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Minimal change disease (MCD) is a common cause of nephrotic syndrome. Due to its rapid progression, 
early detection is essential; however, definitive diagnosis requires invasive kidney biopsy. This 
study aims to develop non-invasive predictive models for diagnosing MCD by machine learning. 
We retrospectively collected data on demographic characteristics, blood tests, and urine tests from 
patients with nephrotic syndrome who underwent kidney biopsy. We applied four machine learning 
algorithms—TabPFN, LightGBM, Random Forest, and Artificial Neural Network—and logistic 
regression. We compared their performance using stratified 5-repeated 5-fold cross-validation for the 
area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall 
curve (AUPRC). Variable importance was evaluated using the SHapley Additive exPlanations (SHAP) 
method. A total of 248 patients were included, with 82 cases (33%) were diagnosed with MCD. TabPFN 
demonstrated the best performance with an AUROC of 0.915 (95% CI 0.896–0.932) and an AUPRC of 
0.840 (95% CI 0.807–0.872). The SHAP methods identified C3, total cholesterol, and urine red blood 
cells as key predictors for TabPFN, consistent with previous reports. Machine learning models could be 
valuable non-invasive diagnostic tools for MCD.

Minimal change disease (MCD) is one of the primary causes of nephrotic syndrome in adults worldwide1. 
Unlike most other causes of nephrotic syndrome, which progress over weeks to months, MCD is characterized 
by a rapid onset worsening from a few days to 1–2 weeks. Approximately 25–35% of MCD patients develop 
acute kidney injury, and in severe cases, urgent hemodialysis may be required2,3. Due to its rapid onset, early 
diagnosis and timely treatment are crucial for a good prognosis in MCD patients. The diverse causes of nephrotic 
syndrome in adults make diagnosing MCD through general clinical tests challenging, thus requiring definitive 
diagnosis via kidney biopsy. However, kidney biopsy has several contraindications and carries risks of severe 
complications like bleeding, arteriovenous fistulas, and infections4,5. Furthermore, since it takes time to obtain 
biopsy results, the condition may rapidly worsen if immediate treatment cannot be administered during this 
period. Therefore, there is an urgent need to explore non-invasive and practical diagnostic methods for MCD.

The potential for diagnosing MCD before or without kidney biopsy through non-invasive diagnostic 
approaches using blood and urine biomarkers has been discussed. Serum IL-12p40, urinary CD80, urinary 
fatty acid-binding protein 4, and urinary epidermal growth factor are among the biomarkers expected to 
distinguish MCD from other diseases6–10. However, these biomarkers cannot yet be measured in general medical 
facilities without advanced equipment, so their clinical utility remains uncertain. Currently, no single parameter 
measured in clinical settings stands out as a strong disease-specific predictor1113. Therefore, it is crucial to 
combine various parameters for a comprehensive assessment when diagnosing MCD.Developing predictive 
models using clinically measurable parameters could be beneficial, but research on such models for diagnosing 
MCD is limited14–16. Previous studies on diagnostic predictive models have employed logistic regression. While 
logistic regression is a classical statistical model that assumes linear relationships and excels in interpretability, 
its predictive performance may have limitations.

Machine learning, a subset of artificial intelligence, can model non-linear relationships and analyze complex 
higher-order interactions, potentially improving predictive performance17. Therefore, machine learning is widely 
used to analyze large volumes of clinical data obtained from electronic medical records and is beneficial in 
developing predictive models18,19. In nephrology, machine learning has been applied to various predictive tasks, 
such as the onset of acute kidney injury20, the renal prognosis of chronic kidney disease21, the diagnosis of IgA 
nephropathy22, and the onset of dialysis hypotension23. However, the utility of machine learning in predicting 
the diagnosis of MCD remains unknown.
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This study aims to develop diagnostic predictive models for MCD in adult nephrotic syndrome patients 
based on demographic characteristics, blood tests, and urine tests that are easily accessible in clinical settings. 
Our secondary objective is to demonstrate that machine learning models can provide a non-invasive, highly 
accurate, and reliable approach for diagnosing MCD compared to traditional statistical models.

