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The utilization of visible-near infrared (Vis–NIR) spectroscopy presents a nondestructive, fast, reliable 
and cost-effective approach to predicting total nitrogen (TN) and organic carbon (OC) levels. This 
study employed a combination of Vis–NIR spectroscopy, partial least-squares regression (PLSR), and 
support vector machine (SVM) models to investigate the effects of mining on TN and OC stocks in 
both the topsoil (0–10 cm) and subsoil (10–40 cm). 105 soil samples were collected from agricultural 
areas near an iron mine, polluted, moderately-polluted, and non-polluted sites. Results indicated 
that soils at the non-polluted site had the highest of soil OC stocks (7.5 kg m–2) and total nitrogen (2.5 
kg m–2), followed by the moderately-polluted site. Furthermore, it was observed that soils from the 
polluted site displayed the highest spectral reflectance. The spectral bands in the range of 500–700 nm 
showed the strongest correlation with soil organic carbon content. Notably, the SVM method utilizing 
Vis–NIR spectroscopy provided superior predictions for both subsoil and topsoil organic carbon and 
total nitrogen compared to the PLSR methods. Additionally, SVM demonstrated better performance 
in predicting topsoil soil organic carbon (R2 = 0.87, RMSE = 0.13%, and RPD = 2.8) and total nitrogen 
(R2 = 0.91, RMSE = 0.13%, and RPD = 2.4) compared to the subsoil, owing to the larger OM content in 
the topsoils.

Keywords  SVM, PLSR, Spectra, Mine

Soil organic carbon (SOC) is considered as the largest OC reservoir in terrestrial ecosystems and the potential 
for SOC accumulation is crucial for maintaining soil health and mitigating climate change1–3. Its significance in 
mitigating climate change and environmental and human health-risks has garnered substantial attention, as it is 
a primary dynamic carbon stock within terrestrial systems4,5. Similarly, soil total nitrogen (TN) is essential for 
maintaining a healthy ecological balance, being a vital constituent of organic matter and a key player in the soil’s 
mineralization process6.

Human activities, especially mining, have had widespread and significant impacts on both TN and SOC 
worldwide7,8. Generally, mining operations involve extensive removal of vegetation, extensive clearing of land, 
and permanent changes in natural soil structure These factors lead to decreased soil fertility, soil structure 
instability, and significant losses of TN and SOC, which are critical to maintaining good soil health and ecological 
functions9. Degradation of these important soil elements not only affects local ecosystems but also contributes to 
broader environmental challenges, such as increased soil loss, decreased water holding capacity, and greenhouse 
gas emissions. This highlights the urgent need for effective and accurate methods for monitoring the extent of 
soil degradation 01710. In particular, methods that can rapidly and cost-effectively monitor changes in TN and 
SOC concentrations to create sustainable land reclamation and land management practices in mine-affected 
areas are needed.

Traditional methods of carbon (C) and nitrogen (N) measurements methods are often costly and time-
consuming11. The advent of visible and near-infrared (Vis–NIR) soil spectroscopy offers a promising alternative. 
This rapid, cost-effective, and non-destructive technique leverages distinctive spectral characteristics to provide 
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valuable insights into the composition and structure of different molecules, facilitating the quantification of C 
and N content in soils12–14.

Soil spectroscopy is a powerful tool for monitoring soil health, structure and productivity. This method is 
non-destructive, that is, it does not destroy soil or plants, and it is efficient and fast, making it a valuable method 
for agricultural applications. Recent research highlights the widespread application of soil analysis, especially in 
identifying sustainable management options15–18. For example, it can be used to improve crop yields by rapidly 
assessing soil nutrition and health, help farmers make informed crop and crop management decisions and play 
a key role in monitoring soil quality over time. A notable example is Ramírez-Rincón et al.19, who demonstrated 
a strong correlation (r > 0.85) between soil spectrum and OC in Colombian agricultural soils. This finding 
highlights the potential of soil spectroscopy for measuring SOC.

