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The relationship between weather and acute coronary syndrome (ACS) incidence has been the subject 
of considerable research, with varying conclusions. Harnessing machine learning techniques, our study 
explores the relationship between meteorological factors and ACS presentations in the emergency 
department (ED), offering insights into seasonal variations and inter-day fluctuations to optimize 
patient care and resource allocation. A retrospective cohort analysis was conducted, encompassing 
ACS presentations to Dutch EDs from 2010 to 2017. Temporal patterns were analyzed using heat-
maps and time series plots. Multivariable linear regression (MLR) and Random Forest (RF) regression 
models were employed to forecast daily ACS presentations with prediction horizons of one, three, 
seven, and thirty days. Model performance was assessed using the coefficient of determination (R²), 
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The study included 214,953 
ACS presentations, predominantly unstable angina (UA) (94,272; 44%), non-ST-elevated myocardial 
infarction (NSTEMI) (78,963; 37%), and ST-elevated myocardial infarction (STEMI) (41,718; 19%). A 
decline in daily ACS admissions over time was observed, with notable inter-day (estimated median 
difference: 41 (95%CI = 37–43, p = < 0.001) and seasonal variations (estimated median difference: 9 
(95%CI 6–12, p = < 0.001). Both MLR and RF models demonstrated similar predictive capabilities, with 
MLR slightly outperforming RF. The models showed moderate explanatory power for ACS incidence 
(adjusted R² = 0.66; MAE (MAPE): 7.8 (11%)), with varying performance across subdiagnoses. 
Prediction of UA incidence resulted in the best-explained variability (adjusted R² = 0.80; MAE 
(MAPE): 5.3 (19.1%)), followed by NSTEMI and STEMI diagnoses. All models maintained consistent 
performance over extended prediction horizons. Our findings indicate that ACS presentation exhibits 
distinctive seasonal changes and inter-day differences, with marked reductions in incidence during the 
summer months and a distinct peak prevalence on Mondays. The predictive performance of our model 
was moderate. Nonetheless, we obtained good explanatory power for UA presentations. Our model 
emerges as a potentially valuable supplementary tool to enhance ED resource allocation or future 
predictive models predicting ACS incidence in the ED.

Emergency department (ED) crowding is an increasing problem for hospitals globally1,2. Traditionally, EDs 
have been predominantly staffed to align with average patient influx requirements3. This approach necessitates 
a critical evaluation in the context of fluctuating patient volumes, the increasing dilemma of ED crowding, and 
staffing shortages4–6. Future possibilities to mitigate these problems call for agile and responsive emergency care. 
The optimization of patient-staffing ratios, ideally with a concurrent increase in ED output possibilities, such as 
proactive bed management, could aid in improving patient flow and care7,8.
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Emergency departments evaluating patients with suspected acute coronary syndrome (ACS) are particularly 
impacted by crowding, as chest pain is the second most frequent reason for ED visits worldwide. In the United 
States, approximately 7–8 million patients, or 6–7% of ED visits, present with symptoms suggestive of ACS9. 
Similarly, in The Netherlands, around 15% of ED presentations are suspected cases of ACS10.

A potential tool to alleviate ED crowding is dynamic predictions of daily ACS presentations, which could 
offer early insights into the anticipated activity levels in cardiac emergency rooms11. On days with a predicted 
higher incidence of ACS, increased vigilance or a reduced workload for medical personnel could be achieved 
through optimized patient-staffing ratios. Ideally, these predictions should be based on inputs that vary over 
short periods and should be publicly available. This approach could enhance future collaborative efforts in the 
field of ED visit predictions12.

Current literature suggests that both weather conditions and calendar data may influence the incidence of 
ACS13,14. However, the existing evidence is inconsistent and sometimes conflicting15–20. The assumed association 
between weather and specific diseases has an extensive history, dating back to 430 B.C. with Hippocrates’ first 
recorded attempt21. In modern times, prediction of the overall number of patients presenting in the emergency 
department based on meteorological and calendar data has been attempted. Unfortunately, previous studies had 
underwhelming predictive abilities and lacked focus on specific diagnoses22,23.

The primary aim of this study is to examine temporal patterns in daily ED presentations for ACS and for its 
subdiagnoses, including unstable angina, ST-elevated myocardial infarction, and non-ST-elevated myocardial 
infarction. Second, we used a data-driven approach to examine whether ED presentations for ACS and its 
subtypes can be accurately predicted using meteorological and calendar data.

Methods
Study design and population
This study is a retrospective nationwide cohort analysis of daily acute coronary syndrome presentations 
to emergency departments in the Netherlands. Data were gathered over a period extending from the 1st of 
January 2010 through to the 31st of December 2017—this collection period comprised 2,922 days, providing 
an expansive timeline for analytical examination. All ACS diagnoses were conducted, registered, and claimed to 
Dutch health insurance by a treating physician.

Acute coronary syndrome consists of a combination of diagnoses, including unstable angina (UA), ST-
elevated myocardial infarction (STEMI), and non-ST-elevated myocardial infarction (NSTEMI)24.

