www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

HemoFuse: multi-feature fusion
based on multi-head cross-
attention for identification of
hemolytic peptides

Ya Zhao?, Shengli Zhang'™ & Yunyun Liang?

Hemolytic peptides are therapeutic peptides that damage red blood cells. However, therapeutic
peptides used in medical treatment must exhibit low toxicity to red blood cells to achieve the desired
therapeutic effect. Therefore, accurate prediction of the hemolytic activity of therapeutic peptides is
essential for the development of peptide therapies. In this study, a multi-feature cross-fusion model,
HemoFuse, for hemolytic peptide identification is proposed. The feature vectors of peptide sequences
are transformed by word embedding technique and four hand-crafted feature extraction methods. We
apply multi-head cross-attention mechanism to hemolytic peptide identification for the first time. It
captures the interaction between word embedding features and hand-crafted features by calculating
the attention of all positions in them, so that multiple features can be deeply fused. Moreover, we
visualize the features obtained by this module to enhance its interpretability. On the comprehensive
integrated dataset, HemoFuse achieves ideal results, with ACC, SP, SN, MCC, F1, AUC, and AP of
0.7575, 0.8814, 0.5793, 0.4909, 0.6620, 0.8387, and 0.7118, respectively. Compared with HemoDL
proposed by Yang et al., it is 3.32%, 3.89%, 5.93%, 10.6%, 8.17%, 5.88%, and 2.72% higher. Other
ablation experiments also prove that our model is reasonable and efficient. The codes and datasets are
accessible at https://github.com/z11code/Hemo.
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Therapeutic peptides are widely favored by the medical and pharmaceutical fields due to their advantages
of high permeability and small side effects. However, some of their characteristics have two sides, and their
therapeutic effect will be affected if these characteristics cannot be controlled within a certain range'?. For
example, the hemolytic activity of therapeutic peptides refers to their ability to bind to red blood cells, allowing
water and other solute molecules to enter red blood cells, thereby increasing the osmotic pressure gradient
inside red blood cells and causing them to swell or even rupture?. It can be seen that therapeutic peptides with
high hemolytic activity have functions such as destroying cancerous cells and targeted delivery of drugs. But for
other therapeutic tasks, the hemolytic activity of therapeutic peptides must be reduced so that them can stably
express a specific function without damaging normal cells®. Therefore, accurate prediction of the hemolytic
activity of therapeutic peptides is helpful to promote the development of peptide drugs. Hemolytik (http://crdd.
osdd.net/raghava/hemolytik/) is a complete database of 3000 experimentally verified hemolytic peptides and
non-hemolytic peptides®. The authors evaluated the hemolytic activity of peptide sequences on 17 different red
blood cells and provided information related to each peptide sequence and its hemolytic activity. DBAASP is
a constantly updated antimicrobial peptide database containing information on the bioactivity and toxicity of
peptide sequences, which can be used for the study of hemolytic activity®. The establishment of these databases
helps us to develop deep learning-based sequencing technologies with low cost and short time consumption
compared to traditional biological experiments.

At present, the feature extraction methods used in identification models based on biological sequences can
be broadly divided into two types: traditional hand-crafted feature extraction methods and feature extraction
methods based on natural language processing technology. Hand-crafted feature extraction methods are designed
by humans, offering low computational complexity and strong interpretability, such as binary encoding’, kme?,
quasi-sequence-order (QSO)°. However, their effectiveness depends on the characteristics of the data itself,
requiring the selection of appropriate descriptors based on the dataset’s properties. Feature extraction methods
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based on natural language can uncover structures and patterns that are difficult for humans to detect and are less
influenced by the dataset’s inherent characteristics. Nevertheless, their drawback is that they struggle to learn
effective features when the data quality is poor. Word embedding® is one of the most basic feature extraction
methods in natural language processing, and many models are built on it, such as Bert'"!2. In addition, there
are pre-trained language models such as ProtTrans!?, evolutionary scale modeling (ESM)'“. Of course, there are
also many models that consider both types of methods in order to extract more comprehensive information'.
Machine learning and deep learning algorithms are used for further feature mining and classification. Common
machine learning methods include AdaBoost!, random forest (RF)!7, hidden markov model (HMM)'8, etc.
While they are simple and easy to understand, they are not well-suited for handling large, high-dimensional
data, resulting in lower model accuracy. In contrast, deep learning, with its ability to automatically learn features,
has demonstrated exceptional performance, far surpassing traditional machine learning algorithms, such as
convolutional neural network (CNN)'°, capsule network?, recurrent neural network (RNN)2!, transformer?>23,
Machine learning and deep learning each have their own unique advantages, and sometimes work well when
combined?.

