departure from normality, 
compared using the Mann–Whitney U-test. Ventricular volumes were compared between each of the human-
derived and the computer-derived values using the paired t-test after all groups met threshold for normality by 
the Shapiro-Wilk test. A threshold of p < 0.05 was used for statistical significance.

Manual segmentation was performed with the help of 3D Slicer (3D Slicer, https://www.slicer.org)11. Deep 
learning software was developed using Matlab version 2021a (The MathWorks Inc., Natick, MA, USA). Training 
was conducted on an NVIDIA Geforce GTX 1060 graphics processing unit.

Ethical approval
This research was approved by our local Institutional Review Board (protocol number: 2015P002352). This 
study follows the Standards for Reporting Diagnostic Accuracy (STARD) Reporting Guidelines for diagnostic 
studies12.

Results
A total of 283 scans were initially screened for study suitability, with inter-reviewer Dice scores averaging 
0.702 ± 27.3. Of these scans, 92 (32.7%) could not be included due to poor scan quality and low agreement 
between human reviewers (max Dice score < 0.7), leaving 191 scans for final analysis. Contributing factors for 
poor agreement between human reviewers included slit/low volume ventricles (52.1%), ventricular dysmorphia 
(38.0%), streak artifact (32.6%), acute hemorrhage (23.9%), rotated gantry or motion artifact (6.5%), and 
intraventricular air (5.4%).

The remaining 191 scans represented 50 unique patients, with 382 unique segmentations. 26 of these scans 
(13 pairs of scans from 13 patients, representing 13.6% of our dataset) were reserved for final testing, with the 
rest, consisting of 5610 axial slices once disaggregated, left for model training.

When compared to human reviewers, computer-derived ventricular segmentation had an average Dice score 
of 0.809 ± 0.094 (Fig. 2). Notably, this was less accurate than human reviewers when compared to each other as 
measured by Dice coefficients (mean inter-reviewer Dice score on any given scan: 0.902 ± 0.065, p < 0.0001).

However, when we compared computer-derived ventricular volumes to human-derived ventricular volumes, 
there were no statistically significant differences. Computer-derived ventricular volumes averaged 130.9 ± 67.2 
milliliters (mL), which did not differ significantly from those of either the first human reviewer (127.2 ± 64.6 mL, 
p = 0.4343) or the second human reviewer (128.4 ± 65.0 mL, p = 0.6107).

In our test set of 13 patients, the mean age was 65.8 years (standard deviation: 12.4 years), and 6 of 13 
(46.2%) were female (Table 1). The most common indications for shunting were normal pressure hydrocephalus 

Fig. 2.  Example segmentation of a non-contrast head computed tomography scan. Blue areas represent 
ventricular areas that our model missed (false negatives). Yellow areas represent ventricular areas that our 
model incorrectly labeled as ventricle (false positives). Green represents correct identification.
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(61.5%) and intracranial hemorrhage (15.4%). The vast majority (92.3%) had programmable valves, and the 
most common presentations were either asymptomatic (46.2%) or altered mental status (30.8%).

A total of 3 of our 13 patients had a shunt failure within 7 days after their scan (range: 1–3 days after scan). 
Changes in ventricular volume on computer-derived segmentations ranged from − 28.3 mL to + 51.1 mL, which 
was equivalent to percentage changes in ventricular volume ranging from − 19 to + 447% (Table  2). Setting 
thresholds for declaring shunt failure at increases of ventricular volume of + 10%, + 20%, and + 30% resulted in 
correct classification of ventriculomegaly when compared to electronic medical record documentation in 69.2% 
(9 of 13), 84.6% (11 of 13), and 100% (13 of 13) and correct prediction of shunt reoperation within 7 days of 
69.2% (9 of 13), 76.9%, (10 of 13) and 92.3% (12 of 13) cases respectively.

Discussion
As artificial intelligence and computer vision continue to evolve, there are increasingly powerful tools that can be 
exploited for clinical use. In this study, we present a method for automated detection of ventricular shunt failure 
implemented via a deep learning semantic segmentation model to detect interval ventriculomegaly. To our 
knowledge, this is the first study of a fully automated shunt failure detection system. Our initial results suggest 
that such a method could potentially work with high (> 90%) accuracy in an adult shunted hydrocephalus 
population.

Upon examination of the perioperative indications for shunt revision, there were two cases of note. In the 
first (patient #1), the reading radiologist did not feel there was interval ventriculomegaly, but our algorithm felt 
there was. Interestingly, the treating neurosurgery team at the time had disagreed with the official radiology 
report and had felt there was interval ventriculomegaly compared to baseline scan (Fig. 3).