Data collection
The dataset was extracted from a comprehensive database curated by Statistics Netherlands (CBS, The Hague)25. 
The sources of this database encompassed the Diagnostic Information System of the Dutch Healthcare Authority 
(NZa) for the years 2010 to 2015 and the national medical insurance claim database (Vektis C.V., Zeist, the 
Netherlands) for the years 2016 through 201726,27.

All ED visit data within the Netherlands were collected in compliance with national legislative frameworks 
and the European General Data Protection Regulations (GDPR). Ethical committee approval and participant 
informed consent were deemed unnecessary for this study due to the utilization of exclusively anonymized 
national statistical data in accordance with the Central Committee on Research involving human subjects. 
The research protocol employed in this study has been formally registered with Statistics Netherlands and is 
identifiable through the reference number PR000330. The execution and documentation of this study adhered 
to the guidelines and checklist of the TRIPOD statement, as detailed in Supplemental Table S3.

Calendar and meteorological data
Using literature review, we identified calendar and meteorological data as potential predictive abilities in 
different world regions15–20,28–41. In relation to calendar data, variables such as day of the week, month, and year 
were incorporated into our analysis. Furthermore, we included the number of ED presentations on the previous 
day as a predictive variable, thereby introducing an autoregressive component to the model, a commonly applied 
forecasting method42,43. Resulting in 28 calendrical variables.

Meteorological data were extracted from the publicly available database of the Royal Netherlands 
Meteorological Institute (KNMI, De Bilt, Netherlands). Comprehensive daily characteristics of the temperature, 
sunshine, humidity, wind, and precipitation in the Netherlands were collected by the KNMI. The national 
climate can be described as temperate and is equal across the country44.

All weather variables included in this analysis are shown in Table 2. We included the seven- and 14-day 
moving averages for each meteorological variable, the maximum inter-day difference of the previous three days, 
and the trending direction of the weather for the past two days, resulting in 112 meteorological variables.

Prediction outcome
A substantial aim of this study was to forecast the daily number of ED visits related to ACS one day prior to 
their occurrence. The secondary objectives included predicting the daily frequency of ED visits for each ACS 
subdiagnosis. Furthermore, we aspired to expand the predictive horizon to forecast ED visits three-, seven-, and 
30 days in advance.

Statistical analysis
Temporal patterns of daily ED visits for ACS and its subtypes were analyzed using a 30-day moving average. 
Heat-maps were used to visualize absolute differences in ED presentations for ACS and its subtypes. A non-
parametric analysis of variance (Kruskal–Wallis test) and Dunn’s post hoc analysis with Bonferroni correction 
was conducted to compare differences in median ED presentations between groups. Estimated median 
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differences (EMD) with a 95% confidence interval (CI) between variables were calculated with bootstrap 
resampling, and differences were assessed with a Mann–Whitney U test. Descriptive statistics were computed 
for each potential predictor variable, and univariate linear regression, combined with an offset, was performed 
to estimate regression coefficients (β) and corresponding 95% CI between each predictor and ED presentations 
for ACS and its subtypes.

Consecutively, the dataset was randomly split into a train (75%) and a test (25%) dataset, and model 
training was performed on the training dataset. Z-score normalization was used to standardize our variables 
for continuous features. Z-score normalization standardizes features by removing the mean and scaling to unit 
variance, resulting in a feature with a mean of 0 and a standard deviation of 1.

Meteorological data Median [Q1–Q3]

Daily number of ED presentations (β (95% CI))

ACS UA NSTEMI STEMI

Mean daily temperature (°C) 10.6 [6.2–15.5]  − 0.06 (− 0.07– − 0.06)  − 0.04 (− 0.04– − 0.03)  − 0.02 (− 0.02– − 0.01)  − 0.01 (− 0.01– − 0.01)

Maximum daily temperature (°C) 14.6 [9.2–20.0]  − 0.05 (− 0.06– − 0.05)  − 0.03 (− 0.03– − 0.03)  − 0.01 (− 0.01– − 0.01)  − 0.01 (− 0.01– − 0.01)

Minimum daily temperature (°C) 6.6 [2.3–10.7]  − 0.08 (− 0.08– − 0.07)  − 0.04 (− 0.05– − 0.04)  − 0.02 (− 0.02– − 0.01)  − 0.01 (− 0.02– − 0.01)

Minimum temperature at 10 cm surface (°C) 4.7 [0.4–8.9]  − 0.08 (− 0.09– − 0.07)  − 0.05 (− 0.05– − 0.04)  − 0.02 (− 0.02– − 0.01)  − 0.01 (− 0.02– − 0.01)

Daily temperature difference (°C) 0.8 [0.5–1.1]  − 0.07 (− 0.08– − 0.07)  − 0.03 (− 0.04– − 0.03)  − 0.02 (− 0.03– − 0.02)  − 0.02 (− 0.02– − 0.01)

Daily sunshine duration (h) 4.1 [1.0–7.7]  − 0.08 (− 0.09– − 0.07)  − 0.03 (− 0.04– − 0.02)  − 0.03 (− 0.03– − 0.02  − 0.02 (− 0.02– − 0.01)

