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Hemolytic peptides are therapeutic peptides that damage red blood cells. However, therapeutic 
peptides used in medical treatment must exhibit low toxicity to red blood cells to achieve the desired 
therapeutic effect. Therefore, accurate prediction of the hemolytic activity of therapeutic peptides is 
essential for the development of peptide therapies. In this study, a multi-feature cross-fusion model, 
HemoFuse, for hemolytic peptide identification is proposed. The feature vectors of peptide sequences 
are transformed by word embedding technique and four hand-crafted feature extraction methods. We 
apply multi-head cross-attention mechanism to hemolytic peptide identification for the first time. It 
captures the interaction between word embedding features and hand-crafted features by calculating 
the attention of all positions in them, so that multiple features can be deeply fused. Moreover, we 
visualize the features obtained by this module to enhance its interpretability. On the comprehensive 
integrated dataset, HemoFuse achieves ideal results, with ACC, SP, SN, MCC, F1, AUC, and AP of 
0.7575, 0.8814, 0.5793, 0.4909, 0.6620, 0.8387, and 0.7118, respectively. Compared with HemoDL 
proposed by Yang et al., it is 3.32%, 3.89%, 5.93%, 10.6%, 8.17%, 5.88%, and 2.72% higher. Other 
ablation experiments also prove that our model is reasonable and efficient. The codes and datasets are 
accessible at https://github.com/z11code/Hemo.
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Therapeutic peptides are widely favored by the medical and pharmaceutical fields due to their advantages 
of high permeability and small side effects. However, some of their characteristics have two sides, and their 
therapeutic effect will be affected if these characteristics cannot be controlled within a certain range1,2. For 
example, the hemolytic activity of therapeutic peptides refers to their ability to bind to red blood cells, allowing 
water and other solute molecules to enter red blood cells, thereby increasing the osmotic pressure gradient 
inside red blood cells and causing them to swell or even rupture3. It can be seen that therapeutic peptides with 
high hemolytic activity have functions such as destroying cancerous cells and targeted delivery of drugs. But for 
other therapeutic tasks, the hemolytic activity of therapeutic peptides must be reduced so that them can stably 
express a specific function without damaging normal cells4. Therefore, accurate prediction of the hemolytic 
activity of therapeutic peptides is helpful to promote the development of peptide drugs. Hemolytik (http://crdd.
osdd.net/raghava/hemolytik/) is a complete database of 3000 experimentally verified hemolytic peptides and 
non-hemolytic peptides5. The authors evaluated the hemolytic activity of peptide sequences on 17 different red 
blood cells and provided information related to each peptide sequence and its hemolytic activity. DBAASP is 
a constantly updated antimicrobial peptide database containing information on the bioactivity and toxicity of 
peptide sequences, which can be used for the study of hemolytic activity6. The establishment of these databases 
helps us to develop deep learning-based sequencing technologies with low cost and short time consumption 
compared to traditional biological experiments.

At present, the feature extraction methods used in identification models based on biological sequences can 
be broadly divided into two types: traditional hand-crafted feature extraction methods and feature extraction 
methods based on natural language processing technology. Hand-crafted feature extraction methods are designed 
by humans, offering low computational complexity and strong interpretability, such as binary encoding7, kme8, 
quasi-sequence-order (QSO)9. However, their effectiveness depends on the characteristics of the data itself, 
requiring the selection of appropriate descriptors based on the dataset’s properties. Feature extraction methods 
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based on natural language can uncover structures and patterns that are difficult for humans to detect and are less 
influenced by the dataset’s inherent characteristics. Nevertheless, their drawback is that they struggle to learn 
effective features when the data quality is poor. Word embedding10 is one of the most basic feature extraction 
methods in natural language processing, and many models are built on it, such as Bert11,12. In addition, there 
are pre-trained language models such as ProtTrans13, evolutionary scale modeling (ESM)14. Of course, there are 
also many models that consider both types of methods in order to extract more comprehensive information15. 
Machine learning and deep learning algorithms are used for further feature mining and classification. Common 
machine learning methods include AdaBoost16, random forest (RF)17, hidden markov model (HMM)18, etc. 
While they are simple and easy to understand, they are not well-suited for handling large, high-dimensional 
data, resulting in lower model accuracy. In contrast, deep learning, with its ability to automatically learn features, 
has demonstrated exceptional performance, far surpassing traditional machine learning algorithms, such as 
convolutional neural network (CNN)19, capsule network20, recurrent neural network (RNN)21, transformer22,23. 
Machine learning and deep learning each have their own unique advantages, and sometimes work well when 
combined24.