Patient no. Change in volume (mL) Change in volume (%) Ventriculomegaly based on EMR? Shunt revision within 7 days? Resolution of symptoms?

1 + 41.7 + 35.1 Yes* Yes Yes

2 − 28.3  − 19.0 No No N/A

3 + 17.7 + 19.7 No No N/A

4 + 3.3 + 3.4 No No N/A

5  − 7.6  − 6.1 No No N/A

6 + 2.4 + 5.2 No No N/A

7  − 1.9  − 1.4 No No N/A

8 + 7.2 + 2.5 No No N/A

9 + 45.4 + 23.0 No No N/A

10 + 51.1 + 448.2 Yes Yes Yes

11 + 12.7 + 20.6 No No N/A

12  − 13.8  − 9.8 No No N/A

13  − 0.9  − 0.5 No Yes Yes

Table 2.  Radiographic characteristics and operative outcome. EMR electronic medical record, mL milliliter, 
N/A not applicable. *In one patient, the official radiology report note did not declare interval ventriculomegaly, 
however the neurosurgical resident and attending disagreed per their documentation in the medical record.

 

Patient no. Age Gender Indications for original shunting Approach Type of valve Presenting symptoms

1 55 F AVM with ICH R Frontal Programmable Nausea, vomiting, altered mental status

2 78 M NPH R Occipital Programmable Asymptomatic

3 84 M NPH R Occipital Programmable Headaches

4 79 F NPH R Occipital Programmable Asymptomatic

5 81 M NPH R Occipital Programmable Asymptomatic

6 48 F Aqueductal stenosis L Frontal Programmable Headaches

7 57 F Myelomeningocele R Parietal Programmable Diplopia

8 59 F NPH R Parietal Programmable Asymptomatic

9 45 M Meningitis R Occipital Programmable Agitation, altered mental status

10 66 F SAH R Frontal Fixed pressure Altered mental status

11 61 M NPH R Occipital Programmable Asymptomatic

12 76 M NPH R Occipital Programmable Asymptomatic

13 67 M NPH R Occipital Programmable Lethargy, fatigue, abdominal pain

Table 1.  Patient characteristics. M male, F female, NPH normal pressure hydrocephalus, AVM arteriovenous 
malformation, ICH intracranial hemorrhage, R right, L left.
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In the other case (patient #13), our algorithm did not call any interval ventriculomegaly, even though the 
patient did require shunt revision within 7 days. However, when we examined the clinical specifics of this case, 
we found the patient had undergone shunt revision for an abdominal infection, and thus neither the treating 
neurosurgery team nor the radiologist at the time felt there was any interval ventriculomegaly. This highlights both 
the strength of our ability to detect ventriculomegaly (our algorithm thus agreed with the treating neurosurgery 
team on interval ventriculomegaly 100% of the time), but also the weakness in using ventriculomegaly as the 
only criteria for shunt failure.

Several previous studies have examined automated ventricular segmentation of clinical images. Quon et 
al. developed a deep learning semantic segmentation model for ventricular segmentation using pediatric MRI 
data7. All patients had obstructive hydrocephalus, and they used a two-dimensional U-net model. They were 
able to achieve an overall Dice score of 0.901, with better prediction in hydrocephalus patients compared to 
controls (0.946 vs. 0.856). Huff et al. also used a two-dimensional U-net to perform semantic segmentation on 
a set of normal head CT scans 9. They performed segmentation for each ventricle separately, achieving Dice 
scores of 0.92, 0.92, and 0.79 on each lateral ventricle and the third ventricle respectively. Automated ventricular 
segmentation has been performed by others using a variety of other methods as well, with varying degrees of 
success13–17.

Our work builds upon these earlier achievements in a few ways. First and foremost, our study sought to 
apply these deep learning techniques towards an actual heuristic for determining shunt failure. We believe 
this constitutes a step towards an actual clinical implementation of these deep learning methods. In addition, 
our model was entirely trained and tested on pathologic adult CT scans. Training and testing on this dataset 
are important because it more closely resembles actual clinical usage. CT scans lack the multimodal imaging 
information of MRIs, and very frequently are marred by significant artifact from objects such as aneurysm clips 
and highly dysmorphic ventricles after intracranial bleeds (Fig. 4). Deliberately including these “imperfections” 
into our training data may have lowered our measured performance for segmentation accuracy, but we felt it was 
a necessary step to maximize the robustness of the model to similar imperfections in future scans and takes the 
study closer to actual feasible implementation. Excluding too many of these scans can lead to inflated accuracy 
scores without addressing the challenges of real-world datasets.

