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Subtracting the background
by reducing cell-free DNA's
confounding effects on
Mycobacterium tuberculosis
quantitation and the sputum
microbiome
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DNA characterisation in people with tuberculosis (TB) is critical for diagnostic and microbiome
evaluations. However, extracellular DNA, more frequent in people on chemotherapy, confounds
results. We evaluated whether nucleic acid dyes [propidium monoazide (PMA), PEMAX] and DNasel
could reduce this. PCR [16S Mycobacterium tuberculosis complex (Mtb) qPCR, Xpert MTB/RIF] was done
on dilution series of untreated and treated (PMA, PEMAX, DNasel) Mtb. Separately, 16S rRNA gene
gPCR and sequencing were done on untreated and treated sputa before (Cohort A: 11 TB-negatives,

9 TB-positives; Cohort B: 19 TB-positives, PEMAX only) and 24-weeks after chemotherapy (Cohort

B). PMA and PEMAX reduced PCR-detected Mtb DNA for dilution series and Cohort A sputum versus
untreated controls, suggesting non-intact Mtb is present before treatment-start. PEMAX enabled
sequencing-based Mycobacterium-detection in 7/12 (58%) TB-positive sputa where no such reads
otherwise occurred. In Cohort A, PMA- and PEMAX-treated versus untreated sputa had decreased

a- and increased B-diversities. In Cohort B, B-diversity differences between timepoints were only
detected with PEMAX. DNasel had negligible effects. PMA and PEMAX (but not DNasel) reduced
extracellular DNA in PCR and improved pathogen detection by sequencing. PEMAX additionally
detected chemotherapy-associated taxonomic changes that would otherwise be missed. Dyes enhance
microbiome evaluations especially during chemotherapy.

Keywords PEMAX, Propidium monoazide, DNasel, Mycobacterium tuberculosis, Xpert MTB/RIF, Sputum
microbiome

The microbiome plays an essential role in host biological processes! and is increasingly implicated as an important
mediator of human health. Perturbations to the microbiome, particularly after antibiotic exposure, has been
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found to influence outcomes in diverse disease states?, including tuberculosis (TB)>. First-line TB antibiotics
rapidly deplete microbial diversity*®, and these effects can persist long after chemotherapy is completed®.

Tuberculosis is a leading infectious cause of mortality globally with ~ 1.2 million deaths per year’. Although
sensitive tests like Xpert MTB/RIF (Xpert) are available for Mycobacterium tuberculosis complex (Mtb) detection,
PCR can be confounded by DNA from non-intact cells, including from previous TB3-!°. This problem can be
significant: in some settings up to 35% of notifications have recurrent TB; requiring special consideration in
diagnostic algorithms®. The ability to distinguish Mtb DNA from old versus new episodes is therefore of clinical
and epidemiological significance!!!2,

Unlike most other infectious diseases with short chemotherapy durations, TB requires at least six months
of antibiotics with broad-spectrum rifamycins and potentially fluoroquinolones. These antibiotics have
bactericidal effects!®!, resulting in extracellular DNA accumulation that, in the case of Mtb DNA, can persist
for years®!? especially in people with compromised immunological clearance such as people living with HIV'®.
Characterisations of the microbiome in people receiving (or who have received) TB chemotherapy thus likely
measure total bacterial DNA, rather than only the subset within intact (and hence live) cells.

Viability dyes such as ethidium monoazide (EMA), propidium monoazide (PMA), and PEMAX (an EMA
and PMA formulation) have been widely used for discriminating intact from non-intact microbial cells'¢-20
and act by passing through compromised membranes of non-intact cells (e.g., following heat exposure*""*? or
repeated freeze-thaw?®), after which they covalently cross-link with DNA to irreversibly form complexes not
amplifiable by PCR?%. As a result, only DNA from intact cells is, in theory, amplified once unbound dye is
removed. PMA is more effective than EMA in excluding DNA from non-intact cells due to higher charge?.
PEMAX was developed to overcome limitations of PMA and EMA such as the inability to bind DNA from cells
that are still intact but no longer metabolically active and thus may improve specificity°.

These dyes have some data when applied to M#b*’~3!. For example, the addition of PMA to Xpert shows
potential for treatment monitoring, however, specificity remains an issue?”?%. More data are needed as dye
penetration through Mtb’s waxy cell wall may be suboptimal (especially in specimens with high bacillary
load)* and sputum from diseased individuals contains high levels of host and microbial extracellular DNA that
sequesters dye away, leaving insufficient dye to subtract background DNA. Combining viability dyes with 16S
rRNA gene sequencing could improve the accuracy of microbial taxonomy by reducing background from non-
intact taxa that, by virtue of their lack of viability, are unlikely to play a direct biological role.