Most of the existing identification models for hemolytic peptides use traditional hand-crafted features and
machine learning algorithms, such as HemoPI?*, HemoPred?’, HLPpred-Fuse?’, HAPPENN2%, HemoPImod®.
The involved feature extraction methods collect the information of hemolytic peptides from various aspects such
as amino acid composition, peptide composition, physicochemical properties, and atomic descriptors. Classifiers
cover almost all common machine learning algorithms. However, the methods and datasets used by these models
are outdated. Moreover, HemoPImod is unable to identify hemolytic peptide sequences longer than 25 amino
acids. Language model-based methods did not start to appear until 2021. HemoNet™® is the first to employ the
SeqVec language model to capture the contextual features of amino acids, but it struggles to generalize well to
unseen data. With the development of stronger transformer models, AMPDeep first used transformer-based
pretrained model (PROT-ERT-BFD) to represent the features of peptide sequences in 2022%!. However, its fine-
tuning process is extremely cumbersome, requiring the identification of a secondary distribution using specific
keywords to fine-tune the model. In 2023, Sharma et al. tried to integrate multiple deep learning algorithms
(Bi-LSTM, bi-directional temporal convolutional networks (Bi-TCN), CNN) to identify hemolytic peptides,
and named it EnDL-HemoLyt*2. EnDL-HemoLyt integrates hand-crafted features with deep learning features
and also offers predictions for peptides with N/C-terminal modifications, though it may not be well-suited to
the latest data. Yang et al. built the latest model, HemoDL, using both 7 hand-crafted features and 2 transformer-
based language models (Prot-T5-XL-UniRef50 and ESM2)*. Multi-feature combination can collect more
sequence information, but HemoDL only simply concatenates the two types of features and inputs them into
LightGBM for classification, and there is no sufficient fusion and complementarity between the features.

In this study, we continue the idea of multi-feature combination but make some improvements. We
innovatively propose HemoFuse, an identification model of hemolytic peptides with multi-feature cross-fusion,
as shown in Fig. 1. We use word embedding features and four hand-crafted features (BLOSUME62, dipeptide
deviation from expected mean (DDE), dipeptide composition (DPC) and composition of k-spaced amino
acid pairs (CKSAAP)) to represent peptide sequences. To be able to capture higher-order features, we add
a transformer encoder layer after the embedding layer, similar to the structure of Bert. However, compared
with Bert, this model has fewer parameters and is easy to transfer and use. In terms of hand-crafted feature
methods, except DPC, the other three methods are applied to hemolytic peptides for the first time. Before feature
fusion, we use bi-directional gated recurrent unit (Bi-GRU) to align the dimensions of hand-crafted features
and embedding features. Then, multi-head cross-attention is used to deeply fuse the two features, which can
strengthen the connection between them and complement each other’s advantages. Finally, CNN and multi-
layer perceptron (MLP) are used as classifier to determine the hemolytic activity of peptide sequences.

Materials and methods
Datasets
In order to facilitate the comparison with the existing models, we directly use the datasets provided in the
benchmark paper, and all positive samples are therapeutic peptides with hemolytic activity’>. As shown in
Fig. 1, there are four common datasets and an integrated dataset, and Table 1 shows the specific number of each
dataset. Dataset 1 and dataset 2 are from Hemolytik and DBAASP v.2 databases, both collected and collated by
Chaudhary et al.?%, with 1014 and 1623 sequences, respectively. Dataset 3 was collected by Patrick et al.?® from
Hemolytik and DBAASP databases with 3738 samples. Dataset 4 is derived from the DBAASP v3 database
and has 4339 samples as the dataset used in EnDL-HemoLyt*2. The integrated dataset is composed of these
four datasets, and CD-HIT>* with a threshold of 0.7 is utilized for de-redundancy processing, resulting in 1993
sequences. These datasets are imbalanced, which better mimics the real-world situation where the positive and
negative samples are not equal, so we do not apply an imbalanced treatment to enforce equality. In addition,
these datasets are randomly divided into training datasets and independent test datasets according to 8:2.
Figures 2 and 3 show the sequence length distribution and amino acid composition of positive and negative
samples from the training sets of datasets 1-4, respectively. As shown in Fig. 2, the lengths of positive and
negative samples in dataset 1 are concentrated between 5 and 31 amino acids. In dataset 2, the lengths of positive
and negative samples are roughly concentrated between 6 and 38 amino acids, with a few sequences having much
longer lengths. The sequence length distribution is more uniform in datasets 3 and 4. Dataset 3 has sequences
ranging from 7 to 35 amino acids, while dataset 4 ranges from 6 to 50 amino acids. We use the kpLogo tool*
to analyze the amino acid composition preferences between positive and negative samples, as shown in Fig. 3.
In dataset 1, amino acids K and L are more abundant in positive samples, with no significant enrichment in
negative samples. In dataset 2, amino acid K is more enriched in positive samples, whereas the negative samples
are more varied. In dataset 3, amino acids K and A are highly expressed in positive samples, and amino acids K,
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Fig. 1. The architecture of HemoFuse.
Datasets Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 | Integrated
Positive 552 885 1543 2011 814
Negative 462 738 2195 2328 1179
Training 812 1298 2990 3470 1594
Independent | 202 325 748 869 399

Table 1. Details of the datasets.