Traditional statistical methods cannot adequately deal with extensive datasets20. Hence, over the years, data-
mining methods have evolved for the estimation of soil properties from spectral data. The partial least squares 
regression (PLSR) is renowned for its accuracy with extensive datasets, frequently employed for the estimation 
soil properties such as carbon, nitrogen, and clay21–26. In addition, non-linear machine learning algorithm 
like support vector machines (SVM),  a pattern search and grid search algorithms, offer robust alternatives, 
particularly for complex datasets that combine multiple sites from diverse geo-pedological areas27–29. Pattern 
search and grid search algorithms explore a broad range of parameter configurations and evaluate a predefined 
set of parameter values, respectively, both contributing to effective model optimization. Studies such as those by 
Seema et al.30 have reported the performance of PLSR and SVM methods for the SOC estimation using Mid-
infrared (MIR) spectroscopy. Xiao et al.31 has focused on the prediction of soil organic matter (SOM) using 
spectroscopy in mining areas to address soil pollution, while Wang et al.32 used of Vis–NIR spectra for predicting 
soil salinity under various land uses. These findings showed the versatility and accuracy of spectroscopy for the 
assessment of soil properties.

Despite these advancements, there remains a significant knowledge gap regarding the specific impact of iron 
mining on SOC and TN, particularly in subsoil. Understanding these impacts is crucial for the development of 
effective soil management strategies in mining-affected regions. Thus, the main objective were to: (1) investigate 
the effects of an iron mine on both subsoil and topsoil OC and TN content and stocks in polluted, moderately 
polluted, and no-polluted sites in western Iran, and (2) use of Vis–NIR spectroscopy combined with advanced 
machine-learning algorithms, PLSR and SVM, to provide a comprehensive assessment of topsoil and subsoil OC 
and N in mining-impacted areas, addressing the critical knowledge gap in this field.

Method and materials
Study area
This research was conducted in the southern part of Malayer, Hamaden Province, Iran. The study area is situated 
between 34°11ʹ and 34°7ʹ N and 49°03ʹ–48°56ʹ E. The study site has a semi-arid climate with a mean rainfall 
of 320.0 mm. The mean annual temperature is 14.5 °C, ranging from − 10 °C in winter to 41 in summer °C. 
During the warm months (Jun to August) temperatures are quite high and during winter (December to March), 
temperatures are relatively low. Soils have high amount of calcium carbonate and on the basis of the Taxonomy 
classification33, soils are classified as Entisols, Alfisols, and Inceptisols. Lands are commonly used for livestock 
and agriculture, mainly for potatoes, barley, wheat, and, with some areas dedicated to horticulture. Geological 
formations include intermountain depressions, mountain ranges, and various types of sedimentary basins.

Soil sampling and analysis
105 soil samples were collected from agricultural lands, as depicted in Fig. 1. In order to ensure unbiased results, 
the soil samples were randomly collected from three sites, with 45 samples obtained from each site. These sites 
consisted of a polluted site located near the mine, a moderately-polluted site, and a no-polluted site. To ensure 
accuracy and reliability, three replicate soil samples were taken at each sampling point to a depth of 40 cm using 
a stainless-steel auger. After soil sampling, the samples were divided into two depths: 0–10 cm (topsoil) and 10–
40 cm (subsoil). The three topsoil samples from each sampling location were combined to create a homogeneous 
topsoil sample, and the three subsoil samples were similarly combined to create a homogeneous subsoil sample. 
The samples were transferred to the lab and air-dried, then ground and sieved prior to soil physicochemical soil 
analysis. Soil texture was determined using a hydrometer. Organic matter (SOM) was determined based on the 
Walkley–Black by oxidizing organic matter with potassium dichromate and determining the amount of carbon 
that was present based on the unreacted dichromate34. While total N was determined based on the Kjeldahl 
approach by converting organic nitrogen into ammonia, distilling it, and then quantifying it through acid–base 
titration35. The calcium carbonate (CaCO3) content was obtained by utilizing a 1  mol L–1 HCl, reacting the 
soil with the HCl to dissolve the CaCO3, and then measuring the amount of carbon dioxide released during 
the reaction. CaCO3 content is calculated based on the volume of acid used and the amount of CO2 evolved34. 
Additionally, an EC-pH meter was utilized for determining the soil’s electrical conductivity (EC) and pH values.

