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It is important to examine and comprehend how HIV interacts with the immune system in order to 
manage the infection, enhance patient outcomes, advance medical research, and support global 
health and socioeconomic stability. In this study, we formulate the dynamics of HIV infection to 
investigate the intricate interactions between HIV and CD4+ T-cells. The Atangana-Baleanu and 
Caputo-Fabrizio derivative frameworks are applied to comprehensively examine the phenomenon 
of HIV viral transmission. The basic concepts and results of fractional calculus are presented for the 
analysis of the model. In our work, we focus on the dynamical behavior of HIV and immune system. We 
introduce numerical schemes to elucidate the solution pathways of the recommended system of HIV. 
We have shown the influence of various input factors on the solution pathways of the recommended 
fractional system and highlighted the oscillatory behavior and chaotic nature of the dynamics. Our 
findings demonstrate the complexity of the system under study by revealing the existence of the 
chaotic and oscillatory nature in the dynamics of HIV. In order to quantitatively characterize HIV 
dynamics, a number of simulations are carried out, providing a visual representation of the effects of 
different input variables. It has been observed that the chaos and the oscillatory behaviour is strongly 
related to the nonlinearity of the system. The present study provides a basis for further initiatives that 
try to enhance interventions and policies to lessen the worldwide burden of infection.
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According to reports, HIV infections impair the immune system of their human hosts and harm internal organs 
including the heart, brain and kidneys, which finally causes death. Although yet no treatment is designed for 
this infectious disease, but there are other effective retroviral treatments that can greatly improve the health of 
patients. However, the excessive use of these medications can lead to adverse side effects. On the report of studies, 
HIV infection is the most hazardous virus in the world, having an impact on a variety of industries. In 2017, 1.8 
million people were living with HIV, and 940,000 of them passed away. Presently, a greater number of individuals 
are engaging in therapy compared to previous times. Some individuals have manifested symptoms resembling 
headaches, rashes, sore throats, influenza, and fevers on certain occasions. In some cases the symptoms including 
weight gain, coughing, fever, enlarged lymph nodes and diarrhoea are dangerous. The significance of treatment 
is paramount, given its critical role in enhancing individual health outcomes, mitigating disease progression 
and transmission, and improving quality of life1–3. Additionally, treatment supports public health initiatives and 
fosters economic and medical advancements4,5. Although various treatments have been developed, there is still 
a need for more effective therapies to manage this infectious disease.

Mathematical modeling of HIV and the immune system continues to be an important tool in understanding 
the disease and improving treatment outcomes. These models provide enough details and key factors of the 
transmission route of diseases. The authors in6 proposed the use of compartment models as a viable way to 
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combat HIV infection in humans. The immune deficiency virus’s dynamics during the whole infection process 
were examined by Duffin et al.7. The influence of HIV testing, treatment, and control on HIV transmission 
in Kenya was mathematically modeled by the researchers8. In9, the researchers modelled the transmission of 
HIV with treatment and pathogenics to investigate the intricate phenomena of the infection. In 1999, some 
researchers constructed an HIV model and statistically identified the most beneficial control measures10. 
Multiple models were subsequently developed by the authors in11–13 to explore the dynamics of HIV infection, 
incorporating important elements such as intracellular delays and viral mutation. The study in14 examined two 
transmission methods: direct cell-to-cell transfer and infection by free virions. In15, a model with four distinct 
classes of CD4+ T-cell populations infected by HIV was employed to analyze their interrelationships. In16, 
Perelson and Nelson employed a dynamical model and a parameter estimation approach to identify key aspects 
of HIV-1 infection dynamics. The model initially proposed by Perelson and Nelson was subsequently examined 
by Raun and Callshaw17, who categorized it into three compartments: free virus, healthy CD4+ T-cells, and 
infected CD4+ T-cells. Further, the existence theory of an HIV-1 infection model was explored in18 to enhance 
the understanding and analysis of HIV-1 dynamics. Furthermore, a multistage Homotopy Perturbation Method 
(HPM) was introduced for path tracking of damped oscillations in a model of HIV infection in CD4+ T cells19. 
In20, computational solutions were presented for the fractional mathematical model of HIV-1 infection in CD4+ 
T-cells, which causes AIDS, taking into account the impact of antiviral drug therapy. The main objective of this 
work is to elucidate the impact of input factors on the system’s dynamics to identify the most sensitive parameter 
for controlling the infection.

