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Reducing uncertainties of climate
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The share of solar power in Brazil's electrical grid has rapidly increased, relieving GHG emissions and
diversifying energy sources for greater energy security. Besides that, solar resource is susceptible to
climate change, adding uncertainty to electrical grid resilience. This study uses satellite and reanalysis
data to evaluate the performance of CMIP6 models in replicating and predicting surface solar irradiance
(SSR) in Brazil. The results from the most reliable models indicate an increase in SSR by 2% to 8%

in most regions, with a decrease of around 3% in the South. These findings highlight the potential

for increased photovoltaic (PV) yield if backed by supportive public policies while underlining the
importance of uncertainty assessment of climate models.

Solar energy is a promising alternative to meet the growing electricity demand while reducing greenhouse
gas emissions. However, they are weather-dependent and require careful planning to minimize the impact
of the intrinsic intermittence on the energy distribution system'. Several worldwide studies investigated the
time and spatial variability and tendency of weather and climate-driven renewable energy resources based on
data provided by climate models®>~’. Solar radiation assessments based on climate models found an average
decrease of 0.1 to 0.4 W/mA? per decade from 1979 to 2014 globally®. Several studies for Europe show that
PV power generation will increase at the end of the century>>® despite some evidence that the future climate
scenarios can drive a more complex spatial change of surface solar radiation (SSR)’. Nevertheless, other studies
adopting a small subset of models or even downscaled high-resolution climate projections point in the opposite
direction, indicating a decrease in PV potential for Northern European countries by the end of the century!®!!.
In summary, previous studies suggested that the uncertainty endures showing distinct climate change signals
depending on the methodological approach used in investigation>1%12,

Since 2018, Brazil has been witnessing a significant surge in its installed PV capacity, which has now surpassed
30.7 GW in the second quarter of 2023!3-15. As PV power generation is set to play a more substantial role in
Brazil's future energy mix, it becomes imperative to delve into the impact of climate change on the spatial and
temporal variability of solar energy.

It's worth noting that more assessment studies need to be conducted that specifically address the impact of
climate on solar radiation over Brazilian territory. For instance, historical records of surface solar irradiance at
129 automated weather stations have shown both positive (+40WW h/m? per year) and negative (—50W h/m? per
year) trends for the northern and southern portions of the Brazilian Northeastern (NEB), respectively'®. Recent
studies based on global climate models have indicated an increase in solar energy potential for most of Brazil,
with a high level of resilience for a 4-degree specific warming level scenario!”!®. However, these results also
present conflicting outcomes for Brazil’s Southeast and Midwest regions, suggesting high uncertainty. Zuluaga
et al. showed that PV power generation in Brazilian territory would likely decrease by the end of the century in
both SSP2-4.5 and SSP5-8.5 scenarios, except for the northern Amazon region!® based on an ensemble from the
CMIP6 climate models.

The previous results revealed a high level of uncertainty in climate change impact assessments, partly due to
the different methodologies and datasets adopted. A more rigorous selection of the climate models to be used
in an ensemble analysis, focusing on selecting those with the best performance and ability to represent current
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climate patterns, is essential in improving the analysis of future climate scenarios. Bias-correction methods
and statistical indicators to evaluate the model’s skill in reproducing spatial and seasonal patterns observed in
historical reference datasets, like satellite-based or meteorological reanalysis, are fundamental to achieving more
confidence in the climate change impact assessment.

This work aims to reduce uncertainties in the future surface solar irradiance SSR and PV yield for Brazilian
territory by departing from an accurate historical dataset combining satellite and reanalysis and adopting
reliable statistical methods to rank the CMIP6 climate models regarding their ability to represent spatiotemporal
variability of SSR. We used the ensemble with the highest-skill CMIP6 models to assess the impact of
climate change on solar energy up to 2100 under SSP2-4.5 and SSP5-8.5 scenarios in order to support energy
entrepreneurs, governmental and non-governmental organizations in planning and building the Brazilian power
generation system resilient to future climate conditions. Case studies for nine particular interesting sites for PV
power generation delivered geographical outcomes that can help design and develop public policies to promote
environmental sustainability and social energy justice. All research results and Python codes developed for data
analysis are available for public access?®?!.

