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The share of solar power in Brazil’s electrical grid has rapidly increased, relieving GHG emissions and 
diversifying energy sources for greater energy security. Besides that, solar resource is susceptible to 
climate change, adding uncertainty to electrical grid resilience. This study uses satellite and reanalysis 
data to evaluate the performance of CMIP6 models in replicating and predicting surface solar irradiance 
(SSR) in Brazil. The results from the most reliable models indicate an increase in SSR by 2% to 8% 
in most regions, with a decrease of around 3% in the South. These findings highlight the potential 
for increased photovoltaic (PV) yield if backed by supportive public policies while underlining the 
importance of uncertainty assessment of climate models.

Solar energy is a promising alternative to meet the growing electricity demand while reducing greenhouse 
gas emissions. However, they are weather-dependent and require careful planning to minimize the impact 
of the intrinsic intermittence on the energy distribution system1. Several worldwide studies investigated the 
time and spatial variability and tendency of weather and climate-driven renewable energy resources based on 
data provided by climate models2–7. Solar radiation assessments based on climate models found an average 
decrease of 0.1 to 0.4 W/mÂ² per decade from 1979 to 2014 globally8. Several studies for Europe show that 
PV power generation will increase at the end of the century2,5,6 despite some evidence that the future climate 
scenarios can drive a more complex spatial change of surface solar radiation (SSR)9. Nevertheless, other studies 
adopting a small subset of models or even downscaled high-resolution climate projections point in the opposite 
direction, indicating a decrease in PV potential for Northern European countries by the end of the century10,11. 
In summary, previous studies suggested that the uncertainty endures showing distinct climate change signals 
depending on the methodological approach used in investigation2,10,12.

Since 2018, Brazil has been witnessing a significant surge in its installed PV capacity, which has now surpassed 
30.7 GW in the second quarter of 202313–15. As PV power generation is set to play a more substantial role in 
Brazil’s future energy mix, it becomes imperative to delve into the impact of climate change on the spatial and 
temporal variability of solar energy.

It’s worth noting that more assessment studies need to be conducted that specifically address the impact of 
climate on solar radiation over Brazilian territory. For instance, historical records of surface solar irradiance at 
129 automated weather stations have shown both positive (+40Wh/m2 per year) and negative (−50Wh/m2 per 
year) trends for the northern and southern portions of the Brazilian Northeastern (NEB), respectively16. Recent 
studies based on global climate models have indicated an increase in solar energy potential for most of Brazil, 
with a high level of resilience for a 4-degree specific warming level scenario17,18. However, these results also 
present conflicting outcomes for Brazil’s Southeast and Midwest regions, suggesting high uncertainty. Zuluaga 
et al. showed that PV power generation in Brazilian territory would likely decrease by the end of the century in 
both SSP2-4.5 and SSP5-8.5 scenarios, except for the northern Amazon region19 based on an ensemble from the 
CMIP6 climate models.

The previous results revealed a high level of uncertainty in climate change impact assessments, partly due to 
the different methodologies and datasets adopted. A more rigorous selection of the climate models to be used 
in an ensemble analysis, focusing on selecting those with the best performance and ability to represent current 
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climate patterns, is essential in improving the analysis of future climate scenarios. Bias-correction methods 
and statistical indicators to evaluate the model’s skill in reproducing spatial and seasonal patterns observed in 
historical reference datasets, like satellite-based or meteorological reanalysis, are fundamental to achieving more 
confidence in the climate change impact assessment.

This work aims to reduce uncertainties in the future surface solar irradiance SSR and PV yield for Brazilian 
territory by departing from an accurate historical dataset combining satellite and reanalysis and adopting 
reliable statistical methods to rank the CMIP6 climate models regarding their ability to represent spatiotemporal 
variability of SSR. We used the ensemble with the highest-skill CMIP6 models to assess the impact of 
climate change on solar energy up to 2100 under SSP2-4.5 and SSP5-8.5 scenarios in order to support energy 
entrepreneurs, governmental and non-governmental organizations in planning and building the Brazilian power 
generation system resilient to future climate conditions. Case studies for nine particular interesting sites for PV 
power generation delivered geographical outcomes that can help design and develop public policies to promote 
environmental sustainability and social energy justice. All research results and Python codes developed for data 
analysis are available for public access20,21.

Results
Figure 1 provides a comprehensive view of the performance of CMIP6 models in reproducing SSR spatial 
patterns, providing visual information on the alternation between positive and negative bias for Brazilian 
territory. Uncertainty in model estimates is noticeable due to the large spread of deviations. The 40-models’ 
ensemble (ENS) reproduces the SSR’s spatial pattern over Brazilian Northeast and Central regions with 
reduced bias. Nevertheless, the ENS overestimates (around 50W/m2) the climatological SSR in the Amazon 
region. These results agree with findings showing a negative bias for precipitation outputs of CMIP6 models for 
the north of the Amazon22–24.