It is eminent that different mathematical frameworks have been employed in the literature to represent the 
dynamics of biological processes21–23. In the realm of disease modeling, fractional calculus offers significant 
advantages over classical approaches24,25. Fractional derivatives offer a powerful and versatile mathematical 
tool for modeling and understanding the intricate behaviors observed in biological systems26,27. Their ability to 
capture memory effects, non-local interactions, and complex structures makes them invaluable for advancing 
our knowledge and developing practical applications in biology and medicine. By embracing fractional calculus, 
researchers can achieve more accurate and comprehensive models, leading to better predictions and innovations 
in the biological sciences28,29. Although fractional calculus includes numerous operators, we chose to analyze 
our model using the Atangana-Baleanu and Caputo-Fabrizio operators. These fractional operators effectively 
captures real-world processes characterized by non-local and non-singular properties. Therefore, we choose 
to model the dynamics of HIV infection with nonlocal and nonsingular kernels to achieve more accurate and 
precise results.

The rest of the work is organized as follows: In section  "Formulation of HIV model", we structure the 
dynamics of HIV and CD4+" T cells with non-integer derivatives involving nonsingular and nonlocal kernel. 
The basic concepts and main results of the fractional calculus is presented in Sect.  "Results and concepts of 
fractional theory for the analysis of the model. In section "Solution of the HIV system", a numerical schemes 
are introduced to visualize the dynamical behavior of the recommended system of HIV. Through numerical 
simulations, we visualized the chaotic natural and the solution pathways in section  "Results and discussion" 
of the this research work. We have shown the impact of different input factors on the output of the system. 
The limitations of this work have been acknowledged and potential future directions are outlined in section " 
Limitations of the work". In section " Conclusion", we presented the conclusion remarks.

Formulation of HIV model
We organised the HIV transmission phenomena to show the interlink of infected T-cells I , healthy T-cells T  and 
HIV-free virus V . A number of researchers have developed and tested the dynamics of HIV in the past to explain 
the intricate dynamics of HIV30–32. The authors in19 developed the following model for the dynamics of HIV:

	

dT
dt

= ρ− βTT + ηT (1− T + I
Tmax

)− νVT ,

dI
dt

= νVT − βII,
dV
dt

= µβII − βVV ,

� (1)

where ρ is the rate at which the body recruits new T-cells, βT  is the death rate of T-cells while βV  and βI  are the 
rates at which HIV and infected T-cells dies, respectively. The parameter ν signifies the infection rate affecting 
healthy T-cells, while µ denotes the reproduction number associated with cells as a consequence of infected 
T-cells. The rate associated with the growth of healthy T-cells is indicated by η. The model presented in33 is given 
below

	

dT
dt

= ηT
(
1− T

Tmax

)
− σVT

1 + δV
,

dI
dt

=
σVT
1 + δV

− βII,
dV
dt

= µβII − βVV ,

� (2)

in which the saturation incidence rate would allow HIV and infected T-cells to infect healthy CD4+ T-cells. The 
model of HIV infection with variable recruitment for the healthy T-cells illustrated in34 is presented as:
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dT
dt

= ρ exp(−ξV)− βTT + ηT
(
1− T

Tmax

)
− νVT − δIT ,

dI
dt

= νVT + δIT − βII,
dV
dt

= µβII − βVV − νVT ,

� (3)

where δ is the effectiveness of a protease inhibitor while ν is the rate of cellular infection. Numerous fresh 
definitions of non-integer derivatives have been put out recently and utilised to create mathematical models 
for a wide range of real-world systems that involve memory, history, or nonlocal effects. We illustrate the above 
recommended model of HIV infection through CF derivative as

	