Results

Figure 1 provides a comprehensive view of the performance of CMIP6 models in reproducing SSR spatial
patterns, providing visual information on the alternation between positive and negative bias for Brazilian
territory. Uncertainty in model estimates is noticeable due to the large spread of deviations. The 40-models’
ensemble (ENS) reproduces the SSR’s spatial pattern over Brazilian Northeast and Central regions with
reduced bias. Nevertheless, the V.S overestimates (around 50/ /m?) the climatological SSR in the Amazon
region. These results agree with findings showing a negative bias for precipitation outputs of CMIP6 models for
the north of the Amazon??-24,

Figure S1 in the Supplementary Material shows the bias-adjusted reanalysis (ERA5¢)) for the 1980-
2014 period used as the reference dataset to evaluate CMIP6 models’ skill in representing spatial and seasonal
patterns in three target regions (see Fig. 2): Brazilian Northeast (area A1), South (area A2) and Central (area A3).
Regarding the target area A1, model M2 overestimates the SSR around 40W/m? — 50W/m?(= 15% — 20%)
while M5, M18, M26, and M34 underestimate by the same amount. Most models overestimate around 30W/ m?
(= 12%) in areas A2 and A3, while models M5, M6, and M31 underestimate up to 20W/m?( 8%).

The results of the spatial correlation between CMIP6 outputs and £ R A5 are available in the supplementary
material (Table S1) that delivers information on the monthly spatial correlation presenting statistical significance
(p-values < 0.05) achieved by climate models in the three target areas. The ensemble (£ N S) and twenty-two
CMIP6 models presented a significant positive correlation (p < 0.05) in all twelve months for all three target
areas. The EN S presented the best correlation index in the three target areas, supporting the benefit of working
with model ensembles. The other eighteen models presented no significant correlation, mostly in transition
months between wet and dry seasons (April and October), and were discarded for the following analysis.

In the next step, the Taylor Skill Score (7'S\S) (described in eq.2) was used to determine how accurately
the twenty-two CMIP6 models depict the seasonal changes in SSR within the three target areas. Figure 3
displays the Taylor diagram and Table S2 (Supplementary Material) lists the time correlation index (r), unbiased
root mean square deviation (uRM S D), and standard deviation (S D) ratio attained by the 22 models and the
ENS, assuming the ERA5() dataset as a reference. Time correlation was computed over the twelve-month
climatological cycle. The blue markers denote the ten models presenting 7SS greater than 0.9.

A second ensemble (referred to as SMFE) was processed using the ten best-performing CMIP6 models.
The statistical parameters achieved by SM F in the three target areas are also listed in Table S2. The SM E
showed a little higher standard deviation ratio than the ensemble £N.S with all 40 CMIP6 models; however, it
overcomes the £N S in all other metrics, including the 7SS (0.96 compared to 0.90). The maps shown in Fig. 2
indicate around 20% reduction in the standard deviation of the SSR data from the SM E compared to the EN S
in the whole Brazilian territory. The dispersion among members is related to the uncertainty in the ensemble
mean, evidencing that the SM E attained an expressive reduction in uncertainty while sustaining similar skill in
reproducing S.S R historical climatology.

Model M25 (HadGEM3-C31) is the top-performing model in terms of 7SS, with the highest time correlation
and lowest uRM SD. The EN S has the second lowest (SD) but performs poorly in other statistical indexes
compared to the ten best-performing models.

The SSR changes for future scenarios obtained from SM E are presented in three timeslices: near-future
(2015-2040), mid-term future (2041-2070), and end-of-century (2071-2100). Complete plots and maps for
the three timeslices and both climate scenarios (SSP2.45 and SSP5.85) are available at https://doi.org/10.6084/
m9.figshare.25396612 for public access.

Figure 4 shows the seasonal variation of the climate change factor (CC'F’) and SSR in the three target areas.
More details on seasonal variation of S'SR derived from the ERA5¢; and CMIP6 Smart Ensemble (SM E) are
shown in Figs. S3 to S5. In Brazilian Northeast (Area A1), Fig. 4b shows that CC'F is positive throughout the
year, except in January and February for the end-of-century. In both climate scenarios, the highest CC'F" occurs
in transition periods between dry and wet seasons, September to November and March to April. Due to the
CCF seasonal variation, the monthly mean SSR increases around 10W/m? in the austral autumn and spring
seasons in both scenarios and all timeslices. Such an increase in S'S R agrees with the reduction in precipitation,
notably for the SSP5-8.5 scenario®. The seasonal C'C'F variation for the central region of Brazil (area A3, Fig.
4d) is similar to area Al. The CCF assumes positive values throughout the year, with the highest CC F's in the
wet season from October to March (3-5% in SSP5-8.5 and 2-3% in SSP2-4.5) at the 2071-2100 timeslice.

Figure 4c shows an opposite seasonal pattern in the South of Brazil (area A2). The CC'F shows negative
values most of the year except for January and February, ranging from 0.5 to 1.5% in both scenarios and

Scientific Reports |

(2024) 14:23586 | https://doi.org/10.1038/s41598-024-73769-y nature portfolio


https://doi.org/10.6084/m9.figshare.25396612
https://doi.org/10.6084/m9.figshare.25396612
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

ENS MO1 - ACCESS-CM2 MO2 - ACCESS-ESM1-5
7

M04 - BCC-CSM2-MR MO5 - CAMS-CSM.

