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Bridges are vital assets of transport infrastructure, systems, and communities. Damage 
characterization is critical in ensuring safety and planning adaptation measures. Nondestructive 
methods offer an efficient means towards assessing the condition of bridges, without causing harm or 
disruption to transport services, and these can deploy measurable evidence of bridge deterioration, 
e.g., deflections due to tendon loss. This paper presents an enhanced input-doubling technique 
and the Artificial Neural Network (ANN)-based cascade ensemble method for bridge damage state 
identification and is exclusively relying on small datasets, that are common in structural assessments. 
A new data augmentation scheme rooted in the principles of linearizing response surfaces is 
introduced, which significantly boosts the efficiency of intelligent data analysis when faced with 
limited volumes of data. Furthermore, improvements to a two-step ANN-based ensemble method, 
designed for solving the stated task, are presented. By adding the improved input-doubling methods 
as simple predictors in the first part of the cascade ensemble and optimizing it, we significantly 
boost accuracy (7%, 0.5%, and 8% based on R2 in predicting tendon losses for three critical zones 
that were defined across the deck of a real deteriorated prestressed balanced cantilever bridge). This 
improvement is strong evidence of the accuracy of the proposed method for the task at hand that is 
proven to be more accurate than other methods available in the international literature.
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Bridges are critical components of transport systems, facilitating the mobility of people and goods across 
geographical barriers1. However, the structural integrity of bridges can be compromised over time due to 
various stressors2, leading to damage that not only affects their functionality, but also poses significant risks 
to public safety and economic productivity. A very recent example of this, is the failure of the Scott Key Bridge 
in Baltimore, Maryland3, that disrupted the operations of the port causing $191 million a day in lost economic 
activity. Bridge assessment is not always detailed. However, macroscopic evidence, such as excessive deflections, 
can be utilized for rapid assessments, based on nondestructive methods4.

Nondestructive bridge damage state identification techniques play a critical role in evaluating the safety and 
structural integrity of bridges5. These methods offer a means of assessing the structural health of bridges without 
causing further harm or disruption to their functionality6. The field is becoming even more important in view 
of the ageing infrastructure; a condition that results to increased concerns about their structural integrity and 
safety. Additionally, in the context of emerging challenges, such as climate change and increased traffic loads, the 
ability to accurately assess the structural health of bridges through nondestructive means becomes increasingly 
indispensable7.

Nondestructive techniques8provide engineers and managing authorities with valuable insights into the 
condition of bridges, enabling timely maintenance, repair, and retrofitting actions to mitigate potential risks. 
Such methods have become more sophisticated and effective over the years in accurately identifying various 
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types and degrees of damage in bridges with the advancements in sensor technology, data analytics, and artificial 
intelligence9. However, in cases where there is insufficient data for analysis, the effectiveness of such methods is 
reduced or even the application of machine learning (ML) techniques for solving the stated problem becomes 
impossible10,11. Such a problem arises quite often because simulation environments for generating datasets 
operate slowly, while practice engineers are disconnected from the capabilities of ML. Therefore, collecting a 
sufficient number of observations that would formulate a representative dataset, covering all possible scenarios 
for a certain type of deterioration mechanism, is almost impossible considering the tight budgets and resources 
in analysis and assessment.

In Kazantzi et al12., the application of ML methods for damage state identification in deteriorating bridges 
based on a limited dataset was investigated. The particularity of the problem in12 is the need to predict 
damage (in the form of tendon losses) in three different zones, that were defined across the deck of a balanced 
cantilever bridge, that are interdependent. The authors collected a dataset of 81 observations using a simulation 
environment and utilized the k-nn method to address the problem. Considering the specificity of the task and 
the limited data available for training, the results obtained are relatively satisfactory yet there is certainly room 
for further improvement in the predictions made by the proposed methodology. Therefore, there is a need to 
improve the predictive accuracy of the developed method.

In Izonin et al13., the aforementioned stated problem is treated as a regression task. The authors developed 
a two-level cascade method using General Regression Neural Networks (GRNN) as weak predictors to address 
two tasks: (a) effective intelligent analysis in the case of limited data and (b) consideration of interdependencies 
among the three output attributes to be predicted. Despite the increased accuracy of the proposed cascade 
compared to the method that was initially proposed in Kazantzi et al12., GRNN as a weak predictor may not 
provide sufficient efficiency for solving the stated problem. This could lead to a decrease in the accuracy of the 
entire cascade and the need for improvement. Increasing the number of observations in the training sample may 
mitigate the aforementioned drawback10,14. However, obtaining the additional observations requires significant 
time, human and computational resources that are not always available in practical engineering applications.

