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The aim of our study was to develop robust diagnostic and prognostic models for lung adenocarcinoma 
(LUAD) using machine learning (ML) techniques, focusing on early immune infiltration. Feature 
selection was performed on The Cancer Genome Atlas (TCGA) data using least absolute shrinkage and 
selection Operator (LASSO), random forest (RF), and support vector machine (SVM) algorithms. Six 
ML algorithms were employed to construct the diagnostic models, which were evaluated through 
receiver operating characteristic (ROC) curves, precision-recall curves (PRC), and classification error 
(CE), and validated on the GSE7670 dataset. Additionally, a lasso cox prognostic model was built 
on the TCGA-LUAD dataset and externally validated using independent Gene Expression Omnibus 
datasets (GSE30219, GSE31210, GSE50081, and GSE37745). Single-sample gene set enrichment 
analysis (ssGSEA) was performed to assess immune cell infiltration in stage I LUAD samples, revealing 
significant differences in immune cell types. These findings demonstrate a positive correlation between 
immune infiltration in stage I LUAD and Th2 cells, Tcm cells, and T helper cells, while a negative 
correlation was observed with Macrophages, Eosinophils, and Tem cells. These insights provide novel 
perspectives for clinical diagnosis and treatment of LUAD.
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Lung cancer, characterized by its high incidence and mortality rates, has imposed a significant disease burden 
worldwide1. Non-small cell lung cancer accounts for 85% of lung cancer cases, with lung adenocarcinoma 
(LUAD) being the predominant subtype2. Given that computed tomography often detects uncertain nodules, 
the identification of biomarkers that can accurately distinguish between malignant and benign nodules could 
lead to more effective diagnosis of LUAD3. Furthermore, lung cancer is acknowledged for its high heterogeneity. 
Its molecular classification precisely categorizes tumors into informative subtypes, informing prognosis and 
enabling more targeted, personalized treatments4. Hence, novel biomarkers are urgently needed to enhance 
LUAD diagnosis and prognosis, surpassing current diagnostic and therapeutic methods.

Machine learning (ML) constructs predictive models through deep analysis and learning of large-scale 
datasets, thereby uncovering underlying patterns and regularities5. In the biomedical domain, its robust data 
mining and computational capabilities offer solutions to complex problems, particularly when dealing with 
large-scale and high-dimensional patient data6. ML models can predict disease progression based on such data, 
providing decision support for clinicians and facilitating the development of personalized treatment plans7. 
Furthermore, their application in areas like medical image analysis and genetic sequencing data processing has 
significantly improved diagnostic accuracy and research efficiency8. ML in biomedicine holds great potential for 
medical innovation. However, ML models for precise early lung nodule classification are scarce, with few studies 
using ≥ 6 ML methods. In LUAD early diagnosis, developing a highly sensitive and specific model is challenging. 
More research is needed to explore ML algorithms for lung nodule classification and early LUAD diagnosis, 
enhancing diagnostic accuracy for better patient outcomes.
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In this study, we utilized LUAD data from The Cancer Genome Atlas (TCGA) to identify stage I markers 
via least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine 
(SVM), constructing diagnostic models with six ML algorithms. Model performances were evaluated using 
receiver operating characteristic (ROC) curves, precision-recall curves (PRC), and classification error (CE), 
validated on the GSE6768 dataset. A lasso cox prognosis model was developed and assessed through K-M, 
time-dependent ROC, and gene expression analysis, validated on four Gene Expression Omnibus datasets. 
Single sample gene set enrichment analysis (ssGSEA) evaluated immune cell infiltration in stage I LUAD, with 
significant immune cell types identified by Wilcoxon and LASSO tests. Our aim is to enhance clinical decision-
making accuracy and efficiency through precise LUAD diagnostic and prognostic models, while exploring early-
stage immune infiltration mechanisms. The study flowchart is in Fig. 1.

Results
Feature selection
Regarding the mRNA dataset, the RF model’s performance was evaluated using OOB estimation, yielding a low 
error rate of 1.44%, indicating high classification accuracy on the training set. The confusion matrix showed a class 
error rate of 5.56% for the normal class and 0.58% for the stage I class, emphasizing effective differentiation. To 
identify influential features, we used varImpPlot to visualize the top 30 variables by mean decrease gini (Fig. 2A). 
Figure 2B illustrates the change in CE as the number of trees varies, showing the effect of tree count on model 
performance. In LASSO cross-validation (Fig. 2C), increasing λ initially reduced error before rising, balancing 
underfitting and overfitting. Figure 2D shows how λ's logarithmic increase decreases model complexity, shrinks 

Fig. 1.  Flow chart of the study.
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coefficients, and may converge some to zero. lambda.min (0.01005025) offers optimal training but with high 
complexity, while lambda.1se (0.06281407) provides a concise model with near-optimal performance, reducing 
overfitting risk. Thus, we selected the lambda.1se model as final. By intersecting the two predictions, six optimal 
mRNAs (ADRB2, FAM189A2, CLEC3B, AGER, CAT, and RS1) were obtained. The venn diagram is presented 
in Fig. 2E. Figure 2F,G displays the results of miRNA variable selection using RF, while Fig. 2H,I presents the 
miRNA variable selection outcomes from the LASSO algorithm. After intersecting, miR-21-5p and miR-29c-3p 
were selected as the final features. The venn diagram is provided in Fig. 2J. Figure 2K,L show cases the lncRNA 
variable selection results from RF, and Fig. 2M,N demonstrates the lncRNA variable selection outcomes using 
the SVM algorithm. After intersecting, five lncRNAs (BX2-AS1, PTPRD-AS1, LINC01996, AL590226.1 and 
AC084030.1) were obtained as the results of feature selection. The corresponding Venn diagram is presented in 
Fig. 2O.

