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Orthopedic diseases are widespread worldwide, impacting the body’s musculoskeletal system, 
particularly those involving bones or hips. They have the potential to cause discomfort and impair 
functionality. This paper aims to address the lack of supplementary diagnostics in orthopedics and 
improve the method of diagnosing orthopedic diseases. The study uses binary breadth-first search 
(BBFS), binary particle swarm optimization (BPSO), binary grey wolf optimizer (BGWO), and binary 
whale optimization algorithm (BWAO) for feature selections, and the BBFS makes an average error of 
47.29% less than others. Then we apply six machine learning models, i.e., RF, SGD, NBC, DC, QDA, and 
ET. The dataset used contains 310 instances and six distinct features. Through experimentation, the 
RF model led to optimal outcomes during comparison to the remaining models, with an accuracy of 
91.4%. The parameters of the RF model were optimized using four optimization algorithms: BFS, PSO, 
WAO, and GWO. To check how well the optimized RF works on the dataset, this paper uses prediction 
evaluation metrics such as accuracy, sensitivity, specificity, F-score, and the AUC curve. The results 
showed that the BFS-RF can improve the performance of the original classifier compared with others 
with 99.41% accuracy.
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The significant obstacles faced by those suffering from spinal disc illnesses are beyond the average individual’s 
comprehension. Orthopedic problems happen frequently, not just among athletes but also among everyone 
else, regardless of any prior history of muscle and joint discomfort. Herniation, where organs protrude 
through muscle and tissue holes, can cause acute discomfort and an inability to move, significantly impacting 
an individual’s everyday life. Advanced technologies are developing to alleviate the suffering of people with 
orthopedic problems, but early prevention is considered more effective and beneficial in treating the problem 
and ensuring a full return to normal1.

Problem statement
Machine Learning (ML) is an emerging method for effectively predicting many diseases at an early stage, using 
medical information about people with those diseases. A machine-learning-based classification model can 
provide significant support to those who live in remote areas with limited access to skilled medical professionals2. 
Researchers are progressively employing strategies of early detection, prevention, and treatment for disorders 
that impact the muscles and bones in the body. Nevertheless, the absence of improved technologies and early 
intervention results in several individuals experiencing discomfort in their muscles and developing severe 
illnesses.

Objectives
The objective of this study is to offer valuable knowledge regarding the early prediction of orthopedic problems, 
with the goal of averting the progression of more severe diseases and limiting the transmission of diseases among 
patients.

Contribution
An RF-optimized model based on BFS was developed for classifying orthopedic disease abnormal and normal 
people in this research. The dataset used contains 310 instances and six distinct features, and the target class was 
binary, with 1 indicating normal and 0 indicating abnormal. The data collecting phase guarantees the data is both 
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comprehensive and well-structured. Effective management of noisy missing values is a substantial challenge, 
frequently arising from mistakes made during data recording. Two approaches are utilized: eliminating missing 
samples or rectifying null values by replacing them with the average value for each characteristic. The study uses 
binary breadth-first search (BBFS), binary particle swarm optimization (BPSO), binary grey wolf optimizer 
(BGWO), and binary whale optimization algorithm (BWAO) for feature selections, and the BBFS makes 
an average error of 47.29%. Then we apply six machine learning models, i.e., random forest (RF) classifier, 
stochastic gradient descent (SGD) classifier, Naïve Bayesian classifier (NBC), dummy classifier (DC), quadratic 
discriminant analysis (QDA) classifier, and extra trees (ET) classifier. Through experimentation, the RF model 
led to optimal outcomes during comparison to the remaining models. The parameters of the RF model were 
optimized using four optimization algorithms: BFS, PSO, WAO, and GWO. The dataset used contains 310 
instances and six distinct features. The results showed that the developed BFS-RF can improve the performance 
of the original classifier compared with other hybrid models. It was found that the BFS-RF performs better on 
the dataset, with an accuracy of 99.41%.

Paper organization
The research article is structured as follows: the second section outlines previous studies regarding diagnosing 
orthopedic diseases. The third section of the paper introduces the Breadth-First Search (BFS) method for 
optimizing the Random Forest (RF) model for classifying orthopedic diseases. The fourth section assesses the 
optimized RF model and compares it with different machine learning (ML) models using default parameters for 
classifying orthopedic diseases. In the end, the conclusion and future research directions.

Related works
The application of modern technology in the field of traditional medical care led to the era of intelligent 
medicine, thanks to the rapid progress of science and technology. Artificial intelligence (AI) is a highly significant 
technology that has greatly facilitated contemporary treatment3. The majority of orthopedic patients seeking 
medical care in the hospital’s urgent care center had critical conditions, including open, painful fractures, joint 
dislocations, or multiple system-integrated injuries. Nevertheless, the overall congestion in an urgent care center, 
along with inadequate medical resources and overwhelmed staff, often leads to delayed care for patients and 
emerging medical care problems4.

Yao et al.5 constructed a model based on deep learning (DL) to prioritize patients, using medical records from 
864,043 emergency department patients over a span of 5 years. The training of the model involved the utilization 
of convolutional neural networks (CNN), recurrent neural networks (RNN), and attention mechanisms. 
The model exhibited exceptional precision as well as efficacy in forecasting death and admission, surpassing 
traditional approaches by 0.3–0.5%.

