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Prediction of emergency
department presentations for
acute coronary syndrome using a
machine learning approach

Vincent C. Kurucz'™, Jimmy Schenk%23, Denise P. Veelo?, Bart F. Geerts*,
Alexander P. J. Vlaar?® & Bjérn J. P. Van Der Ster!

The relationship between weather and acute coronary syndrome (ACS) incidence has been the subject
of considerable research, with varying conclusions. Harnessing machine learning techniques, our study
explores the relationship between meteorological factors and ACS presentations in the emergency
department (ED), offering insights into seasonal variations and inter-day fluctuations to optimize
patient care and resource allocation. A retrospective cohort analysis was conducted, encompassing
ACS presentations to Dutch EDs from 2010 to 2017. Temporal patterns were analyzed using heat-
maps and time series plots. Multivariable linear regression (MLR) and Random Forest (RF) regression
models were employed to forecast daily ACS presentations with prediction horizons of one, three,
seven, and thirty days. Model performance was assessed using the coefficient of determination (R?),
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The study included 214,953
ACS presentations, predominantly unstable angina (UA) (94,272; 44%), non-ST-elevated myocardial
infarction (NSTEMI) (78,963; 37%), and ST-elevated myocardial infarction (STEMI) (41,718; 19%). A
decline in daily ACS admissions over time was observed, with notable inter-day (estimated median
difference: 41 (95%Cl =37-43, p= < 0.001) and seasonal variations (estimated median difference: 9
(95%Cl 6-12, p=<0.001). Both MLR and RF models demonstrated similar predictive capabilities, with
MLR slightly outperforming RF. The models showed moderate explanatory power for ACS incidence
(adjusted R2 = 0.66; MAE (MAPE): 7.8 (11%)), with varying performance across subdiagnoses.
Prediction of UA incidence resulted in the best-explained variability (adjusted R2 = 0.80; MAE

(MAPE): 5.3 (19.1%)), followed by NSTEMI and STEMI diagnoses. All models maintained consistent
performance over extended prediction horizons. Our findings indicate that ACS presentation exhibits
distinctive seasonal changes and inter-day differences, with marked reductions in incidence during the
summer months and a distinct peak prevalence on Mondays. The predictive performance of our model
was moderate. Nonetheless, we obtained good explanatory power for UA presentations. Our model
emerges as a potentially valuable supplementary tool to enhance ED resource allocation or future
predictive models predicting ACS incidence in the ED.

Emergency department (ED) crowding is an increasing problem for hospitals globally!2. Traditionally, EDs
have been predominantly staffed to align with average patient influx requirements®. This approach necessitates
a critical evaluation in the context of fluctuating patient volumes, the increasing dilemma of ED crowding, and
staffing shortages*~°. Future possibilities to mitigate these problems call for agile and responsive emergency care.
The optimization of patient-staffing ratios, ideally with a concurrent increase in ED output possibilities, such as
proactive bed management, could aid in improving patient flow and care”®.
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Emergency departments evaluating patients with suspected acute coronary syndrome (ACS) are particularly
impacted by crowding, as chest pain is the second most frequent reason for ED visits worldwide. In the United
States, approximately 7-8 million patients, or 6-7% of ED visits, present with symptoms suggestive of ACS®.
Similarly, in The Netherlands, around 15% of ED presentations are suspected cases of ACS!?.

A potential tool to alleviate ED crowding is dynamic predictions of daily ACS presentations, which could
offer early insights into the anticipated activity levels in cardiac emergency rooms''. On days with a predicted
higher incidence of ACS, increased vigilance or a reduced workload for medical personnel could be achieved
through optimized patient-staffing ratios. Ideally, these predictions should be based on inputs that vary over
short periods and should be publicly available. This approach could enhance future collaborative efforts in the
field of ED visit predictions'2.

Current literature suggests that both weather conditions and calendar data may influence the incidence of
ACS!314, However, the existing evidence is inconsistent and sometimes conflicting!>-%’. The assumed association
between weather and specific diseases has an extensive history, dating back to 430 B.C. with Hippocrates’ first
recorded attempt?!. In modern times, prediction of the overall number of patients presenting in the emergency
department based on meteorological and calendar data has been attempted. Unfortunately, previous studies had
underwhelming predictive abilities and lacked focus on specific diagnoses?>?3.

The primary aim of this study is to examine temporal patterns in daily ED presentations for ACS and for its
subdiagnoses, including unstable angina, ST-elevated myocardial infarction, and non-ST-elevated myocardial
infarction. Second, we used a data-driven approach to examine whether ED presentations for ACS and its
subtypes can be accurately predicted using meteorological and calendar data.

Methods
Study design and population
This study is a retrospective nationwide cohort analysis of daily acute coronary syndrome presentations
to emergency departments in the Netherlands. Data were gathered over a period extending from the 1st of
January 2010 through to the 31st of December 2017—this collection period comprised 2,922 days, providing
an expansive timeline for analytical examination. All ACS diagnoses were conducted, registered, and claimed to
Dutch health insurance by a treating physician.