To address this challenge, Izonin et al15.. developed an input-doubling method that quadratically increases 
the volume of training data, which could potentially improve the accuracy of GRNN’s operation. However, this 
method demonstrates only a negligible increase in accuracy compared to the increased operation duration due 
to the augmentation procedure. Moreover, this method can predict only one output, whereas in the investigated 
task three interconnected outputs need to be predicted. Nevertheless, this method especially its improvement can 
increase the prediction accuracy for one output and therefore can be used as weak regressors for the proposed 
method13.

This paper improves the accuracy of the bridge damage state identification task founded upon a limited 
dataset, by enhancing an existing two-step ANN-based ensemble method. This was accomplished through the 
utilization of enhanced input-doubling methods based on GRNN as weak predictors in the cascade ensemble.

The main contributions of this paper can be summarized as follows:

	1)	� The input-doubling method for small data analysis was enhanced by employing a new data augmentation 
scheme based on the principles of linearizing response surfaces, resulting in increased efficiency of intelli-
gent data analysis with limited volumes.

	2)	� A two-step ANN-based ensemble method for solving the bridge damage state identification task was en-
hanced by utilizing improved input-doubling methods as weak predictors in the first step of the cascade 
ensemble, leading to a significant improvement in the accuracy of solving the stated task.

	3)	� The enhanced ANN-based ensemble method was optimized and achieved the highest prediction accuracy 
for a damage state identification task of a real-world case-study bridge using a small dataset for training (81 
vectors derived from 27 cause-agnostic scenarios of tendon loss, with four input attributes) compared to a 
series of existing methods.

The paper is organized as follows. In “Materials and methods” section describes the dataset for modeling, the 
topology, and the working principles of the GRNN. Additionally, it includes a structural-functional diagram as 
well as training and application algorithms of the enhanced input-doubling method for the analysis of a limited 
dataset, that is used as weak predictors for the improved cascade scheme for bridge damage state identification. 
It also presents a structural-functional diagram and describes the training and application algorithms of the 
enhanced ANN-based ensemble method that is the core of this paper. The third section of the paper is dedicated 
to modeling, selecting optimal parameters, and the results of the improved methods. It also compares the 
performance of the latest methods with several existing ones. In “Conclusions” section of the paper describes 
the implications of the proposed work. The conclusions of the work are presented in the fifth section of the paper.

Materials and methods
This section outlines the peculiarities of the stated problem, describes the datasets for modeling (obtained from 
the simulations of several damaged scenarios of an actual case-study bridge), and constructs the corresponding 
GRNN topology, which forms the basis of the two enhanced methods. Two improved methods are described, 
their operation is visualized, and the main steps of the algorithms for their training and application are outlined.

Dataset description
Bridge deterioration often leads to excessive deflections, indicating potential structural damage. Despite the 
existence of various nondestructive monitoring methods for detecting geometric changes in bridges, such as 
deck deflections and foundation settlement, there is a lack of methods for linking these measurements with 

Scientific Reports |        (2024) 14:24395 2| https://doi.org/10.1038/s41598-024-73738-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


specific levels of damage. This knowledge gap is crucial for devising effective restoration strategies, which 
directly impact costs and intervention scopes.

Kazantzi et al12. developed a dataset of numerically simulated and validated structural responses to address 
this issue. In particular, several variations of a bridge finite element model were developed to simulate different 
damage scenarios, related to tendon losses, that were assumed to be the dominant failure mode for the utilized 
case-study application, i.e., a prestressed balanced cantilever bridge. To facilitate an easier definition of the tendon 
loss damage scenarios the cantilever part of the bridge was subdivided into three Zones. Vertical displacements 
of the bridge deck, expressed as drifts along its length in a non-dimensional manner, were consequently 
computed. As a result, the training dataset comprises 81 observations, derived from 27 cause-agnostic scenarios 
of tendon losses, with four input attributes (Vertical Drift Ratios computed at three characteristic locations along 
the bridge deck, that approximately correspond to the end of defined deck Zones 1, 2, and 3 and the Concrete 
Young’s Modulus) and three interconnected output attributes (Tendon Losses in Zones 1, 2, and 3).