Percentage of daily potential sunshine duration 
(%) 34 [9–61]  − 0.08 (− 0.09– − 0.06)  − 0.04 (− 0.05– − 0.02)  − 0.02 (− 0.03– − 0.01)  − 0.02 (− 0.02– − 0.02)

Daily global radiation (J/cm2) 863.0 [323.0–
1583.8]  − 3.77 (− 4.28– − 3.26)  − 1.45 (− 1.91– − 0.99)  − 1.51 (− 1.73– − 1.28)  − 0.81 (− 0.94– − 0.69)

Daily evaporation (mm) 1.3 [0.4–2.5]  − 0.24 (− 0.27– − 0.21)  − 0.1 (− 0.13– − 0.07)  − 0.09 (− 0.11– − 0.08)  − 0.05 (− 0.06– − 0.04)

Mean daily atmospheric pressure (hPa) 1015.9 
[1010.0 − 1021.5]

 − 12.04 
(− 12.1– − 11.98)

 − 16.75 
(− 16.81– − 16.7) 5.78 (5.75–5.8)  − 1.06 (− 1.08– − 1.05)

Maximum daily atmospheric pressure (hPa) 1018.7 
[1013.1 − 1024.1]

 − 11.32 
(− 11.38– − 11.26)

 − 20.29 
(− 20.34– − 20.23) 8.79 (8.76–8.81 0.18 (0.16–0.19)

Minimum daily atmospheric pressure (hPa) 1013.0 
[1006.5 − 1018.9]

 − 11.87 
(− 11.93– − 11.8)

 − 12.89 
(− 12.94– − 12.83) 2.99 (2.97–3.02)  − 1.97 (− 1.99 

– − 1.96)

Daily atmospheric pressure difference (hPa) 0.5 [0.3–0.8] 0.03 (0.02–0.04)  − 0.03 (− 0.04– − 0.02) 0.04 (0.03–0.04) 0.02 (0.02–0.02)

Mean daily atmospheric humidity (%) 82 [74–88] 0.2 (0.2–0.21) 0.08 (0.08–0.09) 0.08 (0.08–0.08) 0.04 (0.04–0.04)

Maximum daily atmospheric humidity (%) 97 [94–98]  − 0.31 (− 0.31– − 0.3)  − 0.11 (− 0.12– − 0.11)  − 0.12 (− 0.12– − 0.12)  − 0.07 (− 0.07– − 0.07)

Minimum daily atmospheric humidity (%) 63 [52–74] 0.17 (0.16–0.18) 0.08 (0.08–0.09) 0.06 (0.05–0.06) 0.03 (0.03–0.04)

Daily atmospheric humidity difference (hPa) 32 [21–43]  − 0.21 (− 0.23– − 0.2)  − 0.1 (− 0.12– − 0.09)  − 0.07 (− 0.08– − 0.06)  − 0.04 (− 0.05– − 0.04)

Daily precipitation duration (h) 0.2 [0.0–2.7] 0.08 (0.05–0.1) 0.04 (0.01–0.06) 0.02 (0.01–0.03) 0.02 (0.01–0.02)

Daily amount of precipitation (mm) 0.1 [0.0–2.6]  − 0.03 (− 0.05– − 0.01)  − 0.01 (− 0.03–0.0)  − 0.01 (− 0.02–0.0)  − 0.01 (− 0.01– − 0.0)

Maximum hourly amount of precipitation (mm) 0.1 [0.0–1.1]  − 0.18 (− 0.23– − 0.12)  − 0.07 (− 0.11– − 0.02)  − 0.06 (− 0.08– − 0.04)  − 0.05 (− 0.06– − 0.04)

Daily cloud coverage (%) 75 [50–100]  − 0.55 (− 0.65– − 0.44)  − 1.82 (− 1.92– − 1.73) 1.0 (0.95–1.05) 0.27 (0.25–0.3)

Mean daily wind speed (m/s) 3.2 [2.4–4.1] 0.19 (0.17–0.21) 0.08 (0.06–0.1) 0.07 (0.06–0.07) 0.05 (0.04 − 0.05)

Maximum daily wind speed (m/s) 5 [4–6] 0.08 (0.07–0.09)  − 0.0 (− 0.01–0.01) 0.05 (0.05–0.06) 0.03 (0.03–0.03)

Minimum daily wind speed (m/s) 1 [1, 2] 0.25 (0.22–0.29) 0.1 (0.07–0.13) 0.1 (0.08–0.11) 0.05 (0.05–0.06)

Daily maximum wind gust (m/s) 10 [7–12]  − 0.02 (− 0.03– − 0.02)  − 0.05 (− 0.06– − 0.05) 0.02 (0.02–0.02) 0.01 (0.01–0.01)

Daily vector average wind direction (degrees) 210 [133–251]  − 0.05 (− 0.05– − 0.04)  − 0.04 (− 0.04– − 0.03)  − 0.01 (− 0.01– − 0.01)  − 0.0 (− 0.0– − 0.0)

Daily Vector average wind speed (m/s) 2.8 [1.9–3.8] 0.22 (0.2–0.24) 0.1 (0.08–0.11) 0.07 (0.06–0.08) 0.05 (0.04–0.05)