Fig. 2.  Feature selection. (A) Feature selection of mRNAs using RF. RF.analysis classifies the levels of 
importance of mRNAs. The X‐axis represents RF mean decrease in accuracy and gini. The Y‐axis represents 
a ranking of variables was obtained from RF on the basis of mean decrease in accuracy and gini coefficients. 
(B) Performance (error rate) per number of tree generated by the RF algorithm. The x-axis shows the number 
of trees, Y-axis is the error rate given by RF (out of bag error estimation from 800 trees). Black, red and green 
lines correspond to the gross distribution, stage I LUAD distribution and adjacent normal tissue distribution, 
respectively. (C) Lasso analysis results of mRNAs. The lower horizontal axis represents lambda value, and the 
upper horizontal axis scale represents the number of variables in the lasso model, the regression coefficient (x) 
of which is not 0. (D) The trajectory of each independent variable, the horizontal axis represents the log value 
of the independent variable lambda, and the vertical axis represents the coefficient of the independent variable. 
(E) A venn diagram of two feature selection methods. (F) Feature selection of miRNAs using RF. RF analysis 
classifies the levels of importance of miRNAs. (G) Performance (error rate) per number of tree generated by 
the RF algorithm. (H) Lasso analysis results of miRNAs. (I) The trajectory of each independent variable, the 
horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents 
the coefficient of the independent variable. (J) A venn diagram of three feature selection methods. (K) Feature 
selection of lncRNAs using RF. RF analysis classifies the levels of importance of lncRNAs. (L) Performance 
(error rate) per number of tree generated by the RF algorithm. (M,N) Two-dimensional projections using 
four of the SVM features. The support vectors and non-support vectors are denoted with triangles and circles, 
respectively. Red areas represent predicted positive regions, yellow areas represent predicted negative regions. 
(O) A venn diagram of two feature selection methods.
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Construction and validation of six machine learning diagnostic models
To classify lung nodules, we employed six traditional machine learning algorithms, including k-nearest neighbor 
(KNN), naive bayes (NB), RF, decision tree (DT), SVM, and eXtreme Gradient Boosting (XGBoost), on the 
training set and evaluated their performance using ten-fold cross-validation (Table 1). For mRNA data, the area 
under the ROC curve AUC ranged from 0.9844472 to 1 (Fig. 3A), the AUC values of the precision-recall curve 
fell between 0.9942892 and 1 (Fig. 3B), and the average prediction accuracy exceeded 95% (Fig. 3C). When 
applied to the test set, the AUC values of these algorithms remained between 0.9337719 and 1, with PRC AUC 
values ranging from 0.9881881 to 1, and the prediction accuracy also exceeded 95%, see Table 2 for detailed 
results. For miRNA data, the AUC values of the ROC curve for the six algorithms on the training set ranged 
from 0.9469609 to 1 (Fig.  3D), the AUC values of the PRC fell between 0.9824365 and 1 (Fig.  3E), and the 
average prediction accuracy exceeded 90% (Fig. 3F). On the test set, the AUC values of the ROC curve for these 
algorithms were between 0.9665007 and 0.9859375, the AUC values of the PRC were between 0.9806327 and 
0.9952889, and the prediction accuracy also exceeded 90%, see Table 3 for detailed results. For lncRNA data, the 
AUC values of the ROC curve for the six algorithms on the training set ranged from 0.9860368 to 1 (Fig. 3G), the 
AUC values of the PRC fell between 0.9942586 and 1 (Fig. 3H), and the average prediction accuracy exceeded 
95% (Fig. 3I). On the test set, the AUC values of the ROC curve for these algorithms were between 0.9833333 
and 1, the AUC values of the PRC were between 0.9947368 and 1, and the prediction accuracy also exceeded 
95%, see Table 4 for detailed results. In summary, these six classifiers exhibited excellent performance in the task 
of lung nodule classification.

Comparison of six ML diagnostic models
This study evaluated various mRNA ML models and found that KNN, RF and SVM performed exceptionally well, 
achieving AUC and PRAUC scores of 1.0000000 on both training and testing sets, emphasizing their advantages 
in data fitting and generalization. The NB model, while slightly lower with AUC (0.9973684) and PRAUC 
(0.9997300) on the testing set, still showed commendable performance, indicating its potential for classification 
tasks. In contrast, XGBoost and DT maintained high AUC scores of 0.9364035 and 0.9337719, respectively, and 
PRAUC scores of 0.9884611 and 0.9881881, respectively, showcasing their predictive capabilities. In summary, 
the study recommends prioritizing KNN, RF, and SVM, while recognizing NB as a viable alternative.

Ablation studies for variable importance assessment
To assess feature contributions, we conducted ablation studies by removing each of six mRNA features (ADRB2, 
AGER, CLEC3, FAM189A2, CAT, RS1) and retraining models. We evaluated model performance using AUC on 
training and test sets. The baseline model, with all features, achieved near-perfect AUCs on the training set and 
high AUCs on the test set, indicating excellent generalization.

Removing ADRB2 had minimal impact, except for XGBoost, which improved from 0.9364035 to 0.9716667 
AUC on the test set. AGER ablation caused minimal changes, except for DT, which saw a decrease from 0.9337719 
to 0.9131356 AUC on the test set. XGBoost improved to 0.9822442 AUC.

Removing CLEC3 moderately affected models, with XGBoost showing the most significant improvement 
(from 0.9364035 to 0.9802083 AUC). DT still showed a decrease. FAM189A2 ablation had minimal effects on 
learners with perfect training AUCs but caused slight decreases in XGBoost and NB test AUCs. DT also showed 
a moderate decrease. Deleting CAT had a pronounced positive effect, especially on DT and XGBoost, with 
improvements to 0.9800000 and 0.9877381 AUC, respectively. Ablating RS1 resulted in mixed effects, with some 
learners showing minor changes and others, like XGBoost, experiencing moderate improvements. DT showed 
a relatively large decrease, indicating RS1’s importance. Detailed ablation study data and model error rates 
(mostly < 5%) are in Supplementary Table S1 and Supplementary Figure S2, respectively.

Variable Description Categories/Values

Data Source TCGA, GEO

Number of Samples in TCGA Total 594 (LUAD: 535, Normal: 59)

LUAD Stages in TCGA

Stage I 294

Stage II 123

Stage III 84

Stage IV 26

GEO Dataset Accession Numbers GSE7670 27 paired samples

GSE30219 14 normal, 293 cancer

GSE31210 226 Stage I-II cancers

GSE50081 127 cancers

GSE37745 106 cancers

RNA-seq Platform
TCGA Level 3 data

GEO Affymetrix Human Genome U133 Plus 2.0 Array

Table 1.  Baseline demographic and clinical information.
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Validation the diagnostic efficacy of biomarkers for early-stage LUAD
The diagnostic validity of ADRB2, FAM189A2, CLEC3B, AGER, CAT, and RS1 genes for LUAD was verified 
through ROC analysis in the TCGA-LUAD dataset. The heatmap depicts the expression patterns of six mRNAs 
between LUAD and normal tissues in the TCGA database (Fig. 4A). The results of ROC analysis demonstrated 
that ADRB2 (AUC = 0.994), CLEC3B (AUC = 0.994), AGER (AUC = 0.998), CAT (AUC = 0.994), and RS1 
(AUC = 0.990) exhibited AUC values exceeding 0.98, indicating high specificity and sensitivity (Fig.  4B). To 
further validate the diagnostic value of these genes, the microarray dataset GSE7670 from the GPL570 platform 
was selected as an external validation set. The heatmap depicts the expression patterns of six mRNAs between 
LUAD and normal tissues in the GSE 7670 database (Fig. 4C). In the validation set, ADRB2 (AUC = 0.988), 

Fig. 3.  Performance of machine learning models was evaluated by AUC–ROC and AUC–PRC computed 
from cross-validation. (A) Comparison of performance of six ML models of mRNAs via ROC AUC. (B) 
Comparison of performance of six ML models of mRNAs via PRC AUC. (C) Boxplot showing the classification 
performance with the six ML methods of mRNAs. Abscissa represents six ML algorithm. The ordinate axis 
represents the CE for the model. (D) Comparison of performance of six ML models of miRNAs via ROC 
AUC. (E) Comparison of performance of six ML models of miRNAs via PRC AUC. (F) Boxplot showing the 
classification performance with the six ML methods of miRNAs. (G) Comparison of performance of six ML 
models of lncRNAs via ROC AUC. (H) Comparison of performance of six ML models of lncRNAs via PRC 
AUC. (I) Boxplot showing the classification performance with the six ML methods of lncRNAs.
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FAM189A2 (AUC = 0.988), AGER (AUC = 1.000), and CAT (AUC = 0.961) demonstrated AUC values 
exceeding 0.96, also exhibiting high specificity and sensitivity. However, RS1 (AUC = 0.826) exhibited a relatively 
low predictive accuracy in the validation set (Fig. 4D). Overall, the results indicate that ADRB2, FAM189A2, 
AGER, CAT, and RS1 genes exhibited high diagnostic validity in both the TCGA-LUAD dataset and the external 
validation set.

