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OPEN A novel multi-scale network

intrusion detection model with
transformer

Chiming Xi, Hui Wang"™ & Xubin Wang

Network is an essential tool today, and the Intrusion Detection System (IDS) can ensure the safe
operation. However, with the explosive growth of data, current methods are increasingly struggling
as they often detect based on a single scale, leading to the oversight of potential features in the
extensive traffic data, which may result in degraded performance. In this work, we propose a novel
detection model utilizing multi-scale transformer namely IDS-MTran. In essence, the collaboration

of multi-scale traffic features broads the pattern coverage of intrusion detection. Firstly, we employ
convolution operators with various kernels to generate multi-scale features. Secondly, to enhance the
representation of features and the interaction between branches, we propose Patching with Pooling
(PwP) to serve as a bridge. Next, we design multi-scale transformer-based backbone to model the
features at diverse scales, extracting potential intrusion trails. Finally, to fully capitalize these multi-
scale branches, we propose the Cross Feature Enrichment (CFE) to integrate and enrich features, and
then output the results. Sufficient experiments show that compared with other models, the proposed
method can distinguish different attack types more effectively. Specifically, the accuracy on three
common datasets NSL-KDD, CIC-DDoS 2019 and UNSW-NB15 has all exceeded 99%, which is more
accurate and stable.
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The network is becoming indispensable in people’s life and work, gradually permeating every aspect.
Consequently, concerns about security are increasingly being raised. Given the rapid growth of the internet
and the explosion of usage, any malicious intrusion or attack on network vulnerability can lead to a serious
disaster !. Intrusion Detection System (IDS) is a security tool used to monitor computer networks for suspicious
activity, which aims to identify, log and alert potential security threats. Nowadays, with the volume of data still
surging, IDS that enables the network to avoid attacks and effectively reduce economic losses is taken ever more
seriously 2.

Traditionally, signature-based approaches have been important for a long time. However, with the explosion
of data, signature database must be updated frequently to keep up with evolving intrusion tactics. Competent in
pattern recognition, deep learning-based IDS is increasingly favored and gradually supplanting signature-based
approaches®. For instance, Convolutional Neural Networks (CNN)*°, Recurrent Neural Networks (RNN)S,
and Long Short-Term Memory Neural Networks (LSTM)” are widely used for IDS. However, such data-driven
models also have limitations, they often struggle with specific types of attacks as the variations in traffic features
are sometimes subtle and are often overlooked®.

How to extract key attack features is the most important issue in anomaly-based IDS’. In recent years,
Transformer'® that continues to show State-Of-The-Art (SOTA) performance in many fields has also been
gradually applied to IDS with favorable performance! ''2. Benefiting from the powerful self-attention mechanism,
such models can analyze complex network traffic in a more in-depth manner, thus effectively discern correlations
in sequence data and modeling globally in traffic analysis. However, some problems related to noise components
and minor features in traffic data still constrain the performance'?, and need to be tackled critically.

Upon observation, prevalent methods often process with single-scale traffic data, which ignore the information
richness of features at different scales. Typically, multi-scale data is considered to cover a more comprehensive
range of features, and the utilization of multi-scale data has proven to be an effective performance improvement
method in many fields'* However, it remains insufficiently explored in the context of IDS.

Based on the discussions above, this paper propose IDS-MTran, a novel multi-scale pipeline based on
Transformer. It is designed to efficiently incorporate features at different scales to improve the detection, as well
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as utilizing the excellent global modeling capability of Transformer. In essence, the collaboration of multi-scale
traffic features can broad the pattern coverage of intrusion detection, thus improve the performance. Initially,
IDS-MTran produces features at different scales from existing data using different operators as the basis for
detection. Subsequently, it enhances these representations and highlights the scale advantage through the newly
proposed PwP (Patching with Pooling) module, which aims to interact features at different levels and weaken the
noise to better recognize attack types. Afterwards, the three Transformer-based backbone networks output the
feature representations corresponding to each branch. On the basis of current multi-scale architecture, especially
those well-performed models, the effective handling of multi-scale features is a crucial issue. For IDS-Mtran, it
incorporates different through the newly proposed CFE (Cross Feature Enrichment) module, which enriches
the features received through interactions and combines them organically, as well as predicts the final results.

Finally, we conduct comprehensive experiments on the commonly used NSL-KDD,CIC-DDoS 2019 and
UNSW-NBI15 datasets, and the results show that the proposed IDS-MTran is an effective and advanced method,
particularly showing the SOTA performance in the identification of specific attack categories. Furthermore,
ablation experiments validate the effectiveness of the multi-scale design.

The structure of this paper is as follows. Section "Related work" presents the related work with IDS. Section
"Methodology" presents our method in detail, including the optimization process. Section "Experiments" presents
the experiment and results with detailed analysis. Finally, we conclude the paper in section "Conclusions".

Related work

Typically, IDS can be divided into two categories: signature-based and anomaly-based!>!¢. The former relies
on traffic signatures, necessitating continual updates to the latest signature database. It is effective for detecting
known types of attacks, but incapable of identifying new and unknown types. The latter is assessed by evaluating
the deviation between monitored and normal traffic, while it excels in detecting unknown attacks and is prevalent
in contemporary IDS systems, it is prone to false alarms, and its accuracy requires enhancement!”.

Signature-based methods

Signature intrusion detection systems (SIDS) employ pattern matching methodologies to identify known
attacks. These systems are alternatively referred to as Knowledge-based Detection Systems or Misuse Detection
Systems!®.Raiah et al.! have developed a trust-aware signature-based IDS that utilizes trust tables to detect
potential intrusions in the MANET nodes,which achieved a minimum latency of 0.00434 second, low energy
consumption of 9.933 joules, high detection rate of 0.623, and throughput of 0.642 packets per second. Both He
et al.?0 and Sutskever et al.?! developed signature-based routing protocols to detect Sybil attacks in the Internet
of Things. Despite they are effective at detecting known intrusions, they are increasingly inadequate for today’s
complex and dynamic network environments.

Anomaly-based methods

Among anomaly-based approaches, machine learning has gained widespread recognition for its adaptive and
powerful data handling capabilities, addressing contemporary IDS requirements®. Some classical models are
widely used in IDS. For instance, Hota et al.> combined feature engineering and the C4.5 decision tree technique,
taking accuracy to new heights, Kabir et al.?* proposed optimum allocation-based least square support vector
machine (OA-LS-SVM) for IDS, achieving better results in terms of efficiency and accuracy. To date, these
models still play an important role. For instance, Mahbooba et al.>> employed decision trees to address non-
linear relationships in intrusion detection data, thereby obviating the need for excessive pre-processing of data
and enhancing model detection efficiency. Zhang et al.?® employed weighted PCA to mitigate the impact of data
contamination and enhance the accuracy of the assay. The conventional machine learning methods primarily
focus on shallow learning, which emphasizes feature engineering and selection. Mohammad et al. % proposed
an automatic clustering algorithm based on consistency and separability for optimizing attack clustering in
intrusion detection systems. Combining Artificial Bee Colony Algorithm (ABC), Particle Swarm Optimization
(PSO) and Differential Evolution (DE) methods, the algorithm performs well in terms of optimization of the
number of clusters, the number of evaluation functions and accuracy. As the dataset size increases, shallow
learning becomes inadequate for intelligent analysis due to its requirement for high-dimensional learning with
substantial volumes of data.