R, and L are highly expressed in negative samples. In dataset 4, both positive and negative samples have higher
frequencies of amino acids K, R, and L. These results indicate that using only peptide sequence composition for
feature extraction is insufficient. Therefore, we will incorporate word embedding techniques into the feature
extraction module to uncover the underlying patterns in the sequences.

Architecture of HemoFuse

As shown in Fig. 1, our model can be decomposed into three sub-modules: feature extraction and alignment
module, feature cross-fusion module, and classification module. We use a combination of advanced word
embedding features and traditional hand-crafted features to represent peptide sequences. Token embedding,
position embedding, and transformer encoder together form a lightweight language model. BLOSUM62, DDE,
DPC, and CKSAAP cover the evolutionary and compositional information of peptide sequences. Hand-crafted
feature methods are specifically formulated based on the large number of available peptide sequences and still
have great potential in representing peptide sequences. Bi-GRU can mine deeper context features and transform
hand-crafted features to the appropriate dimensions to match embedding features. Then, we choose multi-head
cross-attention to complete the deep fusion between different features, which is good at capturing the semantic
relationship between two related but different sequences. This is the first application in the identification of
hemolytic peptides. The classification module mainly consists of CNN and MLP.

Feature extraction and alignment

Word embedding feature

Word embedding technology follows the distributed semantics hypothesis, which uses the context around
each word to express its semantic information®. In general, words with similar contexts will have similar
semantic meanings. Compared with hand-crafted features, its biggest advantage is that its parameters can be
continuously optimized throughout the training process, making it more suitable for the current data. Popular
word embedding models include Word2Vec, GloVe, Bert, etc.
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Fig. 3. The plot of the amino acid composition.

In this paper, we adopt token embedding and position embedding to initially represent the shallow
information of protein sequences, and then use transformer encoder to capture the bidirectional relationship
between amino acids in the sequence more thoroughly®”. The architecture is more like a simplified Bert. Token
embedding is a vector representation of the amino acid itself, and position embedding encodes the position
information of the amino acid into a feature vector, just like RNN or LSTM can provide the position information
of the sequence. The dimension of the two embeddings is 128. They are then combined and fed into transformer
encoder layer. As shown in Fig. 1, transformer encoder is composed of multi-head attention, layer normalization,
feed forword layer, and layer normalization in turn, with two residual connections. This structure does not have
too many hidden layers, which can improve the computational efficiency. Self-attention mechanism can re-
encode the target feature by the correlation between the target feature and other features, so that new features
contain more interaction information without considering their distance in the sequence. The number of heads

of self-attention in this module is 4.
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Hand-crafted feature

BLOSUMS62 is an amino acid substitution scoring matrix for protein sequence comparison, which stems from the
conservation between the same amino acids®. It reflects the evolutionary information of the protein sequence.
The score is essentially the logarithm of the ratio of the likelihood of the different amino acids being homologous
and non-homologous, and the formula is as follows:

1 Pab
S = — 10g
s(a,b) 3 log o (1)
where p,; is the frequency of occurrence in the existing homologous sequences assuming that a and b are
homologous. f, and f;, are the frequencies of residues a and b occurring in either sequence, assuming that a
and b are not homologous, respectively. ) is the scaling parameter. If residues a and b are homologous, then
Pab > fafp and the score is positive. If residues a and b are not homologous, then p,, < f,f; and the score is
negative. In summary, the similarity between every two amino acids can be calculated. BLOSUM62 matrix can
represent each amino acid as a 20-dimensional feature vector and the protein sequence as a Lx20 feature matrix,
where L is the sequence length.

DDE derives from the difference in dipeptide composition between epitopes and non-epitopes, and uses this
to indicate the extent to which dipeptide frequencies deviate from the expected mean®. It is able to analyze the
composition and distribution of amino acids in peptide sequences. The feature vector is constructed based on
three parameters: dipeptide composition measure (D), theoretical mean (7},), and theoretical variance (T,,). T},,
does not depend on a specific peptide sequence, so 75, of 400 dipeptides is calculated first:

G G
CL*I Cl,fl

T;n(i) (2)

(1 is the codon number of the first amino acid in the dipeptide i and Cj is the codon number of the second
amino acid. C_; is the total number of possible codons excluding stop codons. Given a peptide sequence of
length L, D.(;) and T,(;) of the dipeptide i are calculated according to the following formula:

n;

Deiy =77 3)
ﬂll(!) (1 - T‘m(/))
Toiy = — -1 (4)

n; is the frequency of occurrence of the dipeptide i and L — 1 is the number of dipeptides present in this
sequence. Thus, DDE of the dipeptide i can be expressed as follows:

DDE(l) _ D(:(i) - Tm(/,) (5)
T
Finally, the peptide sequence can be represented as a 400-dimensional vector:

DPC is a common feature representation method based on amino acid composition information, which can
provide detailed information about the arrangement of amino acids in peptide sequences®. It represents a
protein sequence by counting the frequency of occurrence of all dipeptides in the protein sequence. The formula
is as follows:

Tn;

n; and f; are the number and frequency of occurrences of the dipeptide i in the sequence, respectively. There are
a total of 400 dipeptides. Therefore, each protein sequence can be transformed into a 400-dimensional fixed-
length feature vector.