Raita et al.6 constructed four machine learning models with medical data from 135,470 patients in an 
emergency room. The models were trained using triage data as predictors. Following supervised training, the 
models were evaluated to forecast potential clinical outcomes, such as hospitalization, critical care, and in-
hospital mortality. All four algorithms outperformed traditional emergency severity index (ESI) in predicting 
outcomes, improving clinical triage decision-making, delivering superior care, and maximizing resource 
allocation for injured patients.

Kwon et al.7 utilizes clinical information as a predictor factor to forecast in-hospital mortality, critical 
care, and admission of emergency department patients. The findings indicated that the AUROC (Area Under 
the Receiver Operating Characteristic) and P-R (Precision-Recall) curves achieved values of 0.93 and 0.26, 
respectively, surpassing alternative measures such as the Korean triage and acuity score, modified early warning 
score, logistic regression, and random forest. The implementation of a machine learning algorithm, specifically 
XGBoost, for triage and acuity scoring has the potential to significantly improve the accuracy of predictions. 
This could result in a higher level of certainty for the treatment and care of injured patients in the emergency 
department.

Wang et al.8 created and trained a deep neural network (DL) structure called WrisNet, utilizing a dataset of 
4346 hand X-rays. For pre-processing and augmentation, the framework used gray scaling and data augmentation 
techniques. At a joint over combination value of 0.5, the network successfully obtained an average precision (AP) 
of 0.55 in hairline finger detection. This is an improvement of at least 0.05 compared to other frameworks.

Pranata et al.9 performed a comparison between two deep learning architectures, ResNet and VGG, in 
order to determine their effectiveness in identifying calcaneus fractures on CT scans. In addition, they utilized 
the SURF approach, canny edge detection, and contour tracing. ResNet had equivalent accuracy to VGG but 
exhibited superior performance when used with a deep neural network (DNN) architecture.

Cheng et al.10 constructed PelviXNet, a sophisticated deep learning network that was trained using 5204 
pelvic X-rays. The data underwent cropping, resizing, and augmentation using random translation, rescaling, 
flipping, and rotation. PelviXNet, following its training, obtained an AUROC (Area Under the Receiver 
Operating Characteristic) value of 0.97 when tested on a clinical population set consisting of 1888 pelvic X-rays. 
The accuracy, sensitivity, and specificity of PelviXNet were measured at 0.92, 0.90, and 0.93, respectively.

Yaqoob et al.11 introduced SCACSA as a new method for classifying cancer types through gene expression. 
They tested SCACSA which combines SCA and CSA on well-known datasets for breast cancer and found that it 
achieved superior accuracy compared to other methods. Joshi and Aziz12 proposed CSSMO and SMOCS which 
are a new hybrid methods for classifying diseases using deep learning. SMOCS is an effective part of the system 
which acts as a feature selection tool to identify the most relevant genes from a dataset. The genes which are 
selected are fed into a deep learning model for classification. They tested their approach on six popular datasets 
and showed that it outperforms not only other deep learning methods but also traditional machine learning 
models13.
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Mahto et al.14 introduced CSSMO that is a hybrid model for FS and DL for disease classification. it is 
first approach that identifies the most relevant genes (features) from a dataset and then uses deep learning 
to categorize those genes into disease classes. They tested CSSMO on eight datasets according to cancer and 
approved that is more accurate than existing machine learning and deep learning methods for these tasks. Saxena 
et al.15 compared the performance of a new method called MPCA to several existing optimization algorithms 
(WOA, SCA, GWO, DE, and ABC) for classification tasks. They assessed these methods based on accuracy, 
features, and fitness values. To ensure a fair comparison, they analyzed the results using box plots and examined 
how quickly each method converged on an optimal solution. They studied how to choose the best features for 
predicting COVID-19 using the MPCA method. They compared MPCA to other algorithms and found that 
MPCA performed the best in terms of accuracy. They also created variations of MPCA and compared them to 
the original version, finding that the original MPCA performed well overall.

Neggaz et al.16 proposed MRFOSCA for feature selection. This method combines MRFO and SCA algorithms. 
They tested MRFOSCA on datasets from a public repository and compared it to other existing techniques. 
They evaluated five different criteria of performance, including how many features were chosen. Notably, some 
datasets had a very large number of features to begin with. Their findings showed that MRFOSCA consistently 
achieved better accuracy on classification tasks than other methods, even recent ones. Additionally, MRFOSCA 
tended to pick the fewest features while still reaching the best accuracy, and it did this in a reasonable amount 
of time for most datasets.

Houssein et al.17 introduced a new method, MRFO-SVM, for automatically classifying ECG signals. MRFO-
SVM uses a technique called MRFO to choose the most important attributes and fine-tune the SVM algorithm 
to enhance classification accuracy. The approach works in three steps: first, it preprocesses the ECG signal, then 
it extracts features using a new method described in the paper, and finally, it optimizes and classifies the features 
using MRFO-SVM. Compared to other methods, MRFO-SVM showed good results, suggesting it could be a 
useful tool for diagnosing heart disease based on ECG signals.

The study by Hashim et al.18 introduced a new method called mHGS to improve feature selection (FS). 
mHGS builds on the Hunger Games Search algorithm but with a specifically improved local escaping operator 
(LEO). This LEO helps avoid getting stuck on unimportant solutions (local optima), converge on better solutions 
faster, and explore the search space more effectively. They applied mHGS to a real-world issue: analyzing voice 
recordings to help diagnose Parkinson’s disease. They compared mHGS to other popular FS methods. Overall, 
the results showed that mHGS achieves better performance than existing techniques in terms of accuracy, the 
number of features chosen, and other key metrics. This suggests mHGS is a promising new tool for FS tasks.

