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Network is an essential tool today, and the Intrusion Detection System (IDS) can ensure the safe 
operation. However, with the explosive growth of data, current methods are increasingly struggling 
as they often detect based on a single scale, leading to the oversight of potential features in the 
extensive traffic data, which may result in degraded performance. In this work, we propose a novel 
detection model utilizing multi-scale transformer namely IDS-MTran. In essence, the collaboration 
of multi-scale traffic features broads the pattern coverage of intrusion detection. Firstly, we employ 
convolution operators with various kernels to generate multi-scale features. Secondly, to enhance the 
representation of features and the interaction between branches, we propose Patching with Pooling 
(PwP) to serve as a bridge. Next, we design multi-scale transformer-based backbone to model the 
features at diverse scales, extracting potential intrusion trails. Finally, to fully capitalize these multi-
scale branches, we propose the Cross Feature Enrichment (CFE) to integrate and enrich features, and 
then output the results. Sufficient experiments show that compared with other models, the proposed 
method can distinguish different attack types more effectively. Specifically, the accuracy on three 
common datasets NSL-KDD, CIC-DDoS 2019 and UNSW-NB15 has all exceeded 99%, which is more 
accurate and stable.
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The network is becoming indispensable in people’s life and work, gradually permeating every aspect. 
Consequently, concerns about security are increasingly being raised. Given the rapid growth of the internet 
and the explosion of usage, any malicious intrusion or attack on network vulnerability can lead to a serious 
disaster 1. Intrusion Detection System (IDS) is a security tool used to monitor computer networks for suspicious 
activity, which aims to identify, log and alert potential security threats. Nowadays, with the volume of data still 
surging, IDS that enables the network to avoid attacks and effectively reduce economic losses is taken ever more 
seriously 2.

Traditionally, signature-based approaches have been important for a long time. However, with the explosion 
of data, signature database must be updated frequently to keep up with evolving intrusion tactics. Competent in 
pattern recognition, deep learning-based IDS is increasingly favored and gradually supplanting signature-based 
approaches3. For instance, Convolutional Neural Networks (CNN)4,5, Recurrent Neural Networks (RNN)6, 
and Long Short-Term Memory Neural Networks (LSTM)7 are widely used for IDS. However, such data-driven 
models also have limitations, they often struggle with specific types of attacks as the variations in traffic features 
are sometimes subtle and are often overlooked8.

How to extract key attack features is the most important issue in anomaly-based IDS9. In recent years, 
Transformer10 that continues to show State-Of-The-Art (SOTA) performance in many fields has also been 
gradually applied to IDS with favorable performance11,12. Benefiting from the powerful self-attention mechanism, 
such models can analyze complex network traffic in a more in-depth manner, thus effectively discern correlations 
in sequence data and modeling globally in traffic analysis. However, some problems related to noise components 
and minor features in traffic data still constrain the performance13, and need to be tackled critically.

Upon observation, prevalent methods often process with single-scale traffic data, which ignore the information 
richness of features at different scales. Typically, multi-scale data is considered to cover a more comprehensive 
range of features, and the utilization of multi-scale data has proven to be an effective performance improvement 
method in many fields14.However, it remains insufficiently explored in the context of IDS.

Based on the discussions above, this paper propose IDS-MTran, a novel multi-scale pipeline based on 
Transformer. It is designed to efficiently incorporate features at different scales to improve the detection, as well 
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as utilizing the excellent global modeling capability of Transformer. In essence, the collaboration of multi-scale 
traffic features can broad the pattern coverage of intrusion detection, thus improve the performance. Initially, 
IDS-MTran produces features at different scales from existing data using different operators as the basis for 
detection. Subsequently, it enhances these representations and highlights the scale advantage through the newly 
proposed PwP (Patching with Pooling) module, which aims to interact features at different levels and weaken the 
noise to better recognize attack types. Afterwards, the three Transformer-based backbone networks output the 
feature representations corresponding to each branch. On the basis of current multi-scale architecture, especially 
those well-performed models, the effective handling of multi-scale features is a crucial issue. For IDS-Mtran, it 
incorporates different through the newly proposed CFE (Cross Feature Enrichment) module, which enriches 
the features received through interactions and combines them organically, as well as predicts the final results.

Finally, we conduct comprehensive experiments on the commonly used NSL-KDD,CIC-DDoS 2019 and 
UNSW-NB15 datasets, and the results show that the proposed IDS-MTran is an effective and advanced method, 
particularly showing the SOTA performance in the identification of specific attack categories. Furthermore, 
ablation experiments validate the effectiveness of the multi-scale design.

The structure of this paper is as follows. Section "Related work" presents the related work with IDS. Section 
"Methodology" presents our method in detail, including the optimization process. Section "Experiments" presents 
the experiment and results with detailed analysis. Finally, we conclude the paper in section "Conclusions".

Related work
Typically, IDS can be divided into two categories: signature-based and anomaly-based15,16. The former relies 
on traffic signatures, necessitating continual updates to the latest signature database. It is effective for detecting 
known types of attacks, but incapable of identifying new and unknown types. The latter is assessed by evaluating 
the deviation between monitored and normal traffic, while it excels in detecting unknown attacks and is prevalent 
in contemporary IDS systems, it is prone to false alarms, and its accuracy requires enhancement17.

Signature-based methods
Signature intrusion detection systems (SIDS) employ pattern matching methodologies to identify known 
attacks. These systems are alternatively referred to as Knowledge-based Detection Systems or Misuse Detection 
Systems18.Raiah et al.19 have developed a trust-aware signature-based IDS that utilizes trust tables to detect 
potential intrusions in the MANET nodes,which achieved a minimum latency of 0.00434 second, low energy 
consumption of 9.933 joules, high detection rate of 0.623, and throughput of 0.642 packets per second. Both He 
et al.20 and Sutskever et al.21 developed signature-based routing protocols to detect Sybil attacks in the Internet 
of Things. Despite they are effective at detecting known intrusions, they are increasingly inadequate for today’s 
complex and dynamic network environments.