-100 -90 -8 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100
SSR [W/m?]

Fig. 1. The panel presents the mapping of the BIAS deviation (in W/m?) shown by the SSR estimates
provided by the ensemble (upper left corner) and by each of the forty climate models from CMIP6 used in the
study. The model names are positioned above the corresponding map. The authors prepared maps using the
available Python libraries.

timeslices. The decrease in S'S R is more severe during the Wet-Dry transition months when the predicted CCF
is around—2.0% (—4.5%) in SSP2-4.5 (SSP5-8.5) at the end-of-century.

Figure 5 displays seasonal maps of the CC'F for the Brazilian territory according to SM E. For the near-
future timeslice (Fig. 5a and d), the impacts are quite similar in both scenarios (SSP2.45 and SSP5.85). The SSR
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Fig. 2. (left) Surface solar irradiance S'S R reference map based on the £RA5¢ ;. The rectangles indicate
the target regions used in the performance evaluation of CMIP6 models: area Al in the Northeast, A2 in the
South, and A3 in Central Brazil. Standard deviation maps of S.S R calculated among members of the EN S
(central) and SM F (right). The authors prepared maps using the available Python libraries.
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Fig. 3. Taylor’s diagram compares the CMIP6 model’s performance regarding the £ RA5¢); database. Each
marker represents the statistical metrics achieved by the CMIP6 climate models and the ENS ensemble. The
blue (red) markers indicate the CMIP6 climate models with a Taylor index 7SS above (below) 0.9. The black
marker indicates the statistical metrics achieved by (£ RA5¢ ). Table S2 (Supplementary Material) lists the
statistical metrics achieved by each model and ensemble.

is expected to increase by up to 3% in the Amazon and up to 5% in Central and Southeastern Brazil, though
more pronounced during Spring and Summer. The 2070-2100 timeslice (Fig. 5¢ and f) shows a decrease of up
to —2% (—4%) in SSR in the northern part of the Brazilian Northeastern region under SSP2-4.5 (SSP5-8.5)
during Summer. An SSR decrease of up to 5% is also noticed in Southern Brazil for SSP5.85, lingering from
Fall to Spring. On the other hand, SSR is likely to increase by up to 6% (10%) in the Amazon, Central, and
Southeastern Brazilian regions under SSP2-4.5 (SSP5-8.5).

Figure 5 shows a noticeable signal in the annual average maps with CC'F ranging from 2% to 6% in the
near future (SSP2-4.5) to —3% to 8% by the end of the century in SSP5-8.5. Those amplified positive signals in
C'C'F during spring over semi-arid and Central regions of Brazil play a crucial role in reducing the vulnerability
of the Brazilian electrical system to climate change, especially where most of the utility-scale PV power plants
are currently operating. The Brazilian Interconnected Electricity System (SIN) mainly relies on hydropower
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Fig. 4. (a) Seasonal variation of mean (S.SR) based on the FRA5¢), database; (b) Seasonal variation of mean
CCF obtained from SM E for SSP2-4.5 and SSP5-8.5 pathways for target area Al; (c) for area A2 and; (d) for
area A3.

and faces critical operation from September to November due to the end of the dry season. During these
months, hydropower reservoirs are usually depleted and exposed to climate variability, implying high risks. Past
electricity supply crises are clear evidence of this situation®. In this sense, the higher solar resource levels during
spring add resilience to the future of the national electricity system for both scenarios. However, impacts on

Scientific Reports |

(2024) 14:23586 | https://doi.org/10.1038/s41598-024-73769-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Summer

Fall

Winter

Spring 2015-2040

Annual

a) SSP245

b) SSP245

Summer

Fall

Winter

Spring

i

c) SSP245

Summer

Fall

Winter

Spring

d) SSP585

Summer

2015-2040

Annual

e) SSP585

Summer

Winter

-10 -9

-8

-7 -6

-5

-4

-3

-2

=TI

0

Change Factor [%]

Fig. 5. The seasonal mean CCF predicted by the SME for the SSP2-4.5 in 2015-2040 (a), 2041-2070 (b), and
2071-2100 (¢) timeslices; and for SSP5-8.5 in 2015-2040 (d), 2041-2070 (e) and 2071-2100 (f) timeslices. The

columns are from left to right: summer, autumn, winter, spring, and annual. The gray dots over the maps

represent the grid locations with statistical significance (p-value <0.05). The authors prepared maps using the

available Python libraries.
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other renewable resources (wind, hydro) are also expected, and an integrated evaluation should be conducted
in the work in progress.