Most of the existing identification models for hemolytic peptides use traditional hand-crafted features and 
machine learning algorithms, such as HemoPI25, HemoPred26, HLPpred-Fuse27, HAPPENN28, HemoPImod29. 
The involved feature extraction methods collect the information of hemolytic peptides from various aspects such 
as amino acid composition, peptide composition, physicochemical properties, and atomic descriptors. Classifiers 
cover almost all common machine learning algorithms. However, the methods and datasets used by these models 
are outdated. Moreover, HemoPImod is unable to identify hemolytic peptide sequences longer than 25 amino 
acids. Language model-based methods did not start to appear until 2021. HemoNet30 is the first to employ the 
SeqVec language model to capture the contextual features of amino acids, but it struggles to generalize well to 
unseen data. With the development of stronger transformer models, AMPDeep first used transformer-based 
pretrained model (PROT-ERT-BFD) to represent the features of peptide sequences in 202231. However, its fine-
tuning process is extremely cumbersome, requiring the identification of a secondary distribution using specific 
keywords to fine-tune the model. In 2023, Sharma et al. tried to integrate multiple deep learning algorithms 
(Bi-LSTM, bi-directional temporal convolutional networks (Bi-TCN), CNN) to identify hemolytic peptides, 
and named it EnDL-HemoLyt32. EnDL-HemoLyt integrates hand-crafted features with deep learning features 
and also offers predictions for peptides with N/C-terminal modifications, though it may not be well-suited to 
the latest data. Yang et al. built the latest model, HemoDL, using both 7 hand-crafted features and 2 transformer-
based language models (Prot-T5-XL-UniRef50 and ESM2)33. Multi-feature combination can collect more 
sequence information, but HemoDL only simply concatenates the two types of features and inputs them into 
LightGBM for classification, and there is no sufficient fusion and complementarity between the features.

In this study, we continue the idea of multi-feature combination but make some improvements. We 
innovatively propose HemoFuse, an identification model of hemolytic peptides with multi-feature cross-fusion, 
as shown in Fig. 1. We use word embedding features and four hand-crafted features (BLOSUM62, dipeptide 
deviation from expected mean (DDE), dipeptide composition (DPC) and composition of k-spaced amino 
acid pairs (CKSAAP)) to represent peptide sequences. To be able to capture higher-order features, we add 
a transformer encoder layer after the embedding layer, similar to the structure of Bert. However, compared 
with Bert, this model has fewer parameters and is easy to transfer and use. In terms of hand-crafted feature 
methods, except DPC, the other three methods are applied to hemolytic peptides for the first time. Before feature 
fusion, we use bi-directional gated recurrent unit (Bi-GRU) to align the dimensions of hand-crafted features 
and embedding features. Then, multi-head cross-attention is used to deeply fuse the two features, which can 
strengthen the connection between them and complement each other’s advantages. Finally, CNN and multi-
layer perceptron (MLP) are used as classifier to determine the hemolytic activity of peptide sequences.

Materials and methods
Datasets
In order to facilitate the comparison with the existing models, we directly use the datasets provided in the 
benchmark paper, and all positive samples are therapeutic peptides with hemolytic activity33. As shown in 
Fig. 1, there are four common datasets and an integrated dataset, and Table 1 shows the specific number of each 
dataset. Dataset 1 and dataset 2 are from Hemolytik and DBAASP v.2 databases, both collected and collated by 
Chaudhary et al.25, with 1014 and 1623 sequences, respectively. Dataset 3 was collected by Patrick et al.28 from 
Hemolytik and DBAASP databases with 3738 samples. Dataset 4 is derived from the DBAASP v3 database 
and has 4339 samples as the dataset used in EnDL-HemoLyt32. The integrated dataset is composed of these 
four datasets, and CD-HIT34 with a threshold of 0.7 is utilized for de-redundancy processing, resulting in 1993 
sequences. These datasets are imbalanced, which better mimics the real-world situation where the positive and 
negative samples are not equal, so we do not apply an imbalanced treatment to enforce equality. In addition, 
these datasets are randomly divided into training datasets and independent test datasets according to 8:2.

Figures 2 and 3 show the sequence length distribution and amino acid composition of positive and negative 
samples from the training sets of datasets 1–4, respectively. As shown in Fig.  2, the lengths of positive and 
negative samples in dataset 1 are concentrated between 5 and 31 amino acids. In dataset 2, the lengths of positive 
and negative samples are roughly concentrated between 6 and 38 amino acids, with a few sequences having much 
longer lengths. The sequence length distribution is more uniform in datasets 3 and 4. Dataset 3 has sequences 
ranging from 7 to 35 amino acids, while dataset 4 ranges from 6 to 50 amino acids. We use the kpLogo tool35 
to analyze the amino acid composition preferences between positive and negative samples, as shown in Fig. 3. 
In dataset 1, amino acids K and L are more abundant in positive samples, with no significant enrichment in 
negative samples. In dataset 2, amino acid K is more enriched in positive samples, whereas the negative samples 
are more varied. In dataset 3, amino acids K and A are highly expressed in positive samples, and amino acids K, 
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R, and L are highly expressed in negative samples. In dataset 4, both positive and negative samples have higher 
frequencies of amino acids K, R, and L. These results indicate that using only peptide sequence composition for 
feature extraction is insufficient. Therefore, we will incorporate word embedding techniques into the feature 
extraction module to uncover the underlying patterns in the sequences.