Anomaly-based methods
Among anomaly-based approaches, machine learning has gained widespread recognition for its adaptive and 
powerful data handling capabilities, addressing contemporary IDS requirements22. Some classical models are 
widely used in IDS. For instance, Hota et al.23 combined feature engineering and the C4.5 decision tree technique, 
taking accuracy to new heights, Kabir et al.24 proposed optimum allocation-based least square support vector 
machine (OA-LS-SVM) for IDS, achieving better results in terms of efficiency and accuracy. To date, these 
models still play an important role. For instance, Mahbooba et al.25 employed decision trees to address non-
linear relationships in intrusion detection data, thereby obviating the need for excessive pre-processing of data 
and enhancing model detection efficiency. Zhang et al.26 employed weighted PCA to mitigate the impact of data 
contamination and enhance the accuracy of the assay. The conventional machine learning methods primarily 
focus on shallow learning, which emphasizes feature engineering and selection. Mohammad et al. 27 proposed 
an automatic clustering algorithm based on consistency and separability for optimizing attack clustering in 
intrusion detection systems. Combining Artificial Bee Colony Algorithm (ABC), Particle Swarm Optimization 
(PSO) and Differential Evolution (DE) methods, the algorithm performs well in terms of optimization of the 
number of clusters, the number of evaluation functions and accuracy. As the dataset size increases, shallow 
learning becomes inadequate for intelligent analysis due to its requirement for high-dimensional learning with 
substantial volumes of data.

Deep learning, an end-to-end approach, is increasingly favored among anomaly-based detection 
techniques28,29. Deep learning-based IDS offers considerable benefits, making IDS more robust and intelligent. 
For example, Li et al.30 converted feature data to a grayscale graph and proposed multi-CNN fusion model, 
outperforming traditional machine learning methods. Ding et al.  31 proposed a CNN-based IDS model for 
multi-category classification experiments using the NSL-KDD dataset. The study shows that deep learning has 
significant advantages in large-scale data feature extraction and provides a new research direction for intrusion 
detection.

In addition, Artificial Neural Networks (ANNs) have also achieved significant results in anomaly detection. 
Rahim et al. 32 screened features through the cuttlefish algorithm and evaluated the performance of different 
feature combinations using ANNs. The experimental results show that 13 feature combinations can efficiently 
detect almost all attacks, significantly improving the accuracy rate. Bhupendra et al. 33 evaluated the NSL-KDD 
dataset through ANNs in anomaly traffic detection, and the results show that the detection rates of intrusion 
detection and attack type classification are 81.2% and 79.9%, respectively, which further validates the effectiveness 
of ANN in improving the detection accuracy.

Notably, RNNs are often better suited than CNNs to detect intrusion as traffic data generally exhibits 
sequential nature. For instance, Kasongo34 incorporated different types of Recurrent Neural Networks (RNN), 
namely Long-Short-Term Memory (LSTM), Gated Recurrent Units (GRU) and Simple RNN, with an XGBoost-
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based feature selection algorithm. The XGBoost-LSTM model performs best on the NSL-KDD dataset, while 
the XGBoost-Simple-RNN model achieves the most efficient performance on the UNSW-NB15 dataset. Oliveira 
et al.35 proposed a LSTM-based method, the experimental results show that the LSTM network has excellent 
reliability in effectively capturing sequential patterns in network traffic data, with an accuracy of 99.94% and an 
F1 score of 91.66%. Silivery et al.36 combined RNN, LSTM, and DNN to propose a hybrid network model that 
achieved quite good performance.

In recent years, Transformer10 continues to show SOTA performance in many fields. Various studies show 
its efficacy in processing sequential data, where the multi-head self-attention mechanism enables the network to 
capture contextual information from the entire sequence. This advanced model is also applied in IDS, exhibiting 
superior performance11,12. For example, Nguyen et al.37 proposed a transformer-based attention network (TAN) 
for an in-vehicle CAN bus, which is more efficient and powerful. Zhang et al.38 proposed a novel intrusion 
detection model that integrates CNN and Transformer, enabling the capture of both global correlations between 
packets and identification of local correlations associated with intrusions. Yang et al.12 proposed an intrusion 
detection model based on an improved vision transformer. The experiments conducted on the NSL-KDD 
dataset demonstrate that the model achieves an accuracy of 99.68%, a false alarm rate as low as 0.22%, and an 
recall rate of 99.57%.

Furthermore, researchers often leverage threat models to help security teams identify the attacks and 
vulnerabilities they are most likely to face and, in turn, more effectively configure and tune signature-based or 
anomaly-based intrusion detection systems 39,40.

Methodology
Figure 1 shows the architecture of IDS-MTran, which extracts rich features from traffic data by creating multi-
scale branches. It follows the end-to-end paradigm, where the inputs are pre-processed and then patched, and the 
patch groups are intersected to serve as inputs to the backbone. Features from different branches are organically 
integrated to obtain the result. The designed architecture is discussed in detail in this section.

Preprocess
Given the traffic data to be tested x = x1, x2, ..., xN , pre-processing is first performed, including digitization, 
addressing abnormal values, normalization, and matrixization: 

	1.	� Among the sample features, those containing character strings cannot be computed directly. Therefore, digi-
tization is performed first, i.e., the strings are processed using one-hot coding. The specific encoding depends 
on the data.