Acute coronary syndrome consists of a combination of diagnoses, including unstable angina (UA), ST-
elevated myocardial infarction (STEMI), and non-ST-elevated myocardial infarction (NSTEMI)**.

Data collection

The dataset was extracted from a comprehensive database curated by Statistics Netherlands (CBS, The Hague)?.
The sources of this database encompassed the Diagnostic Information System of the Dutch Healthcare Authority
(NZa) for the years 2010 to 2015 and the national medical insurance claim database (Vektis C.V., Zeist, the
Netherlands) for the years 2016 through 2017%%%.

All ED visit data within the Netherlands were collected in compliance with national legislative frameworks
and the European General Data Protection Regulations (GDPR). Ethical committee approval and participant
informed consent were deemed unnecessary for this study due to the utilization of exclusively anonymized
national statistical data in accordance with the Central Committee on Research involving human subjects.
The research protocol employed in this study has been formally registered with Statistics Netherlands and is
identifiable through the reference number PR000330. The execution and documentation of this study adhered
to the guidelines and checklist of the TRIPOD statement, as detailed in Supplemental Table S3.

Calendar and meteorological data

Using literature review, we identified calendar and meteorological data as potential predictive abilities in
different world regions'>~228-41 In relation to calendar data, variables such as day of the week, month, and year
were incorporated into our analysis. Furthermore, we included the number of ED presentations on the previous
day as a predictive variable, thereby introducing an autoregressive component to the model, a commonly applied
forecasting method*>*3. Resulting in 28 calendrical variables.

Meteorological data were extracted from the publicly available database of the Royal Netherlands
Meteorological Institute (KNMI, De Bilt, Netherlands). Comprehensive daily characteristics of the temperature,
sunshine, humidity, wind, and precipitation in the Netherlands were collected by the KNMI. The national
climate can be described as temperate and is equal across the country**.

All weather variables included in this analysis are shown in Table 2. We included the seven- and 14-day
moving averages for each meteorological variable, the maximum inter-day difference of the previous three days,
and the trending direction of the weather for the past two days, resulting in 112 meteorological variables.

Prediction outcome

A substantial aim of this study was to forecast the daily number of ED visits related to ACS one day prior to
their occurrence. The secondary objectives included predicting the daily frequency of ED visits for each ACS
subdiagnosis. Furthermore, we aspired to expand the predictive horizon to forecast ED visits three-, seven-, and
30 days in advance.