We investigated the effects of nucleic acid dyes (PMA, PEMAX) and DNasel on (1) Mtb PCR detection (168,
Xpert) in a dilution series (with versus without antibiotics, heat kill, freeze-thaw) and sputum from people with
presumptive TB as well as (2) changes in the microbiome (compared by TB status and duration of chemotherapy
exposure) by comparing sputum treated or untreated with dyes and DNasel. Our overarching goal was to assess
whether usage of dyes and/or DNasel could enhance the detection of intact Mtb (in vitro and in sputum) and
enhance analysis of the sputum microbiome.

Methods

Ethical approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki. This study was approved by the
Stellenbosch University Health Research Ethics Committee (N14/10/136, N16/05/070, M15/10/041). Informed
consent was obtained from all participants involved in the study.

In vitro dilution series using Mycobacterium tuberculosis cells

Culture

Mtb H37Rv was cultured (37 °C) to an OD, of 1.0 in 20mL Middlebrook 7H9 liquid medium with 10% oleic
acid, albumin, dextrose, and catalase (OADC; BD Diagnostics, Johannesburg, South Africa), 0.5% glycerol and
0.05% Tween-80 (Sigma-Aldrich, Modderfontein, South Africa). One millilitre aliquots were frozen (— 80 °C).

Antibiotic exposure (experiment A)

Two hundred microlitres of thawed stock was inoculated into each of six flasks with 20mL 7H9 and incubated
until mid-log (OD  0.6-0.8). Isoniazid (0.2 g/mL in nuclease-free water; Thermo Fisher Scientific, Waltham,
USA) and rifampicin (1 g/mL in dimethyl sulfoxide; Sigma-Aldrich, Modderfontein, South Africa) were added
to three of the 20mL culture flasks (three additional flasks served as non-antibiotic controls) (Fig. 1A). All six
flasks were incubated for 24-, 48-, and 72 h at 37 °C. To generate a 1:1 mixture of intact and non-intact cells, 5mL
of the non-antibiotic and antibiotic-containing cultures after different incubation periods (24-, 48-, 72 h) were
combined in a separate sterile flask and, from each, a 100-fold serial dilution was done (108,10°, 10* CFU/ml) in
7H9 to a total volume of 10 ml. This was done for three biological replicates.

Heat kill (experiment B)

For heat-kill experiments, a single culture was grown to mid-log, 100-fold dilutions (108, 10° CFU/ml) done and
500uL of each dilution done as stated above, heated (100 °C, 30 min) and cooled to room temperature (RT). This
was done for three biological replicates.

Freeze-thaw (experiment C)
A freeze-thaw (FT) experiment was done with 10° dilutions after 24-, 48- and 72 h incubation periods that were
frozen (— 20 °C) and allowed to thaw at RT. One biological replicate was done due to consumable unavailability.
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Fig. 1. Experimental workflow for in vitro dilution series and sputum. Mycobacterium tuberculosis was
cultured in flasks and a dilution series prepared for testing in three separate experiments: antibiotic exposure
(Experiment A), heat-kill (Experiment B) and freeze-thaw (Experiment C). Sputum was collected from two
distinct cohorts: one comprising patients with presumptive tuberculosis (Cohort A) and the other involving
patients treated for drug-resistant tuberculosis (Cohort B). MTBC Mycobacterium tuberculosis complex.

Treatment of samples to remove background DNA

PMA and PEMAX treatment (experiments A-C)

For Experiments A and B, 500uL of each dilution was aliquoted into (1) an empty DNA LoBind tube (Eppendorf,
Hamburg, Germany) without further treatment (hereafter referred to as untreated), (2) a LoBind tube containing
50uM PMA (Biotium, Fremont, USA) and (3) a PEMAX monodose tube (GenIUL, Barcelona, Spain). PMA-
and PEMAX-containing tubes were vortexed for 5s before incubation in the dark (30 min, 37 °C). To crosslink
dyes with DNA, photoactivation using the Phast Blue system (GenIUL; 60 W, 2 min for PMA, 15 min for
PEMAX) was done. PEMAX-treated samples were transferred to new LoBind tubes (PEMAX monodose tubes
are hydrophilic and may cause DNA to not be neutralised by the dye!®). The same was done for Experiment C
except only PEMAX was used. At the end of dye treatment, samples were frozen (— 20 °C) for batched DNA
isolation.