	2.	� Next, we need to find if there are outliers in the data. The handling relies on Gaussian distribution, deter-
mined by calculating the gap between the input samples and the mean of all data: 

	
f (x) =

1√
2πσ

exp

{
−(x− µ)2

2σ2

}
,� (1)

 where σ is the standard deviation, µ is the mean of the sample data, and x is the input data. Values with a gap of 
more than three times are determined to be an outlier.

	3.	� To speed up optimization and training, the data needs to be normalized. The min–max method is leveraged 
to scale all features to the same range, as shown in Eq. 2: 

	
x′ =

x−min(x)

max(x)−min(x)
.� (2)

	4.	� Matrixization aims to convert the input sequence into matrix for processing. For the flow sequence, it is 
converted into a two-dimensional matrix X of h× w, as shown in Fig. 1. When N is not an integer multiple 
of h, the end of the data sequence is filled with 0.

Fig. 1.  The overall structure of IDS-MTran.

 

Scientific Reports |        (2024) 14:23239 3| https://doi.org/10.1038/s41598-024-74214-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Multi-scale architecture
Confronted with extensive traffic data, the effective feature extraction is the key to detection. Existing methods 
tend to operate on a single data scale, ignoring the multi-scale information present in the data. In general, 
distinct data scales often encompass different information, e.g., lower-level features show basic structural details, 
while higher-level, more abstract features show overall trends. Upon the observation above, we construct a 
multi-scale architecture to improve the exploitation of traffic data.

As shown in Fig. 1, it contains three branches creating by different convolution kernels. For each, we first 
utilize 1× 1 to adjust the shape and channel. To exploit the potential feature, which is often deeper and more 
abstract, 3× 3 and 5× 5 kernel sizes are leveraged to the last two branches, respectively. Further, we use two 
parallel 3× 3 kernels instead of the 5× 5 one, since the parameter of the parallel is only 18 but not 25 and 
it brings a expanded receptive field. At the same time, all the larger convolutions are replaced with dilated 
convolution, which can increase the receptive field of the filter without increasing the parameters, thus making 
the feature extraction more comprehensive.

We postulate that higher-level features are effective at capturing macro patterns or trends in traffic data. 
Larger scales, on the other hand, are adept at discerning detailed features in traffic data, such as changes in 
the size of packets over a short period of time. With multi-scale network analysis, potential signs of intrusion 
can be identified from different perspectives and scales, providing a more comprehensive security analysis and 
enhances the detection sensitivity.

Patching with Pooling
One of the reasons that traffic data is challenge to process is the low information density, where attack trails are 
often hidden in a large number of normal parameters to avoid detection systems. As shown in Fig. 1, we construct 
Patching with Pooling (PwP) for each branch, aiming at enhancing the key features from the background noise. 
Figure 2 shows its structure, which starts with the average pooling to reduce the data dimensions, helping to 
focus on a wider range of features and making the anomaly localization more easier. The up-sampling then re-
introduces some of the detail that lost in the pooling, and simultaneously highlights interest features.

Consequently, we divide each feature map into T = (h/s)× (w/s) patches of size s to serve as the inputs. 
To preserve the organizational structure information during patch segmentation, we propose fusing groups of 
patches between different branches. As shown in Fig. 1, the low-level information is supplemented to the high-
level features in a top-down manner. Where low-level features are considered as auxiliary and high-level features 
are considered as primary. The reason is that auxiliary features contain more detailed information, which helps to 
enrich the high-level information contained in the main features, thus obtaining richer and finer representation.

Transformer-based backbone
Competent in sequential modeling, Transformer is widely used in intrusion detection. The pure attention 
mechanism allows it to focus on the most relevant parts of the data, and the parallel processing capability makes 
it more efficient when dealing with massive data.

A Transformer model usually contains an encoder and a decoder to compress and recover the input sequence 
data, respectively. Considering that our framework requires only feature extraction and does not need to recover 
the dimension, we leverage the encoder as backbone to process multi-scale branches separately. Figure 3 shows 
the architecture.

Due to the lack of a looping structure for parallel computing, Transformers often do not naturally handle 
sequential information. Therefore, positional encoding is added to each patch as a supplement, which enables 
the model to be aware of the relative or absolute position in the original input sequence. We leverage the common 
cosine and sine functions to encode:

	

{
PE(pos,2i) = sin

(
pos

10000

)
PE(pos,2i+1) = cos

(
pos

10000

) ,� (3)

which are then summed with the embedding of the sequence to provide unique identifiers of different positions. 
It facilitates the model to learn the position information.

The self-attention mechanism, pivotal in the Transformer architecture, is designed to enhance sequence 
modeling by capturing dependencies regardless of their distance in the sequence. It operates using three matrices: 
WQ (Query), WK  (Key), and WV  (Value). Each element in the input sequence is transformed into these three 
representations. The query (Q) represents the part of sequence that is currently in focus, and the keys (K) act like 
tags to help identify the elements associated with the query. The value (V) represents the information that should 

Fig. 2.  Illustration of PwP.
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be in focus when encoding a particular element. Self-attention calculates the attention score by comparing the 
similarity between Q and K, then weighted and summed with the V to form the final output for each element, 
as shown in Fig. 3.

Transformer uses the multi-head self-attention mechanism to perform multiple attention operators in parallel 
to help the model learn information from different representation sub-spaces. For each head, the attention is 
computed independently and the results are stitched together at the end:

	 MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O,� (4)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ). By allowing the model to focus on multiple aspects of the 

sequence at the same time, this special mechanism significantly enhances the processing ability of Transformer, 
making it more efficient and accurate when dealing with complex sequential data.

Subsequently, the data stream is further processed through Layer Normalization and Feed-Forward Neural 
Network. Finally, by concatenating multiple such encoders, where the output of each becomes the input to the 
next layer, the backbone network of IDS-MTran is formed to encode the entire patch groups.