CKSAAP converts a protein sequence into a feature vector by using the constituent ratio of k-spaced residue
pairs in this protein sequence fragment*!. It is of great significance to understand the function and structure of
proteins. Given a protein sequence of length L and a value of k, two residues separated by a distance of k are
extracted and considered as a residue pair, so a total of L — k — 1 residue pairs can be extracted. The probability
of occurrence of these residue pairs in the protein sequence is counted, resulting in a 400-dimensional feature

vector:
Laa Lac Lyy ®)
L-k-1UL—k-1 "LT-k-1),,

Laa, Lac,and Lyy is the number of occurrences of the corresponding residue pair. k can be set to 0, 1, 2, 3, 4, 5.

Bi-GRU can extract sequence information in proteins and deredundant hand-crafted features*2. Both LSTM
and GRU are common methods for processing long sequences, and the advantage of GRU is that it uses only two
gates, which reduces the number of parameters by nearly a third and effectively avoids overfitting. Bi-GRU does
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not change its original internal structure, but only applies the model twice in different directions. This ensures
that the forward and backward sequence features are captured, resulting in richer features. Notably, it can also
perform the task of feature alignment. We set the number of neurons in the hidden layer to 64, resulting in a
128-dimensional feature vector, which is the same as the feature vector output by word embedding module.

Feature cross fusion

Word embedding features and hand-crafted features have collected a lot of information about the peptide
sequence with different rules, so the next step is to consider how to make full use of these features to judge its
hemolytic activity?>~*°. These two features contain their own information of interest, and their mutual relationship
will be ignored if they are directly combined. In view of this, we adopt multi-head cross-attention mechanism to
deeply fuse word embedding features and hand-crafted features, which is often used to deal with multi-modal
features®*”. The fused new feature contains the interactive information of the two features. Compared with
self-attention mechanism, the input of cross-attention mechanism has two parts: the “where” feature and the
“what” feature. The “where” feature acts as the Query (Q), and the “what” feature is used to generate the Key and
Value (K, V)%, In this study, we choose word embedding features X, as the “where” feature, and hand-crafted
features X, as the “what” feature. The specific operations are as follows:

Q = Wqumln K= Wthanda V= Wz'Xh(md (9)

Wy, Wy, and W, are learnable parameter matrices. Then Q and K are used to calculate the correlation between
each element of the two inputs to obtain attention weight. Next, update the feature vectors:

QK"
e

where D and h are the embedding dimensions and the number of heads, respectively. Finally, the fused features
can be obtained by combining the outputs of multiple attention heads:

Cu, <Xemb7 Xh/md) = SOftHl&X *V (10)

Cross — Attention = Concat [Cy, -+ ,Cy] W, (11)

where N is the number of attention heads and W, is weight matrice. Obviously, in this process, cross-attention
mechanism constantly updates the fusion features based on hand-crafted features with the information of word
embedding features.

Classification

The final classifier consists of a CNN layer and four linear layers, and each layer corresponds to a set of a batch
normalization layer and a dropout layer to prevent the model from overfitting. This structure can gradually
reduce the dimension of the feature vector to avoid information loss.

Model evaluation

In this study, we train the model on each of the five datasets and evaluate the performance of the model on
the corresponding independent test datasets using the following seven evaluation metrics: accuracy (ACC),
specificity (SP), sensitivity (SN), Matthews correlation coeflicient (MCC), F1 score, area under ROC curve
(AUC) and average precision score (AP)*. The formulas are as follows:

TP+TN

A =
ce TP+ FP+FN+TN

TN
SP FP+TN

TP
SN =rp PN (12
VOO — TPxTN —-FPx FN

V(TP ¥ FN)(TN + FP) (TP + FP)(IN + FN)
Fl 2x TP

TOxTP+FP+FN

Where TP, TN, FP, and EN represent correctly predicted positive samples, negative samples, and incorrectly
predicted positive samples, negative samples, respectively. ACC represents the proportion of samples that are
correctly predicted and reflects the global accuracy of the model. SP and SN are used to measure the ability of
the model to correctly predict negative and positive samples, respectively. MCC combines true positives, true
negatives, false positives, and false negatives, and is a more balanced index. F1 score is the average of precision
and recall. When F1 is high, it also means that both precision and recall are high. The ROC curve can reflect
the relationship between the true positive rate and the false positive rate of the model, the closer the curve is to
the top left corner, the higher the accuracy of the model. The two ROC curves can be quantitatively compared
by calculating AUC values. The precision-recall curve focuses on positive samples and is more suitable for
imbalanced datasets. AP is the area under PR curve.
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Results and discussion

Experimental settings

HemoFuse is built in Python under the PyTorch framework. In the model training process, the cross-entropy
loss function and Adam optimizer are used to continuously optimize the model parameters and reduce the
loss. The batch size is 15, the learning rate is 0.001, and the iteration epoch number is 100. After the shallow
features are extracted, we use a transformer layer with built-in 8 attention heads and Bi-GRU with 64 neurons
to extract the deep features. In the feature cross fusion module, the number of heads for cross attention is 8. In
the classification, the number of convolution kernels in the CNN layer is 64, the kernel size is 3, and the dropout
ratio is 0.5. The number of neurons in the linear layers decreases layer by layer to 512, 128, 64, 2 with a dropout
ratio of 0.6. Finally, it is normalized by the softmax function.