Case studies for metropolitan and remote areas

Solar PV technologies have rapidly grown in Brazilian metropolitan regions (MR) due to a sharp cost reduction
and recent regulations encouraging distributed generation!®. The SSR’s spatial distribution and future trends
highlight the challenges in optimizing solar power benefits for Brazil’s energy mix while reducing risks and
GHG emissions to fulfill international commitments. Based on recent works using data from PV power systems
operating in Brazil?’, we used the performance ratio (PR) around 0.8 to evaluate the impact of climate change
on solar PV yield.

Figure 6 shows the annual PV yield from 1980 to 2100 assessed using the SSR outcomes of the SME for SSP2-
4.5 and SSP5-8.5 pathways in seven MRs and two remote areas, covering different climate regimes. We assumed
that technological advancements in PV technology will offset the losses in solar energy conversion due to the
rise in ambient temperature. Table 1 lists the trend slope and p-value of the linear regression fitted for the nine
locations and climate pathways. The statistically significant trends are highlighted in bold blue numbers.

Fortaleza and Petrolina are MRs located in the Northeastern region of Brazil, where SSR is at its highest.
Fortaleza is on the coast near the Equator and holds more than three million inhabitants. It also has abundant
wind energy resources throughout the year?®2??, which allows hybrid wind-solar projects to take place, reducing
power intermittence. On the other hand, Petrolina is located in the semiarid region close to the largest regional
hydropower reservoir, Sobradinho (1050 GW), where floating PV power plants could improve water storage
and management during extreme drought periods and meet water demands for other uses besides power
generation®%31,

Based on Fig. 6, the SM E predicts that PV yield will increase 0.11kWh/kW, per year (0.18kW h/kW, per
year) in Petrolina, until the end of the century for SSP2-4.5 (SSP5-8.5) pathway (with low statistical significance).
However, SM E predicts a significant negative trend (—0.25kWh/kW,.y~* (—0.36kW h/kW,.y!)) on annual
PV yield for the same climate scenarios in Fortaleza. Although the results indicate a likely reduction in solar PV
resources on the equatorial coast of the Brazilian Northeast, the portfolio is rather resilient since most large-scale
PV utilities are being implemented in the semi-arid region. The impacts are limited to +/ — 2% over the current
PV yield (reference timeslice) and may not primarily affect the financial feasibility of the sector.

Brasilia and Belo Horizonte are important MRs where solar power rapidly expands due to the region’s
abundant solar resources, and reduced seasonal variation. Recent studies indicate that investments in PV power
distributed generation (PVDG) have the lowest payback period in Brazil®2. For both climate scenarios, the SM E
projections show a positive trend of PV systems yield in both areas in the upcoming years. However, the trend
slope is around twice as high in SSP5-8.5 (0.46 to 0.66kW h/kW,.y~!). It means around a 5% increase in SSR
in the more extreme scenario.

Sio Paulo is the largest Brazilian MR, with nearly 22 million inhabitants living in around 8000km? in the
Brazil Southeast. Sao Paulo is the country’s primary energy consumption center and has seen an exponential
increase in PVDG since 2020'>!4, Figure 6 and Table 1 indicate that climate change will not particularly affect
the annual PV yield as the trend slope is slight and has no statistical significance.

Porto Alegre is in the Brazilian Southern region, where SS R has the highest seasonal variability due to the
solar geometry and climate dynamics in the region®*-*°. The SME predicts a robust decreasing trend up to —3%
around —40kWh/kW,.y~! under SSP5-8.5 for Porto Alegre. The decreasing trend is also present under SSP2-
4.5 but is not statistically significant. However, the South of Brazil also has a high wind energy potential®’, and
hybrid wind-solar power projects can be an alternative to reduce the impact of climate change in future solar
PV generation.

The three remaining locations, Manaus, Boa Vista, and Colniza, are facing a pressing issue of energy access.
Despite being far from the leading consumer centers, these regions urgently need to address their energy
challenges. Manaus, the largest urban center in the Brazilian Amazon region, is a hub of economic activity.
Boa Vista, the northernmost state capital in Brazil, is not served by the National Interconnected Electricity
System (SIN). Still, diesel-powered thermal generation mainly meets its electricity demand, with a small fraction
imported from neighboring countries. Colniza, a small town in the southern Amazon region, has an economy
heavily based on agriculture, with a large portion of the population living in rural areas without access to
electricity utilities.