Immune infiltration ssGSEA analysis
The TCGA-LUAD dataset encompassed 294 stage I LUAD samples and 59 normal samples. To accurately 
distinguish the significant differences in immune cell infiltration between stage I LUAD samples and normal 
samples, two distinct algorithms, namely LASSO regression and wilcoxon test, were employed. The results of 
LASSO regression (as shown in the Fig. 4E–G) revealed that seven immune cells were significantly included, 
exhibiting distinct infiltration patterns in the early stages of LUAD compared to normal samples. Additionally, 
the wilcoxon test results were presented through a violin plot (Fig.  4H), demonstrating significant changes 
(p < 0.05) in the infiltration levels of six immune cells in early-stage LUAD samples. These cells play crucial 
roles in the early stages of LUAD. Further analysis of immune infiltration in early adenocarcinoma revealed an 
increase in the number of Th2 cells, Tcm, and T helper cells, along with a decrease in the number of macrophages, 
eosinophils, and Tem cells during the early stages of LUAD.

Construction of a prognostic prediction model for LUAD based on the training dataset
With the application of thresholds of p.adj < 0.05 and |Log2 FC|≥ 1, a total of 444 mRNAs were identified 
as differentially expressed between Stage III-IV and Stage I-II. This differential expression was graphically 
represented using a volcano plot (Fig. 5A). To establish a correlation between mRNAs and the OS of patients 
with LUAD, univariate cox regression analysis was conducted. Statistical survival analysis was performed using 
the R packages survival and survminer, revealing an association between 4996 genes and the overall survival 
of LUAD patients (P < 0.05). Among these genes, 64 mRNAs were common to both groups, as depicted in a 
venn diagram (Fig. 5B). To prevent overfitting, LASSO regression was utilized to screen 13 mRNAs as potential 

Learner auc_train auc_test prauc_train prauc_test

classif.kknn 0.9998633 0.9985294 0.9999711 0.9996638

classif.naive_bayes 0.9995248 0.9985294 0.9999014 0.9996638

classif.ranger 1.0000000 1.0000000 1.0000000 1.0000000

classif.rpart 0.9860368 0.9833333 0.9942586 0.9947368

classif.svm 1.0000000 1.0000000 1.0000000 1.0000000

classif.xgboost 0.9997312 0.9833333 0.9999442 0.9947368

Table 4.  Evaluation of lncRNA machine learning models. PRAUC, the area under the precision-recall curve; 
AUC, the area under the ROC curve.

 

Learner auc_train auc_test prauc_train prauc_test

classif.kknn 0.9991565 0.9803571 0.9998591 0.9869748

classif.naive_bayes 0.9694598 0.9803646 0.9905558 0.9906283

classif.ranger 1.0000000 0.9665007 1.0000000 0.9812384

classif.rpart 0.9469609 0.9704365 0.9824365 0.9806327

classif.svm 0.9905906 0.9859375 0.9982290 0.9952889

classif.xgboost 0.9808584 0.9704365 0.9937417 0.9806327

Table 3.  Evaluation of miRNA machine learning models. PRAUC, the area under the precision-recall curve; 
AUC, the area under the ROC curve. ACC, accuracy.

 

Learner auc_train auc_test prauc_train prauc_test

classif.kknn 1.0000000 1.0000000 1.0000000 1.0000000

classif.naive_bayes 1.0000000 0.9973684 1.0000000 0.9997300

classif.ranger 1.0000000 1.0000000 1.0000000 1.0000000

classif.rpart 0.9844472 0.9337719 0.9942892 0.9881881

classif.svm 1.0000000 1.0000000 1.0000000 1.0000000

classif.xgboost 0.9979483 0.9364035 0.9996251 0.9884611

Table 2.  Evaluation of mRNA machine learning models. PRAUC, the area under the precision-recall curve; 
AUC, the area under the ROC curve.
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variables for subsequent univariate and multivariate cox regression (Fig. 5C,D). Variables exhibiting significance 
in the univariate cox regression analysis (P ≤ 0.01) were further analyzed using multivariate cox regression, 
ultimately leading to the establishment of a prognostic model for LUAD patients comprising 12 key variables: 
RHOV, PITX3, DKK1, CRYGN, FLNC, FAIM2, RHCG, IGFBP1, FAM83A, MS4A1, KCNF1, and MUC2. The 
findings of both univariate and multiple cox regression analysis are summarized in Table 5. The predictive 
model was formulated as a linear combination of the expression levels of the twelve mRNAs, with each mRNA 
weighted by its corresponding coefficient obtained from the multivariate cox regression analysis. The risk score 
for each patient was calculated using the following formula: risk score = − 0.55070176 + (0.04452972 × RHOV) 
+ (0.67298431 × PITX3) + (0.0723084 × DKK1) + (− 0.16380385 × CRYGN) + (0.07934765 × FLNC) + 
(− 0.16859844 × FAIM2) + (0.01703192  × RHCG)  + (0.05784092 × IGFBP1) + (0.07334462 × FAM83A) + 

Fig. 4.  Validation in TCGA-LUAD and GSE 7670 data sets and immune infiltration analysis. (A) The 
clustering heat map of tumor samples and non-cancer tissues based on key molecular markers in TCGA-LUAD 
data sets. (B) ROC curve analysis of key molecular markers in TCGA-LUAD data sets. (C) The clustering heat 
map of tumor samples and non-cancer tissues based on key molecular markers in GSE 7670 data sets. (D) 
ROC curve analysis of key molecular markers in GSE 7670 data sets. (E) The clustering heat map of tumor 
samples and non-cancer tissues based on infiltrating immune cells in TCGA-LUAD data sets. (F) A coefficient 
profile plot was produced against the log (lambda) sequence in the LASSO model. The optimal parameter 
(lambda) was selected as the first black dotted line indicated. (G) LASSO coefficient profiles of immune 
infiltration cells. (H) The expression of key immune infiltrating cells in normal tissues and stage I LUAD 
tissues.