Figure S1 in the Supplementary Material shows the bias-adjusted reanalysis (ERA5QM) for the 1980-
2014 period used as the reference dataset to evaluate CMIP6 models’ skill in representing spatial and seasonal 
patterns in three target regions (see Fig. 2): Brazilian Northeast (area A1), South (area A2) and Central (area A3). 
Regarding the target area A1, model M2 overestimates the SSR around 40W/m2 − 50W/m2(≈ 15%− 20%) 
while M5, M18, M26, and M34 underestimate by the same amount. Most models overestimate around 30W/m2

(≈ 12%) in areas A2 and A3, while models M5, M6, and M31 underestimate up to 20W/m2( 8%).
The results of the spatial correlation between CMIP6 outputs and ERA5QM  are available in the supplementary 

material (Table S1) that delivers information on the monthly spatial correlation presenting statistical significance 
(p-values < 0.05) achieved by climate models in the three target areas. The ensemble (ENS) and twenty-two 
CMIP6 models presented a significant positive correlation (p < 0.05) in all twelve months for all three target 
areas. The ENS presented the best correlation index in the three target areas, supporting the benefit of working 
with model ensembles. The other eighteen models presented no significant correlation, mostly in transition 
months between wet and dry seasons (April and October), and were discarded for the following analysis.

In the next step, the Taylor Skill Score (TSS) (described in eq.2) was used to determine how accurately 
the twenty-two CMIP6 models depict the seasonal changes in SSR within the three target areas. Figure 3 
displays the Taylor diagram and Table S2 (Supplementary Material) lists the time correlation index (r), unbiased 
root mean square deviation (uRMSD), and standard deviation (SD) ratio attained by the 22 models and the 
ENS, assuming the ERA5QM  dataset as a reference. Time correlation was computed over the twelve-month 
climatological cycle. The blue markers denote the ten models presenting TSS greater than 0.9.

A second ensemble (referred to as SME) was processed using the ten best-performing CMIP6 models. 
The statistical parameters achieved by SME in the three target areas are also listed in Table S2. The SME 
showed a little higher standard deviation ratio than the ensemble ENS with all 40 CMIP6 models; however, it 
overcomes the ENS in all other metrics, including the TSS (0.96 compared to 0.90). The maps shown in Fig. 2 
indicate around 20% reduction in the standard deviation of the SSR data from the SME compared to the ENS 
in the whole Brazilian territory. The dispersion among members is related to the uncertainty in the ensemble 
mean, evidencing that the SME attained an expressive reduction in uncertainty while sustaining similar skill in 
reproducing SSR historical climatology.

Model M25 (HadGEM3-C31) is the top-performing model in terms of TSS, with the highest time correlation 
and lowest uRMSD. The ENS has the second lowest (SD) but performs poorly in other statistical indexes 
compared to the ten best-performing models.

The SSR changes for future scenarios obtained from SME are presented in three timeslices: near-future 
(2015-2040), mid-term future (2041-2070), and end-of-century (2071-2100). Complete plots and maps for 
the three timeslices and both climate scenarios (SSP2.45 and SSP5.85) are available at https://doi.org/10.6084/
m9.figshare.25396612 for public access.

Figure 4 shows the seasonal variation of the climate change factor (CCF ) and SSR in the three target areas. 
More details on seasonal variation of SSR derived from the ERA5QM  and CMIP6 Smart Ensemble (SME) are 
shown in Figs. S3 to S5. In Brazilian Northeast (Area A1), Fig. 4b shows that CCF  is positive throughout the 
year, except in January and February for the end-of-century. In both climate scenarios, the highest CCF  occurs 
in transition periods between dry and wet seasons, September to November and March to April. Due to the 
CCF  seasonal variation, the monthly mean SSR increases around 10W/m2 in the austral autumn and spring 
seasons in both scenarios and all timeslices. Such an increase in SSR agrees with the reduction in precipitation, 
notably for the SSP5-8.5 scenario25. The seasonal CCF  variation for the central region of Brazil (area A3, Fig. 
4d) is similar to area A1. The CCF  assumes positive values throughout the year, with the highest CCFs in the 
wet season from October to March (3-5% in SSP5-8.5 and 2-3% in SSP2-4.5) at the 2071-2100 timeslice.