Cross feature enrichment
The complexity and diversity of attacks make it difficult to accurately identify and defend against all types of 
attacks. Though the proposed method can extract traffic features at different scales, a comprehensive utilization 
strategy poses a significant consideration.

To better leverage the features behind different scales, as shown in Fig. 4, we propose a novel Cross Feature 
Enrichment module to process. It is constructed to cross-enhance low-level and high-level information, which 
allows the model to learn richer features through cross-layer feature interactions. Specifically, features at three 
different scales are up-sampled and down-sampled into other branches, respectively, and then concated into new 
blended vectors. These composites simultaneously contain information at different perspectives, and we further 
down-sample them separately to distill the features. And this distillation integrates different perspectives, 
making branches more sensitive to attacks and improving the robustness.

Finally, we combine these enhanced features in the same dimension, and then output the final result using 
three linear layers. By adeptly combining information at different scales, CFE enables each branch to understand 
and respond to various attack types more thoroughly, thus making detection more comprehensive and accurate.

Loss function
Though IDS-MTran can effectively extract discriminative features from extensive traffic data, this presupposes 
an effective training process. Data imbalance is one of the most important considerations, as quantitatively 
dominant categories will guide the model to ignore those that are scarce. As shown in Fig. 5, the data used for 
training in intrusion detection tends to be extremely unbalanced, with the amount of normal traffic data being 
much higher than intrusion instances due to the fact that attack activity is harder to collect. Aiming at this, we 
adopt the focal loss41, which is widely used in computer vision to solve the data imbalance, to guide the training.

Focal Loss was originally designed to solve the problem of imbalance between foreground and background 
categories in target detection, and it is an improvement of the cross-entropy (CE). Given the predicted probability 
p and the ground truth label y, CE is defined as:

Fig. 3.  (A) The architecture of transformer-based backbone. (B) Illustration of the calculation of self-attention.
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CE(p, y) =

{
−log(p), if y = 1

−log(1− p), otherwise
,� (5)

which intuitively penalizes predictions that are inconsistent with true labels. By optimizing for overall loss using 
negative log-likelihood, the model is able to accurately predict the majority and easy-to-classify categories. 
However, anomalous traffic is often in the minority and hard to classify. Focal Loss relaxes this problem by 
focusing more on these samples located near the decision boundary in the feature space. Specifically, let 
CE(pt) = − log(pt), where

	
pt =

{
p, if y = 1

1− p, otherwise
,� (6)

then focal loss can be written as:

	 FL(pt) = −(1− pt)
γ log(pt),� (7)

where the (1− pt)
γ can be viewed as a modulating factor that reduces the weight of easy-to-classify samples and 

makes the model focus more on hard-to-classify ones. Specifically, pt will decrease if the sample belongs to latter, 
the loss will increase with (1− pt)

γ, and the model will focus more on it. Additionally, a balancing factor α is 
introduced to further solve the imbalance:

	 FL(pt) = −αt(1− pt)
γ log(pt).� (8)

By providing different weights for different categories, it helps to prevent the model from being overly biased in 
favor of the majority category in the case of extreme imbalance.

Experiments
Beginning with a description of the data, environment and metrics used, this section presents the experiment 
results, including the comparative experiments and ablation studies.

Fig. 5.  (A) NSL-KDD dataset sample distribution. (B) CIC-DDoS 2019 dataset sample distribution. (C) 
UNSW-NB15 dataset sample distribution.

 

Fig. 4.  Architecture of the Cross Feature Enrichment.
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Datasets description
The NSL-KDD dataset42 is an improved version of the KDDCup99 dataset, developed by the National Institute 
of Standards and Technology (NIST) to facilitate research and evaluation of network intrusion detection. The 
dataset covers five network traffic types, including normal, DoS, Probe, U2R and R2L attacks, and contains a 
total of 148,517 data samples after processing the outliers. Figure 5 describes the distribution of each sample in 
the NSL-KDD dataset in detail. In the sample, the values corresponding to the three feature keys “Protocol type”, 
“Flag”, and “Service” are strings and need to be encoded.

The CIC-DDoS2019 dataset43 was developed by the Canadian Institute for Cybersecurity at the University 
of New Brunswick to investigate and evaluate the performance of distributed denial of service (DDoS) attack 
detection systems. It offers more comprehensive traffic features and exhibits a significantly high proportion of 
malicious traffic, comprising 7,040,987,392 instances, while only 140,855 records correspond to benign. The 
distribution of CIC-DDoS2019 is illustrated in Fig. 5.

The UNSW-NB15 dataset 44 was created by researchers at the Australian Centre for Cyber Security (ACCS) 
lab at the University of New South Wales (UNSW). This dataset contains raw network traffic data of monitored 
by TCP-Dump tool containing 2,540,044 realistic records. The dataset includes a wide variety of different types 
of network traffic, such as TCP, UDP, ICMP, and HTTP, the allocation of UNSW-NB15 is shown in Fig. 5, which 
also includes information on the source and destination of the traffic, as well as the time and duration of each 
packet.

The experiments are categorized into binary- and multiple- classification tasks, with the former aiming to 
discern whether traffic is malicious, and the latter being specific to the type of attack.

Experimental environment and parameter settings
The hardware environment for the experiment is a workstation equipped with 64GB of RAM, Intel Core i7 
13700k central processor, and Nvidia RTX 4090 24GB GPU. The software environment is Windows 11 operating 
system, python 3.8, PyTorch 1.12.1, Numpy 1.20.3, scikit-learn 1.1.2, and matplotlib 3.7.1.

The focal loss in section 3.6 is selected to train IDS-MTran, Adam optimizer is used to assist in training 
where β1 = 0.99 and β2 = 0.9999. The initial learning rate is set to 0.001, the batch size is set to 512, and the 
target epoch for training is 100 and the early stop strategy is applied. Note that for the detailed architecture of 
Transformer-based backbone, please refer to 45.