Statistical analysis

Temporal patterns of daily ED visits for ACS and its subtypes were analyzed using a 30-day moving average.
Heat-maps were used to visualize absolute differences in ED presentations for ACS and its subtypes. A non-
parametric analysis of variance (Kruskal-Wallis test) and Dunn’s post hoc analysis with Bonferroni correction
was conducted to compare differences in median ED presentations between groups. Estimated median
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Daily number of ED presentations (f (95% CI))
Meteorological data Median [Q1-Q3] | ACS UA NSTEMI STEMI
Mean daily temperature (°C) 10.6 [6.2-15.5] —0.06 (—0.07-—-0.06) | —0.04 (—0.04-—10.03) | —0.02 (—0.02-—0.01) | —0.01 (—0.01-—0.01)
Maximum daily temperature (°C) 14.6 [9.2-20.0] —0.05 (—0.06-—0.05) | —0.03 (—0.03-—0.03) | —0.01 (—0.01-—0.01) | —0.01(—0.01-—0.01)
Minimum daily temperature (°C) 6.6 [2.3-10.7] —0.08 (—0.08--0.07) | —0.04 (—0.05-—0.04) | —0.02 (—0.02-—0.01) | —0.01 (—0.02-—0.01)
Minimum temperature at 10 cm surface (°C) 4.7 (0.4-8.9] —0.08 (—0.09-—0.07) | —0.05(—0.05-—0.04) | —0.02 (—0.02-—0.01) | —0.01 (—0.02-—0.01)
Daily temperature difference (°C) 0.8 [0.5-1.1] —0.07 (—0.08-—0.07) | —0.03 (—0.04-—10.03) | —0.02 (—0.03-—10.02) | —0.02 (—0.02-—0.01)
Daily sunshine duration (h) 4.1[1.0-7.7] —0.08 (—0.09-—-0.07) | —0.03 (—0.04-—10.02) | —0.03 (—0.03-—0.02 | —0.02(—0.02-—0.01)
f;f)ce“tage of daily potential sunshine duration | 5, g ¢ —0.08 (—0.09- —0.06) | —0.04 (—0.05-—0.02) | —0.02 (—0.03-—0.01) | —0.02 (—0.02-—0.02)
Daily global radiation (J/cm?) ?22‘38[]323‘0’ —3.77 (—4.28-—3.26) | —1.45 (—1.91-—0.99) | —1.51 (—1.73-—1.28) | —0.81 (—0.94- —0.69)
Daily evaporation (mm) 1.3 [0.4-2.5] —0.24(—-0.27--0.21) | —0.1 (—0.13-—0.07) —0.09 (—0.11-—0.08) | —0.05 (—0.06- —0.04)
Mean daily atmospheric pressure (hPa) [1?01?090 ~1021.5] (__1122014_ —11.98) (_—11%.7851— —167) 5.78 (5.75-5.8) —1.06 (— 1.08- —1.05)
Maximum daily atmospheric pressure (hPa) E?Olf.’?l —1024.1] (_—1111':”328— —11.26) (__22(:)2394_ —20.23) 8.79 (8.76-8.81 0.18 (0.16-0.19)
Minimum daily atmospheric pressure (hPa) ;{)013605 ~1018.9] (__1111'-8973_ —118) (__1122'.8994_ —12.83) 2.99 (2.97-3.02) —_—119;6()_ 1.99
Daily atmospheric pressure difference (hPa) 0.5 [0.3-0.8] 0.03 (0.02-0.04) —0.03 (—0.04-—0.02) | 0.04 (0.03-0.04) 0.02 (0.02-0.02)
Mean daily atmospheric humidity (%) 82 [74-88] 0.2 (0.2-0.21) 0.08 (0.08-0.09) 0.08 (0.08-0.08) 0.04 (0.04-0.04)
Maximum daily atmospheric humidity (%) 97 [94-98] —0.31(—0.31--0.3) —0.11(-0.12--0.11) | —0.12 (—0.12-—0.12) | —0.07 (—0.07-—10.07)
Minimum daily atmospheric humidity (%) 63 [52-74] 0.17 (0.16-0.18) 0.08 (0.08-0.09) 0.06 (0.05-0.06) 0.03 (0.03-0.04)
Daily atmospheric humidity difference (hPa) 32 [21-43] —0.21 (—0.23--0.2) —0.1(—0.12-—0.09) —0.07 (—0.08-—0.06) | —0.04 (—0.05-—0.04)
Daily precipitation duration (h) 0.2 [0.0-2.7] 0.08 (0.05-0.1) 0.04 (0.01-0.06) 0.02 (0.01-0.03) 0.02 (0.01-0.02)
Daily amount of precipitation (mm) 0.1 [0.0-2.6] —0.03 (—0.05-—0.01) | —0.01 (—0.03-0.0) —0.01 (—0.02-0.0) —0.01 (—0.01-—0.0)
Maximum hourly amount of precipitation (mm) | 0.1 [0.0-1.1] —0.18(—0.23-—0.12) | —0.07 (—0.11-—0.02) | —0.06 (—0.08-—0.04) | —0.05 (—0.06- —0.04)
Daily cloud coverage (%) 75 [50-100] —0.55(—0.65-—0.44) | —1.82 (—1.92-—1.73) | 1.0 (0.95-1.05) 0.27 (0.25-0.3)
Mean daily wind speed (m/s) 3.2 [2.4-4.1] 0.19 (0.17-0.21) 0.08 (0.06-0.1) 0.07 (0.06-0.07) 0.05 (0.04 —0.05)
Maximum daily wind speed (m/s) 5 [4-6] 0.08 (0.07-0.09) —0.0 (=0.01-0.01) 0.05 (0.05-0.06) 0.03 (0.03-0.03)
Minimum daily wind speed (m/s) 1[1,2] 0.25 (0.22-0.29) 0.1 (0.07-0.13) 0.1 (0.08-0.11) 0.05 (0.05-0.06)
Daily maximum wind gust (m/s) 10 [7-12] —0.02 (—0.03--0.02) | —0.05 (—0.06-—0.05) | 0.02 (0.02-0.02) 0.01 (0.01-0.01)
Daily vector average wind direction (degrees) 210 [133-251] —0.05 (—0.05-—0.04) | —0.04 (—0.04-—0.03) | —0.01 (—0.01-—0.01) | —0.0 (—0.0-—0.0)
Daily Vector average wind speed (m/s) 2.8 [1.9-3.8] 0.22 (0.2-0.24) 0.1 (0.08-0.11) 0.07 (0.06-0.08) 0.05 (0.04-0.05)
Presentations on the day before
Number of ACS presentations on the day before | N.A 0.2 (0.19-0.21) N.A N.A N.A
Number of UA presentations on the day before | N.A N.A 0.69 (0.67-0.7) N.A N.A
bI\ehfl(:?eber of NSTEMI presentations on the day NA NA NA 0.24 (0.23-0.25) NA
]Elflor:llaer of STEMI presentations on the day NA NA NA NA 0.07 (0.06-0.08)

Table 2. Descriptive characteristics and univariate analysis of meteorological data. ACS Acute coronary
syndrome, CI Confidence Interval, df degrees of freedom, UA unstable angina pectoris, NSTEMI non

ST — elevated myocardial infarction, STEMI ST — elevated myocardial infarction, N.A. Not applicable,
°Cdegrees Celsius, h hour, J/cm? Joule per square centimeter as measure of surface tension, hPa hectopascal,
mm millimeters, m/s meter per second. *Calendar data Day of the week, Month, Season, and Year are analyzed
using Kruskal — Wallis test with H — statistics as output. Consequently, post hoc Dunn’s tests with Bonferroni
correction were performed with the first category Monday, January, Winter, and 2010 as reference categories.