Soil spectroscopy
Vis–NIR spectra were collected in a darkroom using an ASD FieldSpec3 spectrometer (350–2500  nm). A 
50 W halogen lamp, placed 10  cm from the soil sample at a 30° angle, provided the light sourceAn optical 
probe was positioned 5 cm above the sample for a 1° field angle, with a 100% reflectance white panel used as 
the reference for accurate spectral reflectance. Fifteen spectral were measured for each soil sample. The final 
reflectance spectrum was obtained by excluding five noisy spectra and averaging the results of the remaining ten. 
The splicing correction function in ViewSpecPro software (version 6.0.0, ASD Inc, CO, USA) was employed to 
correct for discrepancies between different spectral data segment. To improve accuracy and minimize baseline 
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shifts, the reflectance spectra were converted to absorbance using A = log(1/R), followed by Savitzky-Golay 
filtering. These pre-processing steps were implemented in Python (version 3.8.5) for efficient data processing.

Model development and validation
The spectral differences among various sites were analyzed and visually represented using Principal Component 
Analysis (PCA). The PCA utilized a correlation matrix to extract meaningful insights from the data. The 
statistical software R (2013) was employed to facilitate effective visualization of the results. Cross-validation was 
used to evaluate the effectiveness of the pre-processing methods. The dataset was split into 70% for calibration 
and 30% for validation, utilizing the k-means algorithm for partitioning.

To enhance the connection between soil data and Vis–NIR spectra, Partial Least-Squares Regression 
(PLSR) was employed. The PLSR is a powerful tool specifically designed to handle large datasets with high 
multicollinearity among predictor variables, such as soil spectra data. It identifies latent variables highly 
correlated with the target response variables, optimizing the covariance between the spectral data and soil 
properties. This process compresses the data matrix, reducing dimensionality and capturing the most relevant 
information. Consequently, a robust model is created that can accurately predict soil properties based on the 
given Vis–NIR spectra. Through decomposition into factor scores and factor loadings, the PLSR model predicts 
the response variable Y by identifying the most critical variation in the predictor variable X. The quantity of 
inputs utilized during model development plays a crucial role in determining the accuracy of predictions; 
including too few or too many principal components can lead to under-fitting or over-fitting, resulting in poor 
predictive performance. The most accurate regression equations were obtained by selecting the parameters that 
yielded the best results for predicting TN and OC. The PLSR was perfprmed using Unscrambler × 10.337.

To identify the optimal prediction, the SVM models were trained using a repeated 10-k-fold cross-validation 
approach that incorporated all spectral pre-processing techniques. To enhance the performance of this process, 
an automated grid search was implemented to optimize the SVM hyperparameters, which were varied within 
the range of 0.001, 0.01, 0.1, 1, 10, and 100. A test-set validation was then conducted to evaluate the models’ 
performance. We utilized the Radial Basis Function (RBF) kernel to model complex relationships in data due 
to its ability to handle non-linear relationships. The calibration set, consisting of 73 samples, was used to assess 
the results of PLSR and SVM. Subsequently, the optimal PLSR model, determined through cross-validation, was 
applied to the validation set containing 32 samples to evaluate the accuracy of the models.

Data analyses were performed using Statistica 8.0 software, and Excel 2016 was utilized for generating 
graphs. To evaluate the data normality, a Kolmogorov and Smirnov test was performed Statistica 8.0 software. 
A one-way analysis of variance (ANOVA) was employed to investigate the impacts of mining on STN and OC 
stocks. Furthermore, an Honestly Significant Difference (HSD) test was conducted to compare the different sites. 
Additionally, a Pearson index was used to assess the associations between TN and OC stocks in the topsoil and 
subsurface layers. Some indicators were employed to statistically evaluate the models, including R2, RMSE, ME, 
and RPD ratio (predicted deviation).
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Fig. 1.  A screenshot of Google Earth-map of the studied sites and sampling positions36.
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where n represents the observations number, O denotes the observed values, P represents the predicted values, 
Sd signifies the standard deviation, and SEP represents the standard error. The estimations were assessed 
based on the criteria suggested by Viscarra-Rossel38 as follows: “Excellent” estimations are characterized by 
an RPD ≥ 2.5 and an R2 ≥ 0.80.“Good” estimations have an RPD between 2 and 2.5 and an R2 of at least 0.70. 
“Moderate” estimations range from an RPD of 1.5 to 2 and an R2 of ≥ 0.60. “Poor” estimations have an RPD < 1.5 
and an R2 < 0.60.