The research by Hussain et al.19 introduced a new method called SCHHO and evaluated its effectiveness on 
FS. SCHHO was tested on 16 datasets with varying dimensions and covered over 15,000 features. It achieved 
feature reduction up to 87% while maintaining high accuracy up to 92%. This performance surpassed other 
population-based optimization methods and recent hybrid techniques designed for feature selection.

Table 1 compares previous medical categorization feature selection research publications to the suggested 
technique.

Materials and methods
Orthopedic diseases are widespread worldwide, impacting the body’s musculoskeletal system, particularly 
those involving bones or hips. They have the potential to cause discomfort and impair functionality, making 
routine daily tasks tough. In this section, we described the dataset that was utilized in this study, followed by the 
preprocessing steps applied to the data. Subsequently, the feature selection where the approaches used to extract 
and select the most relevant features from the data, followed by the proposed method in detail. Subsequently, 
the layout of machine learning (ML) models that were used in this study to evaluate our proposed model, then 
fitness function describes the function used to guide the optimization of the proposed model.

Dataset
The dataset utilized in the study is available online20. The dataset is depicted as the following: 6 attributes and 310 
instances. The dataset includes six biomechanical properties for each patient, which are calculated based on the 
form and orientation of the pelvis and lumbar spine. These attributes include pelvic incidence, pelvic tilt, lumbar 
lordosis angle, sacral slope, and pelvic radius. Each characteristic has been utilized as a column in the dataset, 
which has been transformed into a Comma Separated Values (CSV) file.

Data preprocessing
This stage is utilized to guarantee that the used data is complete and organized.

Clean null values
Managing noisy missing values is a considerable problem that will likely take considerable time. Null values 
commonly result from errors that appear during data collection, such as leaving an empty place for diagnostic 
attributes that don’t apply21. NaN, or null indicators, commonly represent missing values. Deleting duplicate 
rows and columns is essential. Therefore, we suggest two strategies to resolve this issue. One approach is to 
remove the samples with missing values; however, this may result in the loss of important data. The alternative 
approach is to impute null by substituting these values with the mean value for each attribute. We replaced 
the null with a known value from the dataset to preserve the majority of the data’s meaning. Eliminating data 
that is absent from the dataset would limit its dimensions, perhaps leading to inaccurate analysis. Conversely, 
retaining missing data could cause abnormalities in the variable distribution. The study uses the K-Nearest 
Neighbor (KNN) technique for null imputation22, identifying ‘k’ samples near the dataset through the Euclidean 
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distance. The average of the ‘k’ neighbors is used to impute null. This method is useful at outliers and requires 
less computational time, with a value of ‘k’ of 10.

Normalization
Normalization is an essential preprocessing step, particularly when dealing with approaches that are impacted 
by scaled features, such as support vector machines and K-nearest neighbors. We normalized our numerical 
features using the StandardScaler from scikit-learn, which adjusted them to have a mean of zero and a standard 
deviation of one. This technique standardizes the scale of all features to prevent any one characteristic from 
overriding the others during model training.

	
z =

x− µ

σ
� (1)

The formula represents the transformation of input data x into standard scores, allowing for a mean µ  of zero 
and a standard deviation σ  of one, by transforming the training samples into standard scores.

Feature selection
Feature extraction improves in identifying the efficient attributes for the classifier to learn from the depiction. 
Prior to evaluating the performance of a model, hyper-parameter optimization allows for precise adjustments. 
Table 2 shows the performance of BBFS algorithm compared with another algorithms.

The study uses BBFS, BPSO, BGWO, and BWAO for feature selections, and the BBFS makes an average less 
error as shown in Fig. 1. Details of BBFS is explained in Binary Breadth-First Search section.

BBFS BPSO BWAO BGWO

Average error 0.4729 0.5142 0.5483 0.5838

Average select size 0.4951 0.5246 0.5516 0.6054

Mean fitness 0.4621 0.4851 0.4876 0.4974

Best fitness 0.3861 0.4273 0.4484 0.4595

Standard deviation fitness 0.2816 0.2957 0.3068 0.3147

Table 2.  The performance of BBFS algorithm compared with another algorithms.

 

References Major contribution Methodology Data Enhancement

Yao et al.5 Patient prioritization in 
emergency department

Deep learning (DL) with CNN, RNN, 
attention 864,043 patients over 5 years 0.3–0.5% improvement in predicting death 

and admission

Raita et al.6 Emergency department triage Machine learning models with triage 
data 135,470 patients Outperformed traditional ESI in predicting 

hospitalization, critical care, and mortality

Kwon et al.7 Emergency department patient 
outcome prediction XGBoost with clinical data

Clinical data from the 
Korean National Emergency 
Department Information 
System (NEDIS)

Achieved high AUROC (0.93) and P-R (0.26) 
for predicting mortality, critical care, and 
admission

Wang et al.8 Hand X-ray hairline finger 
detection Deep neural network (WrisNet) 4346 hand X-rays 0.05 improvement in average precision (AP)

Pranata et al.9 Calcaneus fracture detection in 
CT scans

Deep learning (ResNet vs. VGG) with 
SURF, canny edge detection, and contour 
tracing