Ablation experiments with different hand-crafted feature methods

Feature representation is the cornerstone of classification models, and given previous studies on hemolytic
peptides, we believe that hand-crafted feature extraction methods are able to extract beneficial features of peptide
sequences. This paper aims to find some hand-crafted feature methods that have not been used in hemolytic
peptides, so as to provide more possibilities for the identification model. BLOSUM62, DDE, and CKSAAP are
all applied to hemolytic peptides for the first time. In addition, the experimental results show that DPC helps to
improve the performance of the proposed model, so we also use it. Figure 4 is for the results of the four methods
of ablation experiments. It is clear that both BLOSUMG62 and DDE achieve incredible results. BLOSUMS62 is
the best method on the dataset 1 and 4, and its ACC values are 0.8177 and 0.8517, respectively. And on the
dataset 4, its SN value is slightly higher than the SN value of combined features, which indicates that it is good
at identifying positive samples. On the dataset 2 and 3, DDE has the best overall performance, with ACC values
of 0.7846 and 0.8743, respectively, which are less than 1% different from the ACC values of combined features.
The overall performance of CKSAAP and DPC is inferior, but they can produce better results when combined
with the first two feature methods. On the dataset 1, the addition of CKSAAP and DPC improves the ACC, SN,
MCGC, and F1 values of the model by 2.47%, 4.51%, 5.02%, and 2.53%, respectively, compared with the best single
method. Figure 5 shows the corresponding ROC and PR curves. CKSAAP and DPC have greater improvement
on the datasets 1 and 4. Compared with the best single method, the AUC values are increased by 2.31% and
3.49%, and the AP values are increased by 1.72% and 4.71%, respectively.

The effectiveness of cross-attention mechanism

In this paper, multi-head cross-attention mechanism is used to establish the connection between word
embedding features and hand-crafted features, focusing on the key information of sequences. To illustrate the

Dataset | Dataset 2

D CKSAAP BLOSUME2 + DDE+DPC+CKSAAP BLOSUMEA? WDk " CKSAAP BLOSUME2 + DDE+DPC+CKSAAP

Dataset 3 Dataset 4

04 § 06 [ 1 19 0 \ 02 0l 04 0s 06 ) T 19
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Fig. 4. Results of ablation experiments with different hand-crafted feature methods.
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Fig. 5. ROC and PR curves of different hand-crafted feature methods.

advantages of cross-attention mechanism, we compare it with common self-attention mechanism. Compared
with cross-attention mechanism, self-attention mechanism has higher requirements on the input features, and
all dimensions need to be equal. So we add a linear layer in front of multi-head self-attention module to align
the dimensions of the two features. As shown in Fig. 6, the overall performance of cross-attention is better than
that of self-attention. The ACC values on the four datasets are increased by 2.96%, 2.16%, 3.88%, and 4.14%,
and the MCC values are increased by 3.68%, 4.02%, 8.31%, and 8.77%, respectively. To sum up, multi-head
cross-attention can mine more discriminative features, thus improving the identification ability of the model. In
addition, cross-attention mechanism abandons the feature concatenation operation, which greatly reduces the
feature dimension and accelerates the training speed of the model.

Visualization of features before and after fusion

We use t-distributed stochastic neighbor embedding technique (t-SNE) to visualize the features obtained from
word embedding feature module, hand-crafted feature module, and multi-head cross-attention module on a
two-dimensional plane. As shown in Fig. 7, the four rows represent feature visualizations of the three modules
on four independent test datasets, respectively. It can be seen that the positive and negative samples after
embedding feature encoding are mixed states. However, relatively speaking, the negative samples at this time
have a slight tendency to aggregate, which is obvious on the independent test dataset 3 and 4, as shown in Fig. 7
(C-D). The second column is the feature distribution obtained by hand-crafted feature module. Because the
built-in Bi-GRU is used for depth feature extraction, there is a clear boundary between the positive and negative
samples. After multi-head cross-attention module and CNN layer, two obvious clusters are formed, and only a
small number of samples are not separated correctly. The interval between the positive and negative samples is
also further compared to the previous module. Thus, each of the submodules of HemoFuse can extract beneficial
information to achieve the desired effect.