DNasel treatment (experiments A and B)

This was done for the 48 h timepoint only. 500uL of each dilution was aliquoted into an empty LoBind tube
(hereafter referred to as untreated) or a LoBind tube containing 1uL of RQ1 RNase-Free DNase 10X Reaction
Buffer (400mM Tris-HCI, 100mM MgSO » 10mM CaClz; Promega, Madison, USA) and 1uL RQI RNase-Free
DNasel (1U/ug DNA; Promega) and incubated (37 °C, 30 min) (hereafter referred to as treated). The treated tube
was further incubated (65 °C, 10 min) with 1uL of RQ1 DNase Stop Solution and cooled to RT. Samples were
frozen (-20 °C) for batched DNA isolation.

Sputum processing

Cohort A

Induced sputa were collected from 20 people with presumptive TB on the morning they presented at primary
healthcare clinics in Cape Town, South Africa. Sputa were decontaminated with a modified decontamination
protocol?® omitting sodium-hydroxide (to preserve bacterial viability) and an equal volume of N-acetyl-L-
cysteine (NALC; Sigma-Aldrich) solution (0.5% w/v NALC, 2.7% w/v trisodium citrate) for 15 min at RT,
followed by neutralisation with a double phosphate buffer volume (BD Diagnostics) and centrifugated (3000xg,
15 min). Pellets were resuspended in 5mL phosphate buffer and bio-banked (-20 °C) for PMA, PEMAX or
DNasel treatment as described earlier (Fig. 1B). People were classified as TB-negative (n=11) if they were
MTBC culture-negative (or, if their culture was contaminated, sputum Xpert negative; n=1) or TB-positive
(n=9) if they were MTBC culture-positive (or, if culture-contaminated, sputum Xpert-positive; n=2).
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Cohort B

Sputa was collected from 23 people with multidrug resistant (MDR)-TB who were enrolled in a clinical trial® at
Brooklyn Chest Hospital, Cape Town, South Africa. Sputum collection was done at two timepoints, week 0 (before
or < 1 week after chemotherapy start) and after 24 weeks chemotherapy (week 24) and were decontaminated and
pellets resuspended in 2mL phosphate buffer, from which one 500puL aliquot was immediately PEMAX-treated as
described above and the other left as is. Both aliquots were stored at -20 °C for batched DNA isolation (Fig. 1C).

Microbial DNA isolation

DNA was isolated from the Experiments A-C dilution series using the QIAgen DNA Mini Kit (QIAGEN, Hilden,
Germany) with modifications. Briefly, aliquots were heat-killed (95 °C, 15 min), resuspended in lysozyme-
containing (10 mg/ml) lysis buffer, incubated (1 h, 37 °C), and proteinase K digestion done (56 °C, 30 min) before
isolation. DNA was isolated from Cohort A and B sputum using the Purelink Microbiome DNA Purification Kit

(Invitrogen, Carlsbad, USA) per manufacturer’s instructions>*.

16S rRNA gene characterisation

Quantitative real-time PCR (qPCR) (experiments A-C)

Reactions comprised of 5uL iTaq Universal SYBR Green (Thermo Fisher Scientific, Massachusetts, United
States), 0.3pL of each forward and reverse primer (10uM), 1.4uL nuclease-free water and 3uL template DNA
were done using the CFX Connect Real-Time PCR Detection System (Bio-Rad, Fremont, USA). Mtb-specific
primers were used for the dilution series and universal 16S rRNA primers® used for sputum (Cohorts A and B)
(Supplementary Table 1). Cycling conditions were 95 °C for 5 min followed by 35 cycles of 95 °C for 5s and 60 °C
for 30s. All reactions were in three technical replicates and cycle thresholds (C,; number of cycles before product
detected) recorded. In each experiment, non-template control C.s were averaged to derive a positivity threshold.

Detection of viable bacilli by Xpert MTB/RIF (experiments A and B)

500pL of each dilution (10%, 108, 108 CFU/ml) were Xpert-tested (Fig. 1). Aliquots were either first treated with
PMA, PEMAX or DNasel as described above or were untreated. The manufacturer-recommended input volume
of the (un)treated dilution (500 pl) was used for PEMAX Xpert testing®. Therefore, Xpert Sample Reagent
(1.5mL) was added to each 500 pl aliquot and incubated (RT, 15 min) with intermittent shaking before 2mL of
the mixture tested (version G4; Cepheid, USA). Xpert only reports C,, . for positive results.