Computed tomography (CT) 
images for calcaneus fractures

ResNet performed similar to VGG in 
accuracy but better with DNN

Cheng et al.10 Pelvic X-ray analysis Deep learning network (PelviXNet) 5204 pelvic X-rays Achieved AUROC of 0.97, accuracy of 0.92, 
sensitivity of 0.90, and specificity of 0.93

Yaqoob et al.11 Cancer classification with gene 
expression data

SCACSA (combines SCA & CSA 
algorithms) Breast cancer datasets Achieved superior accuracy compared to 

previous methods

Joshi and Aziz12 Disease classification Hybrid method (CSSMO & SMOCS) 
with deep learning 6 benchmark datasets Outperformed deep learning and traditional 

machine learning models

Mahto et al.14 Disease classification Feature selection (CSSMO) with deep 
learning 8 cancer datasets More accurate than existing machine 

learning and deep learning methods

Saxena et al.15 Feature selection for COVID-19 
prediction MPCA Comparative analysis on 

standard datasets
Achieved high accuracy, used fewer features, 
and converged quickly

Neggaz et al.16 Feature selection MRFOSCA (combines MRFO & SCA 
algorithms) Public repository datasets Achieved better accuracy, used fewer 

features, and worked well on large datasets

Houssein et al.17 ECG signal classification for heart 
disease diagnosis MRFO-SVM MIT-BIH database Achieved good results in classifying ECG 

signals

Hashim et al.18 Feature selection for Parkinson’s 
disease diagnosis

mHGS (enhanced Hunger Games Search 
algorithm) Voice recordings Achieved better accuracy, used fewer 

features, and worked well for real-world tasks

Hussain et al.19 Feature selection SCHHO 16 datasets with varying 
dimensions

Reduced features by up to 87% while 
maintaining high accuracy

Table 1.  Some related works focus on feature selection and medical classification.
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Average Error (AE) =

1

n

∑
n
i=1ei� (2)

 where ei = f (xi)− f (xoptimal) if you’re comparing the function value at the current iteration f (xi) to the 
optimal function value f (xoptimal). n is the number of iterations or data points.

The entire dataset was split into two separate parts, each of which was used as input for our classification study. 
Table 3 shows the statistical investigation of the utilized dataset.

Figure 2 displays the heatmap investigation of the dataset features. Heatmap analytics is a frequently utilized 
method that visualizes the correlation between variables in a dataset. We use it to determine the strength and 
weakness of the connections between variables and to identify the correlation among them. Both bars in the 
figure represent the numerical values of the given attributes. The data in the map is scaled to a range of 0 to 1, 
with brighter colors representing a value of 1 and darker colors representing a value of 0. The diagonal values are 
1, indicating a perfect correlation between features. A reduction in values signifies a decrease in the correlation 
between features. This is helpful in diagnosing and predicting orthopedic diseases using the statistical analysis 
represented in the heatmap diagram. Figure 3 displays the box plot visualization for the dataset features classified 
using labeled analytics.

Figure 4 displays a box plot that was used to analyze the distribution of the features. It is an excellent plot 
for illustrating the distribution of numerical data. You can use a box plot to visually represent the distribution 
of features in a dataset. We refer to this depiction as a box plot and use it to analyze the spatial distribution of 
features. We illustrate the six major enrollment features of the orthopedic dataset in this graph. Box plots divide 
the data into quartiles, with each piece representing approximately 25% of the dataset. Box plots are useful as 
they provide a visual context of the utilized data, enabling readers to quickly identify average values, the spread 
of the dataset, and inequality.

Figure 5 displays the distribution analysis of the characteristics. It visually represents the dataset’s statistical 
distribution by showing the frequency of data points at various intervals. This tool can be helpful for illustrating 
the distribution of the data that is represented as numbers. We analyzed the histogram of the features in this 
graphic, a typical graphing method used for displaying both continuous and discrete information collected 
on a scale consisting of intervals. It is commonly utilized to represent the fundamental characteristics of data 
distribution in a user-friendly manner. The selected features as shown in Table 4.

Features num average STD Min 50% max

Pelvic_incidence 310.0 60.496653 17.236520 26.147921 58.691038 129.834041

Pelvic_tilt numeric 310.0 17.542822 10.008330 − 6.554948 16.357689 49.431864

Lumbar_lordosis_angle 310.0 51.930930 18.554064 14.000000 49.562398 125.742385

Sacral_slope 310.0 42.953831 13.423102 13.366931 42.404912 121.429566

Pelvic_radius 310.0 117.920655 13.317377 70.082575 118.268178 163.071041

Degree_spondylolisthesis 310.0 26.296694 37.559027 − 11.058179 11.767934 418.543082

Class 310.0 0.677419 0.468220 0.000000 1.000000 1.000000

Table 3.  Statistical investigation of the utilized dataset attributes.