Comparison with other state-of-the-art methods

The model in this paper converts peptide sequences into word embedding feature vectors and hand-crafted
feature vectors respectively, and innovatively uses multi-head cross-attention mechanism to complete further
fusion. This operation can effectively integrate and fuse information from multiple modalities. In order to
show that the structure of our model is feasible and effective, it is compared with nine existing models on four
independent test datasets, and the results are shown in Tables 2, 3, 4 and 5. From the results of the dataset 1,
we can see that our model is of great potential in identifying hemolytic peptides, second only to the best model
HemoDL. Although the performance on the dataset 2 is unsatisfactory, it still outperforms most other models.
On the dataset 3 and 4, the overall performance of HemoFuse is improved to some extent. It is worth noting that
on the dataset 3, the SP and SN values are 0.8884 and 0.8706, respectively, and the MCC value is also increased
by 2.17% compared with HemoDL. This indicating that the model can correctly distinguish the positive and
negative samples on imbalanced datasets.

To test the comprehensive performance of the model, we combined the dataset 1-4 and controlled the
similarity between sequences within 0.7. The model is also trained and tested in the same way on the integrated
dataset, and the results are shown in Table 6. HemoFuse achieves surprising results, with improvements in all
metrics. ACC, SP, SN, MCC, F1, AUC, AP are increased by 3.32%, 3.89%, 5.93%, 10.6%, 8.17%, 5.88%, 2.72%,
respectively. These results show that our model has strong identification and generalization ability, so it can be
used to predict hemolytic activity.

Case study

To conduct the case study, we incorporate 10 peptides with varying degrees of hemolytic activity and 10 non-
hemolytic peptides. These data come from Adiba et al.*, collected from the DBAASP and Hemolytik databases,
which contain detailed information on experimentally verified cell toxicity/hemolytic activity of peptides.
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Fig. 6. Analysis results of different attention mechanisms.

By using these unseen data, we more accurately simulate real-world prediction scenarios, thereby effectively
assessing the model’s practical utility and generalizability. The experimental results, as shown in Tables 7 and
8, demonstrate a total accuracy of 90% for identifying both positive (hemolytic) and negative (non-hemolytic)
samples. This result indicates that our model is capable of accurately recognizing different levels of hemolytic
activity, particularly for peptides with lower hemolytic activity, which represents a more challenging task.
Moreover, the model performs excellently in distinguishing between hemolytic and non-hemolytic peptides,
proving its ability to discern subtle differences between the two categories. Misclassifying a hemolytic peptide
as non-hemolytic in vivo could potentially lead to underestimating the degree of cellular damage, affecting
disease diagnosis. Therefore, the model’s actual performance is crucial for understanding the occurrence and
development of hemolysis in various diseases.

Discussion
Based on the experimental results, the proposed model, HemoFuse, demonstrates strong recognition capability
by effectively integrating sequence features extracted from multiple aspects and performing classification tasks.
As shown in Figs. 4 and 5, the four hand-crafted features are feasible and effective for identifying hemolytic
peptide sequences, and their combination further enhances the model’s recognition ability. Figure 6 illustrates
that the performance of cross-fusing features from two modalities is superior to simply concatenating them
before inputting them into the self-attention mechanism. Word embedding features and hand-crafted features
extract peptide sequence information using different rules: word embeddings utilize contextual information,
while hand-crafted features focus on compositional information. The cross-attention mechanism captures the
relationship between these two types of information, leading to improved model performance.

However, several issues warrant further investigation. As shown in Tables 2, 3, 4 and 5, the model exhibits
higher sensitivity (SN) values on datasets 1 and 2, while the specificity (SP) value is higher on dataset 4. We
hypothesize that these results are related to dataset balance. Datasets 1 and 2 have a higher proportion of
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Fig. 7. Visualization of the features of different modules.

positive samples, whereas dataset 4 has more negative samples. The model’s ability to recognize certain sample
types is significantly influenced by the quality of the data. To address this, we conduct experimental analysis
on an integrated dataset derived from four datasets, but even after CD-HIT processing, the dataset remained
imbalanced. Therefore, future research will involve collecting more hemolytic peptide sequences to train the
model, aiming to reduce the model’s dependency on dataset balance. Additionally, the model’s training time is
relatively long, which may be due to the model’s complexity or the computing resources used. In the next steps,
we will attempt to streamline the model to improve training efficiency without compromising performance.

Conclusions

The hemolytic activity of therapeutic peptides is one of the key factors restricting their entry into clinical
trials, so it is urgent to find more available low hemolytic peptides. In view of the tedious and time-consuming
biological experiments, the classification model of deep learning is the best scheme to identify hemolytic
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Model ACC |SP SN MCC |F1 AUC | AP