 

Scientific Reports |        (2024) 14:22081 7| https://doi.org/10.1038/s41598-024-73498-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


(− 0.12202164 × MS4A1) + (0.04530024 × KCNF1) + (0.05228372 × MUC2). Using the median risk score as 
the cutoff point, patients in the training set were stratified into two groups: low-risk (n = 261) and high-risk 
(n = 261). K-M analysis demonstrated that the low-risk group exhibited superior OS with a median of 1046 days, 
compared to the high-risk group with a median of 2620 days (log-rank test, P < 0.001), as depicted in Fig. 5E. In 
time-dependent ROC curve analyses, the prognostic model employing the twelve mRNA signatures exhibited an 
AUC of 0.777 at one year, 0.728 at two years, and 0.730 at four years of OS (Fig. 5F). This suggests that the model 
possesses good discriminatory power, with a maximum AUC of 0.777. Figure 5G presents the distribution of risk 
scores, survival status, and mRNA expression profiles across patients. A comparative gene expression analysis 
was conducted between the high-risk and low-risk groups for the twelve genes. The results revealed that the 
expressions of RHOV, PITX3, DKK1, FLNC, RHCG, IGFBP1, FAM83A, KCNF1, and MUC2 were significantly 
upregulated in the high-risk group, indicating a positive correlation between their high expression and the high-
risk score. Conversely, the expressions of CRYGN, FAIM2, and MS4A1 were significantly downregulated in the 
high-risk group, suggesting a positive correlation between their low expression and the high-risk score (Fig. 5H).

The optimism-corrected c-index values (for OS, C-index = 0.746, 95% CI = 0.724–0.767) demonstrated 
that the proposed nomograms could precisely predict the 1-, 3-, and 5-year OS of LUAD patients (Fig. 6A). 
Furthermore, the 1-, 3-, and 5-year calibration curves of OS visually confirmed a good agreement between 

Fig. 5.  (A) Volcano plot of differentially expressed genes between Stage III-IV and Stage I-II. (B) Venn 
diagram of differentially expressed genes and prognosis -related genes. (C) A coefficient profile plot was 
produced against the log (lambda) sequence in the LASSO model. The optimal parameter (lambda) was 
selected as the first black dotted line indicated. (D) LASSO coefficient profiles of the 64 mRNAs. (E) K-M 
survival curves of the 12-mRNA signature between the high‐and low‐risk score groups. (F) Time-dependent 
ROC curve analyses. (G) The distribution of risk scores (upper), survival time (middle) and mRNA expression 
levels (below). The black dotted lines represent the median risk score cut-off dividing patients into low- and 
high-risk groups. The red dots and lines represent the patientsin high-risk groups. The blue dots and lines 
represent the patients in low-risk groups. (H) Expression level of 12-mRNA signature between the high- and 
low-risk groups.
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predicted survival and observed survival, which could also validate the predictive accuracy of the prognostic 
nomograms (Fig. 6B).

Prognostic value of twelve-gene signature in the validation set
To validate our model, we utilized separate datasets: GSE30219, GSE31210, GSE50081, GSE37745, and a merged 
dataset (combining GSE31210, GSE50081, and GSE37745). Below, we present the outcomes of K-M curves and 
mRNA expression profiles in the high-risk and low-risk groups within these validation sets. The K-M curves 
for the validation samples in GSE30219 confirmed that patients in the low-risk group exhibited superior OS 

Fig. 6.  The nomogram and calibration curve developed for model. (A) Establishment of nomograms for the 
prediction of OS in patients with LUAD. To use the nomogram, the value of individual patients with LUAD is 
shown on each variable axis, and a line is depicted upward to determine the number of points received for each 
variable value. Subsequently, the sum of these numbers is located on the total point axis, and a line is drawn 
downward to the survival axes to determine the likelihood of 1- 3- and 5-year survival of OS. (B) Calibration 
curve for predicting the 3- and 5-year survival of OS in LUAD patients in the training cohort. The actual OS 
rates are plotted on the y-axis and nomogram-predicted OS rates are plotted on the x-axis.

 

Characteristics Total(N)