Deep learning, an end-to-end approach, is increasingly favored among anomaly-based detection
techniques?®?. Deep learning-based IDS offers considerable benefits, making IDS more robust and intelligent.
For example, Li et al.*® converted feature data to a grayscale graph and proposed multi-CNN fusion model,
outperforming traditional machine learning methods. Ding et al. 3! proposed a CNN-based IDS model for
multi-category classification experiments using the NSL-KDD dataset. The study shows that deep learning has
significant advantages in large-scale data feature extraction and provides a new research direction for intrusion
detection.

In addition, Artificial Neural Networks (ANNs) have also achieved significant results in anomaly detection.
Rahim et al. 3 screened features through the cuttlefish algorithm and evaluated the performance of different
feature combinations using ANNSs. The experimental results show that 13 feature combinations can efficiently
detect almost all attacks, significantly improving the accuracy rate. Bhupendra et al. 3* evaluated the NSL-KDD
dataset through ANNs in anomaly traffic detection, and the results show that the detection rates of intrusion
detection and attack type classification are 81.2% and 79.9%, respectively, which further validates the effectiveness
of ANN in improving the detection accuracy.

Notably, RNNs are often better suited than CNNs to detect intrusion as traffic data generally exhibits
sequential nature. For instance, Kasongo incorporated different types of Recurrent Neural Networks (RNN),
namely Long-Short-Term Memory (LSTM), Gated Recurrent Units (GRU) and Simple RNN, with an XGBoost-
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based feature selection algorithm. The XGBoost-LSTM model performs best on the NSL-KDD dataset, while
the XGBoost-Simple-RNN model achieves the most efficient performance on the UNSW-NB15 dataset. Oliveira
et al.*> proposed a LSTM-based method, the experimental results show that the LSTM network has excellent
reliability in effectively capturing sequential patterns in network traffic data, with an accuracy of 99.94% and an
F1 score of 91.66%. Silivery et al.*¢ combined RNN, LSTM, and DNN to propose a hybrid network model that
achieved quite good performance.

In recent years, Transformer'® continues to show SOTA performance in many fields. Various studies show
its efficacy in processing sequential data, where the multi-head self-attention mechanism enables the network to
capture contextual information from the entire sequence. This advanced model is also applied in IDS, exhibiting
superior performance!"12. For example, Nguyen et al.” proposed a transformer-based attention network (TAN)
for an in-vehicle CAN bus, which is more efficient and powerful. Zhang et al.*® proposed a novel intrusion
detection model that integrates CNN and Transformer, enabling the capture of both global correlations between
packets and identification of local correlations associated with intrusions. Yang et al.!? proposed an intrusion
detection model based on an improved vision transformer. The experiments conducted on the NSL-KDD
dataset demonstrate that the model achieves an accuracy of 99.68%, a false alarm rate as low as 0.22%, and an
recall rate of 99.57%.

Furthermore, researchers often leverage threat models to help security teams identify the attacks and
vulnerabilities they are most likely to face and, in turn, more effectively configure and tune signature-based or
anomaly-based intrusion detection systems 30,

Methodology

Figure 1 shows the architecture of IDS-MTran, which extracts rich features from traffic data by creating multi-
scale branches. It follows the end-to-end paradigm, where the inputs are pre-processed and then patched, and the
patch groups are intersected to serve as inputs to the backbone. Features from different branches are organically
integrated to obtain the result. The designed architecture is discussed in detail in this section.

Preprocess
Given the traffic data to be tested © = x1, z9, ..., Ty, pre-processing is first performed, including digitization,
addressing abnormal values, normalization, and matrixization:

1. Among the sample features, those containing character strings cannot be computed directly. Therefore, digi-
tization is performed first, i.e., the strings are processed using one-hot coding. The specific encoding depends
on the data.

2. Next, we need to find if there are outliers in the data. The handling relies on Gaussian distribution, deter-
mined by calculating the gap between the input samples and the mean of all data:

fla) = \/2170 exp {—%} 0

where o is the standard deviation, 1 is the mean of the sample data, and x is the input data. Values with a gap of
more than three times are determined to be an outlier.

3. To speed up optimization and training, the data needs to be normalized. The min-max method is leveraged
to scale all features to the same range, as shown in Eq. 2:

, o —min(x)

~ max(z) — min(x)’

4. Matrixization aims to convert the input sequence into matrix for processing. For the flow sequence, it is
converted into a two-dimensional matrix X of i x w, as shown in Fig. 1. When N is not an integer multiple
of h, the end of the data sequence is filled with 0.
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Fig. 1. The overall structure of IDS-MTran.
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Multi-scale architecture

Confronted with extensive traffic data, the effective feature extraction is the key to detection. Existing methods
tend to operate on a single data scale, ignoring the multi-scale information present in the data. In general,
distinct data scales often encompass different information, e.g., lower-level features show basic structural details,
while higher-level, more abstract features show overall trends. Upon the observation above, we construct a
multi-scale architecture to improve the exploitation of traffic data.

As shown in Fig. 1, it contains three branches creating by different convolution kernels. For each, we first
utilize 1 x 1 to adjust the shape and channel. To exploit the potential feature, which is often deeper and more
abstract, 3 x 3 and 5 x 5 kernel sizes are leveraged to the last two branches, respectively. Further, we use two
parallel 3 x 3 kernels instead of the 5 x 5 one, since the parameter of the parallel is only 18 but not 25 and
it brings a expanded receptive field. At the same time, all the larger convolutions are replaced with dilated
convolution, which can increase the receptive field of the filter without increasing the parameters, thus making
the feature extraction more comprehensive.

We postulate that higher-level features are effective at capturing macro patterns or trends in traffic data.
Larger scales, on the other hand, are adept at discerning detailed features in traffic data, such as changes in
the size of packets over a short period of time. With multi-scale network analysis, potential signs of intrusion
can be identified from different perspectives and scales, providing a more comprehensive security analysis and
enhances the detection sensitivity.

Patching with Pooling
One of the reasons that traffic data is challenge to process is the low information density, where attack trails are
often hidden in a large number of normal parameters to avoid detection systems. As shown in Fig. 1, we construct
Patching with Pooling (PwP) for each branch, aiming at enhancing the key features from the background noise.
Figure 2 shows its structure, which starts with the average pooling to reduce the data dimensions, helping to
focus on a wider range of features and making the anomaly localization more easier. The up-sampling then re-
introduces some of the detail that lost in the pooling, and simultaneously highlights interest features.
Consequently, we divide each feature map into 7' = (h/s) x (w/s) patches of size s to serve as the inputs.
To preserve the organizational structure information during patch segmentation, we propose fusing groups of
patches between different branches. As shown in Fig. 1, the low-level information is supplemented to the high-
level features in a top-down manner. Where low-level features are considered as auxiliary and high-level features
are considered as primary. The reason is that auxiliary features contain more detailed information, which helps to
enrich the high-level information contained in the main features, thus obtaining richer and finer representation.

Transformer-based backbone

Competent in sequential modeling, Transformer is widely used in intrusion detection. The pure attention
mechanism allows it to focus on the most relevant parts of the data, and the parallel processing capability makes
it more efficient when dealing with massive data.

A Transformer model usually contains an encoder and a decoder to compress and recover the input sequence
data, respectively. Considering that our framework requires only feature extraction and does not need to recover
the dimension, we leverage the encoder as backbone to process multi-scale branches separately. Figure 3 shows
the architecture.