Most of the Amazon region is not linked with the Brazilian Interconnected Electricity Distribution System
(SIN). Instead, isolated power systems that rely on fossil fuels are spread throughout the region, and their costs
are financed by compulsory taxes included in the energy tariff paid by all Brazilian electricity consumers. Solar
PV systems are the primary alternative for isolated power systems to reduce greenhouse gas emissions and
lower high taxes on electricity bills. According to the SME outcomes, the PV yield scenarios show the highest
increasing trend in the Brazilian Amazon region for both SSP pathways. In the SSP5-8.5 scenario, the PV yield
may increase up to 4%, strengthening the solar power option to meet the power demand in the region.

Conclusions

This study shows that future climate projections present significant uncertainties, introduced not only by scenarios
and assumptions but mainly by the spread of climate models’ performance. Results show that uncertainties
are significantly reduced by choosing an appropriate subset of best-performing models while maintaining
skill in simulating SSR patterns. In general, the CMIP6 models tend to overestimate SSR in the Amazon,
agreeing with other assessments showing a decrease in precipitation in this region?>?* while performing better
in Brazil's Northeast region. Future projections show an increase in 5SS R by 2% to 8% in most Brazilian regions,
with a decrease of around 3% in the South, particularly under the SSP5-8.5 scenario. The SSR change signal
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Fig. 6. Annual trends of SSR generated from SM F outputs for seven metropolitan areas of Brazil - (a)
Petrolina, (b) Fortaleza, (c) Brasilia, (d) Belo Horizonte, (e) Sdo Paulo, (f) Porto Alegre and (g) Manaus - and
two remote areas (h) Boa Vista (located further north in the Brazilian Amazon), and (i) Colniza (located in the
deforestation belt in the Southern Amazon). The geographical location of the nine spots is shown in Fig. 2.
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Historical timeframe SSP2-4.5 SSP5-8.5
Location Trend KWW R / kWp.y al p-value | Trend KW h / kWp.y71 p-value | Trend KWV R / kWp.y71 p-value
Petrolina 0.65 0.25 0.11 0.44 0.18 0.22
Fortaleza 0.19 0.58 —0.25 0.01 —0.36 0.00
Brasilia 0.37 0.39 0.20 0.05 0.46 0.00
Belo Horizonte | 0.23 0.64 0.28 0.02 0.66 0.00
Sao Paulo 001 0.98 0.09 0.33 0.03 0.75
Porto Alegre —-0.18 0.66 -0.15 0.17 -0.49 0.00
Manaus 0.24 0.59 0.29 0.01 0.73 0.00
Boa Vista 0.61 0.73 0.27 0.03 0.77 0.00
Colniza 0.10 0.25 0.40 0.00 0.63 0.00

Table 1. The trend for PV yield and the corresponding p-value from time series for nine locations with diverse
SSR climatology based on predictions for two scenarios, SSP2-4.5 and SSP5-8.5. Significant p-values at 5%
are highlighted in bold.

over the Brazilian Northeastern region matches with other studies!®!924, However, for central and southeast
Brazil, results vary depending on the methods and models adopted, evidencing the higher uncertainty. The low
magnitude of changes compared to model ensemble spread remains as the main source of uncertainty and is an
inherent limitation of this study. Nevertheless, this approach improves the confidence on climate change impact
over SSR due to a broad and systematic assessment of a large sample of models.

Higher SSR levels were significant in the trend analysis for most Brazilian metropolitan areas. Moreover,
the seasonal change depicts an increased SSR during Brazilian drier months (from September to November),
reducing the vulnerability of Brazil’s electrical system, which relies heavily on hydropower. The results also
indicate a trend of increased PV generation productivity for future climate scenarios across much of Brazilian
territory, with a more pronounced impact in the Amazon region that is not served by the National Interconnected
Electricity System (SIN). However, in some areas, climate models point to a decrease in productivity of less than
-3% along the northeastern coast and the southern part of the country by the end of the century. From an energy
planning perspective, these results may support regional development strategies for improving the resilience of
the Brazilian power system to future climate conditions. More studies investigating changes in the frequency
of SSR extremes could contribute to a more complete assessment, inviting further research and engagement.

Methods

The study area comprises continental Brazilian territory, the fifth-largest country in the world. From North to
South, Brazil extends for almost 4400 km, with the Equator and the Tropic of Capricorn running through it.
Most of the population lives near the Atlantic coast, and the largest cities are in the Southeastern region. Brazil
encompasses diverse important biomes, including the Amazon Forest in the North region, Pantanal wetland in
the Mid-west area, Caatinga (semiarid) in the Northeast, and Pampa in the South.