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

FAM83A 526 1.262 (1.158–1.375)  < 0.001 1.082 (0.983–1.192) 0.109

FAIM2 526 0.761 (0.650–0.891)  < 0.001 0.841 (0.714–0.989) 0.037

FLNC 526 1.248 (1.142–1.365)  < 0.001 1.085 (0.978–1.203) 0.124

RHCG 526 1.239 (1.135–1.352)  < 0.001 1.012 (0.900–1.139) 0.839

CRYGN 526 0.762 (0.632–0.919) 0.005 0.846 (0.699–1.024) 0.086

RHOV 526 1.244 (1.153–1.342)  < 0.001 1.044 (0.944–1.154) 0.405

DKK1 526 1.210 (1.143–1.282)  < 0.001 1.079 (1.005–1.158) 0.036

KCNF1 526 1.271 (1.138–1.419)  < 0.001 1.049 (0.907–1.213) 0.521

IGFBP1 526 1.235 (1.134–1.345)  < 0.001 1.058 (0.952–1.176) 0.295

MUC2 526 1.232 (1.084–1.399) 0.001 1.049 (0.904–1.217) 0.528

MS4A1 526 0.831 (0.755–0.915)  < 0.001 0.882 (0.797–0.977) 0.016

PITX3 526 3.503 (2.576–4.764)  < 0.001 1.920 (1.287–2.865) 0.001

Table 5.  Univariate and multivariate Cox analysis of the twelve-gene prognostic signature in TCGA-LUAD 
patients. CI: confidence interval. Significant values are in [bold].
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compared to those in the high-risk group (HR 0.63, 95% CI 0.47–0.83, P = 0.001) (Fig. 7A). Analysis of mRNA 
expression levels in the high-risk and low-risk groups indicated that the expressions of RHOV, PITX3, DKK1, 
FLNC, and FAM83A were significantly upregulated in the high-risk group, suggesting a positive correlation 
between their high expressions and the high-risk score. Conversely, the expression of MS4A1 was significantly 
downregulated in the high-risk group, indicating a positive correlation between its low expression and the high-
risk score (p < 0.05) (Fig. 7B). The K-M curves for the validation samples in GSE31210 validated that patients 
with low-risk had superior OS compared to those with high-risk (HR 0.39, 95% CI 0.19–0.80, P = 0.01) (Fig. 7C). 
Analysis of the expression levels of twelve mRNAs in the high-risk and low-risk groups indicated that the 
expressions of RHOV, PITX3, DKK1, FLNC, and FAM83A were significantly upregulated in the high-risk group, 
while the expression of MS4A1 was significantly downregulated (p < 0.05) (Fig. 7D). Similarly, the K-M curves 
for the validation samples in GSE50081 confirmed a better OS in low-risk patients compared to those with high-
risk (HR 0.40, 95% CI 0.22–0.72, P = 0.002) (Fig. 7E). Analysis of the mRNA expression profiles revealed that the 
expressions of RHOV, PITX3, DKK1, FLNC, and FAM83A were significantly increased in the high-risk group, 
whereas the expression of MS4A1 was significantly decreased (p < 0.05) (Fig. 7F). Furthermore, the K-M curves 
for the validation samples in GSE337745 also supported the finding that low-risk patients exhibited improved 
OS compared to high-risk patients (HR 0.63, 95% CI 0.40–0.99, P = 0.043) (Fig. 7G). These findings provide 
further validation for the prognostic accuracy of our nomograms. Analysis of the expression levels of twelve 
mRNAs in the high-risk and low-risk groups revealed that the expressions of RHOV, PITX3, DKK1, FLNC, 
and FAM83A were significantly upregulated in the high-risk group compared to the low-risk group, while the 
expression of MS4A1 was significantly downregulated in the high-risk group (p < 0.05) (Fig.  7H). The K-M 
curves for the merged data set validated that patients in the low-risk group exhibited superior OS compared to 
those in the high-risk group (HR 0.27, 95% CI 0.19–0.39, P < 0.001) (Fig. 8A). Notably, the expression patterns of 
these twelve mRNAs remained consistent with those observed in the training set, despite the distinct populations 
represented in the training and validation sets. This consistency demonstrates the robustness and reliability of the 
model. The distribution of risk scores, survival status, and mRNA expression levels among patients are presented 
in Fig. 8B. The results clearly demonstrate that patients with lower risk scores generally exhibit better survival 
outcomes compared to those with higher risk scores. To comprehensively evaluate the predictive performance 
of the models, time-dependent ROC analysis was conducted for OS at one, three, and five years. This analysis 
discriminated between patients who experienced an event and those who remained event-free, resulting in ROC 
curves with AUC values of 0.809, 0.749, and 0.719 in the merged data set. These findings suggest that the model 
demonstrates good discriminative ability, with a maximum AUC of 0.809 (Fig. 8C).

GO, KEGG and GSEA enrichment analyses
A correlation analysis was conducted on the twelve-gene signature in the TCGA-LUAD cohorts, and the 
genes were ranked based on their spearman´s rank correlation coefficient (p < 0.05). Subsequently, functional 
enrichment analysis and GSEA analysis were performed on the top 20 positively and negatively correlated genes 
with the twelve-gene signature in TCGA-LUAD patients. GO enrichment analysis revealed that the positively 
correlated genes were enriched in functions such as extracellular matrix organization, collagen-containing 
extracellular matrix, and extracellular matrix structural constituent. KEGG pathway analysis demonstrated 
that these genes were enriched in ECM-receptor interaction, among others (Fig. 9A) (Table 6). Conversely, the 
negatively correlated genes were enriched in functions related to organellar ribosome, oxidoreductase activity 
acting on the CH-OH group of donors, with NAD or NADP as acceptor. KEGG pathway analysis indicated that 
these genes were enriched in tyrosine metabolism, glycolysis/gluconeogenesis, among others (Fig. 9B) (Table 
7). Gene set enrichment analysis demonstrated that reactome extracellular matrix organization, wp pi3kakt 
signaling pathway, wp focal adhesion pi3kakt mtor signaling pathway, kegg ecm receptor interaction, and pid 
integrin1 pathway were enriched (Fig. 9C) (Table 8).

Discussion
In this study, we employed ML algorithms to identify diagnostic and prognostic biomarkers. Subsequently, an 
immune infiltration analysis was conducted, leading to the final identification of ADRB2, FAM189A2, CLEC3B, 
AGER, CAT, and RS1 as mRNA biomarkers for early diagnosis of LUAD. The reliability of these biomarkers 
was further validated using an external dataset, GSE7670. The study found that CLEC3B serves as a potential 
diagnostic and prognostic biomarker in lung cancer, and it is associated with the immune microenvironment9. 
Furthermore, another study revealed that overexpression of AGER reduced the proliferation, invasion, and 
migration abilities of H1299 cells, while increasing cellular apoptosis. This suggests that AGER may serve 
as a potential molecular marker for NSCLC10. CAT demonstrates a significant correlation with PFS in lung 
cancer patients receiving platinum-based chemotherapy, potentially serving as a biomarker for predicting the 
prognosis of lung cancer patients treated with platinum-based chemotherapy11. The treatment with RS-1 elicited 
a significant antitumor response in mouse models12. The above reports are consistent with the LUAD diagnostic 
markers we have obtained. Although there are currently no reports linking ADRB2 and FAM189A2 to LUAD, 
their expression has been associated with breast cancer. For instance, ADRB2 is a potential protective gene for the 
breast13. Additionally, ENTREP/FAM189A2 encodes a new ITCH ubiquitin ligase activator that is downregulated 
in breast cancer14. These are potential molecules related to LUAD that require further investigation in the future.

A comprehensive and dynamic understanding of the immune microenvironment is crucial for developing 
effective treatment strategies. Therefore, this study delved into the infiltration of immune cells in early-stage 
LUAD and utilized LASSO regularization technique to identify key immune cells. The study found that Th2 cells 
release anti-inflammatory cytokines and promote tumor progression15. Furthermore, Th2 cells can also promote 
angiogenesis and hinder the apoptosis of tumor cells by remodeling the cytokine environment infiltrated by 
macrophages and eosinophils16. Consistent with this, our study found that the infiltration of Th2 cells increases 
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Fig. 7.  Validation of the prognostic signature in the GSE30219, GSE1210, GSE50081 and GSE37745 data sets. 
(A,C,E,G) K-M curves of the twelve-gene prognostic signature between the high‐ and low‐risk score groups in 
the GSE30219, GSE1210, GSE50081 and GSE37745 data sets, HR indicates hazard ratio. (B,D,F,H) expression 
level analysis of 12-mRNAs prognostic signature between the high- and low-risk groups in the GSE30219, 
GSE1210, GSE50081 and GSE37745 data sets. P < 0.05 (*), P < 0.01 (**), P < 0.001 (***) (Wilcoxon rank sum 
test).
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in the early stage of LUAD. It is possible that in the early stage of LUAD, Th2 cells may promote the infiltration of 
immune cells in the tumor environment by releasing cytokines. Although Th2 cells are generally associated with 
tumor growth and progression, their presence in the early stage may reflect the initial response of the immune 
system to tumor cells. Tcm cells possess memory functions and can rapidly generate effector T cells under 
the stimulation of tumor antigens17. Previous studies have shown that the cytotoxic activity and proliferative 
capacity of effector memory T cells are superior to those of central memory T cells (TCM) in vitro. However, 
TCM has the potential to induce immune memory and exert more durable antitumor activity18. Therefore, the 
infiltration of Tcm cells in the early stage of LUAD may indicate that the immune system is actively responding to 
the tumor and attempting to establish long-term memory to cope with possible tumor recurrence. T-helper cells 
are generally associated with cellular immunity, capable of activating and guiding other immune cells to attack 
tumors. In the early stage of LUAD, the infiltration of T-helper cells may represent the immune system’s attempt 
to eliminate tumor cells. In the early stage of LUAD, macrophages may more frequently manifest as tumor-
associated macrophages (TAMs), which typically have immunosuppressive functions and can promote tumor 
growth and angiogenesis19,20. Therefore, the negative correlation between macrophages and immune infiltration 
may suggest that immunosuppression has not yet dominated in the early stages of tumor development. 
Eosinophils usually play a role in allergic reactions and parasitic infections, while in the tumor environment, 
they may be associated with immunosuppression or tumor progression21. Therefore, the negative correlation 
between eosinophils and immune infiltration may suggest that these cells have not yet infiltrated into the tumor 
tissue in large numbers in the early stage of LUAD. Effector memory T cells (Tem cells) usually exert anti-tumor 
effects in the tumor environment. However, in some cases, Tem cells may be functionally impaired due to the 
influence of the tumor microenvironment22. Therefore, the negative correlation between Tem cells and immune 
infiltration may suggest that the anti-tumor function of these cells has not yet been fully exerted in the early stage 
of LUAD. This is consistent with our findings on immune infiltration.