Due to the lack of a looping structure for parallel computing, Transformers often do not naturally handle
sequential information. Therefore, positional encoding is added to each patch as a supplement, which enables
the model to be aware of the relative or absolute position in the original input sequence. We leverage the common
cosine and sine functions to encode:

{ PEpos i) = sin (ﬁfﬁiggl . 3)
PE([)()S,ZH»I) = COos (W)

which are then summed with the embedding of the sequence to provide unique identifiers of different positions.
It facilitates the model to learn the position information.

The self-attention mechanism, pivotal in the Transformer architecture, is designed to enhance sequence
modeling by capturing dependencies regardless of their distance in the sequence. It operates using three matrices:
W¢ (Query), Wi (Key), and Wy (Value). Each element in the input sequence is transformed into these three
representations. The query (Q) represents the part of sequence that is currently in focus, and the keys (K) act like
tags to help identify the elements associated with the query. The value (V) represents the information that should
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Fig. 2. Illustration of PwP.
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Fig. 3. (A) The architecture of transformer-based backbone. (B) Illustration of the calculation of self-attention.

be in focus when encoding a particular element. Self-attention calculates the attention score by comparing the
similarity between Q and K, then weighted and summed with the V to form the final output for each element,
as shown in Fig. 3.

Transformer uses the multi-head self-attention mechanism to perform multiple attention operators in parallel
to help the model learn information from different representation sub-spaces. For each head, the attention is
computed independently and the results are stitched together at the end:

MultiHead(Q, K, V) = Concat(heady, ..., head,) W, (4)

where head; = Attention(QVVF7 KWX VWY). By allowing the model to focus on multiple aspects of the
sequence at the same time, this special mechanism significantly enhances the processing ability of Transformer,
making it more efficient and accurate when dealing with complex sequential data.

Subsequently, the data stream is further processed through Layer Normalization and Feed-Forward Neural
Network. Finally, by concatenating multiple such encoders, where the output of each becomes the input to the
next layer, the backbone network of IDS-MTran is formed to encode the entire patch groups.

Cross feature enrichment

The complexity and diversity of attacks make it difficult to accurately identify and defend against all types of
attacks. Though the proposed method can extract traffic features at different scales, a comprehensive utilization
strategy poses a significant consideration.

To better leverage the features behind different scales, as shown in Fig. 4, we propose a novel Cross Feature
Enrichment module to process. It is constructed to cross-enhance low-level and high-level information, which
allows the model to learn richer features through cross-layer feature interactions. Specifically, features at three
different scales are up-sampled and down-sampled into other branches, respectively, and then concated into new
blended vectors. These composites simultaneously contain information at different perspectives, and we further
down-sample them separately to distill the features. And this distillation integrates different perspectives,
making branches more sensitive to attacks and improving the robustness.

Finally, we combine these enhanced features in the same dimension, and then output the final result using
three linear layers. By adeptly combining information at different scales, CFE enables each branch to understand
and respond to various attack types more thoroughly, thus making detection more comprehensive and accurate.

Loss function
Though IDS-MTran can effectively extract discriminative features from extensive traffic data, this presupposes
an effective training process. Data imbalance is one of the most important considerations, as quantitatively
dominant categories will guide the model to ignore those that are scarce. As shown in Fig. 5, the data used for
training in intrusion detection tends to be extremely unbalanced, with the amount of normal traffic data being
much higher than intrusion instances due to the fact that attack activity is harder to collect. Aiming at this, we
adopt the focal loss*!, which is widely used in computer vision to solve the data imbalance, to guide the training.
Focal Loss was originally designed to solve the problem of imbalance between foreground and background
categories in target detection, and it is an improvement of the cross-entropy (CE). Given the predicted probability
p and the ground truth label y, CE is defined as:
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Fig. 4. Architecture of the Cross Feature Enrichment.
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Fig. 5. (A) NSL-KDD dataset sample distribution. (B) CIC-DDoS 2019 dataset sample distribution. (C)
UNSW-NB15 dataset sample distribution.

_ [ —log(p),ify =1
CE(p,y) = { —log(1 — p), otherwise ’ ©

which intuitively penalizes predictions that are inconsistent with true labels. By optimizing for overall loss using
negative log-likelihood, the model is able to accurately predict the majority and easy-to-classify categories.
However, anomalous traffic is often in the minority and hard to classify. Focal Loss relaxes this problem by

focusing more on these samples located near the decision boundary in the feature space. Specifically, let
CE(p;) = —log(p;), where

_Jpity=1
b= { 1 — p, otherwise ’ ©

then focal loss can be written as:

FL(p1) = —(1 = py)" log(p), 7)
where the (1 — p;)? can be viewed as a modulating factor that reduces the weight of easy-to-classify samples and
makes the model focus more on hard-to-classify ones. Specifically, p; will decrease if the sample belongs to latter,

the loss will increase with (1 — p;)?, and the model will focus more on it. Additionally, a balancing factor « is
introduced to further solve the imbalance:

FL(pt) = —ou(1 — p)" log(pr). 8)
By providing different weights for different categories, it helps to prevent the model from being overly biased in

favor of the majority category in the case of extreme imbalance.

Experiments

Beginning with a description of the data, environment and metrics used, this section presents the experiment
results, including the comparative experiments and ablation studies.
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Datasets description

The NSL-KDD dataset* is an improved version of the KDDCup99 dataset, developed by the National Institute
of Standards and Technology (NIST) to facilitate research and evaluation of network intrusion detection. The
dataset covers five network traffic types, including normal, DoS, Probe, U2R and R2L attacks, and contains a
total of 148,517 data samples after processing the outliers. Figure 5 describes the distribution of each sample in
the NSL-KDD dataset in detail. In the sample, the values corresponding to the three feature keys “Protocol type’,
“Flag”, and “Service” are strings and need to be encoded.

The CIC-DD0S2019 dataset*® was developed by the Canadian Institute for Cybersecurity at the University
of New Brunswick to investigate and evaluate the performance of distributed denial of service (DDoS) attack
detection systems. It offers more comprehensive traffic features and exhibits a significantly high proportion of
malicious traffic, comprising 7,040,987,392 instances, while only 140,855 records correspond to benign. The
distribution of CIC-DD0S2019 is illustrated in Fig. 5.

The UNSW-NB15 dataset ** was created by researchers at the Australian Centre for Cyber Security (ACCS)
lab at the University of New South Wales (UNSW). This dataset contains raw network traffic data of monitored
by TCP-Dump tool containing 2,540,044 realistic records. The dataset includes a wide variety of different types
of network traffic, such as TCP, UDP, ICMP, and HTTP, the allocation of UNSW-NB15 is shown in Fig. 5, which
also includes information on the source and destination of the traffic, as well as the time and duration of each
packet.

The experiments are categorized into binary- and multiple- classification tasks, with the former aiming to
discern whether traffic is malicious, and the latter being specific to the type of attack.

Experimental environment and parameter settings

The hardware environment for the experiment is a workstation equipped with 64GB of RAM, Intel Core i7
13700k central processor, and Nvidia RTX 4090 24GB GPU. The software environment is Windows 11 operating
system, python 3.8, PyTorch 1.12.1, Numpy 1.20.3, scikit-learn 1.1.2, and matplotlib 3.7.1.