Sequencing and analysis

Amplicon library preparation was carried out on an automated platform (Biomek 4000) using a custom liquid
handling method as previously described. Sequences (V4 region, 150 bp paired-end) generated by Illumina
MiSeq as described®®*° were demultiplexed (QIIME 2; v2020.2)*° and denoised (DADA2)*'. Taxonomic
classification was done with the Naive Bayes classifier trained on Greengenes 13.8 reference database*? (pre-
clustered at 99% identity with 515 F/806R primers selected*®). BIOM tables were rarefied by random subsampling
to equal depth. Potential contaminants (in blank dyes, DNasel and reagents) were identified using decontam
(v1.22.0)* with a threshold of 0.5 based on their prevalence in sputum vs. background samples. Contaminant
amplicon sequencing variants (ASVs) were not removed but highlighted if later identified as discriminatory. a-
and B-diversities were calculated using vegan (v2.6-4)%.

Statistical analysis

The Kruskal-Wallis test with Dunn’s multiple comparisons was used to compare untreated and dye-treated C.
values (Experiments A-C). The Wilcoxon matched-pairs signed rank test was used for sputum qPCR (Cohort A)
and Xpert results. One-sided tests were used because we hypothesised that dyes would improve Mtb detection.
P-values are for comparisons between untreated and treated (PMA, PEMAX, or DNasel) and were not calculated
for C s exceeding that of the non-template control. The Friedman test with Dunn’s multiple comparisons was
used to compare a-diversity between untreated and treated sputa (Cohorts A and B). Bray-Curtis distances
were compared using Kruskal-Wallis with Dunn’s multiple comparisons. DESeq2 (v1.42.0)*¢ (with Benjamini-
Hochberg multiple comparisons) was used for differential abundance testing. Feature tables were pruned to
> 1% relative abundance in > 1% of samples. Analyses were done using GraphPad Prism (v8.0.1) and R (v4.3.2).
p<0.05 and Q-values <0.2 were significant. Supplementary Table 2 details the figures to which each statistical
test applies.

Results

PMA and PEMAX treatment reduce Mtb DNA detection in dilution series (experiments A and
B)

16S rRNA qPCR readouts

Dye-treated aliquots had lower detected mycobacterial load (increased C,) than untreated controls (Fig. 2A,B).
The same finding occurred using combinations of antibiotic-exposed or heat-killed cells, as well as different
incubation periods (48 h, 72 h; Supplementary Fig. 1).

FT resulted in lower detected mycobacterial load [24 h non-antibiotic: AC} 2.13 (95% CI: 1.25-2.99)]
compared to pre-FT samples, but when the same FT vs. pre-FT comparison was done for PEMAX-treated
aliquots, a larger decrease in detected load occurred [24 h non-antibiotic: AC., 6.44 (5.53-7.36)] (Supplementary
Fig. 2).
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Fig. 2. PMA and PEMAX reduce MTBC detection in dilution series (regardless of how aliquots were treated)
and in sputum sediments from presumptive TB patients. PCR readouts for non-antibiotic (cultured in absence
of antibiotics), antibiotic (cultured with isoniazid and rifampicin), 1:1 mixture (non-antibiotic: antibiotic),

and heat-killed (non-antibiotic aliquots heated at 100 °C for 30 min) cultures after 24 h of incubation.
Supplementary Fig. 1 has these data for the 48 h and 72 h exposure period. Median C;s (IQR) are shown

for (A) 10% and (B) 10° CFU/ml dilutions. Open circles denote C;s that exceed those of the averaged non-
template control (dashed line). Median Xpert C,, . (95% CI) are shown for (C) 108 CFU/ml and (D) 10° CFU/
ml. Triangles on y-axes indicate decreasing bacterial load. Purple dots: untreated; red dots: PMA; green dots:
PEMAX. MTBCMycobacterium tuberculosis complex, C cycle threshold, Cy, . minimum cycle threshold, CI
confidence interval, IQR interquartile range.
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Xpert
Dye reduced load readouts vs. untreated controls regardless of if aliquots underwent antibiotic or heat or no
exposure (Fig. 2C,D).

DNasel treatment does not reduce Mtb DNA detection in dilution series (experiment A and
B)

DNasel had no effect on C;. compared to untreated controls. Only the antibiotic-exposed cells showed, after
DNasel treatment, unexpectedly higher detected mycobacterial load [for example, the 108 CFU/ml dilution
had median (IQR) C;s of 19.24 (19.02-19.42) vs. 19.32 (19.24-20.96) for untreated; p=0.014] (Supplementary
Fig. 3). There was no significant difference in bacterial load measured in DNasel-exposed aliquots tested with
Xpert (Supplementary Fig. 4).