Bold indicates significance (p < 0.05).

differences (EMD) with a 95% confidence interval (CI) between variables were calculated with bootstrap
resampling, and differences were assessed with a Mann-Whitney U test. Descriptive statistics were computed
for each potential predictor variable, and univariate linear regression, combined with an offset, was performed
to estimate regression coefficients (p) and corresponding 95% CI between each predictor and ED presentations
for ACS and its subtypes.

Consecutively, the dataset was randomly split into a train (75%) and a test (25%) dataset, and model
training was performed on the training dataset. Z-score normalization was used to standardize our variables
for continuous features. Z-score normalization standardizes features by removing the mean and scaling to unit
variance, resulting in a feature with a mean of 0 and a standard deviation of 1.
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Model development

Multivariable linear regression (MLR) and machine learning algorithms represent the most prevalent modeling
approaches for predicting ED visitations*>3. Therefore, we investigated two modeling approaches: MLR and
Random Forest Regression (RF) with hyperparameter optimization. Least Absolute Shrinkage and Selection
Operator (LASSO) regression was employed to identify the most relevant predictors for ED presentations in
the MLR model. Feature importance factor was employed in order to identify most relevant features in the
RF model. To calculate the best fitting controlling hyperparameter alpha (a) for the LASSO model, a standard
tenfold cross-validation was performed. Regarding the RF model, hyperparameter optimization was initially
conducted through random grid cross-validation to determine the most suitable hyperparameter grids. Our
hyperparameter grid included: minimal samples leaf, minimal samples split, and number of estimators, all other
parameters were standard values. Subsequently, a fivefold grid search cross-validation was employed for the
precise identification of optimal hyperparameters. This procedure evaluates all potential combinations within
our specified hyperparameter grid. The optimal set of hyperparameters is determined based on achieving the
best performance score, measured using the mean squared error criterion. K-fold cross-validation involves
partitioning the dataset into k subsets and iteratively training the model on k-1 subsets while testing the
remaining subsets to minimize the risk of overfitting our model.

Model performances were evaluated using (adjusted) R-squared (R?). This metric quantifies the proportion
of variance in the outcome explained by the selected predicting variables. Notably, these values were adjusted to
the number of predictors used. Adjusted R? adjusts the statistic based on the number of independent variables
in the model. It penalizes the addition of predictors that do not improve the model. R? values range from 0 to 1,
with values closer to 1 indicating a greater proportion of the variance of ACS incidence explained by the model.

Validation
The test dataset (25%) was used to internally validate the predictive models to accurately evaluate the performance.
The model fit to the test dataset was assessed using Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE). The MAE represents the average discrepancy between the model-predicted ED visits and the
actual daily ED visit counts; lower MAE values indicate a higher degree of model accuracy. Mean absolute error
is instrumental as it represents prediction errors in the same unit as the original data, which, in this context,
is the number of patients. Mean Absolute Percentage Error is a validation metric similar to MAE; however, it
quantifies the error in terms of a relative percentage rather than an absolute value.

All analyses were performed using the Anaconda Distribution for Python 3.9 visualized in JUPYTER
Notebooks. We used the following packages: Pandas*®, Numpy*, Statistics*’, Statsmodels. API*® (v0.13.2) and
Sci-Kit Learn®® (v1.0.2) libraries.

Results

During the study period, a total of 214,953 patients presented to emergency departments in the Netherlands
with ACS. The majority of presentations were for unstable angina (94,272; 44%), followed by non-ST-elevated
myocardial infarction (78,963; 37%) and ST-elevated myocardial infarction (41,718; 19%). There were no missing
values for the meteorological, calendar, or patient presentation data.

Figure 1 shows the 30-day moving average of ED visits for ACS and its subtypes. The overall incidence of ACS
decreased after 2011, and the number of presentations remained stable from 2012 to 2018. The median daily ED
presentations for ACS decreased from 96 [82-110] in 2010 to 81 [68-95] in 2017 (EMD; 15, 95%CI=12-18,
Pp=<0.001). This decrease can be attributed to a sharp decrease in UA diagnoses after 2011. This decrease in
daily UA diagnoses coincides with an increase in NSTEMI diagnoses. Daily diagnoses of STEMI remained stable

— ACS
—— NSTEMI
—— UA
— STEMI
WWWWMMW
2010 2011 2012 2013 2014 2015 2016 2017 2018

Year

Figure 1. Temporal pattern of ACS emergency department visits. The temporal trends and fluctuations
were visualized by plotting 30-day moving averages of daily emergency department visits for ACS and its
subdiagnoses. ACS Acute coronary syndrome, ED emergency department, UA unstable angina pectoris,
NSTEMInon ST-elevated myocardial infarction, STEMI ST-elevated myocardial infarction.