Methods
Study design and study participants
This study is a retrospective study involving patients at St. Marianna University Hospital, a tertiary care hospital 
in Japan. The data were collected from the electronic medical records of the hospital. The study included all 
nephrotic syndrome patients who underwent native kidney biopsy at St. Marianna University Hospital between 
January 1, 2006, and March 31, 2024. Nephrotic syndrome was defined as having ≥ 3.5 g/day or ≥ 3.5 g/g Cr of 
urinary protein and ≤ 3.0 mg/dL of serum albumin and was clinically diagnosed by nephrologists before kidney 
biopsy. The patients were excluded if they met any criteria: (a) under 18 years old, (b) the definitive diagnosis was 
unclear, or (c) multiple definitive diagnoses, not a single one. The details of patient selection are shown in Fig. 1.

Ethical approval and consent to participate
This study followed the Declaration of Helsinki and Ethical Guidelines for Medical and Health Research 
Involving Human Subjects. It was approved by the St. Marianna University Hospital Institutional Review Board 
(approval number: 6450), which allowed for the analysis of patient-level data with a waiver of informed consent. 
The study was conducted in accordance with TRIPOD + AI statement24, guidelines for developing and reporting 
machine-learning predictive models in biomedical research: a multidisciplinary view25.

Predictor variables
As potential predictor variables, demographic characteristics, blood tests, and urine tests, routinely measured in 
clinical practice, were collected. These variables were retrospectively collected from electronic medical records, 
referencing the results from the day of admission for kidney biopsy or the day before the biopsy, with no post-
biopsy results used. The demographic characteristics included age, sex, height, weight, and body mass index. The 
blood test items comprised white blood cells, hemoglobin, total protein, albumin, blood urea nitrogen, creatinine, 
estimated glomerular filtration rate (eGFR), uric acid, aspartate aminotransferase, alanine aminotransferase, 
alkaline phosphatase, lactate dehydrogenase, creatine kinase, total cholesterol (T-chol), low-density lipoprotein 
cholesterol, high-density lipoprotein cholesterol, glucose, hemoglobin A1c, C-reactive protein, immunoglobulin 
G (IgG), immunoglobulin A, immunoglobulin M, C3, C4, and antinuclear antibodies. Urine test items included 
urine red blood cells (Urine RBC), urine protein/creatinine ratio, and urine protein per day (UP/day). eGFR 
was derived using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation modified by 
a Japanese coefficient26.

Urine RBC findings were confirmed by experienced urine sediment examination technicians at the hospital 
using microscopy and we scored on the following eight levels: 0 = < 1/high power field (HPF), 2.5 = 1–4/
HPF, 7.5 = 5–9/HPF, 15 = 10–19/HPF, 25 = 20–29/HPF, 40 = 30–49/HPF, 75 = 50–99/HPF, 100 = ≥ 100/HPF. 

Fig. 1.  Flow diagram of patient selection.
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The potential predictor variables were reduced to prevent overfitting in the predictive models and reduce 
computational cost to ensure the events per variable ratio of at least 10 27. From the potential predictor variables, 
based on existing literature, all authors who are nephrologists discussed and selected age, albumin, eGFR, T-chol, 
IgG, C3, Urine RBC, and UP/day as the final predictor variables to be incorporated into each model.

Data preprocessing
The number and proportion of missing values for each variable are shown in Supplementary Table S1. Variables 
with less than 20% missing values were included in the analysis. The missing values were imputed using 
multivariate imputation by chained equations (MICE) to avoid potential bias by excluding patients with missing 
values. Continuous variables were imputed using predictive mean matching, and ten imputed datasets were 
created.

Outcome measures
The definitive diagnosis was defined based on a review by experienced nephrologists and renal pathologists 
using patient medical history, clinical tests, and pathology images from three types of kidney biopsies: light 
microscopy, immunofluorescence, and electron microscopy. MCD was assigned a label of 1, while the other 
diagnosis was assigned a label of 0.