Presentations on the day before

 Number of ACS presentations on the day before N.A 0.2 (0.19–0.21) N.A N.A N.A

 Number of UA presentations on the day before N.A N.A 0.69 (0.67–0.7) N.A N.A

 Number of NSTEMI presentations on the day 
before N.A N.A N.A 0.24 (0.23–0.25) N.A

 Number of STEMI presentations on the day 
before N.A N.A N.A N.A 0.07 (0.06–0.08)

Table 2.  Descriptive characteristics and univariate analysis of meteorological data. ACS Acute coronary 
syndrome, CI Confidence Interval, df degrees of freedom, UA unstable angina pectoris, NSTEMI non 
ST − elevated myocardial infarction, STEMI ST − elevated myocardial infarction, N.A. Not applicable, 
°C degrees Celsius, h hour, J/cm2 Joule per square centimeter as measure of surface tension, hPa hectopascal, 
mm millimeters, m/s meter per second. aCalendar data Day of the week, Month, Season, and Year are analyzed 
using Kruskal − Wallis test with H − statistics as output. Consequently, post hoc Dunn’s tests with Bonferroni 
correction were performed with the first category Monday, January, Winter, and 2010 as reference categories. 
Bold indicates significance (p < 0.05).
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Model development
Multivariable linear regression (MLR) and machine learning algorithms represent the most prevalent modeling 
approaches for predicting ED visitations42,43. Therefore, we investigated two modeling approaches: MLR and 
Random Forest Regression (RF) with hyperparameter optimization. Least Absolute Shrinkage and Selection 
Operator (LASSO) regression was employed to identify the most relevant predictors for ED presentations in 
the MLR model. Feature importance factor was employed in order to identify most relevant features in the 
RF model. To calculate the best fitting controlling hyperparameter alpha (α) for the LASSO model, a standard 
tenfold cross-validation was performed. Regarding the RF model, hyperparameter optimization was initially 
conducted through random grid cross-validation to determine the most suitable hyperparameter grids. Our 
hyperparameter grid included: minimal samples leaf, minimal samples split, and number of estimators, all other 
parameters were standard values. Subsequently, a fivefold grid search cross-validation was employed for the 
precise identification of optimal hyperparameters. This procedure evaluates all potential combinations within 
our specified hyperparameter grid. The optimal set of hyperparameters is determined based on achieving the 
best performance score, measured using the mean squared error criterion. K-fold cross-validation involves 
partitioning the dataset into k subsets and iteratively training the model on k-1 subsets while testing the 
remaining subsets to minimize the risk of overfitting our model.

Model performances were evaluated using (adjusted) R-squared (R2). This metric quantifies the proportion 
of variance in the outcome explained by the selected predicting variables. Notably, these values were adjusted to 
the number of predictors used. Adjusted R2 adjusts the statistic based on the number of independent variables 
in the model. It penalizes the addition of predictors that do not improve the model. R2 values range from 0 to 1, 
with values closer to 1 indicating a greater proportion of the variance of ACS incidence explained by the model.

Validation
The test dataset (25%) was used to internally validate the predictive models to accurately evaluate the performance. 
The model fit to the test dataset was assessed using Mean Absolute Error (MAE) and Mean Absolute Percentage 
Error (MAPE). The MAE represents the average discrepancy between the model-predicted ED visits and the 
actual daily ED visit counts; lower MAE values indicate a higher degree of model accuracy. Mean absolute error 
is instrumental as it represents prediction errors in the same unit as the original data, which, in this context, 
is the number of patients. Mean Absolute Percentage Error is a validation metric similar to MAE; however, it 
quantifies the error in terms of a relative percentage rather than an absolute value.

All analyses were performed using the Anaconda Distribution for Python 3.9 visualized in JUPYTER 
Notebooks. We used the following packages: Pandas45, Numpy46, Statistics47, Statsmodels. API48 (v0.13.2) and 
Sci-Kit Learn49 (v1.0.2) libraries.

Results
During the study period, a total of 214,953 patients presented to emergency departments in the Netherlands 
with ACS. The majority of presentations were for unstable angina (94,272; 44%), followed by non-ST-elevated 
myocardial infarction (78,963; 37%) and ST-elevated myocardial infarction (41,718; 19%). There were no missing 
values for the meteorological, calendar, or patient presentation data.

Figure 1 shows the 30-day moving average of ED visits for ACS and its subtypes. The overall incidence of ACS 
decreased after 2011, and the number of presentations remained stable from 2012 to 2018. The median daily ED 
presentations for ACS decreased from 96 [82–110] in 2010 to 81 [68–95] in 2017 (EMD; 15, 95%CI = 12–18, 
p = < 0.001). This decrease can be attributed to a sharp decrease in UA diagnoses after 2011. This decrease in 
daily UA diagnoses coincides with an increase in NSTEMI diagnoses. Daily diagnoses of STEMI remained stable 

Figure 1.  Temporal pattern of ACS emergency department visits. The temporal trends and fluctuations 
were visualized by plotting 30-day moving averages of daily emergency department visits for ACS and its 
subdiagnoses. ACS Acute coronary syndrome, ED emergency department, UA unstable angina pectoris, 
NSTEMI non ST-elevated myocardial infarction, STEMI ST-elevated myocardial infarction.
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over the 8-year inclusion period. The temporal patterns for ACS show distinct seasonal trends, with a noticeable 
drop during the summer months.