Despite the diverse climate and environmental features’>3°, previous studies indicated that surface solar
irradiation is relatively uniform in Brazilian territory®®. The semi-arid area of the Northeastern Brazilian
region receives the highest incoming solar irradiation, up to 6.27 kWh.m=2.day~!). The SSR is around 6.0
kW h.m~2.day~" in Brazil's Northern and Central regions during the dry season from July to September. The
Southern and Southeastern coastal regions present higher annual variability due to the higher latitude, the onset
of the monsoon system during summer, and the higher frequency of cold fronts during the fall and winter. South
Brazil receives higher S.S R than the Northern region during the austral summer due to the more extended day
length and higher cloud coverage in the North linked to the southern shift of the Intertropical Convergence
Zone (ITCZ).

Data analysis procedure

Figure 7 illustrates the analytical steps for assessing the impacts of climate change on the solar energy resource in
Brazilian territory. The investigation used S\S R data from three repositories: the Coupled Model Intercomparison
Project Phase 6 (CMIP6), the ERA5 reanalysis provided by ECMWF (European Centre for Medium-Range
Weather Forecasts), and satellite-based data provided by INPE (Brazilian Institute for Space Research).

The CMIP6 provided the SSR data from 40 global climate models. Before using CMIP6 future projections,
we assessed each model’s reliability by comparing them with a truth reference for spatiotemporal patterns.
Several studies suggest that the ERAS5 reanalysis database fulfills the required features (long and continuous time
coverage, spatially homogeneous, and reliable ground data assimilation) to be the truth reference database?>3%.
However, the ERA5 overestimates the SSR throughout Brazilian territory due to limitations in its numerical
radiative parameterization like aerosol optical depth (AO D) due to biomass burning events in the Amazon and
Central area of Brazil during the dry season and sub-grid shallow clouds that prevails in the tropical humid
atmosphere over the continent®’-3°.
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No,

Fig. 7. The flowchart shows the step sequence of the methodology used to investigate future solar energy
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resource scenarios based on CMIP6 climate models.

Solar radiation databases

BSR database

The BSR database comes from the radiative transfer model BRASIL-SR, a semi-empirical model based on the
two-stream approach to solve the radiative transfer equation in the atmosphere using cloudiness data obtained
from GOES-East satellite imagery”’. Previous studies comparing the BSR database and ground data revealed
low uncertainties for monthly averages of the daily downward surface solar irradiation. The root mean squared
error (RMSE) obtained for monthly averages were around 4% and 12% depending on the climate season (dry
or wet) and environmental conditions like atmospheric aerosol load, land use, and others*. The BSR database
is available at http://labren.ccst.inpe.br/atlas_2017-en.html or by contacting the research team. This study used
daily averages of global downward surface solar irradiance (S5 R) provided by the model BRASIL-SR from 2005

to 2017 at a spatial resolution of 0.03° x 0.05° (around 4 km x 4 km).
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ERAS5 reanalysis data

The ERAS reanalysis dataset is based on the Integrated Forecasting System (IFS) Cy41r2, which uses a 4D-Var
observational data assimilation scheme. The ERA5 data are available on the Copernicus Climate Change Service
Data Store - CDS web platform https://cds.climate.copernicus.eu/cdsapp#!/dataset/*! in hourly time steps with
a spatial resolution of 0.25° ( 27 km). This study used the daily integrated downward surface solar irradiation
data (identified as SSRD in the output variable list) between 1980 and 2014 (34 years) for the entire Brazilian
territory. Previous study?? demonstrated that ERA5 performed well for the Brazilian territory, particularly in
Brasilia, Petrolina, and FlorianA®polis ground measurement sites.

CMIP6 database

The CMIP6 database includes the climate models’ outputs for the historical timeframe (1850-2014) and future
periods: 2025-2040 (“near future”), 2040-2070 (“mid of the century”), and 2070-2100 (“end of the century”)
based on updated emissions scenarios®>*%. The climate predictions are related to the RCPs (Representative
Concentration Pathway) denoting a greenhouse gas concentration (not emissions) trajectory adopted by the
IPCC, and the Shared Socioeconomic Pathways (SSPs), which describe projected socioeconomic global changes
up to 2100 regarding the different mitigation and adaptation strategies to climate changes impacts.

This work encompasses two future scenarios, the SSP2-4.5 and SSP5-8.5. Both SSP2 and SSP5 scenarios
assume a delay in global cooperation and were chosen due to the higher energy demands at the end of the
century®. The SSP2 is the “middle of the road” pathway in which the global population growth is moderate,
challenges to reducing vulnerability to societal and environmental changes remain, and energy use intensity
declines after 2040. The SSP2-4.5 is the most probable scenario considering the current trajectory and the
exhaustible character of non-renewable fuels, presenting intermediate challenges for mitigation?®.