Figure 4c shows an opposite seasonal pattern in the South of Brazil (area A2). The CCF  shows negative 
values most of the year except for January and February, ranging from 0.5 to 1.5% in both scenarios and 
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timeslices. The decrease in SSR is more severe during the Wet-Dry transition months when the predicted CCF  
is around−2.0% (−4.5%) in SSP2-4.5 (SSP5-8.5) at the end-of-century.

Figure 5 displays seasonal maps of the CCF  for the Brazilian territory according to SME. For the near-
future timeslice (Fig. 5a and d), the impacts are quite similar in both scenarios (SSP2.45 and SSP5.85). The SSR 

Fig. 1.  The panel presents the mapping of the BIAS deviation (in W/m2) shown by the SSR estimates 
provided by the ensemble (upper left corner) and by each of the forty climate models from CMIP6 used in the 
study. The model names are positioned above the corresponding map. The authors prepared maps using the 
available Python libraries.
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is expected to increase by up to 3% in the Amazon and up to 5% in Central and Southeastern Brazil, though 
more pronounced during Spring and Summer. The 2070-2100 timeslice (Fig. 5c and f) shows a decrease of up 
to −2% (−4%) in SSR in the northern part of the Brazilian Northeastern region under SSP2-4.5 (SSP5-8.5) 
during Summer. An SSR decrease of up to 5% is also noticed in Southern Brazil for SSP5.85, lingering from 
Fall to Spring. On the other hand, SSR is likely to increase by up to 6% (10%) in the Amazon, Central, and 
Southeastern Brazilian regions under SSP2-4.5 (SSP5-8.5).

Figure 5 shows a noticeable signal in the annual average maps with CCF  ranging from 2% to 6% in the 
near future (SSP2-4.5) to −3% to 8% by the end of the century in SSP5-8.5. Those amplified positive signals in 
CCF  during spring over semi-arid and Central regions of Brazil play a crucial role in reducing the vulnerability 
of the Brazilian electrical system to climate change, especially where most of the utility-scale PV power plants 
are currently operating. The Brazilian Interconnected Electricity System (SIN) mainly relies on hydropower 

Fig. 3.  Taylor’s diagram compares the CMIP6 model’s performance regarding the ERA5QM  database. Each 
marker represents the statistical metrics achieved by the CMIP6 climate models and the ENS ensemble. The 
blue (red) markers indicate the CMIP6 climate models with a Taylor index TSS above (below) 0.9. The black 
marker indicates the statistical metrics achieved by (ERA5QM). Table S2 (Supplementary Material) lists the 
statistical metrics achieved by each model and ensemble.

 

Fig. 2.  (left) Surface solar irradiance SSR reference map based on the ERA5QM . The rectangles indicate 
the target regions used in the performance evaluation of CMIP6 models: area A1 in the Northeast, A2 in the 
South, and A3 in Central Brazil. Standard deviation maps of SSR calculated among members of the ENS 
(central) and SME (right). The authors prepared maps using the available Python libraries.
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and faces critical operation from September to November due to the end of the dry season. During these 
months, hydropower reservoirs are usually depleted and exposed to climate variability, implying high risks. Past 
electricity supply crises are clear evidence of this situation26. In this sense, the higher solar resource levels during 
spring add resilience to the future of the national electricity system for both scenarios. However, impacts on 

Fig. 4.  (a) Seasonal variation of mean (SSR) based on the ERA5QM  database; (b) Seasonal variation of mean 
CCF  obtained from SME for SSP2-4.5 and SSP5-8.5 pathways for target area A1; (c) for area A2 and; (d) for 
area A3.
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Fig. 5.  The seasonal mean CCF predicted by the SME for the SSP2-4.5 in 2015-2040 (a), 2041-2070 (b), and 
2071-2100 (c) timeslices; and for SSP5-8.5 in 2015-2040 (d), 2041-2070 (e) and 2071-2100 (f) timeslices. The 
columns are from left to right: summer, autumn, winter, spring, and annual. The gray dots over the maps 
represent the grid locations with statistical significance (p-value <0.05). The authors prepared maps using the 
available Python libraries.
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other renewable resources (wind, hydro) are also expected, and an integrated evaluation should be conducted 
in the work in progress.

Case studies for metropolitan and remote areas
Solar PV technologies have rapidly grown in Brazilian metropolitan regions (MR) due to a sharp cost reduction 
and recent regulations encouraging distributed generation13. The SSR’s spatial distribution and future trends 
highlight the challenges in optimizing solar power benefits for Brazil’s energy mix while reducing risks and 
GHG emissions to fulfill international commitments. Based on recent works using data from PV power systems 
operating in Brazil27, we used the performance ratio (PR) around 0.8 to evaluate the impact of climate change 
on solar PV yield.