In this study, our diagnostic and prognostic prediction models have both demonstrated exceptional results. 
Specifically, the AUC value of the diagnostic model ranges from 0.9979483 to 1, indicating a high degree of 
accuracy in distinguishing LUAD patients from non-patients, with CE below 10%. This further proves its 
reliability in early diagnosis. Meanwhile, our prognostic prediction model has also been effectively validated 
on four independent Gene Expression Omnibus datasets, demonstrating not only high accuracy but also 
good generalization ability, enabling it to adapt to different datasets and patient populations. Despite these 

Fig. 8.  Validation of the 12-mRNAs prognostic signature in the merged data set. (A) K-M curves of the 12-
mRNA signature between the high‐ and low‐risk score groups. (B) The distribution of risk scores (upper), 
survival time (middle) and miRNA expression levels (below). (C) Time-dependent ROC curve analyses.
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achievements, our models still have limitations and shortcomings in LUAD diagnosis and prognostic prediction, 
which require continuous improvement and optimization in our future work. Firstly, through comparisons with 
the current state-of-the-art models, we have gained a clearer understanding of the strengths and limitations of 
our study. Notably, some research not only focuses on improving diagnostic accuracy but also delves into the 
biological mechanisms of cancer, particularly the role of immune infiltration in cancer progression and patient 
prognosis. In this regard, the immunotherapy prognostic prediction signature (IPPS) model has achieved 
significant results in predicting immunotherapy prognosis for LUAD patients, providing valuable references for 
our work23. Compared to the IPPS model, our model differs in terms of its objectives and application scenarios. 
The IPPS model primarily focuses on predicting the prognosis of immunotherapy, while our model aims at 
early diagnosis of LUAD and overall prognosis prediction, with a particular emphasis on the role of immune 
infiltration. This difference reflects the varying research directions and priorities of the two models. However, 
we also recognize that by integrating the advantages of different models, we can more comprehensively assess 
patients’ conditions and prognosis, providing more accurate and comprehensive bases for clinical decision-
making. Therefore, in future research, we will consider leveraging the successful experience of the IPPS model 
to further optimize our model, better serving the diagnosis and prognosis prediction of LUAD patients. 
Secondly, we have noticed that immune infiltration and tumor-associated lymphoid structures (TLS), as crucial 
components of the cancer immune microenvironment, both play significant roles in the immune therapeutic 
response and patient survival24. While our current study primarily focuses on immune infiltration in the early 
stages, research on TLS has been more concentrated in gastrointestinal cancers. However, we speculate that there 
may be potential correlations between these two phenomena within the cancer immune microenvironment. 
To gain a more comprehensive understanding of the cancer immune microenvironment and develop more 
accurate diagnostic and prognostic prediction models, future research should further explore the interactions 

Fig. 9.  GO, KEGG and GSEA enrichment analyses. (A) GO and KEGG pathway enrichment analysis of the 
top 20 positively correlated genes with twelve-gene signature. The ordinate representsa P.value, the higher the y 
values, the more reliable results of the enrichment analysis, the abscissa represents zscores. (B) GO and KEGG 
pathway enrichment analysis of the top 20 negatively correlated genes with twelve-gene signature. (C) Gene set 
enrichment analysis demonstrated that the reactome extracellular matrix organization, wp pi3kakt signaling 
pathway, wp focal adhesionpi3kaktmtorsignaling pathway, kegg ecm receptor interaction and pid integrin1 
pathway were enriched.
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and potential associations between immune infiltration and TLS in cancer. By integrating information from both 
phenomena, we hope to provide patients with more personalized treatment options, optimize clinical decision-
making processes, and ultimately improve the efficacy of cancer treatments and patient survival rates. Finally, in 
the research of high-performance concrete (HPC) and ultra-high-performance concrete (UHPC), ML models 
have exhibited remarkable capabilities in predicting material strength25,26. Particularly, the GRU model, which 
excels in handling time-series data, is not only applicable to the progression analysis of LUAD but also to the 

Category ID Term adj_pval

CC GO:0000313 Organellar ribosome 0.060966007

CC GO:0005761 Mitochondrial ribosome 0.060966007

CC GO:0000315 Organellar large ribosomal subunit 0.060966007

CC GO:0005762 Mitochondrial large ribosomal subunit 0.060966007

MF GO:0016627 Oxidoreductase activity, acting on the CH-CH group of donors 0.033132866

MF GO:0016616 Oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor 0.042403306

MF GO:0016614 Oxidoreductase activity, acting on CH-OH group of donors 0.042403306

MF GO:0004602 Glutathione peroxidase activity 0.042403306

MF GO:0008106 Alcohol dehydrogenase (Nadp +) activity 0.042403306

MF GO:0004497 Monooxygenase activity 0.050363647

KEGG hsa00350 Tyrosine metabolism 0.019019156

KEGG hsa00010 Glycolysis / Gluconeogenesis 0.019019156

KEGG hsa00590 Arachidonic acid metabolism 0.097255883

Table 7.  GO and KEGG pathway enrichment analysis of the top 20 positively correlated genes with 12-gene 
signature in TCGA-LUAD patients. GOGene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, 
TCGA The Cancer Genome Atlas, LUAD Lung adenocarcinoma, BP Biological Processes, CC Cellular 
Component.