Results and discussion
Descriptive of soil samples
Table 1 provides an overview of the soil properties across three studied sites; polluted, moderately polluted, and 
no-polluted sites. Soils with a mean pH greater than 7.6 are classified as calcareous and alkaline, likely due to a 
higher content of CaCO3 (mean CaCO3 = 45.9%; see Table 1). The sits exhibit a vast range of particle sizes, with 
clay ranging from 8.5% to 57.2%, sand from 5.7 to 66.5%, and silt from 15.5 to 66.4%. The soil texture across the 
study area exhibits a range from clay to sandy loam, with the predominant soil classifications being clay loam 
and loam (Fig. 2).

As shown in Fig. 3, both the validation and calibration datasets had similar soil texture classes. Soils classified 
moderately polluted soils and no-polluted soils showed a higher average clay compared to polluted soils. Among 
the factors examined, clay content displayed the greatest variability, with a coefficient of variation (CV) value of 
33.2%. In terms of TN and OC, the topsoil in no-polluted soils land had higher levels compared to moderately-
polluted and polluted soils. Similarly, the subsurface in no-polluted exhibited greater OC and TN compared to 
moderately-polluted and polluted soils. Although top and subsoil and C and TN in moderately-polluted were 
greater than those in polluted soils, these differences were not statistically significant.

Table 2 presents the Pearson’s correlation coefficient (r) values for the soil profile (0–40 cm) TN and OC in 
relation to various soil basic properties. Among the soil particles, clay exhibited the highest positive correlation 
with SOC (r = 0.38, p < 0.05) and TN (r = 0.31, p < 0.05). Additionally, a positive significant correlation was 
found between organic matter (OM) and CaCO3 (r = 0.37, p < 0.05), which is in the line with the findings 
of Ref.39, Ostovari et al.40 who reported r = 0.36 between OM and CaCO3. The CaCO3 contains a substantial 
amount of Ca2+ ions, playing a vital act in the formation of large and stable soil aggregates. It acts as a binding 
agent, promoting the flocculation of soil minerals41,42. This leads to a reduction in TN and OC loss and enhances 
the resistance of soil aggregates against runoff and raindrop detachment.

STN and OC stocks in three studied sites
Among the three soil groups, non-polluted soils had the greatest stocks of SOC (7.4 kgm–2) and TN (2.4 
kgm–2) in the 0–40 cm depth range, moderately-polluted soils followed closely behind. Significant differences 
were observed in TN and OC stocks between the no-polluted and polluted soils. But the difference between 
moderately-polluted and polluted soils was not statistically significant. Agricultural soils have significantly lower 
SOC stocks compared to orchard soils. No-polluted soils benefit from high inputs of C from litter and extensive 
fine root systems, contributing to the greater OC accumulation in the soil profile. Additionally, no-polluted soils 
generally possess higher vegetation and root density compared to polluted soils, directly affecting soil porosity 
and indirectly influencing the distribution of SOC through processes like illuviation, percolation, faunal, and 
activities.

The conversion of agricultural land to mining results in the decrease of soil organic carbon, while reversing 
this land use change can lead to an accumulation SOC content. The primary factor influencing SOC stocks is 
the presence of vegetation, which contributes significantly through the increase of root biomass and the addition 
of plant residues. Vegetation litter plays a crucial role for determining both the quantity and quality of SOC. 
Furthermore, well-developed roots systems enhance soil aggregation and promote the accumulation of SOC, 
creating a healthier soil environment.

As depicted in Fig. 3, the no-polluted soils exhibited higher stocks of TN and OC in both the subsoil and 
topsoil, with moderately-polluted ranking second. Notably, approximately 50% of the SOC stocks are located in 
the subsoil across the all three sites, as shown in Fig. 4a and b. In contrast, more than 70% of the total nitrogen 
(TN) is concentrated in the topsoil. This distribution indicates that the high levels of total nitrogen (TN) and 
organic carbon (OC) observed in the subsoil across three sites (as shown in Fig. 4) could result in a significant 
underestimation of TN and soil organic carbon (SOC) if assessments are restricted to shallower soil layers.