Figure 6 shows the annual PV yield from 1980 to 2100 assessed using the SSR outcomes of the SME for SSP2-
4.5 and SSP5-8.5 pathways in seven MRs and two remote areas, covering different climate regimes. We assumed 
that technological advancements in PV technology will offset the losses in solar energy conversion due to the 
rise in ambient temperature. Table 1 lists the trend slope and p-value of the linear regression fitted for the nine 
locations and climate pathways. The statistically significant trends are highlighted in bold blue numbers.

Fortaleza and Petrolina are MRs located in the Northeastern region of Brazil, where SSR is at its highest. 
Fortaleza is on the coast near the Equator and holds more than three million inhabitants. It also has abundant 
wind energy resources throughout the year28,29, which allows hybrid wind-solar projects to take place, reducing 
power intermittence. On the other hand, Petrolina is located in the semiarid region close to the largest regional 
hydropower reservoir, Sobradinho (1050 GW), where floating PV power plants could improve water storage 
and management during extreme drought periods and meet water demands for other uses besides power 
generation30,31.

Based on Fig. 6, the SME predicts that PV yield will increase 0.11kWh/kWp per year (0.18kWh/kWp per 
year) in Petrolina, until the end of the century for SSP2-4.5 (SSP5-8.5) pathway (with low statistical significance). 
However, SME predicts a significant negative trend (−0.25kWh/kWp.y

−1 (−0.36kWh/kWp.y
−1)) on annual 

PV yield for the same climate scenarios in Fortaleza. Although the results indicate a likely reduction in solar PV 
resources on the equatorial coast of the Brazilian Northeast, the portfolio is rather resilient since most large-scale 
PV utilities are being implemented in the semi-arid region. The impacts are limited to +/− 2% over the current 
PV yield (reference timeslice) and may not primarily affect the financial feasibility of the sector.

Brasilia and Belo Horizonte are important MRs where solar power rapidly expands due to the region’s 
abundant solar resources, and reduced seasonal variation. Recent studies indicate that investments in PV power 
distributed generation (PVDG) have the lowest payback period in Brazil32. For both climate scenarios, the SME 
projections show a positive trend of PV systems yield in both areas in the upcoming years. However, the trend 
slope is around twice as high in SSP5-8.5 (0.46 to 0.66kWh/kWp.y

−1). It means around a 5% increase in SSR 
in the more extreme scenario.

São Paulo is the largest Brazilian MR, with nearly 22 million inhabitants living in around 8000km2 in the 
Brazil Southeast. São Paulo is the country’s primary energy consumption center and has seen an exponential 
increase in PVDG since 202013,14. Figure 6 and Table 1 indicate that climate change will not particularly affect 
the annual PV yield as the trend slope is slight and has no statistical significance.

Porto Alegre is in the Brazilian Southern region, where SSR has the highest seasonal variability due to the 
solar geometry and climate dynamics in the region33–35. The SME predicts a robust decreasing trend up to −3% 
around −40kWh/kWp.y

−1 under SSP5-8.5 for Porto Alegre. The decreasing trend is also present under SSP2-
4.5 but is not statistically significant. However, the South of Brazil also has a high wind energy potential29, and 
hybrid wind-solar power projects can be an alternative to reduce the impact of climate change in future solar 
PV generation.

The three remaining locations, Manaus, Boa Vista, and Colniza, are facing a pressing issue of energy access. 
Despite being far from the leading consumer centers, these regions urgently need to address their energy 
challenges. Manaus, the largest urban center in the Brazilian Amazon region, is a hub of economic activity. 
Boa Vista, the northernmost state capital in Brazil, is not served by the National Interconnected Electricity 
System (SIN). Still, diesel-powered thermal generation mainly meets its electricity demand, with a small fraction 
imported from neighboring countries. Colniza, a small town in the southern Amazon region, has an economy 
heavily based on agriculture, with a large portion of the population living in rural areas without access to 
electricity utilities.

Most of the Amazon region is not linked with the Brazilian Interconnected Electricity Distribution System 
(SIN). Instead, isolated power systems that rely on fossil fuels are spread throughout the region, and their costs 
are financed by compulsory taxes included in the energy tariff paid by all Brazilian electricity consumers. Solar 
PV systems are the primary alternative for isolated power systems to reduce greenhouse gas emissions and 
lower high taxes on electricity bills. According to the SME outcomes, the PV yield scenarios show the highest 
increasing trend in the Brazilian Amazon region for both SSP pathways. In the SSP5-8.5 scenario, the PV yield 
may increase up to 4%, strengthening the solar power option to meet the power demand in the region.