Model development and evaluation
We employed four machine learning algorithms—TabPFN, LightGBM, Random Forest, Artificial Neural 
Network—and logistic regression to develop predictive models. TabPFN is a pre-trained Transformer-based 
algorithm specialized for tabular data classification, known for its high learning speed and predictive accuracy 
on small datasets28. LightGBM combines the boosting technique with decision trees, sequentially building trees 
and correcting the errors of previous trees to improve model accuracy29. Random Forest combines the bagging 
technique with decision trees, independently training multiple trees and integrating their predictions to suppress 
overfitting and enhance predictive accuracy30. Artificial Neural Network consists of an input, hidden, and output 
layer and can handle complex relationships between inputs and outputs using non-linear activation functions31. 
Logistic regression is a widely used statistical linear model in the medical field for binary classification, generating 
probabilistic outputs that classify as positive if above a certain threshold and negative if below32. The optimal 
hyperparameters for the predictive models were tuned using Bayesian optimization with stratified 5-repeated 
5-fold cross-validation. The hyperparameters of each model tuned are shown in Supplementary Table S2.

The performance of the predictive models was internally validated using stratified 5-repeated 5-fold cross-
validation to maximize the use of available data. As performance metrics of model discrimination, we calculated 
the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve 
(AUPRC). AUROC and AUPRC were selected as they reflect performance across all classification thresholds and 
are less affected by class imbalance. The 95% confidence intervals (95% CIs) for each metric were generated 
using 1000 bootstrap iterations with unique random seeds. To assess discriminability in detail, the deep ROC 
analysis was conducted to calculate the normalized group AUROC, mean sensitivity, and mean specificity 
across three groups according to the false positive rate33. Model calibration was evaluated using calibration 
plots, which plotted the actual positive fraction against the mean predicted probability for intervals divided into 
quintiles. The Brier score, which reflects the mean squared difference between predicted probabilities and actual 
outcomes, was used to evaluate model predictive performance and calibration simultaneously. The clinical utility 
of the models was assessed by decision curve analysis. Net benefit was calculated by subtracting the proportion 
of false positives from the proportion of true positives among all patients and comparing the relative harm of 
false positives.

Model interpretations
The SHapley Additive exPlanations (SHAP) method was used to explore the interpretability of the models 
with high diagnostic performance. The SHAP method provides a unified approach for interpreting model 
predictions, offering consistent and locally accurate attribution values, i.e., the SHAP values, for each variable 
within the predictive model34. The role of each variable in predicting MCD can be explained as their collective 
contributions to the overall risk output for each case.

Sensitivity analysis
 Sensitivity analysis was conducted to investigate the differences in results caused by using imbalanced data. It is 
crucial for evaluating the potential overfitting of models in small data analyses. The analysis involved performing 
the same analysis and evaluation using data that had been oversampled with the Synthetic Minority Over-
sampling Technique (SMOTE).

Statistical analysis
Continuous variables were described using the mean and standard deviation for normally distributed data and 
the median and interquartile range for non-normally distributed data. Categorical variables were presented 
as counts and percentages. For statistical comparisons, Student’s t-test was applied to normally distributed 
continuous variables, the Mann-Whitney U test to non-normally distributed continuous variables, and the 
Chi-square test or Fisher’s exact test to categorical variables. Variables with two-sided p-values less than 0.05 
were considered statistically significant. For model development, we used the sklearn, tabpfn, lightgbm, and 
torch libraries in Python (version 3.10.12). For evaluation, we utilized the sklearn, optuna, deeproc, and shap 
libraries. Statistical analyses were performed using R (version 4.2.2). The code related to the development and 
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Variables non-MCD (n = 166) MCD (n = 82) p-value