Calendar characteristics
Figure 2a shows variation in absolute ED presentations for ACS by day of the week, with a peak on Mondays and 
fewer presentations during the weekend (H-statistic = 1169.98, p-value < 0.01). Specifically, on Mondays, there 
was a median of 110 [97–123] ED presentations for ACS compared to a median of 69 [61–80] cases on Sundays, 
for an EMD of 41 (95%CI = 37–43, p = < 0.001). This pattern was observed for each subdiagnosis of ACS as well.

Similarly, statistically significant differences in median daily ED visits per month were observed 
(H-statistic = 136.11, p-value < 0.001). Post-hoc analyses revealed statistically significant differences in the 
median number of presentations in May, June, July, August, and December compared to January. Figure  2b 
shows that the summer (June, July, August) months had lower absolute presentations for ACS compared to the 
other seasons (EMD; 9 (95%CI 6–12, p = < 0.001). Elaborate descriptive statistics of all calendar variables are 
shown in Table 1.

Meteorological data
Table 2 shows the descriptive characteristics and univariate analyses of overall weather variables examined in 
this study. The results of the univariate analyses are presented as correlation coefficients for each ACS and each 
subtype of ACS. We identified numerous statistically significant possible predictive weather features that could 

Figure 2.  (a) Heat-map visualizing the sum of absolute ED presentations per weekday. (b) Fig. 2b Heat-map 
visualizing the sum of absolute ED presentations per month.
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impact the incidence of ACS. Supplemental table S1 shows all 112 meteorological variables and their univariate 
calculations.

Our analysis revealed that temperature, sunshine, atmospheric pressure, humidity, rain, wind speed, and 
wind direction, as well as their derived parameters, showed statistically significant correlations with emergency 
department visits for ACS. For instance, a 0.1° Celsius decrease in mean daily temperature resulted in a 0.07 (CI 
95% 0.08 — 0.06) absolute increase in daily ACS emergency department presentations on average.

Machine learning-based predictions of ED presentations for ACS
The variability in the data explained by each modeling approach is shown in Table 3. When appropriate, the 
optimal set of hyperparameters is likewise explicated per modeling approach. The highest (adjusted) R2 was 
obtained using MLR analyses compared to other predictive modeling approaches. Emergency department 
presentations due to ACS can be predicted using meteorological and calendar data in a moderate manner, where 

Calendar data Median [Q1–Q3] daily ED presentations

Variable ACS UA NSTEMI STEMI

Day of the weeka (H − statistic with df:6) 1169.98; p < 0.001 462.23; p < 0.001 611.02; p < 0.001 53.71; p < 0.001

 Monday 110 [97–123] 37 [29–52] 33 [28–39] 15 [13–18]

 Tuesday 90 [80–103] 31 [24–45] 28 [23–33] 14 [11–17]

 Wednesday 87 [77–96] 30 [23–42] 27 [23–31] 14 [11–16]

 Thursday 89 [77–98] 30 [23–42] 27 [22–32] 14 [11–16]

 Friday 88 [79–98] 28 [23–43] 28 [23–33] 14 [11–17]

 Saturday 67 [59–76] 20 [15–30] 22 [18–26] 14 [11–17]

 Sunday 69 [61–80] 21 [17–31] 23 [19–27] 14 [12–17]

Monthsa (H − statistic with df:11) 136.11; p < 0.001 50.56; p < 0.001 100.15; p < 0.001 94.71; p < 0.001

 January 91 [75–104] 30 [23–47] 27.5 [22–33] 15 [12–17]

 February 89 [76–104] 28.5 [23–43] 28 [23–32] 15 [12–17]

 March 91 [79–106] 31 [24–44] 28 [22–34] 15 [12–18]

 April 89 [75–104] 30 [22–43] 28 [23–33] 15 [12–18]

 May 83 [71–95] 30 [20–41] 26 [21–32] 14 [12–17]

 June 83 [69–98] 28 [21–41] 26 [20–31] 14 [11–16]

 July 78 [64–89] 27 [20–38] 24 [19–28] 13 [10–15]

 August 77 [66–89] 26 [19–37] 23 [20–28] 13 [10–16]

 September 85 [73–100] 28 [21–40] 27 [22–32] 14 [11–16]

 October 86 [75–97] 29 [21–41] 27 [23–32] 14 [12–17]

 November 88 [74–99] 29 [21–40] 27 [22–34] 14 [12–18]

 December 84 [69–96] 26 [19–36] 27 [22–32] 14 [11–17]

Seasona (H − statistic with df:3) 90.0 p < 0.001 18.6 p < 0.001 80.7 p < 0.001 81.1 p < 0.001

 Winter 88 [74–101] 29 [21 − 40.25] 27 [22–32] 15 [12–17]

 Spring 88 [73–103] 30 [22–42] 27 [22–32] 15 [12–18]

 Summer 79 [66–92] 27 [20–38] 27 [22–32] 13 [10–16]

 Autumn 86 [74–99] 29 [21–40] 24 [20–29] 14 [12–17]