CF
0 Dυ

t T = ρ exp(−ξV)− βTT + ηT
(
1− T

Tmax

)
− νVT − δIT ,

CF
0 Dυ

t I = νVT + δIT − βII,
CF
0 Dυ

t V = µβII − βVV − νVT ,

� (4)

where υ is order of CF derivative. Since it is commonly known that the definite integral lacks a regular kernel, 
many definitions have included both kinds of kernels. The ABC derivative, which was first presented by the 
researcher in 2016, is one of the significant concepts that has lately received attention. The dynamics of HIV in 
the framework of ABC derivative is given by

	

ABC
0 Dυ

t T = ρ exp(−ξV)− βTT + ηT
(
1− T

Tmax

)
− νVT − δIT ,

ABC
0 Dυ

t I = νVT + δIT − βII,
ABC
0 Dυ

t V = µβII − βVV − νVT ,

� (5)

where ABC
0 Dυ

t  indicate Atangana-Baleanu derivative. These operators are more attractive for the researchers 
and scientists due to nonlocal and nonsingular kernel. In the following section of the work, we introduce some 
concepts and results of CF and ABC fractional operators.

 Results and concepts of fractional theory
Here, we list the essential notions of fractional theory for the examination of recommended system. Below are 
some of the key findings and theories of CF and ABC:

Definition 1  Assume that q ∈ H1(a1, a2), where a2 > a1, then the CF derivative35 of order υ can be stated as

	
Dυ

t (q(t)) =
W(υ)

1− υ

∫ t

a1

q′(x) exp
[
− υ

t− x

1− υ

]
dx,� (6)

where υ ∈ [0, 1] and W(κ) represent normality with W(0) = W(1) = 135. If q /∈ H1(a1, a2), then we obtain

	
Dυ

t (q(t)) =
υW(υ)

1− υ

∫ t

a1

(q(t)− q(x)) exp
[
− υ

t− x

1− υ

]
dx.� (7)

Remark 1  Suppose that φ = 1−υ
υ ∈ [0,∞) and υ = 1

1+φ ∈ [0, 1], then Eq. (7) can also be stated as

	
Dυ

t (q(t)) =
A(φ)

φ

∫ t

a1

q′(x)e[−
t−x
φ ]dx, A(0) = A(∞) = 1.� (8)

Moreover,

	
lim
φ−→0

1

φ
exp

[
− t− x

φ

]
= ϖ(x− t).� (9)

The definition of fractional integral is given as follows:

Definition 2  Let us assume any function q then the fractional integral can be defined as

	
Iυt (q(t)) =

2(1− υ)

(2− υ)W(υ)
q(t) +

2υ

(2− υ)W(υ)

∫ t

0

q(v)dv, t ≥ 0,� (10)

where υ indicate the order of fractional integral and 0 < υ < 1.
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Remark 2  Further modified form of Definition 2 is given as

	
2(1− υ)

(2− υ)W(υ)
+

2υ

(2− υ)W(υ)
= 1,� (11)

which gives W(υ) = 2
2−υ ,  0 < υ < 1. Utilizing Eq. (11), Nieto and Losada obtained Caputo derivative of order 

υ, which is stated as

	
Dυ

t (q(t)) =
1

1− υ

∫ t

0

q′(x) exp
[
υ
t− x

1− υ

]
dx, 0 < υ < 1.� (12)

Definition 3  Consider a function g such that g ∈ H1(b1, b2), b2 > b1, and z ∈ [0, 1], then ABC represent the AB 
fractional operator in Liouville-Caputo structure defined as

	
ABC
b1

Dz
t g(t) =

B(z)

1− z

∫ t

b1

g′(ε)Ez

[
− z

(t− ε)z

1− z

]
dε.

Definition 4  ABC
b1

Izt g(t) represent the integral of AB derivative stated as follows

	
ABC
b1

Izt g(t) =
1− z

B(z)
g(t) +

z

B(z)ג(z)

∫ t

b1

g(ε)(t− ε)z−1dε.

Obviously, we get the initial function as the fractional-order z tends to 0.

Theorem 1  Suppose a continuous function g such that g ∈ C[b1, b2], then the the resulting outcome satisfies the 
condition36

	
∥ABC
b1

Dz
t (g(t))∥ <

B(z)

1− z
∥g(t)∥, where ∥g(t)∥ = maxb1≤t≤b2|g(t)|.