Demographic characteristics

 Age (years) 61.5 [48, 74] 51.5 [29, 71] 0.002

 Male 84 (50.6) 52 (63.4) 0.059

 Height (cm) 161.12 (9.25) 163.17 (11.34) 0.129

 Body Weight (kg) 61.00 [52.25, 68.50] 64.90 [55.23, 76.75] 0.003

 Body Mass Index (kg/m2) 23.45 [20.66, 25.62] 25.29 [22.30, 27.52] 0.001

Blood tests

 White blood cells (/µL) 6500 [5200,8475] 6700 [5425, 8475] 0.592

 Hemoglobin (g/dL) 11.70 [10.00, 13.30] 14.40 [13.05, 15.67] < 0.001

 Total protein (g/dL) 5.30 [4.70, 6.07] 4.50 [3.90, 5.00] < 0.001

 Albumin (g/dL) 2.50 [2.10, 3.00] 1.90 [1.60, 2.40] < 0.001

 BUN (mg/dL) 17.05 [12.95, 28.30] 16.40 [12.22, 23.48] 0.317

 Creatinine (mg/dL) 0.99 [0.71, 1.62] 0.91 [0.76, 1.17] 0.24

 eGFR (mL/min/1.73m2) 52.50 [32.41, 73.76] 62.88 [48.37, 82.35] 0.005

 Uric acid (mg/dL) 6.40 [5.20, 7.32] 6.30 [5.25, 7.70] 0.502

 AST (U/L) 22.00 [17.00, 28.00] 23.50 [18.25, 32.50] 0.166

 ALT (U/L) 16.00 [12.00, 24.75] 19.50 [13.25, 33.00] 0.019

 ALP (U/L) 197.00 [147.00, 260.00] 173.00 [118.75, 226.00] 0.015

 LDH (U/L) 229.00 [200.00, 268.00] 238.00 [205.75, 273.00] 0.281

 CK (U/L) 90.00 [46.00, 145.00] 112.00 [70.50, 219.50] 0.011

 T-chol (mg/dL) 246.00 [189.00, 306.25] 414.00 [302.00, 501.25] < 0.001

 LDL-chol (mg/dL) 143.00 [101.50, 181.00] 233.00 [184.00, 320.00] < 0.001

 HDL-chol (mg/dL) 54.50 [41.75, 70.00] 68.00 [56.00, 86.00] < 0.001

 Glucose (mg/dL) 101.00 [91.00, 113.00] 102.00 [91.75, 111.25] 0.953

 HbA1c (%) 5.40 [5.10, 5.90] 5.25 [4.90, 5.53] 0.055

 C-Reactive Protein (mg/dL) 0.13 [0.03, 0.46] 0.08 [0.03, 0.20] 0.056

 IgG (mg/dL) 866.50 [588.25, 1288.25] 534.50 [393.25, 692.25] < 0.001

 IgA (mg/dL) 270.00 [198.00, 356.25] 226.00 [154.00, 318.00] 0.018

 IgM (mg/dL) 84.00 [58.00, 127.00] 102.50 [69.00, 128.50] 0.071

 C3 (mg/dL) 103.50 [76.50, 127.25] 133.00 [120.00, 158.00] < 0.001

 C4 (mg/dL) 27.00 [16.75, 38.00] 35.50 [30.00, 42.75] < 0.001

 ANA (titer) 0.001

 ≤ 40 109 (72.7) 73 (96.1)

 80 6 (4.0) 3 (3.9)

 160 6 (4.0) 0 (0.0)

 320 7 (4.7) 0 (0.0)

 640 9 (6.0) 0 (0.0)

 1280 6 (4.0) 0 (0.0)

 2560 6 (4.0) 0 (0.0)

 10,240 1 (0.7) 0 (0.0)

Urine tests

 Urine RBC (/HPF) < 0.001

 < 1 27 (16.3) 38 (46.3)

 1 ~ 4 44 (26.5) 30 (36.6)

 5 ~ 9 27 (16.3) 9 (11.0)

 10 ~ 19 23 (13.9) 3 (3.7)

 20–29 16 (9.6) 0 (0.0)

 30 ~ 49 8 (4.8) 2 (2.4)

 50 ~ 99 5 (3.0) 0 (0.0)

 ≥ 100 16 (9.6) 0 (0.0)

UPCR (g/gCre) 4.91 [3.15, 8.27] 6.68 [4.01, 10.99] 0.062

UP/day (g/day) 3.67 [2.18, 5.60] 4.78 [1.78, 7.54] 0.259
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evaluation of the models can be accessed via the following GitHub link: https://github.com/Ryunosuke1219/
MCD-diagnostic-prediction.