This phenomenon may be attributed to the higher nitrogen inputs received by the topsoil from various 
sources, such as fertilizer application or nitrogen fixation by vegetation, compared to the subsurface layers. The 
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pH EC BD Sand Clay Silt CaCO3 %SOM SOC TN

pH 1.00

EC  − 0.02 1.00

BD 0.00 0.05 1.00

Sand 0.16  − 0.14 0.38* 1.00

Clay 0.02 0.12  − 0.21  − 0.70* 1.00

Silt  − 0.23 0.10  − 0.08  − 0.83* 0.18 1.00

CaCO3  − 0.02  − 0.01 0.09 0.09 0.01  − 0.14 1.00

%SOM 0.07 0.07 0.30* 0.06 0.35*  − 0.19 0.37* 1.00

SOC 0.09 0.06 0.30* 0.02 0.38*  − 0.17 0.06 0.98* 1.00

TN 0.27* 0.03 0.27*  − 0.02 0.31*  − 0.14  − 0.09 0.68* 0.68* 1.00

Table 2.  Pearson’s correlation between STN and OC and some soil properties.

 

Fig. 3.  Mean TN and SOC stocks (kg m–2) under three soil groups.

 

Fig. 2.  Textural class of soil samples.
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presence of high subsurface SOC stocks in mountainous regions, like our study site, can be explained by the 
inhibiting effects of low temperatures and abundant precipitation, which slow down the SOC decomposition 
and promote its accumulation at higher elevations43. These results align with the findings of Lozano-García et 
al.44 and Patton et al.45, who reported 51% and 41% of the SOC were found below depths of 30 cm and 25 cm, 
respectively. Additionally, Wiesmeier et al.46 pointed out that a significant portion of SOC (ranging from 20 to 
47%) is present in German subsoil. Furthermore, Lozano-García et al.44 and also Yimer et al.47 noted that 41% 
and 51% of TN were located within depth of 0–25 cm. Similarly, Bangroo et al.48 found comparable ranges of 
TN stocks, with 59–62% in the depth range of 0–20 cm and 41–38% in the depth range from 20 to 60 cm in the 
Himalayan.

Soil Vis–NIR spectroscopy
Figure 5 illustrates the relationship of TN and SOC contents and spectral reflectance. SOC were significantly 
linked with several bands: 490 (r = 0.23), 671 (r = 0.35), 785 (r = 0.24), 1090 (r = − 0.26), 1420 (r = 0.34), 1860 
(r = − 0.33), and 2422 nm (r = 0.33). Babaeian et al.49 monstrated correlations of SOM with bands near 490, 
1400, 1860, 2340, and 2440 nm. Additionally, Martin et al.50 and Stenberg51 have reported the usability of similar 

Fig. 5.  Coefficient correlation of soil spectral with soil organic carbon and nitrogen contents.

 

Fig. 4.  Subsoil and Topsoil TN and OC stocks in three studied sites.
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bands for SOM prediction. Udelhoven et al.52 emphasized the importance of brightness of soil sample in the 
visible region for predicting SOM.

Absorptions in NIR (780–2500 nm) can be attributed to the overtones bands resulting from the bending and 
stretching of C–H, C–O, and N–H groups53, as well as the overtones of OH, SO4

–2, and CO3
–2 groups. These 

vibrations are contributed to the absorptions observed in the Vis–NIR region. Islam et al.54 highlighted that the 
visible region may provide a better estimation of SOM. Figure 6 reveals a pattern in the reflectance of the TN and 
SOC. Notably, these properties exhibit a similar trend, showing a robust correlation (r = 0.68, p < 0.01) between 

Fig. 6.  Soil spectral reflectance.
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them. Furthermore, TN shows also significant correlations with some wavelengths, including 542 nm, 615nm, 
1445 nm, and 2343 nm.

Figure 6 reveals distinct bands in the wavelength range of 600 to 700 nm, as well as four well-defined bands 
at 1415, 1990, 2222, and 2342 nm. These findings support the idea that SOC influences spectral data across from 
701 to 2445 nm, as noted by Stenberg et al.51. Additionally, Tahmasbian et al.55 emphasized the significance of 
specific wavelengths, particularly the regions from 740 to 800 nm and from 900 to 1000 nm, which are crucial 
for predicting SOC and total nitrogen (TN) content, respectively. Notable absorption features are also observed 
around 950 nm and within the 2300–2445 range nm, further supported by Babaeian et al.49.

The mean soil spectra for three soil groups (polluted soils, moderately polluted soils, and no-polluted soils) 
are presented in Fig. 6a. The no-polluted soils, characterized by higher OC in both subsoil and topsoil, display 
the lowest spectra reflectance, followed by moderately polluted soils, and no-polluted soils. Soil spectra are 
influenced by landuse changes, primarily due to their significant effect on SOM, a crucial soil property that 
impacts soil color.