A test dataset, consisting of five observations for each Zone, is utilized for validating the proposed ML 
solution. Both datasets from this research study12 are employed for intellectual analysis and validation in this 
paper.

General regression neural network
The General Regression Neural Network (GRNN) was developed quite a while ago and it is frequently used 
in solving various prediction and forecasting tasks. GRNN serves both as a data preprocessing tool and as a 
primary instrument for solving different tasks in the civil engineering field16. The popularity of this Artificial 
Neural Network (ANN) is attributed to its simplicity and high efficiency in analyzing small datasets in various 
application domains. GRNN, as an Radial Basic Functions (RBF)-like ANN, possesses several advantages, 
including superior generalization, a single-pass learning mode, the need of only one parameter that requires 
configuration, etc13,17,18.

The topology of GRNN for solving the problem addressed by this paper is depicted in Fig. 1.
It comprises four inputs in the input layer, corresponding to four independent attributes. Additionally, there 

are pattern and summation layers, with the calculations provided by the formulas in Fig. 1, and the output layer. 
In our case, the output signal of GRNN is the value of one of the three dependent attributes that need to be found.

Fig. 1.  Topology of the GRNN for solving the bridge damage state identification task.
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An enhanced input-doubling method for the analysis of a limited dataset
Despite the several advantages of the GRNN, this type of neural network does not always provide high prediction 
accuracy15. To address this drawback, a method based on input doubling has been proposed in Izonin et al15., 
which is grounded on the principles of ML based on the axial symmetry of the response surface. This method 
quadratically expands the given small dataset, which should increase the prediction accuracy. However, a 
significant drawback of this method is the substantial increase in the operation time due to the expansion of the 
independent attributes of the problem (doubled inputs) and the use of the authors’ data augmentation procedure 
(quadratic increase in the dataset). This is particularly noticeable for cases where the initial dataset contains 
more than 100 vectors.

The authors of the aforementioned method15 managed to achieve an improvement in the prediction accuracy 
based on the analysis of a small dataset. However, this improvement is relatively small considering the significant 
increase in the method’s operation time. Therefore, in this paper, we propose an enhancement of this method, 
which is based on the principles of linearizing the response surface.

Similarly to the basic method in15, the enhanced input-doubling method involves the following main 
procedures: data preparation (augmentation), applying GRNN, and using the authors’ procedure for forming 
the predicted value. The flowcharts of both procedures are illustrated in Figs. 2 and 3, respectively.

In more detail, the data preparation procedure is as follows. The basic method in15involves concatenating 
two vectors from the given small dataset. This procedure is performed for all available vectors in the training 
set. As a result, a quadratically expanded new dataset is obtained with a doubled number of features in each new 
vector. According to the enhancement proposed in this paper, two additional elements are suggested to be added 
to each doubled vector from the new dataset - the existing output values of the corresponding vectors being 
concatenated. Thus, the dimensionality of the problem is increased by two attributes, while still maintaining the 
quadratic expansion of the given dataset. The dependent attribute for each such pair is formed as the difference 
between the outputs of the two current vectors forming the new extended data vector15. This new dataset is used 
as the training set (or in our case, as the support set) for the operation of the GRNN method.

The procedure for applying the enhanced method requires the availability of: (i) the initial dataset, (ii) the 
quadratically augmented support set, and (iii) the current vector with an unknown output value. In the first 
step of the enhanced method, the unknown output value of the current vector of the test set is predicted using 
the GRNN_1 method. It should be noted that in this case, GRNN_1 uses the initial training dataset as the 
support set. Next, the current vector is concatenated with each vector of the initial training dataset. In addition 
to concatenating independent features, according to the enhancement proposed in this paper, two new attributes 

Fig. 2.  Data augmentation procedure for training GRNN of the enhanced input-doubling method.
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are added to each augmented vector. The first one is the actual output value of the corresponding vector from 
the initial training set. All of them are known. The second one is the predicted value of the desired output for the 
current vector of the test set using the GRNN_1, as it is unknown.