The SSP5 is the “fossil fuel development” scenario with increasing inequalities and stratification across and
within countries, and the economic and social development is based on energy-intensive lifestyles linked to
the abundant exploitation of fossil fuel resources around the world. In SSP5-8.5, emissions continue to rise
throughout the 21st century, and it is generally considered the basis for worst-case climate change scenarios
due to the higher mitigation challenges®’. For Brazil, SSP2 implies GDP and population peaking around 2050,
pressing for higher energy demand, while SSP5 relies mainly on fossil fuels®.

Table 2 lists the forty CMIP6 climate models (GCM) used in the study. The table also provides the spatial
resolution of each model. The criteria for model inclusion was the data availability of monthly Surface
Downwelling Shortwave Radiation (SDSR) with a spatial resolution of up to 250 km. The CMIP6 data was
downloaded from https://esgf-node.llnl.gov/search/cmip6/. We used only the first member (realizationl) of
each GCM.

ERADS bias correction

Satellite-based SSR products have shorter time series than meteorological reanalysis but present better
accuracy*? Previous studies show that the BSR time-series presents low bias throughout the Brazilian territory*’.
Nevertheless, its time coverage is shorter than required to serve as reference data for the performance evaluation
of CMIP6 historical simulations. In order to meet the time coverage and confidence required for the reference
database, we used a bias correction method for the ERA5 database, assuming the BSR database as the reference
truth. The Quantile Mapping (QM) method***° consists of a numerical transformation of the ERA5 surface solar
irradiation (SSRppas) database such that its cumulative probability distribution (CDF) equals the distribution
of the reference database provided by the BSR. Each climatological month results in one specific transformation
to segregate the influence of seasonal variability. All transformations were developed at daily resolution as Eq.
(1) described.

CMIP6 model ID | CMIP6 model ID | CMIP6 model ID
ACCESS-CM2[250 km] MO1 | ACCESS-ESM1-5 [250 km] | M02 | AWI-CM-1-1-MR [100 km] | M03
BCC-CSM2-MR [100 km] | M04 | CAMS-CSM1-0 [100km] | M05 | CAS-ESM2-0 [100 km] MO06
CESM2-WACCM [100 km] | M07 | CIESM[100 km] M08 | CMCC-CM2-SR5 [100 km] | M09
CMCC-ESM2 [100 km] M10 | CNRM-CM6-1-HR [50 km] | M11 | CNRM-CM6-1 [250 km] M12
CNRM-ESM2-1 [250km] | M13 | EC-Earth3-CC [100 km] M14 | EC-Earth3-Veg-LR [250 km] | M15
EC-Earth3-Veg[ 100 km] M16 | EC-Earth3 [100 km] M17 | FGOALS-f3-L [100 km] M18
FGOALS-g3 [250 km] M19 | FIO-ESM-2-0 [100 km] M20 | GFDL-CM4 [100 km] M21
GFDL-ESM4 [100 km] M22 | GISS-E2-1-G [250 km] M23 | GISS-E2-1-H [250 km] M24
HadGEM3-GC31 [250 km] | M25 | IITTM-ESM [100 km] M26 | INM-CM4-8 [100 km] M27
INM-CM5-0 [100 km] M28 | IPSL-CM6A-LR [250 km] M29 | KACE-1-0-G [250 km] M30
KIOST-ESM [250 km] M31 | MIROCS6 [250 km] M32 | MPI-ESM1-2-HR [100 km] M33
MPI-ESM1-2-LR [100 km] | M34 | MRI-ESM2-0 [100 km] M35 | NESM3 [250 km] M36
NorESM2-LM [250 km] M37 | NorESM2-MM [100 km] M38 | TaiESM1 [100 km] M39
UKESM1-0-LL [250km] | M40

Table 2. CMIP6 models used in the study and their respective spatial resolution (sorted in alphabetical order).
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SSRERAs Gy 15 = CDFgip, [eCDFEHAi.s (SSREHA5.1,75> } (1

where ¢ and s represent the day and the grid point for each climatological month. Figure S1 shows the SSR
mapping using ERA5 database and the bias-corrected ERA5 dataset SSRppas,,,,

Performance evaluation of CMIP6 climate models

CMIP6 models were evaluated concerning their ability to represent the SSR’s spatial variability and intra-
annual seasonality during the historical timeframe. Figure 2 shows the three target areas used to investigate the
models’ performance, comprising regions of interest for the Brazilian solar energy sector:

o Area Al includes the semi-arid region in the Brazilian Northeast with the highest surface solar irradiation
and the lowest seasonal variability*’;

o Area A2 comprises the Southern region of Brazil, where the solar energy resource has the highest seasonal
variability but presents a high demand for distributed PV systems and could take advantage of hybrid Wind-
PV systems due to the high wind speed in the region?3;

o Area A3 covers the region that combines two advantages: a high surface solar irradiation and proximity to the
main electricity consumer centers with fair coverage of the Brazilian interconnected electricity distribution
system (SIN).Sixteen of the forty CMIP6 models provide SSR with a 250 km horizontal resolution, while
only one offers a 50 km resolution. Before evaluation, all CMIP6 models were downscaled (bilinear approach)
to the same horizontal resolution of the FRA5g); grid (around 27 km). The interpolation procedure was
essential for a fair and unbiased comparison of the GCM models’ achievements.