HemoPI 0.7920 | 0.7717 | 0.8090 | 0.5808 | 0.8090 | 0.8682 | 0.8911
HemoPred 0.7673 | 0.7608 | 0.7727 | 0.5324 | 0.7834 | 0.8661 | 0.8811
HLPpred-Fuse | 0.7772 | 0.7391 | 0.8090 | 0.5499 | 0.7982 | 0.8666 | 0.8950
HAPPENN 0.7970 | 0.7826 | 0.8090 | 0.5912 | 0.8127 | 0.8550 | 0.8688
HemoPImod 0.7970 | 0.8043 | 0.7909 | 0.5933 | 0.8093 | 0.8552 | 0.8789
HemoNet 0.8168 | 0.7717 | 0.8545 | 0.6298 | 0.8355 | 0.8824 | 0.8847
AMPDeep 0.7722 | 0.7934 | 0.7545 | 0.5458 | 0.7830 | 0.8697 | 0.8804
EnDL-HemoLyt | 0.7970 | 0.8369 | 0.7636 | 0.5983 | 0.8038 | 0.8853 | 0.8927
HemoDL 0.8465 | 0.8586 | 0.8363 | 0.6928 | 0.8558 | 0.9145 | 0.9222
HemoFuse 0.8424 | 0.7826 | 0.8919 | 0.6817 | 0.8609 | 0.9048 | 0.9109

Table 2. Comparison with other state-of-the-art methods on the dataset 1.

Model ACC |SP SN MCC |F1 AUC | AP

HemoPI 0.7600 | 0.6824 | 0.8248 | 0.5144 | 0.7891 | 0.8419 | 0.8487
HemoPred 0.7815 | 0.7500 | 0.8079 | 0.5589 | 0.8011 | 0.8615 | 0.8827
HLPpred-Fuse | 0.7753 | 0.7229 | 0.8192 | 0.5457 | 0.7988 | 0.8622 | 0.8810
HAPPENN 0.7630 | 0.7027 | 0.8135 | 0.5206 | 0.7890 | 0.8618 | 0.8658
HemoPImod 0.7600 | 0.7940 | 0.8022 | 0.5146 | 0.7845 | 0.8362 | 0.8447
HemoNet 0.7876 | 0.7162 | 0.8474 | 0.5709 | 0.8130 | 0.8629 | 0.8653
AMPDeep 0.7907 | 0.7500 | 0.8248 | 0.5771 | 0.8111 | 0.8559 | 0.8737
EnDL-HemoLyt | 0.7969 | 0.7567 | 0.8305 | 0.5896 | 0.8166 | 0.8663 | 0.8716
HemoDL 0.8153 | 0.7567 | 0.8644 | 0.6270 | 0.8360 | 0.8900 | 0.9009
HemoFuse 0.7908 | 0.7162 | 0.8531 | 0.5773 | 0.8162 | 0.8554 | 0.8890

Table 3. Comparison with other state-of-the-art methods on the dataset 2.

Model ACC |SP SN MCC |F1 AUC | AP

HemoPI 0.8382 | 0.8861 | 0.7702 | 0.6641 | 0.7973 | 0.9021 | 0.8647
HemoPred 0.8435 | 0.8838 | 0.7864 | 0.6756 | 0.8059 | 0.9079 | 0.8559
HLPpred-Fuse | 0.8221 | 0.8587 | 0.7702 | 0.6319 | 0.7816 | 0.9031 | 0.8625
HAPPENN 0.8462 | 0.8883 | 0.7864 | 0.6810 | 0.8086 | 0.9041 | 0.8646
HemoPImod 0.8368 | 0.8792 | 0.7766 | 0.6616 | 0.7973 | 0.8950 | 0.8350
HemoNet 0.8368 | 0.8792 | 0.7766 | 0.6616 | 0.7973 | 0.9040 | 0.8460
AMPDeep 0.8475 | 0.9066 | 0.7637 | 0.6835 | 0.8054 | 0.8988 | 0.8669
EnDL-HemoLyt | 0.8315 | 0.8861 | 0.7540 | 0.6499 | 0.7871 | 0.9005 | 0.8666
HemoDL 0.8703 | 0.9179 | 0.8025 | 0.7311 | 0.8364 | 0.9245 | 0.8851
HemoFuse 0.8810 | 0.8884 | 0.8706 | 0.7559 | 0.8581 | 0.9448 | 0.9198

Table 4. Comparison with other state-of-the-art methods on the dataset 3.

peptides. Following the principle that multiple features can obtain richer sequence information, we use word
embedding technique, BLOSUM62, DDE, DPC and CKSAAP to extract features. Since these methods are based
on two different ideas, multi-head cross-attention mechanism is used to integrate the information from the
two modalities. Cross-attention mechanism improves the accuracy and robustness of the model by effectively
exploiting the interaction information between two input features. Experimental results show that the proposed
model is competitive in identifying hemolytic peptides compared with the baseline model. However, it is worth
considering that although HemoFuse performs better than other existing models on the integrated dataset, it
does not significantly improve on the four basic datasets. Therefore, we will continue to explore appropriate
methods to improve the model to promote the development of peptide drugs.
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Model ACC |SP SN MCC |F1 AUC | AP