Furthermore, the Lipschitz condition holds for the newly developed ABC derivative as

	 ∥ABC
b1

Dz
t g1(t)−ABC

b1
Dz

t g2(t)∥ < ϱ1∥g1(t)− g2(t)∥.

Theorem 2  The equation for the fractional differential system is given as36

	
ABC
b1

Dz
t g(t) = w(t),

which yields a unique solution as

	
g(t) =

1− z

B(z)
w(t) +

z

B(z)ג(z)

∫ t

b1

w(ε)(t− ε)z−1dε.

Solution of the HIV system
Here, our primary objective is to illustrate numerical method to demonstrate the solution pathways of the 
recommended system. These numerical schemes will be utilized to visualize the dynamics of the system and to 
illustrate the chaotic phenomena of the system.

Solution through Caputo-Fabrizio
The solution analysis of a fractional system plays a pivotal role in enhancing our understanding of system 
behavior, validating models, making predictions, optimizing performance, and informing decision-making 
across diverse fields of study. There are many numerical methods available, but we will use the method developed 
in37 to analyze our recommended fractional system (4) for HIV infection. We start by looking at the first equation 
of our system:

	
J1(t)− J1(0) =

1− υ

W(υ)
V1(t,J1) +

υ

W(υ)

∫ t

0

V1(χ,J1)dχ.� (13)

Let t = tℓ+1, ℓ = 0, 1, . . . , so we obtain

	
J1(tℓ+1)− J1(0) =

1− υ

W(υ)
V1(tℓ,J1(tℓ)) +

υ

W(υ)

∫ tℓ+1

0

V1(t,J1)dt,� (14)

and
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J1(tℓ)− J1(0) =

1− υ

W(υ)
V1(tℓ−1,J1(tℓ−1)) +

υ

W(υ)

∫ tℓ

0

V1(t,J1)dt.� (15)

The successive terms difference is stated below

	
J1ℓ+1

− J1ℓ =
1− υ

W(υ)

(
V1(tℓ,J1ℓ)− V1(tℓ−1,J1ℓ−1

)

)
+

υ

W(υ)

∫ tℓ+1

ℓ

V1(t,J1)dt.� (16)

Now we approximate the function V1(t,J1) in the time interval [tκ, tκ+1] by utilizing interpolation polynomial 
and obtain

	
Pκ(t) ∼=

V1(tκ,Jκ)

q
(t− tκ−1)−

V1(tκ−1,Jκ−1)

q
(t− tκ),� (17)

where q represent the time spent and q = tℓ − tℓ−1. The above stated Pκ(t) is utilized to obtain

	

∫ tℓ+1

ℓ

V1(t,J1)dt =

∫ tℓ+1

ℓ

(
V1(tℓ,J1ℓ)

q
(t− tℓ−1)−

V1(tℓ−1,J1ℓ−1
)

q
(t− tℓ)

)
dt,

=
3q

2
V1(tℓ,J1ℓ)−

q

2
V1(tℓ−1,J1ℓ−1

).

� (18)

Here, putting Eq. (29) in Eq. (16), yield the following result

	

J1ℓ+1
= J1ℓ +

(
1− υ

W(υ)
+

3υq

2W(υ)

)
V1(tℓ,J1ℓ)

−
(
1− υ

W(υ)
+

υq

2W(υ)

)
V1(tℓ−1,J1ℓ−1

),

� (19)

which is required solution for the first equation of the system. In the same way, we can determine for the second 
and third equation of (4) given by

	

J2ℓ+1
= J2ℓ +

(
1− υ

W(υ)
+

3υq

2W(υ)

)
V2(tℓ,J2ℓ)

−
(
1− υ

W(υ)
+

υq

2W(υ)

)
V2(tℓ−1,J2ℓ−1

),

� (20)

and

	

J3ℓ+1
= J3ℓ +

(
1− υ

W(υ)
+

3υq

2W(υ)

)
V3(tℓ,J3ℓ)

−
(
1− υ

W(υ)
+

υq

2W(υ)

)
V3(tℓ−1,J3ℓ−1

).