Results
Patient characteristics
After excluding cases under 18 years of age, cases without definitive diagnosis, and cases with multiple primary 
diagnosis, 248 cases were finally included. Of these, 82 cases (33%) of MCD followed by 51 cases (21%) of 
membranous nephropathy, 33 cases (13%) of lupus nephritis, 23 cases (9%) of diabetic nephropathy and 22 cases 
(9%) of focal segmental glomerulosclerosis (Supplementary Table S3). The baseline characteristics of MCD and 
non-MCD patients are shown in Table 1.

Model performance
The AUROC for TabPFN was the highest at 0.915 (95% CI 0.896–0.932). There was no significant difference 
between TabPFN and the other models, including LightGBM, Random Forest, Artificial Neural Network, and 
logistic regression (Fig. 2). Similarly, the AUPRC for TabPFN was the highest at 0.840 (95% CI 0.807–0.872), 
with no significant difference compared to the other models (Fig. 3). The results of the deep ROC analysis for the 
normalized group AUROC, mean sensitivity, and mean specificity for each machine learning model are shown 
in Table 2. TabPFN had the highest normalized group AUROC in the groups with low and high false positive 
rates, while LightGBM had the highest in the group with intermediate false positive rates. Calibration plots 
indicated good calibration for all models, with Brier Scores ranging from 0.116 to 0.134 (Supplementary Fig. S1). 
In decision curve analysis, LightGBM had the highest net benefit in the low threshold probability range, TabPFN 
in the intermediate range, and logistic regression in the high range (Supplementary Fig. S2).

Model interpretations
The SHAP values were calculated for TabPFN, which demonstrated the best classification performance. The 
SHAP bar plot indicated the influential variables on the models’ predictions, with C3, T-chol, and Urine RBC 
being the top three predictor variables (Supplementary Fig. S3). Figure  4 shows the SHAP beeswarm plot, 
revealing Urine RBC, age, albumin, UP/day, and IgG between negative correlations. In contrast, C3 and T-chol 
positively correlated with MCD prediction. The SHAP dependence plot demonstrated complex relationships 
between the variables and MCD prediction (Supplementary Fig. S4).

Sensitivity analysis
The model’s performance was evaluated using the dataset adjusted with SMOTE. TabPFN achieved the highest 
performance with an AUROC of 0.953 (95% CI 0.945–0.961) and an AUPRC of 0.945 (95% CI 0.933–0.957), 
consistent with the primary analysis (Supplementary Fig. S5, S6).

Discussion
In this study, we developed and internally validated the predictive models based on four machine learning 
algorithms and logistic regression to diagnose MCD. The results showed that TabPFN had the highest 
performance in both AUROC and AUPRC, indicating its utility in predicting the diagnosis of MCD. The SHAP 
method revealed that the important predictor variables for TabPFN were C3, T-chol, and Urine RBC, which 
align with previous reports. To the best of our knowledge, this is the first study to compare and evaluate the 
performance of multiple machine learning models in diagnosing MCD. These findings suggest the potential of 
applying machine learning for non-invasive and reliable MCD diagnosis.

The need for non-invasive diagnostic methods for MCD has been discussed, but studies using predictive 
models are limited8,14–16,35,36. A study using logistic LASSO regression on 1009 adult nephrotic syndrome 
patients demonstrated the performance of AUROC 0.880, indicating the utility of predictive models for 
diagnosing MCD14. Another study on adult nephrotic syndrome patients showed high discrimination ability for 
MCD with an AUROC of 0.827 using two predictor variables16. In a study on a discrimination model between 
primary PLA2R-negative membranous nephropathy and MCD, logistic regression maintained an AUROC 
of 0.904 during development and 0.886 during validation15. While the previous studies have examined the 
effectiveness of predictive models in diagnosing MCD, all the models were classical statistical methods such as 
logistic regression. Logistic regression assumes linear relationships between outcomes and predictor variables, 
which, while advantageous for interpretability, may have limitations in predictive performance17,32. Although 
recent studies have increasingly used machine learning methods to model non-linear relationships and address 
predictive limitations, no such studies have been conducted for diagnosing MCD. Therefore, we conducted a 
comparative evaluation of the performance of multiple machine learning algorithms, not just logistic regression, 