Predictive model evaluation metrics
The predictive model is evaluated by a confusion matrix, which consists of four components as shown in Fig. 6 
: TP: the instance is correctly identified as positive; FP: the instance is incorrectly identified as positive despite 
being negative; TN: the instance is correctly identified as negative; FN: the instance is incorrectly identified as 
negative despite being positive.

Consequently, four widely-used metrics-Accuracy, Precision, Recall, and F1 Score are selected. Accuracy is 
one of the most intuitive manifestations of the model’s performance:

	
Accuracy =

TP + TN

TP + FN + FP + TN
.� (9)

Precision shows how accurately the model predicts positive samples:

	
Precision =

TP

TP + FP
.� (10)

Recall represents the model’s proficiency in identifying intrusion traffic:

	
Recall =

TP

TP + FN
.� (11)

Fig. 6.  Illustration of the confusion matrix.
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F1-Score considers both recall and precision, and is a commonly used metric for evaluating multi-classifier 
models:

	
F1− Score = 2× Precision×Recall

Precision +Recall
.� (12)

Comparative experiments
We first conduct comparative experiments on the three datasets NSL-KDD, CIC-DDoS 2019 and UNSW-NB15 
to validate the advancement of IDS-MTran. As mentioned above, these datasets possess different characteristics, 
thus the SOTA methods are not the same, and we introduce them in the corresponding subsections. Among 
the competitors, some classical IDS methods are selected, including CNN (ResNet3420), RNN46, LSTM47 and 
ViT45,48. Finally, we conduct the comparative analysis of the detection efficiency.

Comparison results on NSL-KDD
Performing detection on NSL-KDD is a relatively simple task in these three datasets, as NSL-KDD has been 
well-studied in recent years and has been used as the baseline data for many IDS models. Thus, we perform 
comparison on the classical methods, and some SOTA methods optimized specifically for IDS, including the 
method proposed by Liu et al. 49, the ANN method proposed by Zakariah et al. 50 and the AE method proposed 
by Xu et al. 51. Note that as a long-standing challenge, there are a number of excellent works on this dataset, 
such as the study of Meena et al. 52. Therefore, we also report the results of several machine learning methods 
for comparison.

Table 1 reports the results of binary-classification and multiple-classification results for each model. For 
the binary one, IDS-MTran outperforms others with 99.25% accuracy, 99.07% precision, 99.02% recall, and 
99.05% F1-score, showing excellent overall performance. The traditional CNN model performs the weakest, 
with 91.86% accuracy and 89.21% F1 score, which reflects its limitations in handling sequential data. On the 
contrary, RNN and LSTM, which are adept at processing sequence data, perform extremely well, but still not as 
well as ours. The ViT model performs the best among these competitors, demonstrating the advantages that the 
global dependency brings to intrusion detection. But its performance is still lower than the proposed multi-scale 
model due to the under-utilization of the features with the single scale.

For the five-classification task that is more complex compared to the binary one, where the model not only 
has to detect the presence of intrusion but also accurately predict the specific type. The transition from binary- 
to five- classification degrades the performance of all models, reflecting the challenging nature of the task. As 
reported in Table 1, the accuracy of the CNN decreased from 91.86 to 85.12%, indicating its diminished efficacy 
in dealing with more complex sequence problems. The performance of RNN also decreased, with accuracy 
dropping from 97.64 to 93.16%, indicating it is not as efficient as simple classification. LSTM and ViT show high 
stability, they perform well and their performance is similar to the binary task, implying their good adaptability 
to complex tasks. Notably, as the multi-scale’s all-around capability in macro and micro, the proposed method 
shows no almost degradation, with an accuracy of 99.16%. Its excellent performance on different attack categories 
exhibits its significant advantage in multi-category problems. Table 2 reports the quantitative results specific to 
attack types.

Additionally, Fig. 7A reports the comparison between IDS-MTran and some machine learning methods. It 
can be seen that the proposed method is second only to the J48 decision tree method used from Meena et al. 52, 
and far exceeds other machine learning methods. Furthermore, Fig. 8 reports a comparison of the metrics when 
specific to the attack category. Our method outperforms others on all metrics, with accuracy generally exceeding 
99% and near-perfect performance on the Dos and U2R categories. The F1-score, as the reconciled average of 
precision and recall, are close to 99% for our method on the Normal and Dos categories, indicating that it has 
a well-balanced in correctly recognizing attacks as well as distinguishing types. This is crucial for real-world 
security applications where the nature of attacks can be diverse and unpredictable. The results clearly highlight 
the advantages of the proposed method, especially its robustness and reliability.

Method

Binary-classification Five-classification

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

CNN 91.86 90.93 87.82 89.21 85.12 86.62 85.13 85.40

RNN 97.64 97.45 96.39 96.91 93.16 94.02 91.40 92.56

LSTM 98.71 98.32 98.41 98.36 95.51 95.38 94.44 94.85

ViT 98.79 98.63 98.26 98.44 97.80 97.45 97.83 97.62

Liu et 
al. 49 92.90 89.92 98.57 94.05 85.24 – – –

ANN 50 97.50 99.00 96.70 95.70 – – – –

AE 51 90.61 86.83 98.43 92.26 – – – –

Ours 99.25 99.07 99.02 99.05 99.16 99.01 99.17 99.09

Table 1.  Quantitative results on NSL-KDD. The values are expressed in %, and the best one is in bold.
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Comparative results on CIC-DDoS 2019
Among these datasets, CIC-DDoS 2019 is more specialized in detecting DDoS attacks, which includes a large 
volume of data with a comprehensive set of features. The competitors in this comparison include the RTIDS 
proposed by Wu et al. 11, the method proposed by Cil et al. 53 and the classical methods mentioned above.