� (21)

The two-step Adams-Bashforth approach (ABA) used in this method for the CF takes into consideration the 
nonlinearity of the kernel as well as the exponential decay rule for the CF.

Solution through Atangana-Baleanu
Here, we will represent the solution pathways of our system (5) of HIV infection. We initially adopt the following 
fractional system to develop the necessary numerical method for our fractional model as follows:

	
ABC
0 Dυ

tJ (t) = f (t,J (t)),

using the theory of fractional calculus, we attain

	
J (t)− J (0) =

1− υ

ABC(υ)
f (t,J (t)) +

υ

ABC(υ)ג(υ)

∫ t

0

(t− κ)υ−1f (κ,J (κ))dκ.� (22)

Take t = tζ , then we obtain

	
J (tζ)− J (0) =

1− υ

ABC(υ)
f (tζ−1,J (tζ−1)) +

υ

ABC(υ)ג(υ)

∫ tζ

0

(tζ − κ)υ−1f (κ,J (κ))dκ.� (23)

and for tζ+1, we get
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J (tζ+1)− J (0) =

1− υ

ABC(υ)
f (tζ+1,J (tζ+1)) +

υ

ABC(υ)ג(υ)

∫ tζ+1

0

(tζ+1 − κ)υ−1f (κ,J (κ))dκ.� (24)

We get the difference for above equation as

	

J (tζ+1)− J (tζ) =
1− υ

ABC(υ)

[
f (tζ,J (tζ))− f (tζ−1,J (tζ−1))

]
+

υ

ABC(υ)ג(υ)∫ tζ+1

0

(tζ+1 − κ)υ−1f (κ,J (κ))dκ −
∫ tζ

0

(tζ − κ)υ−1f (κ,J (κ))dκ.
� (25)

	
J (tζ+1)− J (tζ) =

1− υ

ABC(υ)

[
f (tζ,J (tζ))− f (tζ−1,J (tζ−1))

]
+ Bυ,1 − Bυ,2. � (26)

where

	
Bυ,1 =

υ

ABC(υ)ג(υ)

∫ tζ+1

0

(tζ+1 − κ)υ−1f (κ,J (κ))dκ.

Using approximation we obtain

	
P (t) ∼=

f (tζ,Jζ)

q
(t− tζ−1)−

f (tζ−1,Jζ−1)

q
(t− tζ),� (27)

where q = tℓ − tℓ−1. Then, we get the following

	

Bυ,1 =
υ

ABC(υ)ג(υ)

∫ tζ+1

0

(tζ+1 − κ)υ−1

[
f (tζ,Jζ)

q
(t− tζ−1)−

f (tζ−1,Jζ−1)

q
(t− tζ)

]
dκ

=
υ

ABC(υ)ג(υ)

∫ tζ+1

0

(tζ+1 − κ)υ−1

[
f (tζ,Jζ)

q
(t− tζ−1)−

f (tζ−1,Jζ−1)

q
(t− tζ)

]
dκ,

� (28)

	
Bυ,1 =

υf (tζ,Jζ)

ABC(υ)ג(υ)q

[
2qtυζ+1

υ
−

tυ+1
ζ+1

υ + 1

]
− υf (tζ−1,Jζ−1)

ABC(υ)ג(υ)q

[
qtυζ+1

υ
−

tυ+1
ζ+1

υ + 1

]
. � (29)

Similarly, we obtain

	
Bυ,2 =

υf (tζ,Jζ)

ABC(υ)ג(υ)q

[
qtυζ
υ

−
tυ+1
ζ

υ + 1

]
− f (tζ−1,Jζ−1)

ABC(υ)ג(υ)q
,

so, we get the following result

	

J (tζ+1)− J (tζ) =
1− υ

ABC(υ)

[
f (tζ,J (tζ))− f (tζ−1,J (tζ−1))

]
+

υf (tζ,Jζ)

ABC(υ)ג(υ)q

[
2qtυζ+1

υ
−

tυ+1
ζ+1

υ + 1

]

− υf (tζ−1,Jζ−1)

ABC(υ)ג(υ)q

[
qtυζ+1

υ
−

tυ+1
ζ+1

υ + 1

]
− υf (tζ,Jζ)

ABC(υ)ג(υ)q

[
qtυζ
υ

−
tυ+1
ζ

υ + 1

]

+
f (tζ−1,Jζ−1)

ABC(υ)ג(υ)q
.