Indeed, the frequency of scan quality problems was investigated in our study, where nearly a third (32.7%) 
could not be well segmented by human reviewers, who serve as the current gold standard. We found the highest 
contributing factors were slit ventricles, severe ventricular dysmorphia, and streak artifact. The high rate of 

Fig. 4.  Examples of barriers that need to be overcome for accurate segmentation. Notably, all of these scans are 
just above the inter-reviewer threshold for inclusion (i.e., Dice score > 0.7 between two human reviewers) and 
are included in our final training and test sets. Excluded scans have even lower inter-reviewer Dice scores. (a) 
An intraparenchymal hemorrhage obscuring and distorting portions of both lateral ventricles. (b) Dysmorphic 
and slit ventricles exacerbate any small differences in accuracy between labeling systems. (c) Cystic changes, 
dysmorphic ventricles, and infarcted tissue all can blur the borders between parenchyma and ventricle. (d) 
Streak artifact from an aneurysm clip can make certain axial slices of a scan unusable.

 

Fig. 3.  Example of relatively subtle interval ventriculomegaly where such an approach could be useful. Of 
note, in this example the radiology and neurosurgery teams disagreed on the presence of ventriculomegaly. (a) 
demonstrates axial images of the scan in question compared to (b) baseline scan two days prior. Our algorithm 
agreed with the treating neurosurgery team that there was evidence of interval ventriculomegaly.
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these confounding artifacts likely accounted for some of the differences between our Dice scores and those 
reported in previous literature, which predominantly used more highly-curated datasets. This highlights the 
challenges of applying computer vision techniques to highly pathologic datasets and the critical importance of 
robust algorithms for actual clinical use.

The approach we detail here has several advantages. Neural networks are currently thought of as relatively 
uninterpretable and more of “black-boxes” in their functioning, which leads to reluctance in adopting them in 
high-stakes decision making like the decision to undergo intracranial surgery. By using changes in ventricular 
volume as our criteria for shunt failure, our algorithm still allows for human verification and direct human 
oversight over surgical decision making. If there is a discrepancy, a surgeon can always go back and remeasure 
the ventricular volume manually. Indeed, manual or computer-assisted volumetrics have shown to aid in shunt 
failure detection in the past, just without the degree of automation presented here5,18. At the same time, a fully 
automated system allows for unique uses in workflow, facilitating triage of high-risk scans for closer and more 
prompt attention19, while also allowing for easy longitudinal and historical tracking of ventricular volumes. 
Our approach may also have significant applicability in the dialing of programmable shunt valves, where many 
subsequent CT scans are obtained and changes in ventricular volume may be a variable of particular interest.

Machine learning and computer vision techniques continue to evolve at a rapid pace. Though convolutional 
neural networks like the one we used in our model remain popular in a wide array of medical computer vision 
tasks, newer techniques could potentially inform future design. In particular, more efficient object detection 
frameworks20 and multimodal integration of deep learning techniques21 have the potential to improve upon our 
approach and could inform the next generation of design. Several obstacles still need to be overcome before such 
a system could be put into actual clinical use. We cannot stress enough that our study was designed as a feasibility 
study and proof-of-concept work, and thus sample size was limited. In particular, 13 unique patients in our 
test set were too few to truly assess the final performance of such an approach, and the 30% volume cutoff that 
we used in our analysis is a relatively crude one. Future work that includes more data in both the training and 
testing set would be better able to assess the true efficacy of such an approach in actual practice and fine-tune the 
parameters. Moreover, as a single-institutional series the generalizability of our results is unknown and future 
work will require external validation. In addition, the current work is not exclusively focused on the most difficult 
to diagnose shunt malfunction cases, where arguably human evaluators could benefit most from assistance. 
These include the many cases where ventricular volume does not change in the setting of shunt malfunction, 
which would not be picked up by our current approach. Moreover, as mentioned above, a significant number of 
our scans (32.7%) were excluded before training due to technical factors limiting the human reviewer’s ability 
to accurately segment the ventricles, and it remains to be seen if computer vision methods would outperform 
human reviewers on those more challenging images.

Conclusions
In summary, while shunt malfunction remains a commonly encountered problem that can be challenging to 
diagnose, computer vision-derived algorithms present a potentially fast, consistent, and accurate solution. Here, 
we trained a convolutional neural network to perform semantic segmentation of the lateral and third ventricles. 
Our algorithm did not differ significantly from human reviewers in calculating total ventricular volume in non-
contrast head CTs of real-life adult hydrocephalus patients. When trialed on a limited sample of actual patients 
with ventricular shunts, shunt malfunction could be predicted with high accuracy. Though many development 
challenges remain, it is feasible to create automated algorithms that may detect shunt malfunction in an adult 
hydrocephalus population.

Data availability
All data utilized in this study is available upon reasonable request to the senior author, Dr. Kevin T. Huang.
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