Scientific Reports |

(2024) 14:23125 | https://doi.org/10.1038/s41598-024-73291-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Monday

Tuesday

Wadnesday

Thursday

weekday

Friday

Saturday -

Sunday -

maonth

9801

10557

over the 8-year inclusion period. The temporal patterns for ACS show distinct seasonal trends, with a noticeable
drop during the summer months.

Calendar characteristics
Figure 2a shows variation in absolute ED presentations for ACS by day of the week, with a peak on Mondays and
fewer presentations during the weekend (H-statistic=1169.98, p-value <0.01). Specifically, on Mondays, there
was a median of 110 [97-123] ED presentations for ACS compared to a median of 69 [61-80] cases on Sundays,
for an EMD of 41 (95%CI=37-43, p=<0.001). This pattern was observed for each subdiagnosis of ACS as well.
Similarly, statistically significant differences in median daily ED visits per month were observed
(H-statistic=136.11, p-value<0.001). Post-hoc analyses revealed statistically significant differences in the
median number of presentations in May, June, July, August, and December compared to January. Figure 2b
shows that the summer (June, July, August) months had lower absolute presentations for ACS compared to the
other seasons (EMD; 9 (95%CI 6-12, p=<0.001). Elaborate descriptive statistics of all calendar variables are
shown in Table 1.

Meteorological data

Table 2 shows the descriptive characteristics and univariate analyses of overall weather variables examined in
this study. The results of the univariate analyses are presented as correlation coefficients for each ACS and each
subtype of ACS. We identified numerous statistically significant possible predictive weather features that could
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Figure 2. (a) Heat-map visualizing the sum of absolute ED presentations per weekday. (b) Fig. 2b Heat-map
visualizing the sum of absolute ED presentations per month.
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Calendar data Median [Q1-Q3] daily ED presentations

Variable ACS UA NSTEMI STEMI

Day of the week® (H — statistic with df:6) | 1169.98; p <0.001 | 462.23; p<0.001 | 611.02; p <0.001 | 53.71; p <0.001
Monday 110 [97-123] 37 [29-52] 33 [28-39] 15 [13-18]
Tuesday 90 [80-103] 31 [24-45] 28 [23-33] 14 [11-17]
Wednesday 87 [77-96] 30 [23-42] 27 [23-31] 14 [11-16]
Thursday 89 [77-98] 30 [23-42] 27 [22-32] 14 [11-16]
Friday 88 [79-98] 28 [23-43] 28 [23-33] 14 [11-17]
Saturday 67 [59-76] 20 [15-30] 22 [18-26] 14 [11-17]
Sunday 69 [61-80] 21 [17-31] 23 [19-27] 14 [12-17]
Months? (H — statistic with df:11) 136.11; p<0.001 | 50.56; p <0.001 100.15; p<0.001 | 94.71; p<0.001
January 91 [75-104] 30 [23-47] 27.5 [22-33] 15 [12-17]
February 89 [76-104] 28.5 [23-43] 28 [23-32] 15 [12-17]
March 91 [79-106] 31 [24-44] 28 [22-34] 15 [12-18]
April 89 [75-104] 30 [22-43] 28 [23-33] 15 [12-18]
May 83 [71-95] 30 [20-41] 26 [21-32] 14 [12-17]
June 83 [69-98] 28 [21-41] 26 [20-31] 14 [11-16]
July 78 [64-89] 27 [20-38) 24 [19-28] 13 [10-15]
August 77 [66-89] 26 [19-37] 23 [20-28] 13 [10-16]
September 85 [73-100] 28 [21-40] 27 [22-32] 14 [11-16]
October 86 [75-97] 29 [21-41] 27 [23-32] 14 [12-17]
November 88 [74-99] 29 [21-40] 27 [22-34] 14 [12-18]
December 84 [69-96] 26 [19-36] 27 [22-32] 14 [11-17]
Season® (H — statistic with df:3) 90.0 p<0.001 18.6 p<0.001 80.7 p<0.001 81.1 p<0.001
Winter 88 [74-101] 29 [21—40.25] 27 [22-32] 15 [12-17)
Spring 88 [73-103] 30 [22-42] 27 [22-32] 15 [12-18]
Summer 79 [66-92] 27 [20-38] 27 [22-32) 13 [10-16]
Autumn 86 [74-99] 29 [21-40] 24 [20-29] 14 [12-17]
Year? (H — statistic with df: 7) 293.67; p<0.001 1744.44; p <0.001 | 596.47; p <0.001 | 44.28; p < 0.001
2010 96 [82-110] 52 [44-60] 22 [18-26] 14 [11-17]
2011 97 [84-110] 51 [43-60] 23 [19-27] 14 [12-17]
2012 81 [69-94] 33 [27-40] 24 [20-28) 13 [11-16]
2013 83 [70-95] 29 [23-35] 27 [22-31] 14 [11-17]
2014 82 [69-94] 25 [20-30] 28 [23-33] 14 [10-16]
2015 80 [67-92] 23 [19-28] 28 [24-34] 15 [12-18]
2016 85 [71-97] 23 [18-27] 31 [26-36] 15 [12-18]
2017 81 [68-95] 19 [15-23] 31 [26-36] 14 [12-17]