� (30)

The above yields that

	

J (tζ+1) = J (tζ) + f (tζ, yζ)

[
1− υ

ABC(υ)
+

υ

ABC(υ)q

{
2qtυζ+1

υ
−

tυ+1
ζ+1

υ + 1

}

− υ

ABC(υ)ג(υ)q

{
qtυζ
υ

−
tυ+1
ζ

υ + 1

}]
+ f (tζ−1, yζ−1)×

−
[

υ − 1

ABC(υ)
− υ

ABC(υ)ג(υ)q

{
qtυζ+1

υ
−

tυ+1
ζ+1

υ + 1
+

tυ+1

qABC(υ)ג(υ)

}]
.

� (31)

The method described above is for the ABC fractional derivative. Here, we run different simulations to see how 
different factors affect the relationship between HIV and T-cells. The settings we use for the parameters in this 
section are meant to highlight the chaotic and up-and-down behavior of the system (5) through simulations.

Results and discussion
The choice between CF and AB kernels depends on the specific requirements of the model and the nature of the 
system being studied. The effectiveness of CF fractional derivatives is evident in their ability to provide accurate, 
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stable, and computationally efficient modeling of systems with memory effects. Their non-singular nature, 
exponential decay properties, and simplicity make them a powerful tool in various scientific and engineering 
fields. On the other hand, the AB kernel, with its complex memory effects via the Mittag-Leffler function, is 
better suited for systems requiring a more nuanced representation of memory and hereditary properties. By 
using both kernels, researchers can leverage the strengths of each to develop more robust and accurate models.

Despite extensive international efforts to mitigate HIV/AIDS, the disease continues to exert a substantial 
burden on affected families. Elevated healthcare expenses, diminished employment income, and the depletion of 
resources exacerbate the income-to-expenditure gap, underscoring the persistent challenges. Consequently, an 
examination of the fundamental causes of HIV infection is imperative to mitigate these adverse consequences. 
The primary objective of this research phase is to elucidate the chaotic behavior and time series dynamics of the 
system, aiming to enhance comprehension of the diverse factors influencing it. Employing various numerical 
scenarios, we explore how input elements contribute to the dynamics of HIV. For numerical purposes, parameter 
values are derived from Table 1, and initial conditions for state variables are assumed as T (0) = 300, I(0) = 200
, and V(0) = 120.

In Figs.  1, 2, 3, we visually depict the oscillatory behavior inherent in the system. Notably, the solution 
pathways of the system exhibit a significant dependence on the fractional parameter. The findings of these 
simulations indicate that the order of the fractional derivative positively influences HIV dynamics, suggesting 
its potential utility as a preventive measure. The chaotic nature of the system is demonstrated in Figs. 4, 5, 6, 
where diverse values of input factors lead to varied system outputs. The interplay between the oscillatory and 
chaotic aspects is intricately linked by the non-linearity of the model, inducing unstable states within the system. 
Policymakers are urged to consider the input parameter, as it has been empirically shown to exert a remarkable 
impact on the system’s output. This insight underscores the importance of incorporating fractional parameters 
in policy decisions related to HIV dynamics.

Chaos theory delves into nonlinear phenomena characterized by inherent unpredictability and difficulty 
in control. This field focuses on the deterministic principles and fundamental patterns of dynamical systems, 
particularly sensitive to initial values of state variables, challenging the prior belief of their wholly unpredictable 
chaotic states. The significance of these conditions lies in the valuable insights they offer into the HIV infection 
system. The chaotic behavior observed in the system illustrates the profound impact of minor perturbations, 
leading to substantial changes. The instability of the system is vividly portrayed in these chaotic plots, underscoring 
its susceptibility to initial conditions and inherent uncertainty. Our research underscores that the nonlinearity of 
the system significantly amplifies chaos and oscillation, rendering the system inherently unstable. This revelation 
contributes to a deeper understanding of the intricate dynamics of the HIV infection system and emphasizes the 
importance of considering nonlinear factors in system analysis and intervention strategies.