 

Fig. 1.  Average error and select size of BBFS compared with other optimizers.
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The proposed methodology
This research employs a widely used dataset and a selection of algorithms with machine learning approaches for 
classifying patients in the field of orthopedics. Prior to evaluating the performance of a model, hyper-parameter 
optimization allows for precise adjustments. The study uses binary breadth-first search (BBFS), binary particle 
swarm optimization (BPSO), binary grey wolf optimizer (BGWO), and binary whale optimization algorithm 
(BWAO) for feature selections, and the BBFS makes an average less error, so we used BBFS as an optimal 
optimizer algorithm. Then six machine learning models, i.e., random forest (RF) classifier, stochastic gradient 
descent (SGD) classifier, Naïve Bayesian classifier (NBC), dummy classifier (DC), quadratic discriminant analysis 
(QDA) classifier, and extra trees (ET) classifier, were trained using a training set that was obtained through a 
feature selection optimizer (BBFS). Through experimentation, the RF model achieved the best results when 
compared with the others. The parameters of the RF model were optimized using four optimization algorithms: 
BFS, PSO, WAO, and GWO. The dataset used contains 310 instances and six distinct features. The results showed 
that the developed BFS-RF can improve the performance of the original classifier compared with other hybrid 
models. It was found that the BFS-RF performs better on the dataset. Figure 6 shows the optimized RF model 
based on BFS for Orthopedic’s disease classification (normal or abnormal).

Fig. 3.  Boxplot visualization of the target attributes.

 

Fig. 2.  Heatmap investigation for utilized dataset attributes.
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Through the study, we exploit a shared dataset. to optimize the RF model using four optimization algorithms: 
BFS, PSO, WAO, and GWO, for classifying patients with Orthopedic’s disease. We use isolated parts of the 
whole dataset for training and testing targets. We can build classifier models using the training data. Afterwards, 
we evaluate the created models based on their ability to create a successful classification model for orthopedic 
illness. Random Forest is chosen using breadth-first search as the best method for adjusting variables. The first 
steps in creating a classification model for RF are determining the parameters that are predicted and the desired 
outcome. Next, try to tune the hyperparameter settings of the RF.

Eventually, the optimized Random Forest algorithm has been utilized for classification, and the model’s 
efficacy is assessed employing trial data. Experimental findings show that RF gave the highest accuracy of 91.4% 
before hyper-parameter adjustment, compared to 81.7%, 83.6%, 86.2%, 87.8.3%, and 89.3% for NB, DC, SGB, 
QDA, and ET, respectively. After applying hyperparameter tuning, the RF with BFS achieved 99.41% compared 
to 97.13%, 96.75%, and 93.95% for PSO-RF, WAO-RF, and GWO-RF, respectively. Therefore, it is an optimal 
method that utilizes the RF model for orthopedics’s illness categorization in contrast with other machine 
learning classifiers.

Features Num Average STD Min 50% Max

Pelvic_incidence 310.0 60.496653 17.236520 26.147921 58.691038 129.834041

Lumbar_lordosis_angle 310.0 51.930930 18.554064 14.000000 49.562398 125.742385

Pelvic_radius 310.0 117.920655 13.317377 70.082575 118.268178 163.071041

Degree_spondylolisthesis 310.0 26.296694 37.559027 -11.058179 11.767934 418.543082

Table 4.  Statistical of selected features.

 

Fig. 5.  Histogram distribution analysis for the dataset features.

 

Fig. 4.  Boxplot visualization of dataset attributes.
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Binary breadth-first search (BBFS)
BBFS is used in ML to identify the most relevant features from a dataset. It begins with considering all available 
features and iteratively removes the one that irrelevants and affects on the performance of the model and 
continues until a desired number of features remains. It simplifies the model, making it easier to train and 
comprehend. BBFS may help rectify overfitting, when the model performs well on training data but negatively 
on unknown data, by deleting unnecessary features. BBFS also speeds up training and improves model ability for 
generalization. BBFS has constraints like it takes much time for computations and especially for big datasets with 
several features. BBFS also depends on the performance metric, thus choose one that matches the model’s target. 
Finally, since BBFS eliminates features individually, it may overlook model-informing feature relationships.

A common feature selection approach in binary labeling scenarios is Binary Breadth-First Search (BBFS). 
The goal is to pinpoint and choose the most significant characteristics from a provided set of features in order to 
enhance the efficiency of a machine learning model. The algorithm utilizes Breadth-First Search (BFS) principles, 
a graph traversal technique, to effectively navigate the feature space. Algorithm 1 demonstrates the mathematical 
algorithm for binary breadth-first search used in feature selection.

Fig. 6.  The optimized RF model based on BFS for Orthopedic’s disease classification.
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Algorithm 1 methodically examines the feature space in a breadth-first approach, guaranteeing that the 
chosen subset is based on the model’s performance. The halting criterion regulates the search space and prevents 
exhaustive exploration. Figure 7 displays the encoding mechanism of BFS.

Machine learning models using hyperparameter optimization
The study presents an optimized RF model for orthopedic disease classifications, using BFS, PSO, WAO, and 
GWO algorithms to fine-tune hyperparameters. Biomechanical features from an orthopedic patient dataset20 
were assessed for efficiency. BFS, PSO, WAO, and GWO are hyperparameter tuning methods that improve 
model accuracy by collecting observations with as much information as possible about the function and optimal 
value. The method efficiently investigates a wide variety of options by searching using different hyperparameter 
settings. algorithm 2 demonstrates the mathematical approach for BFS used in hyperparameter tuning.
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Fig. 7.  Encoding mechanism of BFS.
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Algorithm 2 methodically examines the hyperparameter space, guaranteeing that different settings are 
assessed and compared using a breadth-first approach. The halting criterion regulates the search space to avoid 
exhausting investigation and enhance performance in adjusting hyperparameters.