Through performing the above actions, we obtain a temporary dataset for the current vector of the test set. 
Using the new GRNN_2 and the new augmented dataset from Fig. 2, we predict the output signals for each 
vector of the temporary dataset from Fig. 3. Then, after obtaining the output signals and having the known 
output values for the initial support set, the final prediction value for one vector of the test set according to 
the formula presented in Fig. 315is being searched. These procedures are repeated for each new vector with an 
unknown output signal (all other vectors of the test set)15.

Utilizing such an enhanced method, that is built upon the principles of linearization of the response surface, 
is anticipated to significantly increase the prediction accuracy when analyzing small datasets, both compared to 
the basic input-doubling method as well as compared to the existing GRNN.

An enhanced ANN-based ensemble method for bridge damage state identification 
using a limited dataset
At the core of the enhanced ANN-based cascade method for solving the bridge damage state identification task lies 
the existing method from13. It was specifically developed to address the task of predicting three interdependent 
output attributes. For this purpose, the ensemble method from13involves two steps, each utilizing three GRNNs 
to predict the tendon losses at the three different Zones (Zone 1, Zone 2, and Zone 3) of the bridge deck. Both of 
the aforementioned steps are executed sequentially, thus forming a cascading ensemble with two levels. Six weak 
predictors, namely six GRNNs, are used according to13to provide satisfactory accuracy in solving the stated task, 
considering the small amount of data available for analysis. However, as noted by the authors in13, using a larger 
amount of data may ensure higher accuracy and a more reliable prediction outcome.

Therefore, in this paper, it is proposed to use the enhanced input-doubling methods as weak predictors in the 
first step of the method. Such an approach should ensure an increase in prediction accuracy by utilizing a larger 
amount of data based on the author’s data augmentation procedure. The flowchart of the enhanced ANN-based 
ensemble method for solving the bridge damage state identification task using a limited dataset is presented in 
Fig. 4.

The notations used in the enhanced ANN-based ensemble method from Fig. 4 are presented in Table 1.
The main steps of applying the enhanced ANN-based ensemble method for bridge damage state identification 

are the following:
Step 1:   Form three datasets differing only in the dependent feature (three different tendon losses in three 

different Zones). Four independent attributes will be identical across the three datasets.
Step 2: Apply the enhanced input-doubling methods to the three datasets to predict the tendon losses for 

three different Zones of the first level of the cascade.
Step 3: Create three new datasets by replacing the initial four independent attributes of the task with new 

ones, each containing only three attributes - the predicted values of the tendon losses for three different Zones 
obtained in the previous step.

Fig. 3.  Application procedure of the enhanced input-doubling method.

 

Scientific Reports |        (2024) 14:24395 5| https://doi.org/10.1038/s41598-024-73738-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Step 4: Utilize three different GRNNs of the second level of the ensemble on the three new datasets from the 
previous step to forecast the final values of the tendon losses for three different Zones.

It should be noted that after Step 2, we obtained a new dataset x́ = [ŷ1, ŷ2, ŷ3] for training, which contains 
as input attributes the predicted values ŷi, i = 1, 2, 3 of tendon losses for 3 Zones for final processing by neural 
networks at the next level of the cascade (Step 4). In this way, we take into account that the three output attributes 
to be predicted are interconnected, thereby increasing the accuracy of their prediction.

Modeling, results and discussion
Modeling of the enhanced ANN-based ensemble method as well as the enhanced input-doubling method, 
was conducted using custom software solutions in Python. Experimental investigations were conducted on a 
computer with the following specifications: CPU Intel(R) Core(TM) i7-8750 H CPU @ 2.20 GHz, RAM 16.0 Gb, 
GPU NVIDIA GeForce GTX 1050 Ti, 64-bit OS.

Obtained results based on different performance indicators as well as the optimal value of the GRNN’s 
smooth factor are presented in Table 2.

Zone # / Performance indicators Zone 1 Zone 2 Zone 3

R2 0,943 0,996 0,932

MSE 5,609 0,285 3,224

RMSE 2,368 0,534 1,796

MAE 1,904 0,392 0,870

MAPE 0,044 0,014 0,209

MedError 1,504 0,351 0,001

MaxError 3,662 0,872 4,000

Optimal value of smooth factor 0,129993698 0,030762375 0,030714376

Table 2.  Prediction results for each 3 zones using the enhanced ANN-based ensemble method based on 
different performance indicators.