Table 1.  Baseline characteristics of patients with and without minimal change disease. MCD: minimal 
change disease, BUN: Blood Urea Nitrogen, eGFR: estimated Glomerular Filtration Rate, AST: Aspartate 
Aminotransferase, ALT: Alanine Aminotransferase, ALP: Alkaline Phosphatase, LDH: Lactate Dehydrogenase, 
CK: Creatine Kinase, T-chol: Total cholesterol, LDL-chol: Low-density lipoprotein cholesterol, HDL-
chol: High-density lipoprotein cholesterol, HbA1c: Hemoglobin A1c, IgG: Immunoglobulin G, IgA: 
Immunoglobulin A, IgM: Immunoglobulin M, ANA: Antinuclear antibodies, Urine RBC: Urine red blood 
cells, UPCR: Urine protein to creatinine ratio, UP/day: Urine protein per day.
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in predicting MCD diagnosis, demonstrating the utility of machine learning. Previous studies did not share 
analytical code related to the predictive models. In this study, we made the code for model development and 
evaluation publicly available to promote open science. It will support further research and advance this field.

TabPFN demonstrated superior predictive performance compared to logistic regression and other machine 
learning algorithms for diagnosing MCD. Previous research showed that machine learning models often surpassed 
logistic regression in various tabular datasets37,38. TabPFN is a pre-trained Transformer-based machine learning 
algorithm specialized for tabular data classification. It outperformed existing machine learning algorithms like 
LightGBM and Random Forest across 18 datasets28. TabPFN demonstrated superior performance in predicting 
mortality and outcomes in neurosurgery and neuro-oncology39–41. The high performance of TabPFN in 
diagnosing MCD is consistent with these reports, highlighting the potential value of machine learning in non-
invasive diagnostics. However, TabPFN did not show statistical significance compared to the other models, and 

Fig. 3.  Precision-recall curves of the predictive models in stratified 5-repeated 5-fold cross-validation.

 

Fig. 2.  Receiver-operating characteristic curves of the predictive models in stratified 5-repeated 5-fold cross-
validation.
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the decision curve analysis indicated that other models also had clinical utility depending on the threshold 
setting. To ensure stable predictive performance and enhance statistical power, sufficient and appropriate sample 
sizes are needed42,43. Further large-scale studies are required to demonstrate robustness and generalizability in 
performance comparison between the algorithms.

We clarified the “black box” of TabPFN through the SHAP method, identifying C3 and T-chol, which positively 
correlated, and Urine RBC, which negatively correlated, as key predictors for MCD. The SHAP method is widely 
applied to interpret the contributions of predictor variables to model outputs34,44. C3 has not been identified as 
a specific marker for diagnosing MCD. Hypocomplementaemia, including low levels of C3, is associated with 
various kidney diseases such as lupus nephritis, membranoproliferative glomerulonephritis, cryoglobulinemic 
glomerulonephritis, infection-related nephritis, and IgG4-related kidney disease45,46. In distinguishing PLA2R-
negative membranous nephropathy from MCD, six variables, including C3, were reported as significant through 
univariate and multivariate logistic regression15. The C3 levels may help diagnose MCD because complement 
levels are associated with other causes of nephrotic syndrome. Another study that employed multivariate 
logistic regression to compare MCD and non-MCD groups identified T-chol and thrombin time as significant 
predictors16. The research comparing MCD and focal segmental glomerulosclerosis suggested that hematuria 
presence or absence was important for differentiation47–49. The key predictors identified in this study aligned with 
these studies. We additionally visualized the relationships between each variable and the predictions through the 
SHAP dependence plots. These insights deepen our understanding of how these variables correlate with MCD.