ML models
Random forest
RF is an ensemble learning technique utilized for tasks involving regression as well as classification. It utilizes 
different classifiers to tackle intricate issues and enhance the performance of machine learning models. RF 
creates and merges decision trees to make predictions by utilizing methods such as majority voting or averaging 
the outputs. It decreases variability by utilizing a number of samples, random selections of characteristics, and 
aggregating predictions from smaller trees.

Naive Bayes
NB is a probabilistic classifier that applies Bayes’ theorem under the assumption of feature independence. They 
excel at text classification tasks such as removing spam and sentiment detection. Various varieties of naive bayes 
include Gaussian naive bayes for continuous and normally distributed data, multinomial naive bayes for discrete 
features, and Bernoulli naive bayes for binary attributes. The selection of the option is contingent upon the 
characteristics of the data under examination.
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Dummy classifier
DC is a fundamental foundation classifier utilized in machine learning systems to assess the effectiveness of more 
sophisticated models. Its basic guidelines enable predictions, making it less complex than more sophisticated 
classifiers. Dummy classifiers are beneficial as they establish an initial performance that advanced models need 
to exceed. If a complex model fails to outperform a basic classifier, it indicates potential problems with either 
the algorithm or the dataset. They are beneficial in situations where there is an unequal distribution of classes, 
serving as a standard for evaluating more sophisticated methods.

Stochastic gradient descent classifier
The SGD classifier is a linear regression technique that utilizes stochastic gradient descent for optimization. It 
is frequently utilized in large databases while prioritizing computing efficiency. Stochastic Gradient Descent 
(SGD) is adaptable and effective, particularly when working with extensive datasets and restricted processing 
capabilities. Achieving optimal results may necessitate a precise adjustment of hyperparameter settings such as 
rate of learning and normalization degree.

Quadratic discriminant analysis classifier
QDA is a classification algorithm that categorizes data into various classes according to their characteristics. It 
is equivalent to linear discriminant analysis (LDA) but permits non-linear limits on decisions among classes. 
QDA offers greater flexibility by not assuming equal covariance matrices across classes, potentially enhancing 
performance. Estimating distinct matrices of covariance for each class might result in overfitting, particularly 
with high-dimensional data or a small number of training examples. Moreover, QDA may require significant 
processing resources, particularly when dealing with huge datasets. Although QDA has benefits, it necessitates 
a thoughtful evaluation of the balance between adaptability and overfitting, particularly in situations with high 
dimensionality or a limited sample size.

Extra trees classifier
The ET, or Extremely Randomized Trees Classifier, is an ensemble learning technique that relies on DT. This is a 
modified version of the RF technique aimed at decreasing the model’s variance while keeping bias low. Extra trees 
add more unpredictability than RF, potentially resulting in enhanced performance under certain circumstances. 
The Extra Trees Classifier is a potent and effective method suitable for classification and regression applications, 
particularly when dealing with extended and complicated datasets.

Fitness function
Any optimized model depends on its fitness value to provide the best practice. In BFS-RF, the classification 
accuracy is selected via the search process as the solution attribute. With given parameters as the following:

S: A subset of features.
Xtrain [S]: Training data restricted to the features in subset S.
ytrain : Corresponding labels for the training data.
Xval [S]: Validation data restricted to the features in subset S.
yval: Corresponding labels for the validation data.
model: The machine learning model to be evaluated.
The fitness function F(S) can be defined in Eq. (3)

	
F (S) =

1

nval

∑ nval

i=1
I(ŷi = yi)� (3)

 where ŷi is the predicted label for the i− th validation sample using the model trained on Xtrain [S]. yi is 
the true label for the i− th validation sample. nval is the number of samples in the validation set. I(.) is the 
indicator function, which equals 1 if the condition inside is true (i.e., if the predicted label matches the true label) 
and 0 otherwise.

Data subsetting
Restrict the training and validation datasets to the features in subset S.

	 Xtrain [S] = Xtrain [:, S]

	 Xval [S] = Xval[:, S]

Model training
Train the machine learning model on the training data restricted to the features in subset S.

	 model.fit(Xtrain [S] , ytrain )

Prediction
Predict the labels for the validation data restricted to the features in subset S.

	 ŷ = model.predict (Xval [S ])
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Performance evaluation
Calculate the accuracy of the model using the predicted labels ŷ and the true labels yval.

	
F (S) =

1

nval

∑ nval

i=1
I(ŷi = yi)

The relatively small sample of 310 incidents and 6 features limited the application of the findings to a general 
population with more diversified orthopedic problems. External validation tests the model on a new dataset 
not utilized for training. The study may be beneficial for a single problem but inaccurate for identifying many 
disorders. Table 5 shows the summary of the methods with their properties.

Experimental setup
In this section, we depicted the experimental environment, followed by the interpretation of evaluation metrics 
in the proposed model.

Setup
The ML models were run using the IDE Jupyter Notebook version 6.4.6. This software simplifies the process of 
developing and executing Python code. The application operates within a web-based browser and is compatible 
with other programming languages, such as Python version 3.8. The trial was executed on a machine equipped 
with an Intel Core i7 processor, 16GB of RAM, and the MS 10 operating system.