 

Category ID Term adj_pval

BP GO:0030198 Extracellular matrix organization 1.52542E−09

BP GO:0043062 Extracellular structure organization 1.52542E−09

BP GO:0043588 Skin development 0.009218619

BP GO:0048565 Digestive tract development 0.009218619

BP GO:0022600 Digestive system process 0.009218619

BP GO:0007586 Digestion 0.009218619

BP GO:0030277 Maintenance of gastrointestinal epithelium 0.009218619

BP GO:0055123 Digestive system development 0.010558369

BP GO:0070268 Cornification 0.012095677

BP GO:0031589 Cell-substrate adhesion 0.012095677

CC GO:0062023 Collagen-containing extracellular matrix 6.76853E−07

CC GO:0005604 Basement membrane 1.77046E−05

CC GO:0030175 Filopodium 0.002895847

CC GO:0044420 Extracellular matrix component 0.00440781

CC GO:0098858 Actin-based cell projection 0.00440781

CC GO:0005581 Collagen trimer 0.004661637

CC GO:0008305 Integrin complex 0.005193845

MF GO:0005201 Extracellular matrix structural constituent 1.05889E−05

MF GO:0050839 Cell adhesion molecule binding 0.000515535

MF GO:0015250 Water channel activity 0.013488077

MF GO:0005372 Water transmembrane transporter activity 0.013488077

KEGG hsa04512 ECM-receptor interaction 0.00051659

KEGG hsa04151 PI3K-Akt signaling pathway 0.005110996

KEGG hsa04510 Focal adhesion 0.012081601

Table 6.  GO and KEGG pathway enrichment analysis of the top 20 positively correlated genes with 12-gene 
signature in TCGA-LUAD patients. GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, 
TCGA The Cancer Genome Atlas, LUAD Lung adenocarcinoma, BP Biological Processes, CC Cellular 
Component, MF Molecular Function.
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prediction of concrete strength over time27. This study’s achievements in LUAD diagnosis and prognosis share 
similarities with concrete compressive strength prediction research, both leveraging advanced machine learning 
to enhance prediction accuracy28. Specifically, the introduction of the SHapley Additive exPlanations (SHAP) 
method in the field of concrete compressive strength prediction not only provides in-depth explanations for the 
prediction results but also reveals the influence of different variables on the outcomes29,30. In LUAD research, 
we can gain insights from analyzing prediction results to comprehend tumor microenvironment, immune 
infiltration, and their impact on tumor progression. Future work should explore machine learning models to 
unravel these complexities, offering tailored tumor treatment guidance. Additionally, concrete compressive 
strength prediction research underscores the potential of machine learning to drive innovation and development 
across diverse fields31,32. Whether it is achieving precision medicine in the healthcare sector or promoting the 
development of environmentally friendly materials in the construction industry, ML provides us with powerful 
tools25. Therefore, cross-disciplinary learning and borrowing will help us better tackle various challenges and 
promote the development of different fields.

Methods
Data sources
This study acquired Level 3 RNA-seq expression data consisting of 535 LUAD samples (Stage I: n = 294, 
Stage II: n = 123, Stage III: n = 84, Stage IV: n = 26) and normal lung samples (n = 59) from TCGA (https://
portal.gdc.cancer.gov/). The tumor expression datasets and corresponding clinical information in the 
validation set were downloaded from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
gov/geo/) with accession numbers GSE7670 (paired samples from 27 patients) (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE7670), GSE30219 (14 normal and 293 cancer) (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE30219), GSE31210 (226 Stage I-II cancers) (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE31210)33, GSE50081 (127 cancers) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE50081)34, and GSE37745 (106 cancers) (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE37745)35. Expression profiling was performed using the Affymetrix Human Genome U133 Plus 2.0 
Array. This study does not include any experiments involving human participants or animals conducted by the 
authors. Baseline demographic and clinical information are presented in Table 1.

Data preprocessing
Level 3 RNA-seq expression data were acquired from TCGA (https://portal.gdc.cancer.gov/). The expression data 
were log2-transformed to stabilize the variance and a value of 1 was added to avoid zero values during the log2 
transformation. The raw and series matrix files for GSE7670, GSE30219, GSE31210, GSE37745, and GSE50081 
were downloaded. For the raw data, the probe expression matrices were extracted and normalized using the R 
package “affy” (version 4.2.1). The probe expression matrices were then converted into gene expression matrices 
using platform annotation files. For genes corresponding to multiple probes, the average value was taken as the 
expression value for that gene. Probes corresponding to multiple molecules were removed. The results were 
visualized using the R package “ggplot2”.

Feature selection
To select the most relevant features for classification, we performed feature selection on an initial set of 
important features. In the training set, we first utilized the randomForest package to train a RF classifier (with 
the ‘ntree’ parameter set to 800) and subsequently employed the recursive feature elimination function from the 
caret package to identify key features. Following this, we applied the support vector machine recursive feature 
elimination (SVM-RFE) method, which ranks the features of our classification problem by training an SVM 
with a radial basis function kernel and removing the features with the smallest ranking criterion. Specifically, 
the SVM implementation utilized the “e1071” package in R. For SVM, we explored different kernel functions, 
including linear, polynomial, and radial basis function. The seed value was set to 2023 to ensure reproducibility 
of the results. For the SVM with a linear kernel, we used RNA expression and clinical information as inputs to 
the tune.svm function, with the “kernel” parameter set to “linear” and the cost parameter “cost” set to a range 

Rank NAME SIZE ES NES pvalue

1 REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 16 0.624925949 2.368176957 0.00135318

2 WP_PI3KAKT_SIGNALING_PATHWAY 15 0.564222412 2.092175863 0.001356852

3 WP_FOCAL_ADHESIONPI3KAKTMTORSIGNALING_PATHWAY 14 0.58933644 2.124350376 0.001381215

4 KEGG_ECM_RECEPTOR_INTERACTION 10 0.678478813 2.170877396 0.0013947

5 PID_INTEGRIN1_PATHWAY 10 0.609154269 1.949064891 0.0013947

6 KEGG_FOCAL_ADHESION 11 0.61066653 2.023599428 0.002754821

7 NABA_CORE_MATRISOME 12 0.635506652 2.170637813 0.002777778

8 WP_FOCAL_ADHESION 10 0.602496137 1.927761367 0.0027894

9 NABA_MATRISOME 33 0.431242153 2.067369944 0.003558719

10 REACTOME_NERVOUS_SYSTEM_DEVELOPMENT 10 0.566123066 1.811381199 0.011157601

Table 8.  Representative results of GSEA. GSEA Gene Set Enrichment Analysis, ES enrichment score, NES 
normalized enrichment score.
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of candidate values such as “c(0.001, 0.01, 0.1, 1, 5, 10)”. For the SVM with a polynomial kernel, we employed 
mRNA expression and clinical information as inputs, with the “kernel” parameter set to “polynomial”, the degree 
of the polynomial “degree” set to “c(3, 4, 5)”, and the “coef0” parameter also set to a range of candidate values 
such as “c (0.1, 0.5, 1, 2, 3, 4)”. For the SVM with a radial basis function kernel, we again used RNA expression 
and clinical information as inputs, with the “kernel” parameter set to “radial”, and the “gamma” parameter also 
set to a range of candidate values such as “c(0.1, 0.5, 1, 2, 3, 4)”. To evaluate the performance of the models, we 
calculated the kappa value, sensitivity, specificity, and accuracy using the confusionMatrix function from the 
caret package. The optimal parameter values were determined through tenfold cross-validation to minimize the 
misclassification rate.