Our findings have important clinical implications. First, similar methods can be used to develop simple, 
accurate, and non-invasive predictive models for MCD, which have the potential for clinical application. Second, 
since our models employ variables routinely collected in clinical settings, their implementation does not require 
additional tests or expenses beyond standard procedures. Third, identifying key predictors and visualizing their 
relationship with MCD prediction can offer new insights for differentiating MCD in clinical practice.

This study has several limitations. First, it relies on data from a single center, needing external validation 
across various facilities. Since our model cannot ensure reliability and robustness outside of this institution, 
clinical application is not yet feasible. Evaluating the external validity of our model in diverse patient populations 
is essential. Second, it does not account for specific individual information such as race, ethnicity, geographic 
location, comorbidities, or health conditions. The models may not fully represent the diversity of the intended 
population, so careful consideration is crucial before clinical application. Third, due to the limited sample 
size and an imbalanced dataset, there might be insufficient statistical power and potential model overfitting, 
necessitating cautious interpretation of the evaluation results for each model. To address these concerns, we 
collected data from cases over 17 years from a high-volume medical institution, conducted the sensitivity 
analysis with oversampling, and minimized the number of predictive variables. Considering these limitations, 

FPR [0,1] [0.0.33] [0.33,0.67] [0.67,1]

Predicted probability All High Medium Low

TabPFN

 AUROCni 0.915 (0.047) 0.894 (0.050) 0.923 (0.083) 0.995 (0.024)

 Avg sensitivity 0.915 (0.047) 0.766 (0.115) 0.977 (0.032) 1 (0.001)

 Avg specificity 0.915 (0.047) 0.942 (0.025) 0.344 (0.291) 0.012 (0.059)

LightGBM

 AUROCni 0.911 (0.041) 0.887 (0.052) 0.941 (0.069) 0.979 (0.048)

 Avg sensitivity 0.911 (0.041) 0.757 (0.108) 0.976 (0.031) 0.998 (0.006)

 Avg specificity 0.911 (0.041) 0.933 (0.033) 0.244 (0.287) 0.041 (0.097)

Random forest

 AUROCni 0.906 (0.043) 0.882 (0.051) 0.922 (0.075) 0.985 (0.041)

 Avg sensitivity 0.906 (0.043) 0.742 (0.110) 0.974 (0.029) 0.999 (0.004)

 Avg specificity 0.906 (0.043) 0.933 (0.030) 0.296 (0.294) 0.0324 (0.090)

Artificial neural network

 AUROCni 0.880 (0.057) 0.864 (0.055) 0.866 (0.082) 0.964 (0.073)

 Avg sensitivity 0.880 (0.057) 0.698 (0.117) 0.945 (0.055) 0.996 (0.010)

 Avg specificity 0.880 (0.057) 0.929 (0.026) 0.470 (0.197) 0.062 (0.114)

Logistic regression

 AUROCni 0.888 (0.059) 0.883 (0.047) 0.868 (0.086) 0.946 (0.102)

 Avg sensitivity 0.888 (0.059) 0.734 (0.107) 0.937 (0.065) 0.992 (0.018)

 Avg specificity 0.888 (0.059) 0.941 (0.022) 0.397 (0.239) 0.058 (0.110)

Table 2.  The deep ROC analysis of the machine learning models in stratified 5-repeated 5-fold cross-
validation. The mean of the metric for each fold of the 5-repeated 5-fold cross validation is calculated and 
the standard deviation is given in parentheses (). FPR: false positive rate, AUROCni: normalized group area 
under the receiver-operating characteristic curve, Avg sensitivity: average sensitivity, Avg specificity: average 
specificity.
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future research should aim to develop models using large-scale data from multiple institutions and conduct 
broader external validation to assess the model’s generalizability and clinical utility.

In conclusion, this study demonstrated the utility of the machine learning model TabPFN for diagnosing 
MCD using commonly available clinical data. Machine learning can potentially offer non-invasive and reliable 
tools for predicting MCD.

Data availability
The dataset cannot be disclosed as approval has not been received from the Ethics Committee of St. Marianna 
University Hospital. The code for analysis on the development and evaluation of the models is available at the 
following GitHub link: https://github.com/Ryunosuke1219/MCD-diagnostic-prediction.
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