Sputa from presumptive tuberculosis patients are abundant in extracellular bacterial DNA
(cohort A)

PMA, PEMAX, and DNaseIs effect on PCR quantitation and sputum a- and f-diversity

gPCR Decontaminated sputum treated with PMA or PEMAX had lower measured load than untreated con-
trols (Fig. 3A) whereas no differences in load resulted from DNasel-treatment.

Sequencing PMA- and PEMAX-treated sputum had lower a-diversity, whereas DNasel-treated sputum had
similar a-diversity to paired untreated controls (Fig. 3B). f-diversity differed between untreated and PMA-treat-
ed (p=0.006), untreated and PEMAX-treated (p=0.041), and PMA-treated and DNasel-treated sputum
(p=0.019) (Fig. 3C). Paired B-diversity distances between PMA- or PEMAX-treated and untreated sputum were
greater than those between DNasel-treated and untreated sputum (Fig. 3D). Results remained similar when
TB-positive and TB-negative groups were separately analysed (Supplementary Fig. 5A,B).

PMA treatment reveals more taxa (versus untreated controls) than PEMAX, however, only PEMAX permits
Mycobacterium detection

PMA permitted 19 more differentially abundant taxa to be identified vs. its untreated controls (seven enriched,
12 depleted; Scardovia most enriched, Corynebacterium most depleted) (Fig. 3E), than PEMAX [one enriched
(Mycobacterium), one depleted (Neisseria), one identified as a potential contaminant (Bosea)] (Fig. 3F;
Supplementary Figs. 6, 7). None of the seven taxa enriched due to PMA were Mycobacterium. In PEMAX-
treated sputum from people with TB, 6/9 (67%) had an increase in detected Mycobacterium relative abundance
compared to untreated sputa (p=0.031) (Fig. 3G) [5/9 (56%) of these would have not had mycobacterial reads
detected by 16S rRNA gene sequencing if PEMAX was not used]. No discriminatory taxa were associated
with DNasel treatment. After stratification by TB status, similar results with fewer differential taxa occurred
(Supplementary Fig. 8).

PMA and PEMAX improve characterisation of microbiome differences by TB status compared to untreated
controls

In untreated sputum, no a- and P-diversity differences occurred by TB status with Gallibacterium being the
most discriminatory (enriched in TB-negatives). Upon PMA or PEMAX treatment, similar results occurred
with Scardovia additionally enriched in TB-negatives (Fig. 4A-E, Supplementary Fig. 9). Mycobacterium was
additionally enriched in TB-positives after PEMAX. A comparison of Mycobacterium relative abundances
stratified by TB status and treatment method showed Mycobacterium enriched in PMA- and PEMAX-treated
sputa from TB-positives (p=0.026 and p=0.002, respectively) (Fig. 4F). No discriminatory taxa were found
between patient groups with DNasel treatment.

PEMAX treatment reveals diversity changes from TB chemotherapy otherwise undetected
(cohort B)

Comparisons within timepoints (untreated versus treated)

a-Diversity differed only at week 24, not week 0, between treated and untreated sputa, with lower a-diversity
observed after PEMAX (Fig. 5A; p=0.033). There were no B-diversity differences at week 0 nor week 24 (Fig. 5B).
No taxonomic differences were found at week 0 in treated versus untreated sputum, however, at week 24, treated
sputa were Neisseria-enriched and Mogibacterium-depleted (Fig. 5C).

Comparisons within treatment groups (week 0 versus week 24)

a-Diversity was unchanged per patient between timepoints (Fig. 5A). B-diversity only changed over time in
treated sputa (Fig. 5B; p=0.007). In untreated sputa, Bifidobacterium and other taxa were enriched at week 0 vs.
week 24 (Fig. 5D). However, in treated sputum, these taxa were absent and other differences occurred (Fig. 5E).