The performance evaluation was accomplished at the intersection between the ERA5 and CMIP6 databases
(1980-2014). As discussed by’!, both temporal and spatial statistical performances were evaluated for the three
target areas based on the following metrics:

« Spatial correlation (Rs): the Pearson correlation was calculated using the monthly average surface solar irra-
diation data from each grid point of the climate model (SSR);.), where Mz is the ID used for CMIP6 models
listed in Table 2 and ERA5QM (SSRERASQM)§

o Seasonal correlation (]t): the Pearson correlation index was obtained from the SSR);, and SSRE RAS
time series of the monthly climatological averages (Jan to Dec);

o uRMSD: the unbiased root of mean squared deviations between the SSR);, and SSRpras o monthly
climatological averages;

o SD ratio: the average value of the ratio between SSR), and SSRp RASu standard deviations in all three tar-
get areas. The statistically significant spatial correlation Rs (p-value < 0.05) demonstrates the skill of CMIP6
models in representing the mean spatial patterns of the SSR in the three target areas. In this sense, we select
a subset of CMIP6 models with a significant spatial correlation for all twelve months in the three target areas.

The Taylor diagram was constructed using three metrics (R¢, uRMSD, and SD ratio) to assess how well the
SSR data from CMIP6 models align with the SSR climatology of the ERA5(,,. By employing the Taylor Skill
Score (T'SS) approach®?, we utilized Eq. ( 2) to combine these metrics and identify the CMIP6 models that best
represent the SSR climatology in the three regions of interest.

41+ R

TSS = ) .
(fore+1/fore) (14 Ry)

2)

where foy, is the ratio between the variance of the CMIP6 model (Mx) and the variance of ERA5xs, and Ry
is the maximum correlation attainable. According to this approach, a TSS value closer to unity indicates better
performance of the model in representing the SSR climatology. Equation (2) yields a value of 1.0 as the climate
model variance approaches the FRAq) variance (i.e., for, tends to 1) and R tends to Ry. On the contrary,
TSS decreases towards zero as the correlation becomes increasingly negative or the model variance approaches
zero or infinity. For fixed variance, skill increases linearly with correlation.

The CMIP6 models achieving 7'S'S greater than 0.9 were combined to create a Smart Model Ensemble (SM E
) used to provide the SSR data for future climate scenarios. Similarly, the multi-model ensemble (ENS) was
fetched by averaging the SSR), data provided by each of the forty CMIP6 models. The individual model’s
assessment for comparison included the SM E and EN S performances.

Assessment of impacts

The “climate change factor” approach proposed by Ref.>> was adopted to assess the impacts of future climate
pathways SSP2-4.5 e SSP5-8.5. The climate change factor (CC'F') represents the percentage change in SSR in
future scenarios over the model’s prediction for the historical timeslice (1980-2014). This approach assumes
that the model bias is preserved along the simulations, dismissing the need for bias corrections to evaluate the
climate change signal. Equations (3) and (4) were used to estimate, respectively, the CC'F' and future SSR in
each timeslice based on the truth reference (- RA5qy;). This approach was performed for each climatological
month to produce future climatologies of CCF over SSR.
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SSRy: <geo, m,SSP, tslice) -SSRy, (geo7 m, hist)
CCFy (geam,SSP, tslice) = SSn <g€0 - hq’gt) (3)
Mz 5 5 TS

SSR(geo, m,SSP,tslice) =SSRERA;,QM (geo,m) + CCFy, (geo,m7 SSP, tslice).SSR“,Il. (geo, 7n,hist> (4)

where the subscript M x represents a specific CMIP6 model or ensemble, #slice, and hist concerns the modelA ‘s
outcomes for future and historical data frames. The CC'F' depends on the geographical location geo = [lat, lon],
and the month represented by m. The SSP is one of the future pathways for climate change (SSP2-4.5 or SSP5-
8.5).

Data availability

This manuscript includes supplementary tables and figures to complement the information and results presented
in the submitted paper. Results, additional datasets, and codes used in data analysis are deposited for public ac-
cess at https://figshare.com/s/bc57a485308cbf01ea29 and https://figshare.com/s/22cccad668c8e3872254.
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