We only conduct multiple-classification to explore the effects of each method as the number of normal traffic 
is small and the categories are sufficiently diverse. As shown in Fig.  7(B), compared with classical machine 
learning methods, the proposed method exhibit superior results, which suggests that as the complexity of such 
dataset increases, those conventional models may not able to find the deep non-linear relations behind. Table 3 
reports the overall detection results and the proposed method still outperforms others with a considerable gap. 
The recall and F1-score of IDS-MTran also achieves 99.42% and 99.61%, respectively, indicating that our method 
is not only able to accurately identify the attacks, but also effectively cover various attack types. Additionally, 
Table 4 reports the quantitative results of IDS-MTran specific to attack types, which further demonstrate the 
robustness and advancements of the proposed method to a wide range of different attack traffic and its strong 
pattern coverage. Compared to the SOTA RTIDS, which also utilized the Transformer, our proposed IDS-MTran 
performs better and more consistently. We attribute these advantages to the multi-scale feature extraction and 
exploitation, which further optimizes Transformer’s ability to model traffic features.

Comparison results on UNSW-NB15
Generally, the UNSW-NB15 is considered the most challenging one in the three IDS datasets, as it includes 
complex, diverse, and realistic network traffic with a wide range of modern attack types, demanding more 
sophisticated analysis 54. For this data, the selected competitors include the method proposed by Hooshmand 
and Hosahalli 55, the method proposed by Potluri et al. 56, DRaNN proposed by Latif et al. 57, the DNN method 
proposed by Vinayakumar et al.  58, and the method proposed by Ashiku and Dagli  59. We report the overall 
multiple-classification results in Table 5, and the class-wise results that specific to traffic types are presented in 
Table 2.

Firstly, similar to the comparison in CIC-DDoS 2019, though the results of machine learning methods, 
especially the SOTA J48 Decision Tree are acceptable, they are not as competitive as they are on the simpler data 
like NSL-KDD. When facing such complex and variable data, those basic models may not sufficiently model 
the relations. Next, as reported in Table 5, the proposed IDS-MTran performs on par with the current SOTA 
methods in multiple-classification. However, our advantage lies in the more fine-grained detection accuracy, 
i.e., specific to the intrusion category. As reported in Table 6, our proposed method is robust to all traffic types, 
while the other methods, all show performance fluctuations to some extent. Specifically, the method proposed 
by Hooshmand and Hosahalli 55, achieves 99.0% accuracy on the Analysis and Normal type, but only 10.5 on 
the Dos type. For the method proposed by Potluri et al. 56, it performs quite well on the Generic and Normal 
type, but in the remaining categories, it is completely undetectable in six of them. In terms of accuracy only, 
DNN 58 performs well, however, in terms of Recall, it performs mediocrely and even appears undetectable in 

Fig. 7.  Comparison between IDS-MTran and several machine learning methods on (A) NSL-KDD, (B) CIC-
DDoS 2019, and (C) UNSW-NB15.

 

Accuracy Precision Recall F1-score

Normal 99.22 98.74 98.39 98.56

Dos 99.90 99.79 99.83 99.81

Probe 99.64 99.38 99.22 99.30

U2R 99.73 98.90 99.38 99.14

R2L 99.82 98.24 99.03 98.63

Table 2.  Quantitative results of our method specific to attack types. The values are expressed in %.
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many categories. The difference in metrics implies that the method’s performance is extremely imbalanced. 
Here, DRaNN 57 is a strong competitor, however, our proposed method still wins with higher Recall and more 
stable performance.

On this more difficult dataset, the proposed method further demonstrates its power, maintaining high 
accuracy while having stable performance with minimal fluctuations. We attribute this result to the development 
of multi-scale architecture, complemented by the deep utilization of information at different scales, which, 
together with the self-attention mechanism, makes IDS-MTran an even better choice.

Method Accuracy Precision Recall F1-score

CNN 93.27 90.73 94.21 92.44

RNN 97.64 97.45 96.39 96.92

LSTM 96.98 95.77 96.21 95.99

ViT 96.71 98.44 98.32 98.38

RTIDS 11 98.58 98.82 98.66 98.48

Cil et al. 53 94.57 80.49 95.15 87.21

Ours 99.07 99.81 99.42 99.61

Table 3.  Quantitative results of multiple-classification on CIC-DDoS 2019. The values are expressed in %, and 
the best one is in bold.

 

Fig. 8.  Comparison of different metrics specific to the categories of each model on NSL-KDD.
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Comparison results on detection efficiency
In the practical application of IDS, detection efficiency is also a major consideration, as timely detection allows 
administrators to respond swiftly, thus avoiding greater damage. In this section, we conduct experiments to 
compare the detection efficiency. Specifically, we analyze the efficiency by recording the time taken by the model 
to predict each traffic sample. We report the inference speed (Frame Per Second, FPS) of each model on different 
datasets in Table 7.

As reported, the proposed IDS-MTran achieves an average FPS of 58.61, i.e., it can achieve a good real-time 
performance of detecting about 58 traffic samples per second on the experimental equipment. Compared to the 

Accuracy Recall

Potluri et al. 56 Hooshmand et al. 55 DNN 58 Ours DRaNN 57 Ashiku et al. 59 DNN 58 Ours

Analysis 0.0 99.0 99.5 98.7 98.2 89.5 0.0 98.5

Backdoor 0.0 12.0 95.1 99.1 98.8 91.2 34.4 98.1

Dos 0.0 10.5 99.4 98.4 98.8 94.6 97.7 99.0

Exploits 61.8 30.0 89.9 97.2 98.8 94.2 1.3 99.4

Fuzzers 6.8 69.5 99.9 97.4 97.1 88.6 0.0 99.0

Generic 97.7 69.1 78.3 98.6 99.8 95.1 57.1 99.2

Normal 99.7 99.0 78.9 99.9 - 97.2 92.8 99.7

Reconnaisance 0.0 77.2 92.7 97.0 99.2 95.1 1.8 99.7

Shell code 0.0 85.0 99.0 97.5 97.8 91.6 0.0 99.0

Worms 0.0 76.9 98.8 98.6 98.1 89.8 0.0 99.4

Table 6.  Class-wise quantitative results specific to traffic types on UNSW-NB15. The values are expressed in %, 
and the best one is in bold.