Evaluation metrics
The study uses binary breadth-first search (BBFS), binary particle swarm optimization (BPSO), binary grey 
wolf optimizer (BGWO), and binary whale optimization algorithm (BWAO) for feature selections, and the 
BBFS makes less error. Then we apply six machine learning models, i.e., random forest (RF) classifier, stochastic 
gradient descent (SGD) classifier, Naïve Bayesian classifier (NBC), dummy classifier (DC), quadratic discriminant 
analysis (QDA) classifier, and extra trees (ET) classifier. Through experimentation, the RF model gave the best 
results, according to others, with the highest accuracy. The parameters of the RF model were optimized using 
four optimization algorithms: BFS, PSO, WAO, and GWO. Table 6 shows the configuration parameters of the 
optimizers. To check how well the optimized RF works on the dataset, this paper uses a number of prediction 
evaluation metrics, such as accuracy, sensitivity, specificity, F-score, and the AUC curve. Accuracy is calculated 
through the following Eq. (4):

	
Accuracy =

TPos + TNeg

TPos + FPos + FNeg + TNeg
� (4)

Sensitivity is the proportion of true positives among all actual positive cases (TP + FN), see Eq. (5).

	
Sensetivity =

TP

TP + FN
� (5)

Algorithm Parameter Values

BFS

Number of vertices (V) 5

Number of edges (E) 6

Iterations 100

PSO

Acceleration constants [5,5]

Inertia Wmax, Wmin [0.5, 0.8]

Particles 50

Iterations 100

WAO
Population size 200

Iterations 100

GWO Iterations
Wolves

100
20

Table 6.  Configuration parameters for the optimization algorithms.

 

Method Properties Limitations

BBFS Feature Selection Identifies relevant features for diagnosis May not capture all important features, especially with limited data

BFS-Optimized Random Forest High accuracy (99.41%) Limited by dataset size and might not be disease specific

Table 5.  Summary of the methods with their properties.
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Precision =

TP

TP + FP
� (6)

	
Specificity =

TN

TN + FP
� (7)

	
F − score =

2× Recall × Precision

Recall + Precision
� (8)

	
AUC = 1/2

(
TP

TP + FN
+

TN

TN + FP

)
� (9)

Results
This section focuses on the outcomes of the experiments conducted to evaluate the performance of the 
proposed model. Table  7 shows the performance of an optimized RF model with preprocessing in terms of 
accuracy, sensitivity (TRP), specificity (TNP), F-score, the AUC curve, precision and fitted time. The optimized 
RF achieved high accuracy, sensitivity (TRP), specificity (TNP), F-score, the AUC curve, precision and fitted 
time is BFS-RF, with an accuracy of 99.41%, TRP of 99.42%, TNP of 99.41%, F-score of 99.42%, the AUC of 
100%, precision of 99.41% and fitted time of 0.1152. The optimized RF model achieved the lowest result in 
GWO-RF, with an accuracy of 93.95%, a TRP of 93.95%, a TNP of 93.96%, an F-score of 93.95%, an AUC of 
94.4%, precision of 93.96% and fitted time of 0.1328. Figure  8 represents the accuracy of the optimized RF 
model through optimizers (BFS, PSO, WAO, and GWO). Table 8 shows the performance of an optimized RF 
model without preprocessing in terms of accuracy, sensitivity (TRP), specificity (TNP), F-score, the AUC curve, 
precision and fitted time. Table 9 shows the RF parameters using BFS algorithm for the classification process. 
Figure 9 shows that BFS highlights high-speed convergence compared to others and from it we conclude in 
this specific optimization case, the BFS method has the highest rate of convergence and the lowest ultimate 
fitness value, therefore establishing its superior effectiveness. Both PSO and WOA algorithms exhibit strong 

Optimized RF models Accuracy Sensitivity (TRP) Specificity (TNP) F-score Precision AUC Fitted time

BFS-RF 96.03 95.74 95.52 95.5 95.72 96.06 0.3252

PSO-RF 93.698 93.18 93.15 93.08 93.19 93.39 0.3564

WAO-RF 92.98 92.93 92.93 92.97 92.83 93.45 0.3682

GWO-RF 90.563 90.26 90.05 90.26 90.1 91.41 0.3928

Table 8.  Performance of the optimized RF using BFS, PSO, WAO, and GWO without preprocessing.

 

Fig. 8.  optimized RF model with accuracy using BFS, PSO, WAO, and GWO.

 

Optimized RF models Accuracy Sensitivity (TRP) Specificity (TNP) F-score Precision AUC Fitted time

BFS-RF 99.41 99.42 99.41 99.42 99.41 100 0.1152

PSO-RF 97.13 96.93 96.94 96.93 96.93 97.20 0.1264

WAO-RF 96.75 96.76 96.75 96.76 96.75 97.08 0.1282

GWO-RF 93.95 93.95 93.96 93.95 93.96 94.72 0.1328

Table 7.  Performance of the optimized RF using BFS, PSO, WAO, and GWO with preprocessing.
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performance, but with more delayed convergence and comparable end fitness values. Grey Wolf Optimizer 
(GWO), albeit having a slower convergence rate, may provide superior exploration capabilities, but at the cost of 
slower convergence and higher ultimate fitness values.

Table  10 displays the accuracy performance of the classification models without optimization, utilizing 
default settings. Utilizing initial values can streamline the modeling process by removing the necessity for 
manual adjustment of parameters. The built-in variables in the scikit-learn package are selected according to 
established best practices and have demonstrated effectiveness across several scenarios. The RF model achieved 
the highest accuracy of 91.4% among all models. The RF model optimized with BFS showed improvement, as 
seen in Table 7.