Conclusions
This study shows that future climate projections present significant uncertainties, introduced not only by scenarios 
and assumptions but mainly by the spread of climate models’ performance. Results show that uncertainties 
are significantly reduced by choosing an appropriate subset of best-performing models while maintaining 
skill in simulating SSR patterns. In general, the CMIP6 models tend to overestimate SSR in the Amazon, 
agreeing with other assessments showing a decrease in precipitation in this region22,23 while performing better 
in Brazil’s Northeast region. Future projections show an increase in SSR by 2% to 8% in most Brazilian regions, 
with a decrease of around 3% in the South, particularly under the SSP5-8.5 scenario. The SSR change signal 

Scientific Reports |        (2024) 14:23586 7| https://doi.org/10.1038/s41598-024-73769-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 6.  Annual trends of SSR generated from SME outputs for seven metropolitan areas of Brazil - (a) 
Petrolina, (b) Fortaleza, (c) Brasília, (d) Belo Horizonte, (e) São Paulo, (f) Porto Alegre and (g) Manaus - and 
two remote areas (h) Boa Vista (located further north in the Brazilian Amazon), and (i) Colniza (located in the 
deforestation belt in the Southern Amazon). The geographical location of the nine spots is shown in Fig. 2.
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over the Brazilian Northeastern region matches with other studies18,19,24. However, for central and southeast 
Brazil, results vary depending on the methods and models adopted, evidencing the higher uncertainty. The low 
magnitude of changes compared to model ensemble spread remains as the main source of uncertainty and is an 
inherent limitation of this study. Nevertheless, this approach improves the confidence on climate change impact 
over SSR due to a broad and systematic assessment of a large sample of models.

Higher SSR levels were significant in the trend analysis for most Brazilian metropolitan areas. Moreover, 
the seasonal change depicts an increased SSR during Brazilian drier months (from September to November), 
reducing the vulnerability of Brazil’s electrical system, which relies heavily on hydropower. The results also 
indicate a trend of increased PV generation productivity for future climate scenarios across much of Brazilian 
territory, with a more pronounced impact in the Amazon region that is not served by the National Interconnected 
Electricity System (SIN). However, in some areas, climate models point to a decrease in productivity of less than 
-3% along the northeastern coast and the southern part of the country by the end of the century. From an energy 
planning perspective, these results may support regional development strategies for improving the resilience of 
the Brazilian power system to future climate conditions. More studies investigating changes in the frequency 
of SSR extremes could contribute to a more complete assessment, inviting further research and engagement.

Methods
The study area comprises continental Brazilian territory, the fifth-largest country in the world. From North to 
South, Brazil extends for almost 4400 km, with the Equator and the Tropic of Capricorn running through it. 
Most of the population lives near the Atlantic coast, and the largest cities are in the Southeastern region. Brazil 
encompasses diverse important biomes, including the Amazon Forest in the North region, Pantanal wetland in 
the Mid-west area, Caatinga (semiarid) in the Northeast, and Pampa in the South.

Despite the diverse climate and environmental features33,35, previous studies indicated that surface solar 
irradiation is relatively uniform in Brazilian territory36. The semi-arid area of the Northeastern Brazilian 
region receives the highest incoming solar irradiation, up to 6.27 kWh.m−2.day−1). The SSR is around 6.0 
kWh.m−2.day−1 in Brazil’s Northern and Central regions during the dry season from July to September. The 
Southern and Southeastern coastal regions present higher annual variability due to the higher latitude, the onset 
of the monsoon system during summer, and the higher frequency of cold fronts during the fall and winter. South 
Brazil receives higher SSR than the Northern region during the austral summer due to the more extended day 
length and higher cloud coverage in the North linked to the southern shift of the Intertropical Convergence 
Zone (ITCZ).

Data analysis procedure
Figure 7 illustrates the analytical steps for assessing the impacts of climate change on the solar energy resource in 
Brazilian territory. The investigation used SSR data from three repositories: the Coupled Model Intercomparison 
Project Phase 6 (CMIP6), the ERA5 reanalysis provided by ECMWF (European Centre for Medium-Range 
Weather Forecasts), and satellite-based data provided by INPE (Brazilian Institute for Space Research).

The CMIP6 provided the SSR data from 40 global climate models. Before using CMIP6 future projections, 
we assessed each model’s reliability by comparing them with a truth reference for spatiotemporal patterns. 
Several studies suggest that the ERA5 reanalysis database fulfills the required features (long and continuous time 
coverage, spatially homogeneous, and reliable ground data assimilation) to be the truth reference database22,34. 
However, the ERA5 overestimates the SSR throughout Brazilian territory due to limitations in its numerical 
radiative parameterization like aerosol optical depth (AOD) due to biomass burning events in the Amazon and 
Central area of Brazil during the dry season and sub-grid shallow clouds that prevails in the tropical humid 
atmosphere over the continent37–39.