Table 1. Descriptive characteristics of all calendar variables. ACS Acute coronary syndrome, CI Confidence
Interval, df degrees of freedom, UA unstable angina pectoris, NSTEMI non ST — elevated myocardial infarction,
STEMI ST — elevated myocardial infarction, NA Not applicable, °Cdegrees Celsius, h hour, J/cm? Joule per
square centimeter as measure of surface tension, hPa hectopascal, mm millimeters, m/s meter per second.
Calendar data Day of the week, Month, Season, and Year are analyzed using Kruskal — Wallis test with

H — statistics as output. Consequently, post hoc Dunn’s tests with Bonferroni correction were performed

with the first category Monday, January, Winter and 2010 as reference categories. Bold indicates significance
(p<0.05).

impact the incidence of ACS. Supplemental table S1 shows all 112 meteorological variables and their univariate
calculations.

Our analysis revealed that temperature, sunshine, atmospheric pressure, humidity, rain, wind speed, and
wind direction, as well as their derived parameters, showed statistically significant correlations with emergency
department visits for ACS. For instance, a 0.1° Celsius decrease in mean daily temperature resulted in a 0.07 (CI
95% 0.08 — 0.06) absolute increase in daily ACS emergency department presentations on average.

Machine learning-based predictions of ED presentations for ACS

The variability in the data explained by each modeling approach is shown in Table 3. When appropriate, the
optimal set of hyperparameters is likewise explicated per modeling approach. The highest (adjusted) R* was
obtained using MLR analyses compared to other predictive modeling approaches. Emergency department
presentations due to ACS can be predicted using meteorological and calendar data in a moderate manner, where
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66% of the variance in daily ACS presentations in the Netherlands can be explained. The explained variance
remained similar as the prediction horizon was extended towards 3-, 7-, and 30 days.

Unstable angina pectoris was best predicted using calendar and meteorological data, resulting in 80% of the
variance in ED presentations for UA being explained by the data when predicting 1-day ahead. The R? value for
NSTEMI diagnoses was 0.45, indicating that our model explained 45% of the variance in NSTEMI visits to the
ED. For STEMI presentations to the ED, our explained variance was approximately zero, regardless of modeling
approach employed.

The LASSO regression model identified 46 of the 140 predictive features as most relevant for predicting ACS.
The LASSO regression model yielded an explained variance (adjusted R?) of 65% for ACS presentations to the
ED, compared to an explained variance of 66% by the MLR model (with 140 predictive features). A similar result
was obtained using the RF model compared to the MLR/LASSO approach. Both meteorological and calendar
data explained 63% of the variance of emergency department presentations due to ACS. Likewise, similar results
were obtained for UA, NSTEMI, and STEMI diagnoses.

Figure 3 shows a condensed depiction (top 10) of the feature importance for the RF and LASSO/MLR
regression models. The most important predictors for predicting ACS incidence are the day of the week
(especially Sunday), year 2010/2011, and temperature.

Internal validation of modeling approaches

The modeling approaches employed in the present study were subjected to internal validation using the test
dataset. When applied to the prediction of ED visits for ACS over the course of the subsequent day, the resulting
MAE (MAPE) was 7.8 (11.0%). This value can be interpreted as an average deviation of 7 to 8 cases of actual ED
presentations for ACS per day compared to the predicted number. A detailed breakdown of the MAE (MAPE)
values corresponding to the subdiagnoses of ACS is shown in Table 4.

Discussion

Summary of findings

Our study aimed to investigate the temporal patterns and predictive factors of ED presentations for ACS in the
Netherlands, a temperate climate zone, over an 8-year period.

We observed a reduction in ACS incidence during this period, particularly in the summer months, with a
negative correlation between temperature and ACS incidence. Temperature emerged as a key meteorological
predictive factor alongside calendar variables.

Second, after 2011, there was a notable decline in ACS occurrence, primarily attributed to a significant
decrease in UA cases. Concurrently, there was an increase in the incidence of NSTEMI diagnoses. This decrease
and subsequent increase in UA and NSTEMI diagnoses are possibly due to a reclassification of UA. They might
be associated with the introduction of high sensitive cardiac troponin assays®. This advance in diagnostics
increases the ability of physicians to rule out UA or to rule in NSTEMI cases in patients presenting with similar
symptoms®>2, The incidence of STEMI diagnoses remained stable throughout the study period. These trends
have been similarly observed in German and Swedish ACS registries®>>*.