Architecture of HemoFuse
As shown in Fig. 1, our model can be decomposed into three sub-modules: feature extraction and alignment 
module, feature cross-fusion module, and classification module. We use a combination of advanced word 
embedding features and traditional hand-crafted features to represent peptide sequences. Token embedding, 
position embedding, and transformer encoder together form a lightweight language model. BLOSUM62, DDE, 
DPC, and CKSAAP cover the evolutionary and compositional information of peptide sequences. Hand-crafted 
feature methods are specifically formulated based on the large number of available peptide sequences and still 
have great potential in representing peptide sequences. Bi-GRU can mine deeper context features and transform 
hand-crafted features to the appropriate dimensions to match embedding features. Then, we choose multi-head 
cross-attention to complete the deep fusion between different features, which is good at capturing the semantic 
relationship between two related but different sequences. This is the first application in the identification of 
hemolytic peptides. The classification module mainly consists of CNN and MLP.

Feature extraction and alignment
Word embedding feature
Word embedding technology follows the distributed semantics hypothesis, which uses the context around 
each word to express its semantic information36. In general, words with similar contexts will have similar 
semantic meanings. Compared with hand-crafted features, its biggest advantage is that its parameters can be 
continuously optimized throughout the training process, making it more suitable for the current data. Popular 
word embedding models include Word2Vec, GloVe, Bert, etc.

Datasets Dataset 1 Dataset 2 Dataset 3 Dataset 4 Integrated

Positive 552 885 1543 2011 814

Negative 462 738 2195 2328 1179

Training 812 1298 2990 3470 1594

Independent 202 325 748 869 399

Table 1.  Details of the datasets.

 

Fig. 1.  The architecture of HemoFuse.
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In this paper, we adopt token embedding and position embedding to initially represent the shallow 
information of protein sequences, and then use transformer encoder to capture the bidirectional relationship 
between amino acids in the sequence more thoroughly37. The architecture is more like a simplified Bert. Token 
embedding is a vector representation of the amino acid itself, and position embedding encodes the position 
information of the amino acid into a feature vector, just like RNN or LSTM can provide the position information 
of the sequence. The dimension of the two embeddings is 128. They are then combined and fed into transformer 
encoder layer. As shown in Fig. 1, transformer encoder is composed of multi-head attention, layer normalization, 
feed forword layer, and layer normalization in turn, with two residual connections. This structure does not have 
too many hidden layers, which can improve the computational efficiency. Self-attention mechanism can re-
encode the target feature by the correlation between the target feature and other features, so that new features 
contain more interaction information without considering their distance in the sequence. The number of heads 
of self-attention in this module is 4.

Fig. 3.  The plot of the amino acid composition.

 

Fig. 2.  The distribution plot of the sequence lengths.
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Hand-crafted feature
BLOSUM62 is an amino acid substitution scoring matrix for protein sequence comparison, which stems from the 
conservation between the same amino acids38. It reflects the evolutionary information of the protein sequence. 
The score is essentially the logarithm of the ratio of the likelihood of the different amino acids being homologous 
and non-homologous, and the formula is as follows:

	
s (a, b) =

1

λ
log

pab
fafb

� (1)

where pab is the frequency of occurrence in the existing homologous sequences assuming that a and b are 
homologous. fa and fb are the frequencies of residues a and b occurring in either sequence, assuming that a 
and b are not homologous, respectively. λ is the scaling parameter. If residues a and b are homologous, then 
pab > fafb and the score is positive. If residues a and b are not homologous, then pab < fafb and the score is 
negative. In summary, the similarity between every two amino acids can be calculated. BLOSUM62 matrix can 
represent each amino acid as a 20-dimensional feature vector and the protein sequence as a L×20 feature matrix, 
where L is the sequence length.