Limitations of the work
The importance of this research lies in its potential to deepen the understanding of HIV dynamics, particularly 
the interaction between HIV and CD4+ T-cells. By utilizing fractional derivatives and exploring the chaotic 
and oscillatory behaviors within the system, this research addresses a critical gap in current HIV studies. 
The identification of chaotic behavior and the influence of fractional-order dynamics on disease progression 
provide new insights that could lead to more effective treatment strategies. This work not only contributes to the 
scientific community’s knowledge of HIV but also has practical implications for developing interventions that 
could enhance patient outcomes and inform global health policies.

Future work

•	 Despite the promising insights provided by this study, a notable limitation is the lack of validation using clin-
ical data or published datasets to substantiate the application of the Atangana-Baleanu and Caputo-Fabrizio 
derivatives. Future research should address this limitation by incorporating clinical data or relevant published 

Input factors Descriptions Values

βT Fatality rate of healthy T-cells 0.02 day−1

µ Production number of virus by I Assumed

Tmax Maximum concentration of healthy T-cells 1500 mm−3

ν The rate at which healthy T-cells get infected due to free virus 2.4 × 10−5 days−1

I0 Infected T-cells initial concentration Assumed

βV HIV virus mortality rate 2.4 day−1

ρ Transmission rate of T from precursors 0.1 mm−3

η Healthy T-cells growth rate in population 3 day−1

T0 Healthy T-cells initial concentration Assumed

βI Death rate of infected T-cells 0.3 day−1

V0 HIV free viruses concentration Assumed

Table 1.  List of input variables of the proposed system of HIV infection.
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datasets for model validation. Such validation would enhance the reliability of the models and ensure that 
the theoretical predictions align with real-world HIV infection dynamics, thereby strengthening the overall 
impact and applicability of the research.

•	 Future research could focus on enhancing the model by integrating a broader spectrum of biological and en-
vironmental factors, such as the impact of antiretroviral therapy and the influence of co-infections. Addition-
ally, expanding the model to account for individual variability in immune responses and viral characteristics 
would increase its relevance and applicability to a wider range of patients.

Conclusion
HIV infection weakens the body’s immune defenses by attacking the immune system and destroying T-cells, 
presenting a major challenge to global public health. Although recent data suggest a decline in HIV infections, 
thorough research is essential to fully understand the complex interactions between viruses and T-cells. To 

Fig. 1.  Illustration of the time series of the recommended model of HIV infection with the input parameter 
υ = 1.00 and ρ = 0.1.
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tackle this issue, we have meticulously analyzed the intricate relationship between CD4+ T-cells and HIV using 
non-integer derivatives. We considered the relation between infected T-cells, uninfected T-cells and HIV viruses 
in our system. The recommended HIV model is demonstrated through CF and ABC fractional derivatives. We 
investigated the solution pathways and chaotic dynamics of the proposed system using numerical methods. 
Various simulations were conducted to examine the critical conditions of the system. Our findings confirm 
the presence of chaotic behavior within the model. We observed that fractional-order dynamics influence the 
solution pathways of the HIV infection system. The impact of different input factors has been shown on tracking 
path behavior of the system. We identified a significant correlation between chaotic and oscillatory behaviors. 
Further work will focus on assessing the impact of medical advancements on the progression of the virus and 
developing more effective treatment strategies. We aim to extend the current model to analyze the effects of 
treatment and vaccination on HIV infection.

Fig. 2.  Plotting the dynamical behaviour of the recommended model of HIV infection with the input 
parameter υ = 0.75 and ρ = 0.1.
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Fig. 3.  Illustration of the solution pathways of the suggested system of HIV infection with input values υ and 
ρ = 0.1.
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Fig. 4.  Graphical view of chaotic nature of the recommended model of HIV infection with input values 
ρ = 1.0, υ = 0.8 and η = 3.0.
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Fig. 5.  Graphical view of chaotic nature of the recommended model of HIV infection with input values 
ρ = 5.0, υ − 0.8 and η = 3.0.
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Data availibility
The data sets used and/or analysed during the current study available from the correspondingauthor on reason-
able request.
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