Location

Historical timeframe SSP2-4.5 SSP5-8.5

Trend kWh/kWp.y
−1 p-value Trend kWh/kWp.y

−1 p-value Trend kWh/kWp.y
−1 p-value

Petrolina 0.65 0.25 0.11 0.44 0.18 0.22

Fortaleza 0.19 0.58 − 0.25 0.01 − 0.36 0.00

Brasília 0.37 0.39 0.20 0.05 0.46 0.00

Belo Horizonte 0.23 0.64 0.28 0.02 0.66 0.00

São Paulo 0.0 1 0.98 0.09 0.33 0.03 0.75

Porto Alegre − 0.18 0.66 – 0.15 0.17 -0.49 0.00

Manaus 0.24 0.59 0.29 0.01 0.73 0.00

Boa Vista 0.61 0.73 0.27 0.03 0.77 0.00

Colniza 0.10 0.25 0.40 0.00 0.63 0.00

Table 1.  The trend for PV yield and the corresponding p-value from time series for nine locations with diverse 
SSR climatology based on predictions for two scenarios, SSP2-4.5 and SSP5-8.5.  Significant p-values at 5% 
are highlighted in bold.
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Solar radiation databases
BSR database
The BSR database comes from the radiative transfer model BRASIL-SR, a semi-empirical model based on the 
two-stream approach to solve the radiative transfer equation in the atmosphere using cloudiness data obtained 
from GOES-East satellite imagery37. Previous studies comparing the BSR database and ground data revealed 
low uncertainties for monthly averages of the daily downward surface solar irradiation. The root mean squared 
error (RMSE) obtained for monthly averages were around 4% and 12% depending on the climate season (dry 
or wet) and environmental conditions like atmospheric aerosol load, land use, and others40. The BSR database 
is available at http://labren.ccst.inpe.br/atlas_2017-en.html or by contacting the research team. This study used 
daily averages of global downward surface solar irradiance (SSR) provided by the model BRASIL-SR from 2005 
to 2017 at a spatial resolution of 0.03◦ x 0.05◦ (around 4 km x 4 km).

Fig. 7.  The flowchart shows the step sequence of the methodology used to investigate future solar energy 
resource scenarios based on CMIP6 climate models.
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ERA5 reanalysis data
 The ERA5 reanalysis dataset is based on the Integrated Forecasting System (IFS) Cy41r2, which uses a 4D-Var 
observational data assimilation scheme. The ERA5 data are available on the Copernicus Climate Change Service 
Data Store - CDS web platform https://cds.climate.copernicus.eu/cdsapp#!/dataset/41 in hourly time steps with 
a spatial resolution of 0.25◦ ( ≈27 km). This study used the daily integrated downward surface solar irradiation 
data (identified as SSRD in the output variable list) between 1980 and 2014 (34 years) for the entire Brazilian 
territory. Previous study42 demonstrated that ERA5 performed well for the Brazilian territory, particularly in 
Brasília, Petrolina, and FlorianÃ³polis ground measurement sites.

CMIP6 database
 The CMIP6 database includes the climate models’ outputs for the historical timeframe (1850-2014) and future 
periods: 2025-2040 (“near future”), 2040-2070 (“mid of the century”), and 2070-2100 (“end of the century”) 
based on updated emissions scenarios43,44. The climate predictions are related to the RCPs (Representative 
Concentration Pathway) denoting a greenhouse gas concentration (not emissions) trajectory adopted by the 
IPCC, and the Shared Socioeconomic Pathways (SSPs), which describe projected socioeconomic global changes 
up to 2100 regarding the different mitigation and adaptation strategies to climate changes impacts. 

This work encompasses two future scenarios, the SSP2-4.5 and SSP5-8.5. Both SSP2 and SSP5 scenarios 
assume a delay in global cooperation and were chosen due to the higher energy demands at the end of the 
century45. The SSP2 is the “middle of the road” pathway in which the global population growth is moderate, 
challenges to reducing vulnerability to societal and environmental changes remain, and energy use intensity 
declines after 2040. The SSP2-4.5 is the most probable scenario considering the current trajectory and the 
exhaustible character of non-renewable fuels, presenting intermediate challenges for mitigation46. 