Consequently, these alterations have significant effects on soil spectra through their influence on SOM39,55. 
Higher spectra observed in the polluted soils could be attributed to their predominance in high-altitude and 
high-steep slope areas, where lower vegetation cover increases the risk of erosion. There is a direct correlation 
between slope and soil water content, which significantly influences the accumulation of SOC. Slope affects SOC 
accumulation by influencing the infiltration and retention of water in the soil56. Vegetation growth is adversely 
affected on steep slopes, leading to a significant decrease in soil fertility and, consequently, SOC stocks57. Previous 
studies have consistently shown that the SOC content tends to be higher on lower slopes (non-polluted soils) 
and lower on upper slopes, where intense sunlight leads to high rates of water evaporation, resulting in relatively 
low soil water content56,57. This condition promotes the decomposition of SOC. Moreover, the upper slopes are 
more prone to soil erosion, leading to the deposition of eroded soil on the lower slopes. Consequently, the soil 
profile in the lower slopes becomes relatively thicker, increasing SOC stock. At the polluted site, especially near 
the mine areas, pollutant deposits and dust from the mine reduce plant growth and vegetation density, resulting 
in a significant reduction in SOC. Areas with less vegetation cover are more prone to erosion and degradation, 
leading to uneven distribution of SOC.

Figure 6b demonstrates that topsoil exhibits lower spectra compared to the subsoil. This difference can be 
attributed to the darker nature of topsoil, which typically contains larger stocks of soil organic matter derived 
from various sources such as exudates, root litter, plant residues, and ground litter. Correspondingly, studies by 
Stenberg51 identified absorption at 480, 580 and 650 nm, which are linked to oxides (e.g. hematite) that influence 
soil color. These findings align with those of Babaeian et al.49, further supporting the identified features. Sandy 
soil exhibits the highest reflectance, primarily due to its composition of white minerals like quartz and potassium-
feldspar. In contrast, the clay-texture soil showed the lowest spectral (Fig. 6c). Bowers and Hanks58 observed a 
reduction in reflectance as particle size increased. Additionally, the soil spectra within the 700 to 2450 nm range 
is significantly influenced by soil texture, particularly in relation to distinct absorption features.

Model development and validation
In Fig. 7, the comparison between predicted and measured OC and total TN contents in both subsoil and topsoil 
using SVM and PLSR models with soil spectra is presented..

Both SVM and PLSR methods demonstrate high accuracy in predicting TN and OC, as evidenced by the 
excellent distribution of TN and SOC data points around the 1–1 lines in both calibration and validation datasets 
(Fig. 7). Table 3 further supports the superior performance of SVM and PLSR for topsoil TN and OC compared 
to subsoil TN and OC in both datasets. This can be attributed to the higher reflectance of the topsoil, which is 
associated with higher TN and OC. Topsoil generally exhibits higher reflectance due to its greater SOM, which 
improves the accuracy of spectral models like SVM and PLSR59. For both subsoil and topsoil, the SVM method 
shows excellent prediction results. Specifically, for OC, SVM achieves R2 values of 0.91 and 0.88, RMSE values 
of 0.12% and 0.13%, and RPD ratios of 2.8 and 2.4, respectively (Table 3). Similarly, for TN, SVM achieves 
R2 = 0.88 and 0.82, RMSE = 0.13% and -0.21%, and RPD ratios of 2.4 for both subsoil and topsoil. In comparison, 
PLSR performs well with R2 = 0.82 for both TN and OC in the topsoil but slightly underestimates the TN and 
OC content in both subsoil and topsoil. Interestingly, scholars from various countries have conducted a series 
of studies on the monitoring SOC60. Seema et al.30 found that the PLSR model with R2 = 0.78, RMSE = 0.04%, 
and RPD = 2.07 outperformed the SVR model (R2 = 0.65, RMSE = 0.09%, and RPD = 1.12) for predicting 
SOC content. This underscores the reliability of MIR spectroscopy for SOC determination and highlights 
the importance of selecting appropriate techniques and methods for spectral analysis. Xiao et al.31 utilized 
spectroscopy to assess SOM in mining areas, achieving a strong correlation coefficient (r) of 0.96 and a relative 
percentage deviation (RPD) of 3.08, further demonstrating the effectiveness of spectroscopy for precise SOM 
evaluation in mined regions.