Furthermore, our descriptive analyses showed considerable daily variations in ACS presentations, with peak
incidence on Mondays and a low incidence on weekend days. Our results align with previous literature; a distinct
increase in incidence on Mondays and a decrease in presentations during the weekend has been described
before!>%. However, the exact mechanism underlying this peak remains unknown. It is speculated that factors
such as employment-related stress, inactivity, overconsumption of alcoholic beverages, or registration errors may
play significant roles®. Furthermore, a decrease in ACS incidence was observed during the summer months.
Seasonal variations in cardiovascular risk factors may explain this trend. A cross-sectional study encompassing
data from 24 population-based studies across 15 countries demonstrated a reduction in cardiovascular risk
factors during the summer months®’.

Our study identified statistically significant correlations between individual weather parameters and ED
presentations for ACS. This aligns with a body of research investigating the association between weather and
the incidence of ACS*%-62,

Predictive modeling

The predictive performance for acute coronary syndrome was moderate (adjusted R2=0.66; MAE (MAPE):
7.8 (11.0%), while the performance for subdiagnoses of ACS varied substantially. The prediction of unstable
angina pectoris resulted in a good explained variance by our model (adjusted R?=0.80; MAE (MAPE): 5.3
(19.1%)). However, the predictive performances for NSTEMI (adjusted R>=0.45; MAE (MAPE): 4.4 (17.6%))
and STEMI (adjusted R?=0.06; MAE (MAPE): 3.3 (28.2%)) were poor. This implies that on a median day with
85 ACS presentations, our model would forecast an average range of 77 to 93 patients. Similarly, for UA, on this
day with a median presentation of 29 patients to the ED, our model’s prediction would averagely span from 23
to 35 patients.

Extending the prediction horizon up to 30 days resulted in a minor decrease in predictive performance.
This minor decrease could be explained by the relatively high importance of calendar features compared to
meteorological features. The stability of our model, even with an extended prediction horizon, bolsters
the potential for their concurrent application with other models predicting ACS in the ED. Furthermore, it
strengthens the model’s potential as an instrument for enhancing ED operational efficiency.

Our results indicate that a non-linear machine learning approach using Random Forest regression was
not superior to conventional multivariate linear regression. Contradicting our initial hypothesis, a tree-
based machine learning algorithm (for example, an RF regression algorithm) would better deal with the
multicollinearity of weather and calendar data and thus make more accurate predictions. Previous research
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Figure 3. (a) Feature importance of Random Forest model. (b) Feature importance of the LASSO model. The
top 10 importance of individual predictors for machine learning algorithms predicting ACS incidence with a
one-day prediction horizon. Abbreviations: LASSO: Least Absolute Shrinkage and Selection Operator. LASSO
was employed concurrently with the Multivariable Linear Regression model to serve as a feature selection tool.

proposed using RF machine learning algorithms to explore the complex interactions between weather parameters
and cardiovascular events®:®2. A possible rationale for this absence of superiority might be a lack of complex
non-linear interactions between the input features and the outcome. Alternatively, a lack of connection between
the selected variables and the outcome variable, in general, could explain the poor predictive performance of the
RF algorithms. The absence of a relationship between our variables and STEMI diagnoses might, in turn, explain
poor predictions of STEMI presentations for both modeling approaches. Our results are consistent with those
of previous research, which reported an R? value of 0.67 for predicting ACS incidence using a Random Forest
algorithm in a study conducted in a province of Poland that analyzed 106,000 cases of ACS and the influence of
weather parameters. This study, however, also incorporated patient characteristics such as medical history and
demographic information. Furthermore, this study predicted the overall incidence of ACS in this region, not
specifically focusing on ED presentations®?.
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Primary outcome | Secondary outcomes

Day 1 Day 3 Day7 Day 30
Diagnosis | MAE (MAPE) MAE (MAPE) | MAE (MAPE) | MAE (MAPE)
MLR/LASSO
ACS 7.8 (11.0) 8.2 (12.0) 8.0 (11.9) 8.0(11.4)
UA 5.3 (19.1) 5.5(20.7) 5.6(21.2) 5.3(19.3)
NSTEMI | 4.4 (17.6) 4.6 (18.9) 4.6 (19.0) 4.7 (19.1)
STEMI 3.3(282) 3.5(26.7) 3.3(27.0) 3.4 (27.0)
LASSO
ACS 7.8 (11.0) 8.2(11.8) 8.0 (11.9) 8.1(11.5)
UA 5.7 (20.3) 5.8(21.9) 5.9 (22.5) 5.8 (20.8)
NSTEMI | 4.7 (18.4) 4.7 (19.6) 4.8 (20.1) 4.8 (19.7)
STEMI 3.4 (28.4) 3.5(26.7) 3.3(27.0) 3.4(27.1)
Random forest
ACS 8.2(11.6) 8.5(12.6) 8.1(11.6) 8.3 (11.8)
UA 5.9(21.2) 5.8 (21.9) 5.7 (20.0) 5.4 (19.6)
NSTEMI | 4.7 (19.2) 4.7 (19.1) 4.8 (19.7) 4.6 (19.1)
STEMI 3.4 (28.4) 3.2(26.9) 3.3(283) 3.3(27.7)

Table 4. Internal validation per modeling approach. ACS acute coronary syndrome, LASSO least absolute
shrinkage and selection operator regression, MLR multivariable linear regression, NSTEMI non — ST elevated
myocardial infarction, MAE mean absolute error, MAPE mean absolute percentage error, STEMI ST elevated
myocardial infarction, UA unstable angina.