Discussion

We demonstrated (1) PMA- and PEMAX-treated samples and sputum have lower detected mycobacterial load
compared to untreated counterparts, (2) PMA- and PEMAX treatment of sputa reduces a-diversity and results
in B-diversity differences compared to paired untreated sputum, (3) Mycobacterium (detected by 16S rRNA gene
sequencing) is enriched in PEMAX-treated sputum from TB-positives compared to TB-negatives, a difference
that was not seen in untreated sputum, (4) chemotherapy-associated microbiome changes are clearer (i.e.,
communities are compositionally dissimilar) in sputum treated with PEMAX versus those not treated, and (5)
DNasel treatment produces inconsistent signals in in vitro experiments and does not influence microbiome
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estimates. Together, these data have implications for characterising pathogen load and the microbiome, including
evaluating the effect of chemotherapy, especially in people with TB.

PMA and PEMAX improve differentiation of live from dead foodborne pathogens such as Salmonella,
Campylobacter, and Listeria’. PMA also preferentially excludes dead rather than live Mtb in smear-positive
sputa®®3248 however, no studies have evaluated PEMAX in TB. Lower detected mycobacterial load was found
with PMA and PEMAX treatment in PCR (qPCR, Xpert) implying some bacilli even from laboratory-generated
dilution series are not intact. The effects of PMA, PEMAX, and DNasel were not as strong as expected in the
presence of increased cellular membrane disruption caused by antibiotics and heat killing (for example, PCR
results becoming negative). This corroborates earlier Xpert data showing imperfect specificity and minimal
improvement with PMA pre-treatment?”.

Compared to paired untreated samples, PMA- and PEMAX-treated samples had lower microbial richness
(i.e. suppressed DNA signals from non-intact bacteria). The inclusion of PMA or PEMAX is thus important for
removing taxa likely not biologically active. These methods further identified Mycobacterium in people with
TB that would otherwise go undetected. Previously, we demonstrated how a nested mycobacteriome approach
could help to resolve this?’; dye treatment represents an alternative. This is relevant for microbiome studies
involving people with TB, as we and others have shown that Mycobacterium reads are often undetectable by 16S
rRNA gene sequencing in sputum®®°!.

Prolonged exposure to TB chemotherapy, particularly those with broader antimicrobial spectra that are
common in treatment regimens for drug-resistant TB, and host immunological responses are likely to produce
non-viable bacterial populations'®>. PEMAX improved detection of microbiome changes in sputum before and
after chemotherapy by detecting more discriminatory taxa. It is worth considering if previously documented
treatment-related sputum microbiome changes®>? overlooked any taxonomic changes that could have been
detected using a viability dye.

DNasel performed poorly in dilution series and sputum microbiome evaluations. Prior research had
suggested that the presence of antibiotics increased DNasel sensitivity®®, but this was not the case, which may
be related to differences in specimen type or bacterial species. While all reagents used for antibiotic and DNasel
preparation was freshly prepared, it cannot be ruled out that the DNasel was inactivated at some point or that
antibiotic preparation contained rRNA contamination, although this is unlikely. We acknowledge that different
types of DNasel exist (including from different suppliers) and that DNasel may have shown efficacy in other
studies; however, the fragile nature of the enzyme prevents it from being used for applications such as those
described in our study.

The results must be viewed in the context of its limitations. Xpert assays was done using a dilution series of
cells instead of sputum, in which cells are embedded within a matrix, which may affect results. Furthermore,
sputum decontamination processes (commonly done as part of TB microbiology) can cause cell death while
leaving cell membranes intact, in which case PMA and EMA have lower reduced ability to remove background
DNA>*%>, This, however, is one reason we used PEMAX, which was designed to overcome this constraint!®.
Moreover, we used a modified sputum decontamination procedure® in which sodium hydroxide was omitted to
minimise effects on bacterial viability. Some study participants (Cohort B, who had MDR-TB) may have already
been on chemotherapy at week 0, however, it is difficult to obtain a true baseline specimen from such people who
are often prescribed first-line chemotherapeutics before drug resistance is discovered.

As sputum is an imperfect surrogate for the lower airways, many studies are shifting to bronchoalveolar
lavage (BAL) sampling. Pre-treating low biomass specimens, such as BAL fluid or cough aerosols, where
background signals from medical equipment or PCR reagents (or “reagent microbiome”) can interfere with
biological interpretation®®, is likely to be beneficial, but further validation is required.

Our findings highlight the critical role of PMA or PEMAX pre-treatment in respiratory specimens,
particularly during chemotherapy, as it provides invaluable insights into bacterial load characterisation and
microbiome dynamics, especially when considering chemotherapeutics.

Data availability

The datasets generated and analysed during the current study are available in the Sequence Read Archive under
accession number PRINA1102510. The original R script, metadata, ASV table, and taxonomy file are available in
GitHub (https://github.com/segalmicrobiomelab/TB_pemax.git).
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