The focal loss in section 3.6 is selected to train IDS-MTran, Adam optimizer is used to assist in training
where 8; = 0.99 and (5 = 0.9999. The initial learning rate is set to 0.001, the batch size is set to 512, and the
target epoch for training is 100 and the early stop strategy is applied. Note that for the detailed architecture of
Transformer-based backbone, please refer to 4°.

Predictive model evaluation metrics
The predictive model is evaluated by a confusion matrix, which consists of four components as shown in Fig. 6
: TP: the instance is correctly identified as positive; FP: the instance is incorrectly identified as positive despite
being negative; TN: the instance is correctly identified as negative; FN: the instance is incorrectly identified as
negative despite being positive.

Consequently, four widely-used metrics-Accuracy, Precision, Recall, and F1 Score are selected. Accuracy is
one of the most intuitive manifestations of the model’s performance:

TP+TN

. 9
TP+ FN+FP+TN ©)

Accuracy =

Precision shows how accurately the model predicts positive samples:

TP
Precision = ————. 10
recision TP+ FP (10)

Recall represents the model’s proficiency in identifying intrusion traffic:

TP
[ 11
Recall TPLFN (11)

Predict
True Positive

N
5
. TN FP
© = True Negative False Positive
c
=3
5 2
. FN TP

3 False Negative ~ True Positive

o

Fig. 6. Illustration of the confusion matrix.
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F1-Score considers both recall and precision, and is a commonly used metric for evaluating multi-classifier
models:
Precision x Recall

F1-58 =2 X . 12
core Precision + Recall (12

Comparative experiments

We first conduct comparative experiments on the three datasets NSL-KDD, CIC-DDoS 2019 and UNSW-NB15
to validate the advancement of IDS-MTran. As mentioned above, these datasets possess different characteristics,
thus the SOTA methods are not the same, and we introduce them in the corresponding subsections. Among
the competitors, some classical IDS methods are selected, including CNN (ResNet342%), RNN*, LSTM*” and
ViT*>*8, Finally, we conduct the comparative analysis of the detection efficiency.

Comparison results on NSL-KDD

Performing detection on NSL-KDD is a relatively simple task in these three datasets, as NSL-KDD has been
well-studied in recent years and has been used as the baseline data for many IDS models. Thus, we perform
comparison on the classical methods, and some SOTA methods optimized specifically for IDS, including the
method proposed by Liu et al. %, the ANN method proposed by Zakariah et al. ** and the AE method proposed
by Xu et al. >, Note that as a long-standing challenge, there are a number of excellent works on this dataset,
such as the study of Meena et al. >2 Therefore, we also report the results of several machine learning methods
for comparison.

Table 1 reports the results of binary-classification and multiple-classification results for each model. For
the binary one, IDS-MTran outperforms others with 99.25% accuracy, 99.07% precision, 99.02% recall, and
99.05% F1-score, showing excellent overall performance. The traditional CNN model performs the weakest,
with 91.86% accuracy and 89.21% F1 score, which reflects its limitations in handling sequential data. On the
contrary, RNN and LSTM, which are adept at processing sequence data, perform extremely well, but still not as
well as ours. The ViT model performs the best among these competitors, demonstrating the advantages that the
global dependency brings to intrusion detection. But its performance is still lower than the proposed multi-scale
model due to the under-utilization of the features with the single scale.

For the five-classification task that is more complex compared to the binary one, where the model not only
has to detect the presence of intrusion but also accurately predict the specific type. The transition from binary-
to five- classification degrades the performance of all models, reflecting the challenging nature of the task. As
reported in Table 1, the accuracy of the CNN decreased from 91.86 to 85.12%, indicating its diminished efficacy
in dealing with more complex sequence problems. The performance of RNN also decreased, with accuracy
dropping from 97.64 to 93.16%, indicating it is not as efficient as simple classification. LSTM and ViT show high
stability, they perform well and their performance is similar to the binary task, implying their good adaptability
to complex tasks. Notably, as the multi-scale’s all-around capability in macro and micro, the proposed method
shows no almost degradation, with an accuracy of 99.16%. Its excellent performance on different attack categories
exhibits its significant advantage in multi-category problems. Table 2 reports the quantitative results specific to
attack types.

Additionally, Fig. 7A reports the comparison between IDS-MTran and some machine learning methods. It
can be seen that the proposed method is second only to the J48 decision tree method used from Meena et al. %2,
and far exceeds other machine learning methods. Furthermore, Fig. 8 reports a comparison of the metrics when
specific to the attack category. Our method outperforms others on all metrics, with accuracy generally exceeding
99% and near-perfect performance on the Dos and U2R categories. The F1-score, as the reconciled average of
precision and recall, are close to 99% for our method on the Normal and Dos categories, indicating that it has
a well-balanced in correctly recognizing attacks as well as distinguishing types. This is crucial for real-world
security applications where the nature of attacks can be diverse and unpredictable. The results clearly highlight
the advantages of the proposed method, especially its robustness and reliability.

Binary-classification Five-classification

Method | Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-score
CNN 91.86 90.93 87.82 | 89.21 85.12 86.62 85.13 | 85.40
RNN 97.64 97.45 96.39 | 96.91 93.16 94.02 91.40 |92.56
LSTM 98.71 98.32 98.41 | 98.36 95.51 95.38 94.44 | 94.85
ViT 98.79 98.63 98.26 | 98.44 97.80 97.45 97.83 | 97.62
{;li"{lft 92.90 89.92 98.57 | 94.05 85.24 - - -
ANN® | 97.50 99.00 96.70 | 95.70 - - - -
AES! 90.61 86.83 98.43 | 92.26 - - - -
Ours 99.25 99.07 99.02 | 99.05 99.16 99.01 99.17 | 99.09

Table 1. Quantitative results on NSL-KDD. The values are expressed in %, and the best one is in bold.
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100

Accuracy

SVM

Accuracy | Precision | Recall | F1-score
Normal | 99.22 98.74 98.39 | 98.56
Dos 99.90 99.79 99.83 | 99.81
Probe | 99.64 99.38 99.22 | 99.30
U2R 99.73 98.90 99.38 | 99.14
R2L 99.82 98.24 99.03 | 98.63

Table 2. Quantitative results of our method specific to attack types. The values are expressed in %.
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Fig. 7. Comparison between IDS-MTran and several machine learning methods on (A) NSL-KDD, (B) CIC-
DDoS 2019, and (C) UNSW-NBI5.

Comparative results on CIC-DDoS 2019

Among these datasets, CIC-DDoS 2019 is more specialized in detecting DDoS attacks, which includes a large
volume of data with a comprehensive set of features. The competitors in this comparison include the RTIDS
proposed by Wu et al. !, the method proposed by Cil et al. >* and the classical methods mentioned above.

We only conduct multiple-classification to explore the effects of each method as the number of normal traffic
is small and the categories are sufficiently diverse. As shown in Fig. 7(B), compared with classical machine
learning methods, the proposed method exhibit superior results, which suggests that as the complexity of such
dataset increases, those conventional models may not able to find the deep non-linear relations behind. Table 3
reports the overall detection results and the proposed method still outperforms others with a considerable gap.
The recall and F1-score of IDS-MTran also achieves 99.42% and 99.61%, respectively, indicating that our method
is not only able to accurately identify the attacks, but also effectively cover various attack types. Additionally,
Table 4 reports the quantitative results of IDS-MTran specific to attack types, which further demonstrate the
robustness and advancements of the proposed method to a wide range of different attack traffic and its strong
pattern coverage. Compared to the SOTA RTIDS, which also utilized the Transformer, our proposed IDS-MTran
performs better and more consistently. We attribute these advantages to the multi-scale feature extraction and
exploitation, which further optimizes Transformer’s ability to model traffic features.