 

Accuracy Precision Recall F1-score

CNN 91.0 88.5 90.1 89.1

RNN 94.2 91.2 92.0 91.6

LSTM 95.0 94.1 92.0 93.0

ViT 95.9 97.5 96.2 96.8

DNN 58 65.1 59.7 65.1 58.5

Hooshmand et al. 55 76.3 90.4 76.1 78.2

Potluri et al. 56 – – 94.9 –

DRaNN 57 99.5 – 99.4 –

OURS 99.7 98.5 99.8 99.1

Table 5.  The overall quantitative results on UNSW-NB15 (multiple-classification task). The values are 
expressed in %, and the best one is in bold.

 

Accuracy Precision Recall F1-score

RTIDS Ours RTIDS Ours RTIDS Ours RTIDS Ours

Benign 99.47 99.05 98.79 98.86 99.74 99.40 99.60 99.13

DNS 97.36 98.43 97.00 98.25 97.04 97.98 97.18 98.12

LDAP 98.03 99.31 97.62 99.27 97.32 98.50 97.82 98.88

MSSQL 96.69 99.47 90.23 98.90 93.42 97.02 93.35 97.95

NetBIOS 94.03 98.18 99.60 97.64 96.79 97.35 96.73 97.49

NTP 99.65 98.38 99.51 97.65 99.58 99.35 99.58 98.49

SNMP 98.05 98.74 93.82 99.06 95.92 97.90 95.89 98.47

SSDP 91.41 99.51 92.00 98.79 85.11 98.60 90.03 98.69

TFTP 97.71 98.04 99.65 97.65 97.51 98.39 98.67 98.02

UDP 97.29 98.55 75.71 97.98 86.05 98.04 85.16 98.01

UDPLag 96.27 98.83 95.91 99.45 86.05 99.26 96.09 99.35

WebDDos 89.77 99.42 88.89 98.91 84.46 99.39 86.95 99.15

Table 4.  Quantitative results of our method specific to attack types. The values are expressed in %, and the best 
one is in bold.
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other models, CNN with the simplest structure has the best efficiency with an average FPS of 81.63, while RNN 
and LSTM with a recurrent structure achieve an average FPS of 73.52 and 64.11, respectively.The ViT model, 
which also uses Transformer, has a higher computational effort due to its stacked encoder structure, and only 
achieves an average FPS of 46.30.

Ablation studies
Ablation of the loss function
To mitigate the effect of data imbalance on model training, we use Focal Loss to train IDS-MTran. This section 
conducts experiments to evaluate the benefits that Focal Loss brings. As shown in Fig. 9, the introduction of 
Focal Loss reduces the bias for both datasets, which means that it helps the model to focus on all classes without 
ignoring the few attacks that are difficult to classify. Meanwhile, the proposed model can converge quickly and 
smoothly no matter which loss function is used, indicating that it can effectively and comprehensively learn the 
features in training data.

Ablation of the multi-scale architecture
Next, we conduct ablation experiment to evaluate the effectiveness of the proposed multi-scale architecture. In 
this investigation, the CFE is removed, and the backbone network is connected to three linear layers to directly 
output the result. We separately use the three branches to perform five-classification and binary-classification 
task on NSL-KDD, CIC-DDoS 2019 and UNSW-NB15, respectively. Tables 8 and 9 report the results, with P1, 
P2, P3 representing branches with low-, intermediate- and high-level features.

As reported,different branches have their own focuses in capturing network traffic features. For example, the 
detection of normal traffic does not need to pay excessive attention to the detailed features as they usually do 
not have obvious abnormal patterns. Branches with higher-level features (P3) can confirm the normalcy of the 
traffic on a macro level and determine whether the traffic is within the normal behavior, thus achieving the best 
performance. On the other hand, branches with lower-level features (P1) are better at detecting malicious ones. 
For example, DoS attacks are usually launched in a short period of time through a large number of requests, 
Probe attacks try to obtain information about the server, and the detection requires fine-grained analysis, where 
P1 branches perform better.

Fig. 9.  Loss changing using different functions. (A) Training on NSL-KDD. (B) Training on CIC-DDoS 2019.

 

NSL-KDD CIC-DDoS 2019 UNSW-NB15 Average

CNN 84.51 79.82 80.55 81.63

RNN 75.14 72.08 73.33 73.52

LSTM 70.52 61.71 60.10 64.11

ViT 49.11 45.07 44.72 46.30

ours 60.44 57.10 58.29 58.61

Table 7.  Inference speed (FPS) comparison results of different models.
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Qualitative analysis of the multi-scale architecture
To further analyze the multi-scale postulations in the proposed method, we conduct the qualitative analysis to 
validate. Specifically, we visualize the processing of the input at each scale on the three datasets. As shown in 
Fig. 10, Larger values, i.e., darker colors, indicate a higher level of attention here, which is the most helpful for 
classification.

As expected, the P1 branch provides a fine-grained view of the traffic data with a more pronounced detail 
texture, focusing on localized feature variations. The small-scale patterns in this branch help to detect detailed, 
immediate features such as packet size variations and transmission frequency. However, there are limitations to 
this microscopic advantage, such as the R2L category in Fig. 10A. Its focus on features is too scattered to combine 
all features for a comprehensive judgment.