Yeara (H − statistic with df: 7) 293.67; p < 0.001 1744.44; p < 0.001 596.47; p < 0.001 44.28; p < 0.001

 2010 96 [82–110] 52 [44–60] 22 [18–26] 14 [11–17]

 2011 97 [84–110] 51 [43–60] 23 [19–27] 14 [12–17]

 2012 81 [69–94] 33 [27–40] 24 [20–28] 13 [11–16]

 2013 83 [70–95] 29 [23–35] 27 [22–31] 14 [11–17]

 2014 82 [69–94] 25 [20–30] 28 [23–33] 14 [10–16]

 2015 80 [67–92] 23 [19–28] 28 [24–34] 15 [12–18]

 2016 85 [71–97] 23 [18–27] 31 [26–36] 15 [12–18]

 2017 81 [68–95] 19 [15–23] 31 [26–36] 14 [12–17]

Table 1.  Descriptive characteristics of all calendar variables. ACS Acute coronary syndrome, CI Confidence 
Interval, df degrees of freedom, UA unstable angina pectoris, NSTEMI non ST − elevated myocardial infarction, 
STEMI ST − elevated myocardial infarction, NA Not applicable, °C degrees Celsius, h hour, J/cm2 Joule per 
square centimeter as measure of surface tension, hPa hectopascal, mm millimeters, m/s meter per second. 
aCalendar data Day of the week, Month, Season, and Year are analyzed using Kruskal − Wallis test with 
H − statistics as output. Consequently, post hoc Dunn’s tests with Bonferroni correction were performed 
with the first category Monday, January, Winter and 2010 as reference categories. Bold indicates significance 
(p < 0.05).
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66% of the variance in daily ACS presentations in the Netherlands can be explained. The explained variance 
remained similar as the prediction horizon was extended towards 3-, 7-, and 30 days.

Unstable angina pectoris was best predicted using calendar and meteorological data, resulting in 80% of the 
variance in ED presentations for UA being explained by the data when predicting 1-day ahead. The R2 value for 
NSTEMI diagnoses was 0.45, indicating that our model explained 45% of the variance in NSTEMI visits to the 
ED. For STEMI presentations to the ED, our explained variance was approximately zero, regardless of modeling 
approach employed.

The LASSO regression model identified 46 of the 140 predictive features as most relevant for predicting ACS. 
The LASSO regression model yielded an explained variance (adjusted R2) of 65% for ACS presentations to the 
ED, compared to an explained variance of 66% by the MLR model (with 140 predictive features). A similar result 
was obtained using the RF model compared to the MLR/LASSO approach. Both meteorological and calendar 
data explained 63% of the variance of emergency department presentations due to ACS. Likewise, similar results 
were obtained for UA, NSTEMI, and STEMI diagnoses.

Figure  3 shows a condensed depiction (top 10) of the feature importance for the RF and LASSO/MLR 
regression models. The most important predictors for predicting ACS incidence are the day of the week 
(especially Sunday), year 2010/2011, and temperature.

Internal validation of modeling approaches
The modeling approaches employed in the present study were subjected to internal validation using the test 
dataset. When applied to the prediction of ED visits for ACS over the course of the subsequent day, the resulting 
MAE (MAPE) was 7.8 (11.0%). This value can be interpreted as an average deviation of 7 to 8 cases of actual ED 
presentations for ACS per day compared to the predicted number. A detailed breakdown of the MAE (MAPE) 
values corresponding to the subdiagnoses of ACS is shown in Table 4.

Discussion
Summary of findings
Our study aimed to investigate the temporal patterns and predictive factors of ED presentations for ACS in the 
Netherlands, a temperate climate zone, over an 8-year period.

We observed a reduction in ACS incidence during this period, particularly in the summer months, with a 
negative correlation between temperature and ACS incidence. Temperature emerged as a key meteorological 
predictive factor alongside calendar variables.

Second, after 2011, there was a notable decline in ACS occurrence, primarily attributed to a significant 
decrease in UA cases. Concurrently, there was an increase in the incidence of NSTEMI diagnoses. This decrease 
and subsequent increase in UA and NSTEMI diagnoses are possibly due to a reclassification of UA. They might 
be associated with the introduction of high sensitive cardiac troponin assays50. This advance in diagnostics 
increases the ability of physicians to rule out UA or to rule in NSTEMI cases in patients presenting with similar 
symptoms51,52. The incidence of STEMI diagnoses remained stable throughout the study period. These trends 
have been similarly observed in German and Swedish ACS registries53,54.

Furthermore, our descriptive analyses showed considerable daily variations in ACS presentations, with peak 
incidence on Mondays and a low incidence on weekend days. Our results align with previous literature; a distinct 
increase in incidence on Mondays and a decrease in presentations during the weekend has been described 
before13,55. However, the exact mechanism underlying this peak remains unknown. It is speculated that factors 
such as employment-related stress, inactivity, overconsumption of alcoholic beverages, or registration errors may 
play significant roles56. Furthermore, a decrease in ACS incidence was observed during the summer months. 
Seasonal variations in cardiovascular risk factors may explain this trend. A cross-sectional study encompassing 
data from 24 population-based studies across 15 countries demonstrated a reduction in cardiovascular risk 
factors during the summer months57.