Comparison results on UNSW-NB15

Generally, the UNSW-NBI5 is considered the most challenging one in the three IDS datasets, as it includes
complex, diverse, and realistic network traffic with a wide range of modern attack types, demanding more
sophisticated analysis 3. For this data, the selected competitors include the method proposed by Hooshmand
and Hosahalli *°, the method proposed by Potluri et al. *, DRaNN proposed by Latif et al. >/, the DNN method
proposed by Vinayakumar et al. %8, and the method proposed by Ashiku and Dagli *°. We report the overall
multiple-classification results in Table 5, and the class-wise results that specific to traffic types are presented in
Table 2.

Firstly, similar to the comparison in CIC-DDoS 2019, though the results of machine learning methods,
especially the SOTA J48 Decision Tree are acceptable, they are not as competitive as they are on the simpler data
like NSL-KDD. When facing such complex and variable data, those basic models may not sufficiently model
the relations. Next, as reported in Table 5, the proposed IDS-MTran performs on par with the current SOTA
methods in multiple-classification. However, our advantage lies in the more fine-grained detection accuracy,
i.e., specific to the intrusion category. As reported in Table 6, our proposed method is robust to all traffic types,
while the other methods, all show performance fluctuations to some extent. Specifically, the method proposed
by Hooshmand and Hosahalli >, achieves 99.0% accuracy on the Analysis and Normal type, but only 10.5 on
the Dos type. For the method proposed by Potluri et al. %, it performs quite well on the Generic and Normal
type, but in the remaining categories, it is completely undetectable in six of them. In terms of accuracy only,
DNN 38 performs well, however, in terms of Recall, it performs mediocrely and even appears undetectable in
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Fig. 8. Comparison of different metrics specific to the categories of each model on NSL-KDD.

Method Accuracy | Precision | Recall | F1-score
CNN 93.27 90.73 94.21 | 92.44
RNN 97.64 97.45 96.39 | 96.92
LSTM 96.98 95.77 96.21 | 95.99
ViT 96.71 98.44 98.32 | 98.38
RTIDS ! 98.58 98.82 98.66 | 98.48
Ciletal. > | 94.57 80.49 95.15 | 87.21
Ours 99.07 99.81 99.42 | 99.61

Table 3. Quantitative results of multiple-classification on CIC-DDoS 2019. The values are expressed in %, and
the best one is in bold.

many categories. The difference in metrics implies that the method’s performance is extremely imbalanced.
Here, DRaNN * is a strong competitor, however, our proposed method still wins with higher Recall and more
stable performance.

On this more difficult dataset, the proposed method further demonstrates its power, maintaining high
accuracy while having stable performance with minimal fluctuations. We attribute this result to the development
of multi-scale architecture, complemented by the deep utilization of information at different scales, which,
together with the self-attention mechanism, makes IDS-MTran an even better choice.
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Accuracy Precision Recall Fl1-score

RTIDS | Ours | RTIDS | Ours | RTIDS | Ours | RTIDS | Ours
Benign 99.47 99.05 | 98.79 98.86 | 99.74 99.40 | 99.60 99.13
DNS 97.36 98.43 | 97.00 98.25 | 97.04 97.98 | 97.18 98.12

LDAP 98.03 99.31 | 97.62 99.27 | 97.32 98.50 | 97.82 98.88
MSSQL 96.69 99.47 | 90.23 98.90 | 93.42 97.02 | 93.35 97.95
NetBIOS | 94.03 98.18 | 99.60 97.64 | 96.79 97.35 | 96.73 97.49

NTP 99.65 98.38 | 99.51 97.65 | 99.58 | 99.35 | 99.58 98.49
SNMP 98.05 98.74 | 93.82 99.06 | 95.92 97.90 | 95.89 98.47
SSDP 91.41 99.51 | 92.00 98.79 | 85.11 98.60 | 90.03 98.69
TFTP 97.71 98.04 | 99.65 97.65 | 97.51 98.39 | 98.67 98.02
UDP 97.29 98.55 | 75.71 97.98 | 86.05 98.04 | 85.16 98.01

UDPLag | 96.27 98.83 | 9591 99.45 | 86.05 99.26 | 96.09 99.35
WebDDos | 89.77 99.42 | 88.89 98.91 | 84.46 99.39 | 86.95 99.15

Table 4. Quantitative results of our method specific to attack types. The values are expressed in %, and the best
one is in bold.

Accuracy | Precision | Recall | F1-score
CNN 91.0 88.5 90.1 89.1
RNN 94.2 91.2 92.0 91.6
LSTM 95.0 94.1 92.0 93.0
ViT 95.9 97.5 96.2 96.8
DNN 38 65.1 59.7 65.1 | 585
Hooshmand etal. ** | 76.3 90.4 76.1 | 782
Potluri et al. > - - 94.9 -
DRaNN 7 99.5 - 99.4 -
OURS 99.7 98.5 99.8 99.1

Table 5. The overall quantitative results on UNSW-NB15 (multiple-classification task). The values are
expressed in %, and the best one is in bold.

Accuracy Recall

Potlurietal. ® | Hooshmand etal. > | DNN® | Ours | DRaNN*’ | Ashikuetal.®® | DNN3 | Ours
Analysis 0.0 99.0 99.5 98.7 | 98.2 89.5 0.0 98.5
Backdoor 0.0 12.0 95.1 99.1 |98.8 91.2 344 98.1
Dos 0.0 10.5 99.4 98.4 | 98.8 94.6 97.7 99.0
Exploits 61.8 30.0 89.9 97.2 |98.8 94.2 13 99.4
Fuzzers 6.8 69.5 99.9 974 |97.1 88.6 0.0 99.0
Generic 97.7 69.1 78.3 98.6 |99.8 95.1 57.1 99.2
Normal 99.7 99.0 78.9 99.9 - 97.2 92.8 99.7
Reconnaisance | 0.0 77.2 92.7 97.0 |99.2 95.1 1.8 99.7
Shell code 0.0 85.0 99.0 97.5 |97.8 91.6 0.0 99.0
Worms 0.0 76.9 98.8 98.6 |98.1 89.8 0.0 99.4

Table 6. Class-wise quantitative results specific to traffic types on UNSW-NB15. The values are expressed in %,
and the best one is in bold.

Comparison results on detection efficiency
In the practical application of IDS, detection efficiency is also a major consideration, as timely detection allows
administrators to respond swiftly, thus avoiding greater damage. In this section, we conduct experiments to
compare the detection efficiency. Specifically, we analyze the efficiency by recording the time taken by the model
to predict each traffic sample. We report the inference speed (Frame Per Second, FPS) of each model on different
datasets in Table 7.

As reported, the proposed IDS-MTran achieves an average FPS of 58.61, i.e., it can achieve a good real-time
performance of detecting about 58 traffic samples per second on the experimental equipment. Compared to the
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NSL-KDD | CIC-DDoS 2019 | UNSW-NB15 | Average
CNN | 84.51 79.82 80.55 81.63
RNN | 75.14 72.08 73.33 73.52
LSTM | 70.52 61.71 60.10 64.11
ViT 49.11 45.07 44.72 46.30
ours | 60.44 57.10 58.29 58.61

Table 7. Inference speed (FPS) comparison results of different models.
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Fig. 9. Loss changing using different functions. (A) Training on NSL-KDD. (B) Training on CIC-DDoS 2019.

other models, CNN with the simplest structure has the best efficiency with an average FPS of 81.63, while RNN
and LSTM with a recurrent structure achieve an average FPS of 73.52 and 64.11, respectively.The ViT model,

which also uses Transformer, has a higher computational effort due to its stacked encoder structure, and only
achieves an average FPS of 46.30.