In contrast, the P3 branch demonstrates a broader, more dispersed pattern that encompasses long-term 
trends and behaviors in traffic data that may deviate from the benign. More intuitively, this branch tends to 
have a large area of interest. It focuses on the most salient features and radiates more locations to be considered 
in aggregate, allowing it to perceive deviations from a global perspective and use this as a cornerstone to give 
macro-level results.

The intermediate P2, which is larger than P1 and smaller than P3, integrates detailed features and general 
trends, blends local variations and broad patterns, and shows a comprehensive capture of attack characteristics. 
It provides an intermediate level of perspective that helps bridge the gap between micro-detail and macro-trends.

The combination of three scale branches then provides a robust multi-dimensional feature space. By 
combining micro- and macro-features, it can provide a balanced perspective, ensuring that the model can both 
capture the transient signals and recognize anomalous trends, providing strong support in the face of different 
types and complexities of attacks.

Ablation of the backbone
To further explore the potential factors that can enhance the performance of IDS-MTran, we ablate the 
Transformer-based backbone network in this section, i.e., we explore the performance in the presence of 
different stacking hyperparameters.

Scale

CIC-DDoS 2019 UNSW-NB15

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Benign

P1 98.22 97.68 98.55 98.11 97.53 97.16 98.03 97.59

P2 98.89 98.91 99.05 98.98 98.28 98.37 98.65 98.51

P3 99.97 99.05 99.78 99.41 99.42 99.25 99.46 99.35

Malicious

P1 99.86 99.24 99.51 99.37 99.18 99.04 99.21 99.12

P2 99.05 98.62 98.71 98.66 98.79 98.36 98.19 98.27

P3 97.26 96.55 97.01 96.78 97.14 96.37 96.82 96.59

Table 9.  Ablation results of different scales on CIC-DDoS 2019 and UNSW-NB15 (binary-classification task). 
The values are expressed in %, and the best one is in bold.

 

Accuracy Precision Recall F1-score

Benign

P1 97.43 95.56 96.45 96.00

P2 98.02 97.33 95.24 96.27

P3 98.81 98.08 97.55 97.81

Dos

P1 99.61 99.08 99.35 99.21

P2 99.01 96.92 97.88 97.40

P3 97.39 96.15 95.41 95.78

Probe

P1 99.17 99.39 97.51 98.44

P2 99.00 98.09 96.27 97.17

P3 97.91 98.13 96.62 97.37

U2R

P1 96.32 95.51 97.25 96.37

P2 98.81 96.49 99.08 97.77

P3 99.41 97.88 97.38 97.63

R2L

P1 97.57 94.19 95.36 94.77

P2 99.59 97.82 98.02 97.92

P3 98.61 95.90 96.09 95.99

Table 8.  Ablation results of different scales on NSL-KDD (five-classification task). The values are expressed in 
%, and the best one is in bold.
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As reported in Table  10, IDS-MTran achieves the best results when the backbone stacked is 2. With the 
number of backbone increasing, the features become more and more abstract, and some information may be 
lost in the gradual compression, which can be detrimental to detecting intrusions. In contrast, when there is 
only one Transformer encoder, i.e., a stack of 1, the model does not perform as well, implying that the extracted 
features may be insufficient.

Ablation of the multi-scale integration
How to efficiently utilize multi-scale features is another issue. The proposed method uses CFE to process, and 
the results are obtained through cross-enhancement. To explore the its effect, we further conduct ablation 
experiments. Specifically, we set up a control group: three scales of features are directly concated and the 
results are obtained using three linear layers. Table 11 shows the results of the two sets of experiments. Cross-
enhancement brings about 2% improvement to the Accuracy, thanks to the full utilization of different scales, it 
can fully explore and emphasize some easily overlooked features, thus improving the overall detection rate and 
making the model more robust.

Conclusions
Aiming at the problems of under-utilization of features and poor multiple-classification accuracy in existing 
IDSs, this paper proposes a novel multi-scale framework IDS-MTran. It creates multi-scale branches based on 
the original data and leverages Transformer as the backbone to extract features. In it, the proposed PwP module 

Stacked number

NSL-KDD CIC-DDoS 2019 UNSW-NB15

Accuracy Recall Accuracy Recall Accuracy Recall

1 98.7 98.9 98.5 97.9 98.6 98.9

2 99.2 99.2 99.1 99.4 99.7 99.8

3 98.3 98.4 98.2 98.5 99.1 98.8

4 98.1 97.9 98.3 98.2 98.7 98.6

5 97.8 97.6 97.9 97.6 98.1 97.9

6 97.1 96.8 97.3 97.1 97.4 97.2

Table 10.  Ablation results of the hyperparameters of backbone. The values are expressed in %, and the best one 
is in bold.

 

Fig. 10.  Qualitative analysis of different branches on (A) NSL-KDD, (B) CIC-DDoS 2019, and (C) UNSW-
NB15.
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effectively enhances the features and compensates the structural information, and the CFE module provides 
effective enhancement of feature fusion to further improve the detection accuracy. Both qualitative analysis 
and ablation studies prove the effectiveness of the proposed method: different scales can focus on different 
types of attacks, and the fused multi-scale is more robust and accurate. At the same time, sufficient comparison 
experiments show that IDS-MTran outperforms the existing methods in all aspects and is more suitable for real-
world applications to accurately detect the attack types. The next research direction is to consider the efficient 
deployment of IDS-MTran to further maximize its value.

Data availibility
The datasets analyzed in this study are available at [https://github.com/HoaNP/NSL-KDD-DataSet],[https://
www.unb.ca/cic/datasets/ddos-2019.html] and [https://research.unsw.edu.au/projects/unsw-nb15-dataset].
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