Our study identified statistically significant correlations between individual weather parameters and ED 
presentations for ACS. This aligns with a body of research investigating the association between weather and 
the incidence of ACS58–62.

Predictive modeling
The predictive performance for acute coronary syndrome was moderate (adjusted R2 = 0.66; MAE (MAPE): 
7.8 (11.0%), while the performance for subdiagnoses of ACS varied substantially. The prediction of unstable 
angina pectoris resulted in a good explained variance by our model (adjusted R2 = 0.80; MAE (MAPE): 5.3 
(19.1%)). However, the predictive performances for NSTEMI (adjusted R2 = 0.45; MAE (MAPE): 4.4 (17.6%)) 
and STEMI (adjusted R2 = 0.06; MAE (MAPE): 3.3 (28.2%)) were poor. This implies that on a median day with 
85 ACS presentations, our model would forecast an average range of 77 to 93 patients. Similarly, for UA, on this 
day with a median presentation of 29 patients to the ED, our model’s prediction would averagely span from 23 
to 35 patients.

Extending the prediction horizon up to 30  days resulted in a minor decrease in predictive performance. 
This minor decrease could be explained by the relatively high importance of calendar features compared to 
meteorological features. The stability of our model, even with an extended prediction horizon, bolsters 
the potential for their concurrent application with other models predicting ACS in the ED. Furthermore, it 
strengthens the model’s potential as an instrument for enhancing ED operational efficiency.

Our results indicate that a non-linear machine learning approach using Random Forest regression was 
not superior to conventional multivariate linear regression. Contradicting our initial hypothesis, a tree-
based machine learning algorithm (for example, an RF regression algorithm) would better deal with the 
multicollinearity of weather and calendar data and thus make more accurate predictions. Previous research 
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proposed using RF machine learning algorithms to explore the complex interactions between weather parameters 
and cardiovascular events61,62. A possible rationale for this absence of superiority might be a lack of complex 
non-linear interactions between the input features and the outcome. Alternatively, a lack of connection between 
the selected variables and the outcome variable, in general, could explain the poor predictive performance of the 
RF algorithms. The absence of a relationship between our variables and STEMI diagnoses might, in turn, explain 
poor predictions of STEMI presentations for both modeling approaches. Our results are consistent with those 
of previous research, which reported an R2 value of 0.67 for predicting ACS incidence using a Random Forest 
algorithm in a study conducted in a province of Poland that analyzed 106,000 cases of ACS and the influence of 
weather parameters. This study, however, also incorporated patient characteristics such as medical history and 
demographic information. Furthermore, this study predicted the overall incidence of ACS in this region, not 
specifically focusing on ED presentations62.

Figure 3.  (a) Feature importance of Random Forest model. (b) Feature importance of the LASSO model. The 
top 10 importance of individual predictors for machine learning algorithms predicting ACS incidence with a 
one-day prediction horizon. Abbreviations: LASSO: Least Absolute Shrinkage and Selection Operator. LASSO 
was employed concurrently with the Multivariable Linear Regression model to serve as a feature selection tool.
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Feature importance
Feature importance analyses, shown in Fig. 3, revealed that both the LASSO and Random Forest models notably 
adjusted for the years 2010 and 2011, likely attributed to the shift in the quantification of diagnoses of acute 
coronary syndrome mentioned above. Although univariate weather correlations were weak, weather parameters 
were identified for their predictive performance in both LASSO and RF models. Both models underscore the 
importance of the day of the week and temperature to predict ACS.

Strengths and limitations
In current literature, our research stands as the most comprehensive study concerning both the volume 
of patients and the duration of the study period assessing ACS incidence in the ED. While the relationship 
between meteorological conditions and daily or monthly variations has been previously explored, our work 
uniquely integrates these publicly available factors into predictive models for ACS incidence in the ED. 
This novel approach holds significant potential for enhancing future research in this field. For instance, the 
application of ensemble modeling techniques could refine the accuracy of both existing and forthcoming 
prediction models. For example, new machine learning-based decision support systems have been proposed 
to prevent unnecessary hospital admissions and enhance the early diagnosis of myocardial infarction63–65. In 
these studies, machine learning-based classification models have demonstrated superior performance compared 
to conventional diagnostic pathways and provide quicker identification of low-risk ACS patients. Similarly, 
prehospital algorithms for diagnosing ACS have been developed. If implemented, these models could optimize 
the recognition of ACS patients before they present to the ED66,67. Combining advanced prediction models with 
our model for predicting ACS presentations to the ED could significantly enhance patient care by reducing 
unnecessary admissions, improving early diagnosis, and optimizing resource allocation.