Ablation studies
Ablation of the loss function

To mitigate the effect of data imbalance on model training, we use Focal Loss to train IDS-MTran. This section
conducts experiments to evaluate the benefits that Focal Loss brings. As shown in Fig. 9, the introduction of
Focal Loss reduces the bias for both datasets, which means that it helps the model to focus on all classes without
ignoring the few attacks that are difficult to classify. Meanwhile, the proposed model can converge quickly and

smoothly no matter which loss function is used, indicating that it can effectively and comprehensively learn the
features in training data.

Ablation of the multi-scale architecture

Next, we conduct ablation experiment to evaluate the effectiveness of the proposed multi-scale architecture. In
this investigation, the CFE is removed, and the backbone network is connected to three linear layers to directly
output the result. We separately use the three branches to perform five-classification and binary-classification
task on NSL-KDD, CIC-DDoS 2019 and UNSW-NBI15, respectively. Tables 8 and 9 report the results, with P,
P, P; representing branches with low-, intermediate- and high-level features.

As reported,different branches have their own focuses in capturing network traffic features. For example, the
detection of normal traffic does not need to pay excessive attention to the detailed features as they usually do
not have obvious abnormal patterns. Branches with higher-level features () can confirm the normalcy of the
traffic on a macro level and determine whether the traffic is within the normal behavior, thus achieving the best
performance. On the other hand, branches with lower-level features () are better at detecting malicious ones.
For example, DoS attacks are usually launched in a short period of time through a large number of requests,

Probe attacks try to obtain information about the server, and the detection requires fine-grained analysis, where
P, branches perform better.
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Accuracy | Precision | Recall | F1-score
P 9743 95.56 96.45 | 96.00
Benign | P, | 98.02 97.33 95.24 |96.27
P; | 98.81 98.08 97.55 | 97.81
Py | 99.61 99.08 99.35 | 99.21
Dos Py | 99.01 96.92 97.88 | 97.40
P3| 97.39 96.15 95.41 | 95.78
P 9917 99.39 97.51 | 98.44
Probe | P, | 99.00 98.09 96.27 | 97.17
Py 19791 98.13 96.62 | 97.37
P, | 96.32 95.51 97.25 | 96.37
U2R P, | 9881 96.49 99.08 | 97.77
PS 99.41 97.88 97.38 | 97.63
Py | 9757 94.19 95.36 | 94.77
R2L Py | 99.59 97.82 98.02 | 97.92
]—73 98.61 95.90 96.09 | 95.99

Table 8. Ablation results of different scales on NSL-KDD (five-classification task). The values are expressed in
%, and the best one is in bold.

CIC-DDoS 2019 UNSW-NBI15

Scale | Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-score

Pl 98.22 97.68 98.55 | 98.11 97.53 97.16 98.03 | 97.59
Benign P2 98.89 98.91 99.05 | 98.98 98.28 98.37 98.65 | 98.51

Pg 99.97 99.05 99.78 | 99.41 99.42 99.25 99.46 |99.35

Pl 99.86 99.24 99.51 |99.37 99.18 99.04 99.21 |99.12
Malicious P2 99.05 98.62 98.71 | 98.66 98.79 98.36 98.19 | 98.27

P3 97.26 96.55 97.01 | 96.78 97.14 96.37 96.82 | 96.59

Table 9. Ablation results of different scales on CIC-DDoS 2019 and UNSW-NB15 (binary-classification task).
The values are expressed in %, and the best one is in bold.

Qualitative analysis of the multi-scale architecture

To further analyze the multi-scale postulations in the proposed method, we conduct the qualitative analysis to
validate. Specifically, we visualize the processing of the input at each scale on the three datasets. As shown in
Fig. 10, Larger values, i.e., darker colors, indicate a higher level of attention here, which is the most helpful for
classification.

As expected, the P branch provides a fine-grained view of the traffic data with a more pronounced detail
texture, focusing on localized feature variations. The small-scale patterns in this branch help to detect detailed,
immediate features such as packet size variations and transmission frequency. However, there are limitations to
this microscopic advantage, such as the R2L category in Fig. 10A. Its focus on features is too scattered to combine
all features for a comprehensive judgment.

In contrast, the P; branch demonstrates a broader, more dispersed pattern that encompasses long-term
trends and behaviors in traffic data that may deviate from the benign. More intuitively, this branch tends to
have a large area of interest. It focuses on the most salient features and radiates more locations to be considered
in aggregate, allowing it to perceive deviations from a global perspective and use this as a cornerstone to give
macro-level results.

The intermediate P, which is larger than P, and smaller than P, integrates detailed features and general
trends, blends local variations and broad patterns, and shows a comprehensive capture of attack characteristics.
It provides an intermediate level of perspective that helps bridge the gap between micro-detail and macro-trends.

The combination of three scale branches then provides a robust multi-dimensional feature space. By
combining micro- and macro-features, it can provide a balanced perspective, ensuring that the model can both
capture the transient signals and recognize anomalous trends, providing strong support in the face of different
types and complexities of attacks.

Ablation of the backbone

To further explore the potential factors that can enhance the performance of IDS-MTran, we ablate the
Transformer-based backbone network in this section, i.e., we explore the performance in the presence of
different stacking hyperparameters.
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Fig. 10. Qualitative analysis of different branches on (A) NSL-KDD, (B) CIC-DDoS 2019, and (C) UNSW-
NBI15.

NSL-KDD CIC-DD0S 2019 | UNSW-NB15
Stacked number | Accuracy | Recall | Accuracy | Recall | Accuracy | Recall
1 98.7 98.9 98.5 97.9 98.6 98.9
2 99.2 99.2 99.1 99.4 99.7 99.8
3 98.3 98.4 98.2 98.5 99.1 98.8
4 98.1 97.9 98.3 98.2 98.7 98.6
5 97.8 97.6 97.9 97.6 98.1 97.9
6 97.1 96.8 97.3 97.1 97.4 97.2

Table 10. Ablation results of the hyperparameters of backbone. The values are expressed in %, and the best one
is in bold.

As reported in Table 10, IDS-MTran achieves the best results when the backbone stacked is 2. With the
number of backbone increasing, the features become more and more abstract, and some information may be
lost in the gradual compression, which can be detrimental to detecting intrusions. In contrast, when there is
only one Transformer encoder, i.e., a stack of 1, the model does not perform as well, implying that the extracted
features may be insufficient.

Ablation of the multi-scale integration

How to efficiently utilize multi-scale features is another issue. The proposed method uses CFE to process, and
the results are obtained through cross-enhancement. To explore the its effect, we further conduct ablation
experiments. Specifically, we set up a control group: three scales of features are directly concated and the
results are obtained using three linear layers. Table 11 shows the results of the two sets of experiments. Cross-
enhancement brings about 2% improvement to the Accuracy, thanks to the full utilization of different scales, it
can fully explore and emphasize some easily overlooked features, thus improving the overall detection rate and
making the model more robust.