Tables  11 and 12 show the analysis of variance (ANOVA) test results for BBFS and BFS-RF algorithm. 
Hyperparameter adjustment using Breadth-First Search (BFS) enhances the performance of the Random 
Forest (RF) model in comparison to the default values. Utilizing the BFS approach enhances hyperparameter 
optimization and leads to improved accuracy for the RF model. The analysis demonstrates notable disparities 
within groups for both BBFS and BFS-RF algorithms, suggesting that the treatments used exert a robust and 
statistically significant impact on their performance. The significant sum of squares for treatment suggests that 
the majority of the variability in the data can be accounted for by the various treatments, therefore proving their 
considerable impact. The methods yield robust findings, suggesting that the observed effects are not due to 
random chance but rather a consequence of the experimental settings. The attributes of ANOVA test illustrated 
as the following:

Models Accuracy

Naïve Bayesian Classifier (NBC) 81.7

Dummy Classifier (DC) 83.6

Stochastic Gradient Descent (SGD) Classifier 86.2

Quadratic Discriminant Analysis (QDA) Classifier 87.8

Extra Trees (ET) Classifier 89.3

Random Forest (RF) Classifier 91.4

Table 10.  Performance of a model’s accuracy without optimizers.

 

Fig. 9.  BFS convergence compared to others.

 

n_estimators 100

max_depth 5

min_samples_leaf 2

Bootstrap True

Table 9.  Random Forest’s parameters using BFS algorithm for the classification process.
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SS: The sum of squares shows how much variability is present within and between groups.
DF: The degrees of freedom help to determine the validity of the statistical test.
MS: Mean squares give an average measure of variation within and between groups.
F-Statistic: A higher F-value indicates greater variance between groups compared to within groups.
P-value: A very low p-value indicates that the observed differences are statistically significant.
Figure 10 shows the AUC curve for the BFS-RF model using the dataset.
Table 13 depicted a comparison in the term of accuracy between the proposed BFS-RF model used in this 

study and other studies used the same dataset.

Conclusion and future work
An RF-optimized model based on BFS was developed for classifying orthopedic disease abnormal and normal 
people in this research. The dataset used contains 310 instances and six distinct features, and the target class was 
binary, with 1 indicating normal and 0 indicating abnormal. The data collecting phase guarantees the data is both 

Studies Model Used Accuracy

Proposed BFS-RF Model Breadth-first search with random forest 99.41%

Elzeki et al. [23] SVM 93.80%

Rubaiyat et al. [24] Random forest 89%

Table 13.  Comparison between the proposed BFS-RF and other models used the same dataset in terms of 
accuracy.

 

Fig. 10.  AUC curve for the BFS-RF model.

 

SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.01641 10 0.00517 F (10, 100) = 627.2 P < 0.0001

Residual (within columns) 0.000428 160 3.26E−06

Total 0.03021 105

Table 12.  The analysis of variance (ANOVA) test results for BFS-RF algorithm.

 

SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.1751 10 0.04023 F (10, 100) = 798.5 P < 0.0001

Residual (within columns) 0.000571 160 2.41E−05

Total 0.1628 160

Table 11.  The analysis of variance (ANOVA) test results for BBFS algorithm.
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comprehensive and well-structured. Effective management of noisy missing values is a substantial challenge, 
frequently arising from mistakes made during data recording. Two approaches are utilized: eliminating missing 
samples or rectifying null values by replacing them with the average value for each characteristic. The study uses 
binary breadth-first search (BBFS), binary particle swarm optimization (BPSO), binary grey wolf optimizer 
(BGWO), and binary whale optimization algorithm (BWAO) for feature selections, and the BBFS makes 
an average error of 47.29%. Then we apply six machine learning models, i.e., random forest (RF) classifier, 
stochastic gradient descent (SGD) classifier, Naïve Bayesian classifier (NBC), dummy classifier (DC), quadratic 
discriminant analysis (QDA) classifier, and extra trees (ET) classifier. Through experimentation, the RF model 
achieved the best results when compared with the others, with an accuracy of 91.4%. The parameters of the 
RF model were optimized using four optimization algorithms: BFS, PSO, WAO, and GWO, using a number 
of prediction evaluation metrics, such as accuracy, sensitivity, specificity, F-score, and the AUC curve. The 
results displayed that the optimized BFS-RF can enhance the performance of the standard classifier compared 
with other hybrid models. It was found that the BFS-RF performs better on the dataset with an accuracy of 
99.41%. In the Future may involve extending the dataset utilized for categorizing orthopedic disease to include 
a more varied and diversified collection of people. Deep learning integrated methods could enhance accuracy 
and performance one of them, investigate various attribute selection approaches to determine the most crucial 
features for the classification. Validating the outcomes on a distinct set of data can enhance the robustness and 
generalizability of the model. Future research could focus on expanding the study to a broader population and 
exploring its possible application in a bigger healthcare network using the IoT and cloud computing systems. 
The model could test on diverse orthopedic illnesses. Optimizing Random Forest model interpretability to 
understand decision making. Integrating the model with healthcare applications and EHRs. The model will be 
tested on other medical applications25–27. Additionally, in the future, the proposed model can be integrated with 
these techniques28–39. This integration may potentially enhance the sophistication of orthopedic disease decision 
support systems, providing more nuanced and advanced capabilities.

Data availability
The data that support the findings of this study are available at https://www.kaggle.com/datasets/uciml/biome-
chanical-features-of-orthopedic-patients.
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