Additionally, LASSO regression coupled with cross-validation was employed for feature selection, aiming 
to identify the pivotal features pertinent to a specific binary classification problem. The feature variables were 
structured as a matrix, encompassing multiple potential explanatory variables, while the response variable was 
represented as a vector, indicating the class labels for each sample. To explore the impact of varying regularization 
strengths on model performance, an arithmetic sequence of 200 values ranging from 0 to 0.5 was generated, 
serving as candidate values for the regularization parameter λ in lasso regression. The cv.glmnet function from 
the glmnet package in R was utilized to execute Lasso regression with cross-validation. Specifically, α was set to 
1 to conduct Lasso regression, and the previously generated sequence of lambdas was employed as the range for 
λ. A tenfold cross-validation scheme was adopted to evaluate model performance, and the family = “binomial” 
argument was specified to accommodate the binary classification nature of the problem. Through this cross-
validation process, estimates of the average error for the model across different λ values were obtained. Based 
on these estimates, two key λ values were identified: λ_min, which minimizes the cross-validation error, and 
λ_1se, the leftmost λ value within one standard error of the minimum cross-validation error. Visualizations 
were generated to gain insights into the trend of model performance with varying regularization strengths. The 
relationship between cross-validation error and λ values was plotted, allowing for an intuitive observation of 
how model performance changes with the intensity of regularization. Additionally, LASSO coefficient paths 
were illustrated to show the evolution of individual coefficients as λ varies.

To identify features that significantly impact the prediction of patients’ disease status from the dataset, the RF 
algorithm was employed for feature selection. Initially, the target variable in the dataset was factorized to ensure it 
was correctly treated as a categorical variable by the model. Subsequently, two RF models were constructed using 
the randomForest function from the randomForest package. The first model was utilized for initial exploration 
and visualization, while the second model was dedicated to final prediction and feature importance evaluation. 
During model construction, the number of trees (ntree = 800) was set to ensure model stability and accuracy, 
and the options important = TRUE and proximity = TRUE were enabled to calculate feature importance and 
sample proximity, respectively.

Finally, we took the intersection of the results from the three methods (RF, SVM and LASSO) and these 
intersecting features were utilized for further analysis, considered as the most reliable biomarkers.

Immune cell infiltration analysis
Using the software R, the immune cell infiltration between stage I LUAD and normal tissues was explored 
through ssGSEA. Significant immune cells (p < 0.05) between the two groups were screened using the Mann–
Whitney U test and LASSO regression analysis, respectively, to identify the final significantly different immune 
infiltrating cells. The immune infiltration algorithm was based on the ssGSEA algorithm provided by the R 
package GSVA [1.44.5]. The Mann–Whitney U test was conducted with the stats package in R, while LASSO 
regression was performed using the “glmnet” package [4.1.7]. The visualization of the results was carried out 
using the “ggplot2” package [3.3.6], and heatmap visualization was achieved through the ComplexHeatmap 
package [2.13.1].

Analyzing the diagnostic validity of biomarkers in TCGA-LUAD and GSE7670
In the GSE7670 dataset, ROC analysis was conducted using the “Proc” package [1.18.0] within the R software, 
and visualization was performed utilizing the “ggplot2” package. Subsequently, the AUC was employed to predict 
the diagnostic effectiveness of LUAD biomarkers. Additionally, heatmap visualization was achieved through the 
utilization of the ComplexHeatmap package.

Construction prognosis model of lung adenocarcinoma
Differential analysis between stage I-II and stage III-IV LUAD patients in TCGA-LUAD was performed using 
DESeq2, P.value < 0.05 and logFC > 1 as threshold. Overall survival (OS)‐related mRNAs with P.value < 0.05 
were determined using univariate cox regression analysis. R packages survminer survival were used for statistical 
analysis and data visualization in TCGA-LUAD (11). The intersection of mRNAs associated with poor prognosis 
and differentially expressed mRNAs (DEGs) between stage I/II and stage III/IV was screened out as candidate 
genes for subsequent analysis. We performed the lasso cox regression using the glmnet R package. Subsequently, 
multivariate cox regression analysis was performed to build survival model to predict OS, candidate genes were 
selected to build the risk signature. Finally, we calculated a risk score for each sample by the following formula: 
“risk score” = Σ (regression coefficient) x (expression value of each prognostic mRNA). A median risk score 
was used to divide patients into high- and low-risk groups. Then we performed K-M analysis between the two 
groups to compare survival outcomes. K-M analysis was performed using R survminer and survival packages, 
with p < 0.05 taken as significant. In addition, the package “timeROC” and “ggplot2” were used to evaluate the 
sensitivity and specificity of the prediction model through the AUC of the ROC. A nomogram based on the TNM 
staging system and prognostic signature was created by R software, using the “rms” package. Calibration curves 
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were assessed graphically by comparing observed and predicted survival probabilities. The discrimination of the 
nomogram was measured by the concordance index (C-index).

Validation prognosis model of lung adenocarcinoma
GSE30219, GSE31210, GSE50081, and GSE37745 data set were used for validation of the models, with the same 
cutoff and the risk score calculating formula for training set. Similarly, expression levels of gene signature and 
K-M survival curves in the low-risk and high-risk groups were plotted for each of the validation sets.

GO, KEGG and GSEA enrichment analyses
A spearman correlation analysis of gene signature was performed in TCGA-LUAD cohorts, and the top 20 
positively and negatively correlated genes were included in functional enrichment analysis. The spearman 
correlation was calculated using the cor.test function in the R stats package. GO, KEGG, and GSEA analyses 
were conducted using the clusterProfiler R package, the R package org.Hs.eg.db, and the R package Goplot, 
respectively. GO and KEGG analyses were conducted with p.adj < 0.05 and qvalue < 0.2 as the threshold, while 
GSEA was performed using default parameters.

Data availability
The data involved in this study are primarily sourced from two public databases: the TCGA Data Portal and the 
NCBI GEO Database. The following are the access methods for these data sources. For TCGA data, we utilized 
datasets provided by the Cancer Genome Atlas (TCGA) project. Readers can access the relevant data by visiting 
the official TCGA Data Portal at the following URL: https://portal.gdc.cancer.gov/ For gene expression data, we 
also utilized the NCBI Gene Expression Omnibus (GEO) Database. The complete URL strings for the GEO data-
sets used in this study are as follows: GSE7670: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE7670 
GSE30219: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE30219 GSE31210: https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc = GSE31210 GSE50081: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc = GSE50081 GSE37745: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE37745 These GEO 
datasets contain rich gene expression data, which are crucial for validating the conclusions of this study. Read-
ers can directly copy the above URL strings into their browsers to access the corresponding pages on the GEO 
Database, view detailed descriptions of the datasets, download raw data, and obtain related analysis tools and 
documentation.
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