Feature importance

Feature importance analyses, shown in Fig. 3, revealed that both the LASSO and Random Forest models notably
adjusted for the years 2010 and 2011, likely attributed to the shift in the quantification of diagnoses of acute
coronary syndrome mentioned above. Although univariate weather correlations were weak, weather parameters
were identified for their predictive performance in both LASSO and RF models. Both models underscore the
importance of the day of the week and temperature to predict ACS.

Strengths and limitations

In current literature, our research stands as the most comprehensive study concerning both the volume
of patients and the duration of the study period assessing ACS incidence in the ED. While the relationship
between meteorological conditions and daily or monthly variations has been previously explored, our work
uniquely integrates these publicly available factors into predictive models for ACS incidence in the ED.
This novel approach holds significant potential for enhancing future research in this field. For instance, the
application of ensemble modeling techniques could refine the accuracy of both existing and forthcoming
prediction models. For example, new machine learning-based decision support systems have been proposed
to prevent unnecessary hospital admissions and enhance the early diagnosis of myocardial infarction®®-%. In
these studies, machine learning-based classification models have demonstrated superior performance compared
to conventional diagnostic pathways and provide quicker identification of low-risk ACS patients. Similarly,
prehospital algorithms for diagnosing ACS have been developed. If implemented, these models could optimize
the recognition of ACS patients before they present to the ED®®®”. Combining advanced prediction models with
our model for predicting ACS presentations to the ED could significantly enhance patient care by reducing
unnecessary admissions, improving early diagnosis, and optimizing resource allocation.

This study, while providing valuable insights into the temporal patterns of ACS incidence and the prediction
of ED presentations for ACS with publicly available data, has several limitations which should be considered
when interpreting the results. A notable limitation of our study was the incorporation of ‘Year’ as a predictive
variable. The use of ‘Year’ is restrictive because its effects can only be evaluated retrospectively. It is useful for
future predictions only if the model is recalibrated annually. To address this, we conducted a supplemental
analysis (Table S2), where we excluded the predictor variables for the years 2012 to 2017. The remaining dummy
coded variables for the years 2010 and 2011 were retained, essentially serving as an added constant to adjust for
the noted change in incidence after these years. In this subanalysis, we observed a minor reduction in R? (from
0.66 to 0.65) and similar results in our validation metrics, with an MAE (MAPE) of 7.8 (11%). This indicates that
our model maintains its robustness even without including yearly trend variables. These supplementary findings
suggest that a yearly trend predictor is not essential for our predictions.

Another limitation of our study was the choice of cross-validation (CV) method. We opted for random cross-
validation instead of sequential cross-validation. This decision was influenced by the change in ACS classification
post-2012 and the transition to a new organization (Vektis, starting in 2016) responsible for the counting and
processing of diagnoses and insurance claims. While the change after 2016 did not manifest in the temporal
patterns of our data, they could still impact the daily count of ACS diagnoses. Nevertheless, it is important to
note that random CV also offers several advantages. A significant benefit is that the predictions derived from
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random CV tend to be more generalizable compared to those from sequential CV. In our study, we utilized data
points from the entire study period (2010-2017) for both training and validation. This approach, stemming
from the nature of random CV, potentially reduces the risk of bias and the likelihood of overfitting the models.

An additional limitation of our study is the reliance solely on anonymized data, which limits our ability to
evaluate the impact of weather conditions on specific patient comorbidities, such as advanced age, sex, diabetes
mellitus, or other concurrent diseases. Due to the nature of our data, we were unable to analyze diurnal variations
in our predictions. Consequently, our model provides insights for an entire 24-h period rather than for specific
times of the day, which could have had an additional benefit in the optimization of staffing schedules.

Conclusion

The present study sheds light on the temporal patterns of daily emergency department presentations for acute
coronary syndrome and its subdiagnoses in the Netherlands. Our findings indicate that ACS presentations
exhibit distinctive seasonal changes, with marked reductions in incidence during the summer months. Despite
the modest predictive performance of the model using calendar and meteorological features to predict ACS
presentations, our results demonstrate that the prediction of ED presentations for unstable angina using these
variables has good predictive performance, even when extending the prediction horizon. Future research should
focus on identifying new input parameters, such as calculating new non-linear weather features, examining
which patients with comorbid diseases are more prone to be affected by meteorological changes, and examining
the effect on ACS incidence. Furthermore, future research should include other diagnoses and a combination of
modeling approaches to improve the accuracy of predicting overall ED patient presentations. Additionally, our
findings could lead to improvement in patient flow within the emergency department and have the potential to
assist in refining ED staffing schedules.

Data availability

Data Availability StatementThe data supporting the findings of this study are available upon reasonable request.
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