Conclusions

Aiming at the problems of under-utilization of features and poor multiple-classification accuracy in existing
IDSs, this paper proposes a novel multi-scale framework IDS-MTran. It creates multi-scale branches based on
the original data and leverages Transformer as the backbone to extract features. In it, the proposed PwP module
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Dataset CFE | Accuracy | Precision | Recall | F1-score
97.92 98.82 98.19 | 98.50
NSL-KDD
v 99.16 99.01 99.17 | 99.09
CIC-DDoS 97.11 98.07 97.29 97.68
2019 v |99.38 99.17 98.96 | 99.06
96.98 97.12 98.02 |97.57
UNSW-NB15
v 99.74 98.49 99.78 |99.13

Table 11. Ablation results of CFE. The values are expressed in %.

effectively enhances the features and compensates the structural information, and the CFE module provides
effective enhancement of feature fusion to further improve the detection accuracy. Both qualitative analysis
and ablation studies prove the effectiveness of the proposed method: different scales can focus on different
types of attacks, and the fused multi-scale is more robust and accurate. At the same time, sufficient comparison
experiments show that IDS-MTran outperforms the existing methods in all aspects and is more suitable for real-
world applications to accurately detect the attack types. The next research direction is to consider the efficient
deployment of IDS-MTran to further maximize its value.

Data availibility
The datasets analyzed in this study are available at [https://github.com/HoaNP/NSL-KDD-DataSet], [https://
www.unb.ca/cic/datasets/ddos-2019.html] and [https://research.unsw.edu.au/projects/unsw-nb15-dataset].

Received: 7 May 2024; Accepted: 24 September 2024
Published online: 05 October 2024

References

1. Liao, H.-],, Lin, C.-H.R,, Lin, Y.-C. & Tung, K.-Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl. 36,
16-24 (2013).

2. Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, . & Ahmad, E Network intrusion detection system: A systematic study of
machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 32, 4150 (2021).

3. Lazzarini, R., Tianfield, H. & Charissis, V. A stacking ensemble of deep learning models for iot intrusion detection. Knowl.-Based
Syst. 279, 110941 (2023).

4. Vinayakumar, R., Soman, K. & Poornachandran, P. Applying convolutional neural network for network intrusion detection. In
2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1222-1228 (IEEE,
2017).

5. Chen, L., Kuang, X., Xu, A, Suo, S. & Yang, Y. A novel network intrusion detection system based on cnn. In 2020 eighth international
conference on advanced cloud and big data (CBD), pp. 243-247 (IEEE, 2020).

6. Deore, B. & Bhosale, S. Intrusion detection system based on RNN classifier for feature reduction. SN Comput. Sci. 3, 114 (2022).

7. Adefemi Alimi, K. O., Ouahada, K., Abu-Mahfouz, A. M., Rimer, S. & Alimi, O. A. Refined Istm based intrusion detection for
denial-of-service attack in internet of things. J. Sens. Actuator Netw. 11, 32 (2022).

8. Xu, G., Zhou, J. & He, Y. Network malicious traffic detection model based on combined neural network. In 2022 6th Asian
Conference on Artificial Intelligence Technology (ACAIT), pp. 1-6 (IEEE, 2022).

9. Lansky, J. et al. Deep learning-based intrusion detection systems: A systematic review. IEEE Access 9, 101574-101599 (2021).

10. Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems. Vol. 30 (2017).

11. Wu, Z.,, Zhang, H., Wang, P. & Sun, Z. Rtids: A robust transformer-based approach for intrusion detection system. IEEE Access 10,
64375-64387 (2022).

12. Yang, Y.-G., Fu, H.-M., Gao, S., Zhou, Y.-H. & Shi, W.-M. Intrusion detection: A model based on the improved vision transformer.
Trans. Emerg. Telecomm. Technol. 33, 4522 (2022).

13. Liu, Y. & Wu, L. Intrusion detection model based on improved transformer. Appl. Sci. 13, 6251 (2023).

14. Peng, G. C. et al. Multiscale modeling meets machine learning: What can we learn?. Arch. Comput. Methods Eng. 28, 1017-1037
(2021).

15. Chormunge, S. & Jena, S. Efficient feature subset selection algorithm for high dimensional data. Int. J. Electr. Comput. Eng. 6,
2088-8708 (2016).

16. Zhou, Y., Cheng, G., Jiang, S. & Dai, M. Building an efficient intrusion detection system based on feature selection and ensemble
classifier. Comput. Netw. 174, 107247 (2020).

17. Latif, S., Boulila, W, Koubaa, A., Zou, Z. & Ahmad, J. Dtl-ids: An optimized intrusion detection framework using deep transfer
learning and genetic algorithm. J. Netw. Comput. Appl. 221, 103784 (2024).

18. Khraisat, A., Gondal, I. & Vamplew, P. An anomaly intrusion detection system using c5 decision tree classifier. In Trends and
Applications in Knowledge Discovery and Data Mining: PAKDD 2018 Workshops, BDASC, BDM, ML4Cyber, PAISI, DaMEMO,
Melbourne, VIC, Australia, June 3, 2018, Revised Selected Papers 22, 149-155 (Springer, 2018).

19. Veeraiah, N. & Krishna, B. T. Trust-aware fuzzyclus-fuzzy nb: intrusion detection scheme based on fuzzy clustering and bayesian
rule. Wireless Netw. 25, 4021-4035 (2019).

20. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770-778 (2016).

21. Sutskever, L, Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. Advances in neural information processing
systems 27 (2014).

22. Zhang, C. et al. Comparative research on network intrusion detection methods based on machine learning. Comput. Secur. 121,
102861 (2022).

23. Hota, H. & Shrivas, A. K. Decision tree techniques applied on nsl-kdd data and its comparison with various feature selection
techniques. In Advanced Computing, Networking and Informatics-Volume 1: Advanced Computing and Informatics Proceedings
of the Second International Conference on Advanced Computing, Networking and Informatics (ICACNI-2014), 205-211 (Springer,
2014).

Scientific Reports |

(2024) 14:23239 | https://doi.org/10.1038/s41598-024-74214-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

24.

25.

26.

27.

28.

29.

Kabir, E., Hu, J., Wang, H. & Zhuo, G. A novel statistical technique for intrusion detection systems. Futur. Gener. Comput. Syst. 79,
303-318 (2018).

Mahbooba, B., Timilsina, M., Sahal, R. & Serrano, M. Explainable artificial intelligence (xai) to enhance trust management in
intrusion detection systems using decision tree model. Complexity 2021, 1-11 (2021).

Zhang, B., Liu, Z., Jia, Y., Ren, J. & Zhao, X. Network intrusion detection method based on pca and Bayes algorithm. Secur.
Commun. Netw. 2018, 1-11 (2018).

Shojafar, M. et al. Automatic clustering of attacks in intrusion detection systems. In 2019 IEEE/ACS 16th International Conference
on Computer Systems and Applications (AICCSA), pp. 1-8 (IEEE, 2019).

Gamage, S. & Samarabandu, J. Deep learning methods in network intrusion detection: A survey and an objective comparison. J.
Netw. Comput. Appl. 169, 102767 (2020).

Liu, H. & Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 9, 4396
(2019).

30. Li, Y. et al. Robust detection for network intrusion of industrial iot based on multi-cnn fusion. Measurement 154, 107450 (2020).