HemoPI 0.8043 | 0.8197 | 0.7866 | 0.6065 | 0.7885 | 0.9005 | 0.8977
HemoPred 0.8331 | 0.8583 | 0.8039 | 0.6640 | 0.8171 | 0.9075 | 0.8969
HLPpred-Fuse | 0.8239 | 0.8562 | 0.7866 | 0.6455 | 0.8055 | 0.9014 | 0.9002
HAPPENN 0.8365 | 0.8841 | 0.7816 | 0.6716 | 0.8160 | 0.9105 | 0.9066
HemoPImod 0.8285 | 0.8519 | 0.8014 | 0.6548 | 0.8125 | 0.9061 | 0.8987
HemoNet 0.8239 | 0.8261 | 0.8213 | 0.6466 | 0.8122 | 0.9026 | 0.8940
AMPDeep 0.8342 | 0.8583 | 0.8064 | 0.6664 | 0.8186 | 0.9083 | 0.9004

EnDL-HemoLyt | 0.8423 | 0.8755 | 0.8039 | 0.6827 | 0.8254 | 0.9156 | 0.9139

HemoDL

0.8791 | 0.9012 | 0.8535 | 0.7568 | 0.8675 | 0.9383 | 0.9341

HemoFuse

0.8816 | 0.9485 | 0.8045 | 0.7662 | 0.8632 | 0.9510 | 0.9490

Table 5. Comparison with other state-of-the-art methods on the dataset 4.

Model ACC |SP SN MCC |F1 AUC | AP

HemoPI 0.6891 | 0.8287 | 0.4480 | 0.2993 | 0.5137 | 0.7210 | 0.5503
HemoPred 0.6920 | 0.8101 | 0.4880 | 0.3138 | 0.5374 | 0.7354 | 0.5771
HLPpred-Fuse | 0.6744 | 0.7870 | 0.4800 | 0.2780 | 0.5194 | 0.7367 | 0.6058
HAPPENN 0.6803 | 0.7962 | 0.4800 | 0.2891 | 0.5240 | 0.7150 | 0.5755
HemoPImod 0.6891 | 0.7870 | 0.5100 | 0.3157 | 0.5508 | 0.7281 | 0.6091
HemoNet 0.6891 | 0.8009 | 0.4960 | 0.3099 | 0.5391 | 0.7328 | 0.6084
AMPDeep 0.6598 | 0.7777 | 0.4560 | 0.2440 | 0.4956 | 0.7104 | 0.5697

EnDL-HemoLyt | 0.6774 | 0.7962 | 0.4720 | 0.2815 | 0.5175 | 0.7218 | 0.5849

HemoDL

0.7243 | 0.8425 | 0.5200 | 0.3849 | 0.5803 | 0.7799 | 0.6846

HemoFuse

0.7575 | 0.8814 | 0.5793 | 0.4909 | 0.6620 | 0.8387 | 0.7118

Table 6. Comparison with other state-of-the-art methods on the integrated dataset.

Sequence Activity Real label | Predicted label | Predicted score
ALWFTMLKKLGTMALHAGKAALGAAANTISQGTQ | 100% hemolysis at 70uM 1 1 0.9987
AGWGSIFKHIFKAGKFIHGAIQAHND 50% hemolytic at > 256 ug/ml 1 1 0.9997
AQDIISTIGDLVKWIIDTVNKFTKK > 75% hemolysis at 30uM 1 1 0.9738
VKVGINGFGRIGRLVTRAAFHGKKVEVVAIND 10% hemolytic at 50.0 ug/ml 1 1 0.9918
PICTRNGLPVCGETCFGGTCNTPGCTCTW 100% hemolysis at > 0.5 mg/ml | 1 1 0.9990
RFGRFLRKIRRFRPKVTITIQGSARFG 50% hemolysis at 40pM 1 1 0.9920
NPVLVKDATGSTQFGPVQALGAQYSMWKLK 100% hemolysis at 0.77mM 1 1 0.9924
KFGKIVGKVLKQLKKVSAVAKVAMKKG 50% hemolysis at 274uM 1 1 0.9981
GLWDTIKQAGKKFFLNVLDKIRCKVAGGCRT 10% hemolytic at 4 pg/mL 1 1 0.9995
CTCSWPVCTRNGLPVCGETCVGGTCNTPG 50% hemolysis at >400uM 1 0 0.1752
Table 7. Case study on different active hemolytic peptides.
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Sequence Real label | Predicted label | Predicted score
GVFDIIKGAGKQLIAHAMEKIAEKVGLNKDGN 0 0 0.1094
KWKSFAKTFKSAKKTVAHTALKAISS 0 0 3.26E-05
WHWTWLRIRKKLR 0 1 0.8750
GKLTKDKLKRGAKKALNVASKVAPIVAAGASIAR | 0 0 1.71E-05
KKAAASAAAAASAAWAASAAAKKKK 0 0 1.84E-05
GIGKFLHSAKKPGKAFVGEIMNS 0 0 5.74E-05
KWKSFIKKLTKKFLHSAKKF 0 0 1.25E-05
GNNRPVYIPQPRPPHPRL 0 0 1.06E-05
HVDKKVADKVLLLKQLRIMRLLTRL 0 0 3.14E-05
FKCRRWQWRMKKLGAPSITCVRRAF 0 0 1.50E-05

Table 8. Case study on non-hemolytic peptides.
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Data is provided within the manuscript.
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