This study, while providing valuable insights into the temporal patterns of ACS incidence and the prediction 
of ED presentations for ACS with publicly available data, has several limitations which should be considered 
when interpreting the results. A notable limitation of our study was the incorporation of ‘Year’ as a predictive 
variable. The use of ‘Year’ is restrictive because its effects can only be evaluated retrospectively. It is useful for 
future predictions only if the model is recalibrated annually. To address this, we conducted a supplemental 
analysis (Table S2), where we excluded the predictor variables for the years 2012 to 2017. The remaining dummy 
coded variables for the years 2010 and 2011 were retained, essentially serving as an added constant to adjust for 
the noted change in incidence after these years. In this subanalysis, we observed a minor reduction in R2 (from 
0.66 to 0.65) and similar results in our validation metrics, with an MAE (MAPE) of 7.8 (11%). This indicates that 
our model maintains its robustness even without including yearly trend variables. These supplementary findings 
suggest that a yearly trend predictor is not essential for our predictions.

Another limitation of our study was the choice of cross-validation (CV) method. We opted for random cross-
validation instead of sequential cross-validation. This decision was influenced by the change in ACS classification 
post-2012 and the transition to a new organization (Vektis, starting in 2016) responsible for the counting and 
processing of diagnoses and insurance claims. While the change after 2016 did not manifest in the temporal 
patterns of our data, they could still impact the daily count of ACS diagnoses. Nevertheless, it is important to 
note that random CV also offers several advantages. A significant benefit is that the predictions derived from 

Diagnosis

Primary outcome Secondary outcomes

Day 1 Day 3 Day 7 Day 30

MAE (MAPE) MAE (MAPE) MAE (MAPE) MAE (MAPE)

MLR/LASSO

 ACS 7.8 (11.0) 8.2 (12.0) 8.0 (11.9) 8.0 (11.4)

 UA 5.3 (19.1) 5.5 (20.7) 5.6 (21.2) 5.3 (19.3)

 NSTEMI 4.4 (17.6) 4.6 (18.9) 4.6 (19.0) 4.7 (19.1)

 STEMI 3.3 (28.2) 3.5 (26.7) 3.3 (27.0) 3.4 (27.0)

LASSO

 ACS 7.8 (11.0) 8.2 (11.8) 8.0 (11.9) 8.1 (11.5)

 UA 5.7 (20.3) 5.8 (21.9) 5.9 (22.5) 5.8 (20.8)

 NSTEMI 4.7 (18.4) 4.7 (19.6) 4.8 (20.1) 4.8 (19.7)

 STEMI 3.4 (28.4) 3.5 (26.7) 3.3 (27.0) 3.4 (27.1)

Random forest

 ACS 8.2 (11.6) 8.5 (12.6) 8.1 (11.6) 8.3 (11.8)

 UA 5.9 (21.2) 5.8 (21.9) 5.7 (20.0) 5.4 (19.6)

 NSTEMI 4.7 (19.2) 4.7 (19.1) 4.8 (19.7) 4.6 (19.1)

 STEMI 3.4 (28.4) 3.2 (26.9) 3.3 (28.3) 3.3 (27.7)

Table 4.  Internal validation per modeling approach. ACS acute coronary syndrome, LASSO least absolute 
shrinkage and selection operator regression, MLR multivariable linear regression, NSTEMI non − ST elevated 
myocardial infarction, MAE mean absolute error, MAPE mean absolute percentage error, STEMI ST elevated 
myocardial infarction, UA unstable angina.
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random CV tend to be more generalizable compared to those from sequential CV. In our study, we utilized data 
points from the entire study period (2010–2017) for both training and validation. This approach, stemming 
from the nature of random CV, potentially reduces the risk of bias and the likelihood of overfitting the models.

An additional limitation of our study is the reliance solely on anonymized data, which limits our ability to 
evaluate the impact of weather conditions on specific patient comorbidities, such as advanced age, sex, diabetes 
mellitus, or other concurrent diseases. Due to the nature of our data, we were unable to analyze diurnal variations 
in our predictions. Consequently, our model provides insights for an entire 24-h period rather than for specific 
times of the day, which could have had an additional benefit in the optimization of staffing schedules.

Conclusion
The present study sheds light on the temporal patterns of daily emergency department presentations for acute 
coronary syndrome and its subdiagnoses in the Netherlands. Our findings indicate that ACS presentations 
exhibit distinctive seasonal changes, with marked reductions in incidence during the summer months. Despite 
the modest predictive performance of the model using calendar and meteorological features to predict ACS 
presentations, our results demonstrate that the prediction of ED presentations for unstable angina using these 
variables has good predictive performance, even when extending the prediction horizon. Future research should 
focus on identifying new input parameters, such as calculating new non-linear weather features, examining 
which patients with comorbid diseases are more prone to be affected by meteorological changes, and examining 
the effect on ACS incidence. Furthermore, future research should include other diagnoses and a combination of 
modeling approaches to improve the accuracy of predicting overall ED patient presentations. Additionally, our 
findings could lead to improvement in patient flow within the emergency department and have the potential to 
assist in refining ED staffing schedules.

Data availability
Data Availability StatementThe data supporting the findings of this study are available upon reasonable request. 
The datasets, which include detailed information provided by the Dutch Ministry of Health, are not publicly ac-
cessible due to privacy and ethical considerations. Interested researchers may contact the corresponding author, 
Vincent C. Kurucz, MD, BSc, at V.C.Kurucz@amsterdamumc.nl, for data access requests, subject to compliance 
with applicable data protection regulations.
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