 

№ Notation Explanation

1 x = [x1, x2, x3, x4] The dataset with the primary 4 inputs attributes

2 ŷi, i = 1, 2, 3
The predicted output of the enhanced input-doubling method for the i-Zone 
after first level of the enhanced ensemble

3 The enhanced input-doubling method A weak predictor at the first level of the enhanced cascade ensemble

4 GRNN General Regression Neural Network – a weak predictor at the second level of 
the enhanced cascade ensemble

5 x́ = [ŷ1, ŷ2, ŷ3]
New training dataset for the second level of the cascade ensemble that contains 
predicted output of the enhanced input-doubling method for each 3 Zones

6 ypredi , i = 1, 2, 3
The final predicted output of the enhanced ANN-based ensemble method for 
the i-Zone

Table 1.  The main notations used in Fig. 4.

 

Fig. 4.  Application procedure of the enhanced ANN-based ensemble method.
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To assess the accuracy of the enhanced method, the paper compares its performance with several existing 
methods, including:

	1.	� the classical GRNN19,
	2.	� the extended-input GRNN20,
	3.	� the basic input-doubling method15,
	4.	� the basic ANN-based ensemble model13.

This selection is motivated by the fact that all these methods are based on the utilization of GRNN. To optimize 
the performance of each of the investigated methods, the authors employed the differential evolution method21. 
As investigated in21, this method facilitates rapid search for the optimal value of a single GRNN’s parameter that 
influences its accuracy. In comparison with the dual annealing method, differential evolution provides the same 
results but much faster. This was the main criterion for choosing this method to select the optimal parameter for 
the operation of the GRNN. All obtained results based on the coefficient of determination (R2)22 are summarized 
in Fig. 5.

As could be seen in Fig. 5, the lowest accuracy results for all three zones are demonstrated by the classical 
GRNN19, extended-input GRNN20, and basic input-doubling method15. This can be explained by their failure 
to consider necessary information in the form of two additional attributes for prediction, which are contained 
in the tendon losses of both Zones during the prediction of the third. Significantly better results were shown by 
the basic ANN-based ensemble model13 because it mitigates the aforementioned limitation of the three existing 
methods by utilizing a two-level cascade structure. It accounts for the interdependencies of the three output 
attributes and provides all available independent attributes to weak regressors of the second level to enhance 
prediction accuracy.

The enhanced input-doubling method presented in this paper demonstrated higher accuracy compared 
to the basic ANN-based ensemble model13 by 7%, 0%, and 13% for all three Zones, respectively. This can be 
attributed to a substantial increase in the training dataset size due to the author’s augmentation procedure and 
the utilization of principles of response surface linearization. However, this method is not reliable as it fails to 
consider that the three output attributes are interdependent, thus not leveraging all available information for 
prediction procedures.

The highest accuracy across all three zones was achieved by the enhanced ANN-based ensemble approach 
presented in this paper. Specifically, its usage in an accuracy increase based on R2 by 7%, 0.5%, and 8% for 
Zone 1, Zone 2, and Zone 3, respectively, compared to the best method for solving the stated task (basic ANN-

Fig. 5.  Comparison of different methods (based on the R2) for solving the bridge damage state identification 
task in the three deck Zones.
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based ensemble model13). This reveals several advantages of utilizing the enhanced ANN-based ensemble model 
presented in this paper for solving the damage state identification task for other bridges.

When discussing the computational resources23 required for the enhanced methods presented in the paper, 
it is evident that there has been a significant increase. Table 3 summarizes the execution times for all the studied 
methods used to solve the stated task. It is important to note that all the methods investigated are based on 
GRNN, which does not require a training procedure.

As shown in Table 3, the Enhanced Input-Doubling Method, improved in this study, exhibits a significant 
increase in the duration of the inference procedure compared to the baseline ANN-based ensemble method13. 
This increase can be attributed to two main factors. Firstly, the extended dataset requires processing a greater 
number of features. Secondly, the Enhanced Input-Doubling Method involves using GRNN twice, necessitating 
additional time to select optimal values for both smooth factors to ensure the best performance of both neural 
networks.