Several studies have highlighted the effectiveness of advanced models like SVM and PLSR in predicting soil 
carbon and nitrogen content. Tahmasbian et al.55 reported satisfactory results with low RMSE and high R2 when 
using advanced models in predicting OC and TN in soil. Yang et al.61 emphasized the high performance of the 
PLSR in predicting SOC. Ding et al.62 demonstrated that SVM produced the best results for SOC prediction 
and highlighted the benefits of combining Vis–NIR spectroscopy and SVM for monitoring and predicting SOC 
in arid region. Jia et al.63 used Vis–NIR and MIR techniques for predicting SOC under different land cover 
types, and found that SVM regression models outperformed PLSR models in predicting SOC concentration. 
Viscarra-Rossel and Behrens64 compared various data mining techniques and concluded that SVM was the best 
approach for estimating SOC, %clay, and pH by using soil Vis–NIR spectroscopy. Sorenson et al.26 suggested that 
Vis–NIR soil spectroscopy integrated with other methods can be successfully analyzed the variability of TN and 
OC at soil aggregate scales. In summary, SVM and PLSR models demonstrate strong predictive capabilities for 
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Methods Depth

R2 RMSE % ME %

RPDValidation Calibration Validation Calibration Validation Calibration

PLSR

Topsoil 
OC 0.87 0.82 0.16 0.15 0.030  − 0.02 2.7

Subsoil OC 0.73 0.80 0.51 0.90 0.12 0.18 2.3

Topsoil TN 0.85 0.87 0.10 0.21  − 0.16  − 0.01 2.4

Subsoil TN 0.88 0.65 0.38 0.43 0.16 0.12 2.2

SVM

Topsoil 
OC 0.87 0.91 0.13 0.12 0.02 0.02 2.8

Subsoil OC 0.93 0.88 0.35 0.45 0.08 0.9 2.5

Topsoil TN 0.91 0.91 0.10 0.13  − 0.10  − 0.06 24

Subsoil TN 0.89 0.88 0.26 0.32  − 0.08  − 0.03 2.4

Table 3.  Statistical indices for the PLSR and SVM methods for subsoil and topsoil TN and OC prediction 
using soil spectra.

 

Fig. 7.  Observed vs predicted TN and OC using the PLSR and SVM methods in subsoil and topsoil.
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estimating TN and OC using soil spectra. Their accuracy makes them valuable tools for efficiently monitoring 
and prediction of soil properties.

Higher organic carbon (OC) content in topsoil leads to better predictions with support vector machines 
(SVM) compared to partial least squares regression (PLSR) due to SVM’s ability to capture complex, non-linear 
relationships and handle high-dimensional data effectively. The distinctive spectral features associated with high 
OC content provide rich data that SVM can leverage for more accurate predictions. In contrast, PLSR’s linear 
approach and dimensionality reduction can miss the nuanced spectral variations in high-OC soils, limiting its 
predictive power65.

Conclusion
The study aimed to investigate the effects of mining on total nitrogen (TN) and organic carbon (OC) stocks in 
both the topsoil and subsoil across 3 sites (polluted, moderately-polluted, and non-polluted) using Vis–NIR 
spectroscopy coupled with SVM and PLSR models. The findings revealed crucial insights into soil health, with 
the non-polluted site showing the highest levels of organic carbon (7.5 kg m–2) and total nitrogen (2.5 kg m–2), 
indicating a healthier soil environment. The moderately-polluted site had lower but still significant levels of 
TN and OC, while the polluted site, especially in northern areas, exhibited the highest spectral reflectance, 
suggesting that pollution from the iron mine has significantly affected soil properties. Reflectance in the 500–
700 nm range was strongly correlated with OC, while the 175–1950 nm range was more strongly correlated to 
TN. The study also found that using the SVM method with Vis–NIR spectroscopy improved the accuracy of 
soil property predictions compared to PLSR methods. SVM was particularly effective in predicting topsoil and 
subsoil TN and OC due to its ability to handle higher concentrations of organic matter. These findings provide a 
deeper understanding of the impact of iron mining pollution on soil properties at different depths and highlight 
the benefits of advanced predictive methods in soil science.

Data availability
All data generated or analyzed during this study are included in this published article.
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