31. Ding, Y. & Zhai, Y. Intrusion detection system for nsl-kdd dataset using convolutional neural networks. In Proceedings of the 2018
2nd International conference on computer science and artificial intelligence, pp. 81-85 (2018).

32. Taheri, R., Ahmadzadeh, M. & Kharazmi, M. R. A new approach for feature selection in intrusion detection system. Fen Bilimleri
Dergisi (CED). Vol. 36 (2015).

33. Ingre, B. & Yadav, A. Performance analysis of nsl-kdd dataset using ann. In 2015 international conference on signal processing and
communication engineering systems, pp. 92-96 (IEEE, 2015).

34. Kasongo, S. M. A deep learning technique for intrusion detection system using a recurrent neural networks based framework.
Comput. Commun. 199, 113-125 (2023).

35. Oliveira, N., Praga, I, Maia, E. & Sousa, O. Intelligent cyber attack detection and classification for network-based intrusion
detection systems. Appl. Sci. 11, 1674 (2021).

36. Silivery, A. K., Kovvur, R. M. R,, Solleti, R., Kumar, L. S. & Madhu, B. A model for multi-attack classification to improve intrusion
detection performance using deep learning approaches. Meas.: Sens. 30, 100924 (2023).

37. Nguyen, T. P,, Nam, H. & Kim, D. Transformer-based attention network for in-vehicle intrusion detection. IEEE Access 11, 55389-
55403 (2023).

38. Zhang, Z. & Wang, L. An efficient intrusion detection model based on convolutional neural network and transformer. In 2021
Ninth International Conference on Advanced Cloud and Big Data (CBD), pp. 248-254 (IEEE, 2022).

39. Gupta, R., Tanwar, S., Tyagi, S. & Kumar, N. Machine learning models for secure data analytics: A taxonomy and threat model.
Comput. Commun. 153, 406-440 (2020).

40. Alatwi, H. A. & Morisset, C. Threat modeling for machine learning-based network intrusion detection systems. In 2022 IEEE
International Conference on Big Data (Big Data), pp. 4226-4235 (IEEE, 2022).

41. Lin, T.-Y,, Goyal, P, Girshick, R., He, K. & Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pp. 2980-2988 (2017).

42. Tavallaee, M., Bagheri, E., Lu, W. & Ghorbani, A. A. A detailed analysis of the kdd cup 99 data set. In 2009 IEEE symposium on
computational intelligence for security and defense applications, pp. 1-6 (IEEE, 2009).

43. Sharafaldin, I, Lashkari, A. H., Hakak, S. & Ghorbani, A. A. Developing realistic distributed denial of service (ddos) attack dataset
and taxonomy. In 2019 International Carnahan Conference on Security Technology (ICCST), pp. 1-8 (IEEE, 2019).

44. Moustafa, N. & Slay, J. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data
set). In 2015 military communications and information systems conference (MilCIS), pp. 1-6 (IEEE, 2015).

45. Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020).

46. Park, S. H., Park, H. J. & Choi, Y.-J. Rnn-based prediction for network intrusion detection. In 2020 international conference on
artificial intelligence in information and communication (ICAIIC), pp. 572-574 (IEEE, 2020).

47. Siami-Namini, S., Tavakoli, N. & Namin, A. S. The performance of Istm and bilstm in forecasting time series. In 2019 IEEE
International conference on big data (Big Data), pp. 3285-3292 (IEEE, 2019).

48. Han, K. et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45, 87-110 (2022).

49. Liu, C., Gu, Z. & Wang, J. A hybrid intrusion detection system based on scalable k-means+ random forest and deep learning. IEEE
Access 9, 75729-75740 (2021).

50. Zakariah, M., AlQahtani, S. A., Alawwad, A. M. & Alotaibi, A. A. Intrusion detection system with customized machine learning
techniques for NSL-KDD dataset. Comput., Mater. Contin. 77(3), 4025-4054 (2023).

51. Xu, W, Jang-Jaccard, J., Singh, A., Wei, Y. & Sabrina, F. Improving performance of autoencoder-based network anomaly detection
on NSL-KDD dataset. IEEE Access 9, 140136-140146 (2021).

52. Meena, G. & Choudhary, R. R. A review paper on ids classification using kdd 99 and nsl kdd dataset in weka. In 2017 International
Conference on Computer, Communications and Electronics (Comptelix), pp. 553-558 (IEEE, 2017).

53. Cil, A. E,, Yildiz, K. & Buldu, A. Detection of DDOS attacks with feed forward based deep neural network model. Expert Syst. Appl.
169, 114520 (2021).

54. Choudhary, S. & Kesswani, N. Analysis of KDD-cup'99, NSL-KDD and UNSW-nb15 datasets using deep learning in IOT. Proc.
Comput. Sci. 167, 1561-1573 (2020).

55. Hooshmand, M. K. & Hosahalli, D. Network anomaly detection using deep learning techniques. CAAI Trans. Intell. Technol. 7,
228-243 (2022).

56. Potluri, S., Ahmed, S. & Diedrich, C. Convolutional neural networks for multi-class intrusion detection system. In Mining
Intelligence and Knowledge Exploration: 6th International Conference, MIKE 2018, Cluj-Napoca, Romania, December 20-22, 2018,
Proceedings 6, pp. 225-238 (Springer, 2018).

57. Latif, S., Idrees, Z., Zou, Z. & Ahmad, J. Drann: A deep random neural network model for intrusion detection in industrial iot. In
2020 international conference on UK-China emerging technologies (UCET), pp. 1-4 (IEEE, 2020).

58. Vinayakumar, R. et al. Deep learning approach for intelligent intrusion detection system. IEEE Access 7, 41525-41550 (2019).

59. Ashiku, L. & Dagli, C. Network intrusion detection system using deep learning. Proc. Comput. Sci. 185, 239-247 (2021).

Acknowledgements

This work is sponsored by Natural Science Foundation of Shanghai (Grant No. 20ZR1455600).

Author contributions

C.X. performed the data analysis and wrote the first draft of the manuscript. H.-W. conducted the simulation and
prepared all the figures. X.W. performed the experiment research. All authors commented on previous versions
of the manuscript and reviewed the manuscript.

Scientific Reports |

(2024) 14:23239 | https://doi.org/10.1038/s41598-024-74214-w nature portfolio


http://arxiv.org/abs/2010.11929
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.-W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports|  (2024) 14:23239 | https://doi.org/10.1038/s41598-024-74214-w nature portfolio


http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿A novel multi-scale network intrusion detection model with transformer
	﻿﻿Related work
	﻿Signature-based methods
	﻿Anomaly-based methods

	﻿﻿Methodology
	﻿Preprocess
	﻿Multi-scale architecture
	﻿Patching with Pooling
	﻿Transformer-based backbone
	﻿Cross feature enrichment
	﻿Loss function

	﻿﻿Experiments
	﻿Datasets description
	﻿Experimental environment and parameter settings
	﻿Predictive model evaluation metrics
	﻿Comparative experiments
	﻿Comparison results on NSL-KDD
	﻿Comparative results on CIC-DDoS 2019
	﻿Comparison results on UNSW-NB15
	﻿Comparison results on detection efficiency


	﻿Ablation studies
	﻿Ablation of the loss function
	﻿Ablation of the multi-scale architecture
	﻿Qualitative analysis of the multi-scale architecture
	﻿Ablation of the backbone
	﻿Ablation of the multi-scale integration

	﻿﻿Conclusions
	﻿References