The SSP5 is the “fossil fuel development” scenario with increasing inequalities and stratification across and 
within countries, and the economic and social development is based on energy-intensive lifestyles linked to 
the abundant exploitation of fossil fuel resources around the world. In SSP5-8.5, emissions continue to rise 
throughout the 21st century, and it is generally considered the basis for worst-case climate change scenarios 
due to the higher mitigation challenges47. For Brazil, SSP2 implies GDP and population peaking around 2050, 
pressing for higher energy demand, while SSP5 relies mainly on fossil fuels48. 

Table  2 lists the forty CMIP6 climate models (GCM) used in the study. The table also provides the spatial 
resolution of each model. The criteria for model inclusion was the data availability of monthly Surface 
Downwelling Shortwave Radiation (SDSR) with a spatial resolution of up to 250 km. The CMIP6 data was 
downloaded from https://esgf-node.llnl.gov/search/cmip6/. We used only the first member (realization1) of 
each GCM.

ERA5 bias correction
Satellite-based SSR products have shorter time series than meteorological reanalysis but present better 
accuracy42. Previous studies show that the BSR time-series presents low bias throughout the Brazilian territory40. 
Nevertheless, its time coverage is shorter than required to serve as reference data for the performance evaluation 
of CMIP6 historical simulations. In order to meet the time coverage and confidence required for the reference 
database, we used a bias correction method for the ERA5 database, assuming the BSR database as the reference 
truth. The Quantile Mapping (QM) method49,50 consists of a numerical transformation of the ERA5 surface solar 
irradiation (SSRERA5) database such that its cumulative probability distribution (CDF) equals the distribution 
of the reference database provided by the BSR. Each climatological month results in one specific transformation 
to segregate the influence of seasonal variability. All transformations were developed at daily resolution as Eq. 
(1) described.

CMIP6 model ID CMIP6 model ID CMIP6 model ID

ACCESS-CM2[250 km] M01 ACCESS-ESM1-5 [250 km] M02 AWI-CM-1-1-MR [100 km] M03

BCC-CSM2-MR [100 km] M04 CAMS-CSM1-0 [100 km] M05 CAS-ESM2-0 [100 km] M06

CESM2-WACCM [100 km] M07 CIESM[100 km] M08 CMCC-CM2-SR5 [100 km] M09

CMCC-ESM2 [100 km] M10 CNRM-CM6-1-HR [50 km] M11 CNRM-CM6-1 [250 km] M12

CNRM-ESM2-1 [250 km] M13 EC-Earth3-CC [100 km] M14 EC-Earth3-Veg-LR [250 km] M15

EC-Earth3-Veg[ 100 km] M16 EC-Earth3 [100 km] M17 FGOALS-f3-L [100 km] M18

FGOALS-g3 [250 km] M19 FIO-ESM-2-0 [100 km] M20 GFDL-CM4 [100 km] M21

GFDL-ESM4 [100 km] M22 GISS-E2-1-G [250 km] M23 GISS-E2-1-H [250 km] M24

HadGEM3-GC31 [250 km] M25 IITM-ESM [100 km] M26 INM-CM4-8 [100 km] M27

INM-CM5-0 [100 km] M28 IPSL-CM6A-LR [250 km] M29 KACE-1-0-G [250 km] M30

KIOST-ESM [250 km] M31 MIROC6 [250 km] M32 MPI-ESM1-2-HR [100 km] M33

MPI-ESM1-2-LR [100 km] M34 MRI-ESM2-0 [100 km] M35 NESM3 [250 km] M36

NorESM2-LM [250 km] M37 NorESM2-MM [100 km] M38 TaiESM1 [100 km] M39

UKESM1-0-LL [250 km] M40

Table 2.  CMIP6 models used in the study and their respective spatial resolution (sorted in alphabetical order).
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SSRERA5QM ,t,s = CDF−1

BSR,s

[
eCDFERA5,s

(
SSRERA5,t,s

)]
� (1)

where t and s represent the day and the grid point for each climatological month. Figure S1 shows the SSR 
mapping using ERA5 database and the bias-corrected ERA5 dataset SSRERA5QM

Performance evaluation of CMIP6 climate models
CMIP6 models were evaluated concerning their ability to represent the SSR’s spatial variability and intra-
annual seasonality during the historical timeframe. Figure 2 shows the three target areas used to investigate the 
models’ performance, comprising regions of interest for the Brazilian solar energy sector:

•	 Area A1 includes the semi-arid region in the Brazilian Northeast with the highest surface solar irradiation 
and the lowest seasonal variability40;

•	 Area A2 comprises the Southern region of Brazil, where the solar energy resource has the highest seasonal 
variability but presents a high demand for distributed PV systems and could take advantage of hybrid Wind-
PV systems due to the high wind speed in the region28;

•	 Area A3 covers the region that combines two advantages: a high surface solar irradiation and proximity to the 
main electricity consumer centers with fair coverage of the Brazilian interconnected electricity distribution 
system (SIN).Sixteen of the forty CMIP6 models provide SSR with a 250 km horizontal resolution, while 
only one offers a 50 km resolution. Before evaluation, all CMIP6 models were downscaled (bilinear approach) 
to the same horizontal resolution of the ERA5QM  grid (around 27 km). The interpolation procedure was 
essential for a fair and unbiased comparison of the GCM models’ achievements.