When examining the Enhanced ANN-Based Ensemble Method, which employs three Enhanced Input-
Doubling Methods at the first level of the cascade, its execution time also significantly increases compared to 
the Basic ANN-Based Ensemble Method13. This increase is due to the use of three Enhanced Input-Doubling 
Methods instead of the Classical GRNN19. However, as the accuracy results indicate, this combination provides 
substantially lower errors in solving the task outlined in the paper. Additionally, this study focuses on the analysis 
of small datasets for solving the specified problem, which generally do not require extensive processing time. 
Given that the paper discusses a non-destructive method for diagnosing bridge structures, the approximate six-
minute processing time is justified compared to the resource-intensive, destructive methods typically used for 
such diagnostics.

The proposed study on bridge damage state identification24using enhanced ANN-based ensemble method 
has significant implications across several dimensions. First of all, the proposed enhancement of the input-
doubling technique and the ANN-based cascade ensemble method represents a methodological advancement. 
These improvements enable more accurate and efficient bridge damage state identification, especially when 
dealing with limited datasets, which is common in real-world applications25. Such method’s class (nondestructive 
methods) are pivotal as they allow for assessing bridge conditions without causing further harm or disruption. 
Enhancing these methods improves efficiency and reduces maintenance costs associated with traditional 
inspection methods26.

Secondly, the validation of the method in identifying specific bridge damages in Greece highlights its 
real-world applicability and effectiveness compared to existing methods. The demonstrated improvements in 
accuracy, such as the 7%, 0.5%, and 8% enhancements in predicting tendon losses for different zones, underscore 
the practical benefits of the proposed approach. This practical demonstration suggests potential broader 
applicability in various geographical and operational contexts.

The proposed ANN-based ensemble method demonstrates high efficiency in analyzing extremely short 
datasets for training (up to 100 vectors). When considering datasets of medium size (from 100 to 1000 vectors), 
the method also operates effectively. In this case, there is no need to apply data augmentation procedures, making 
classical GRNNs suitable as weak predictors at both levels of the ensemble. They ensure high prediction accuracy 
with minimal computational resources required for their operation. Scaling the method to large datasets 
maintains the composition of the method under these circumstances. The exception would be the choice of 
appropriate weak predictors at both levels of the cascade ensemble. In such cases, high-speed and high-precision 
methods like ensemble machine learning methods11, should be selected to ensure efficient data processing at 
both levels of the cascade ensemble. However, it should be noted that collecting a large amount of data to form 
a training sample for solving the stated task is time-consuming and resource-intensive. Therefore, the improved 
method presented in this paper, that is capable of effectively handling the analysis of extremely small training 
datasets, holds significant practical value.

Conclusions
This paper has underscored the pivotal role of rapid bridge damage characterization in safeguarding the safety of 
such vital transportation infrastructure assets globally. By leveraging nondestructive methods, we have presented 
significant advancements in enhancing the accuracy and efficiency of bridge damage assessment, particularly 
when dealing with limited datasets.

The introduction of a novel data augmentation scheme, rooted in principles of linearizing response surfaces, 
has proved instrumental in bolstering the efficacy of intelligent data analysis in the face of constrained data 
volumes. Moreover, improvements to the two-step ANN-based ensemble method, facilitated by the integration 

Method Zone 1 Zone 2 Zone 3

Enhanced ANN-based ensemble method 356,19 590,35 1107,92

Enhanced input-doubling method 356,10 590,07 1107,76

Basic ANN-based ensemble method13 1,25 1,53 2,13

Basic input-doubling method15 294,16 175,25 486,09

Classical GRNN19 0,10 0,12 0,07

Extended-input GRNN20 0,19 0,39 0,81

Table 3.  Application time for all investigated methods (in seconds).
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of enhanced input-doubling techniques and subsequent optimization efforts, have yielded notable enhancements 
in accuracy.

By means of an actual bridge asset, the proposed solution has demonstrated superior performance compared 
to the existing ANN-based cascade method, as evidenced by achieved improvements of 7% and 8% (based on 
R2) in predicting tendon losses in Zone 1 and Zone 3, respectively. These results underscore the effectiveness of 
the proposed approach in addressing the complexities of bridge damage identification tasks.

Looking ahead, future research endeavors will focus on refining and iterating upon the proposed 
methodologies to further enhance their prediction accuracy. Additionally, investigations into the influence of 
different ANN architectures as weak predictors within the cascade ensemble scheme will be pursued, offering 
valuable insights into optimizing model performance.

Data availability
The data that support the findings of this study are available from the corresponding author, Ivan Izonin, upon 
reasonable request.
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