The performance evaluation was accomplished at the intersection between the ERA5 and CMIP6 databases 
(1980-2014). As discussed by51, both temporal and spatial statistical performances were evaluated for the three 
target areas based on the following metrics:

•	 Spatial correlation (Rs): the Pearson correlation was calculated using the monthly average surface solar irra-
diation data from each grid point of the climate model (SSRMx), where Mx is the ID used for CMIP6 models 
listed in Table 2 and ERA5QM  (SSRERA5QM

);
•	 Seasonal correlation (Rt): the Pearson correlation index was obtained from the SSRMx and SSRERA5QM

 
time series of the monthly climatological averages (Jan to Dec);

•	 uRMSD: the unbiased root of mean squared deviations between the SSRMx and SSRERA5QM
 monthly 

climatological averages;
•	 SD ratio: the average value of the ratio between SSRMx and SSRERA5QM

 standard deviations in all three tar-
get areas.The statistically significant spatial correlation Rs (p-value < 0.05) demonstrates the skill of CMIP6 
models in representing the mean spatial patterns of the SSR in the three target areas. In this sense, we select 
a subset of CMIP6 models with a significant spatial correlation for all twelve months in the three target areas.

The Taylor diagram was constructed using three metrics (Rt, uRMSD, and SD ratio) to assess how well the 
SSR data from CMIP6 models align with the SSR climatology of the ERA5QM . By employing the Taylor Skill 
Score (TSS) approach52, we utilized Eq. ( 2) to combine these metrics and identify the CMIP6 models that best 
represent the SSR climatology in the three regions of interest.

	
TSS =

4
(
1 +Rt

)4
(
fσMx + 1/fσMx

)2(
1 +Rt0

)4 � (2)

where fσMx is the ratio between the variance of the CMIP6 model (Mx) and the variance of ERA5QM , and Rt0 
is the maximum correlation attainable. According to this approach, a TSS value closer to unity indicates better 
performance of the model in representing the SSR climatology. Equation (2) yields a value of 1.0 as the climate 
model variance approaches the ERAQM  variance (i.e., fσMx tends to 1) and R tends to Rt0. On the contrary, 
TSS decreases towards zero as the correlation becomes increasingly negative or the model variance approaches 
zero or infinity. For fixed variance, skill increases linearly with correlation.

The CMIP6 models achieving TSS greater than 0.9 were combined to create a Smart Model Ensemble (SME
) used to provide the SSR data for future climate scenarios. Similarly, the multi-model ensemble (ENS) was 
fetched by averaging the SSRMx data provided by each of the forty CMIP6 models. The individual model’s 
assessment for comparison included the SME and ENS performances.

Assessment of impacts
The “climate change factor” approach proposed by Ref.53 was adopted to assess the impacts of future climate 
pathways SSP2-4.5 e SSP5-8.5. The climate change factor (CCF ) represents the percentage change in SSR in 
future scenarios over the model’s prediction for the historical timeslice (1980-2014). This approach assumes 
that the model bias is preserved along the simulations, dismissing the need for bias corrections to evaluate the 
climate change signal. Equations (3) and (4) were used to estimate, respectively, the CCF  and future SSR in 
each timeslice based on the truth reference (ERA5QM). This approach was performed for each climatological 
month to produce future climatologies of CCF over SSR.
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(
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(
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)
+ CCFMx

(
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)
.SSRMx

(
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� (4)

where the subscript Mx represents a specific CMIP6 model or ensemble, tslice, and hist concerns the modelÂ´s 
outcomes for future and historical data frames. The CCF  depends on the geographical location geo = [lat, lon], 
and the month represented by m. The SSP  is one of the future pathways for climate change (SSP2-4.5 or SSP5-
8.5).

Data availability
This manuscript includes supplementary tables and figures to complement the information and results presented 
in the submitted paper. Results, additional datasets, and codes used in data analysis are deposited for public ac-
cess at https://figshare.com/s/bc57a485308cbf01ea29 and https://figshare.com/s/22cccad668c8e3872254.
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