DDE derives from the difference in dipeptide composition between epitopes and non-epitopes, and uses this 
to indicate the extent to which dipeptide frequencies deviate from the expected mean39. It is able to analyze the 
composition and distribution of amino acids in peptide sequences. The feature vector is constructed based on 
three parameters: dipeptide composition measure (Dc), theoretical mean (Tm), and theoretical variance (Tv). Tm 
does not depend on a specific peptide sequence, so Tm(i) of 400 dipeptides is calculated first:

	
Tm(i) =

Ci1

CL−1
× Ci2

CL−1
� (2)

Ci1 is the codon number of the first amino acid in the dipeptide i and Ci2 is the codon number of the second 
amino acid. CL−1 is the total number of possible codons excluding stop codons. Given a peptide sequence of 
length L, Dc(i) and Tv(i) of the dipeptide i are calculated according to the following formula:

	
Dc(i) =

ni

L− 1
� (3)

	
Tv(i) =

Tm(i)

(
1− Tm(i)

)
L− 1

� (4)

ni is the frequency of occurrence of the dipeptide i and L− 1 is the number of dipeptides present in this 
sequence. Thus, DDE of the dipeptide i can be expressed as follows:

	
DDE(i) =

Dc(i) − Tm(i)√
Tv(i)

� (5)

Finally, the peptide sequence can be represented as a 400-dimensional vector:

	 DDE =
{
DDE(1), . . . , DDE(400)

}
� (6)

DPC is a common feature representation method based on amino acid composition information, which can 
provide detailed information about the arrangement of amino acids in peptide sequences40. It represents a 
protein sequence by counting the frequency of occurrence of all dipeptides in the protein sequence. The formula 
is as follows:

	
fi =

ni

N
� (7)

ni and fi are the number and frequency of occurrences of the dipeptide i in the sequence, respectively. There are 
a total of 400 dipeptides. Therefore, each protein sequence can be transformed into a 400-dimensional fixed-
length feature vector.

CKSAAP converts a protein sequence into a feature vector by using the constituent ratio of k-spaced residue 
pairs in this protein sequence fragment41. It is of great significance to understand the function and structure of 
proteins. Given a protein sequence of length L and a value of k, two residues separated by a distance of k are 
extracted and considered as a residue pair, so a total of L− k − 1 residue pairs can be extracted. The probability 
of occurrence of these residue pairs in the protein sequence is counted, resulting in a 400-dimensional feature 
vector:

	

(
LAA

L− k − 1
,

LAC

L− k − 1
, · · · , LY Y

L− k − 1

)

400

� (8)

LAA, LAC , and LY Y  is the number of occurrences of the corresponding residue pair. k can be set to 0, 1, 2, 3, 4, 5.
Bi-GRU can extract sequence information in proteins and deredundant hand-crafted features42. Both LSTM 

and GRU are common methods for processing long sequences, and the advantage of GRU is that it uses only two 
gates, which reduces the number of parameters by nearly a third and effectively avoids overfitting. Bi-GRU does 
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not change its original internal structure, but only applies the model twice in different directions. This ensures 
that the forward and backward sequence features are captured, resulting in richer features. Notably, it can also 
perform the task of feature alignment. We set the number of neurons in the hidden layer to 64, resulting in a 
128-dimensional feature vector, which is the same as the feature vector output by word embedding module.

Feature cross fusion
Word embedding features and hand-crafted features have collected a lot of information about the peptide 
sequence with different rules, so the next step is to consider how to make full use of these features to judge its 
hemolytic activity43–45. These two features contain their own information of interest, and their mutual relationship 
will be ignored if they are directly combined. In view of this, we adopt multi-head cross-attention mechanism to 
deeply fuse word embedding features and hand-crafted features, which is often used to deal with multi-modal 
features46,47. The fused new feature contains the interactive information of the two features. Compared with 
self-attention mechanism, the input of cross-attention mechanism has two parts: the “where” feature and the 
“what” feature. The “where” feature acts as the Query (Q), and the “what” feature is used to generate the Key and 
Value (K, V)48. In this study, we choose word embedding features Xemb as the “where” feature, and hand-crafted 
features Xhand as the “what” feature. The specific operations are as follows:

	 Q = WqXemb,K = WkXhand, V = WvXhand� (9)

Wq, Wk, and Wv are learnable parameter matrices. Then Q and K are used to calculate the correlation between 
each element of the two inputs to obtain attention weight. Next, update the feature vectors:

	

Cn (Xemb,Xhand) = Softmax


 QKT


D/h


 ∗ V � (10)

where D and h are the embedding dimensions and the number of heads, respectively. Finally, the fused features 
can be obtained by combining the outputs of multiple attention heads:

	 Cross− Attention = Concat [C1, · · · , CN ]Wc� (11)

where N is the number of attention heads and Wc is weight matrice. Obviously, in this process, cross-attention 
mechanism constantly updates the fusion features based on hand-crafted features with the information of word 
embedding features.

Classification
The final classifier consists of a CNN layer and four linear layers, and each layer corresponds to a set of a batch 
normalization layer and a dropout layer to prevent the model from overfitting. This structure can gradually 
reduce the dimension of the feature vector to avoid information loss.

Model evaluation
In this study, we train the model on each of the five datasets and evaluate the performance of the model on 
the corresponding independent test datasets using the following seven evaluation metrics: accuracy (ACC), 
specificity (SP), sensitivity (SN), Matthews correlation coefficient (MCC), F1 score, area under ROC curve 
(AUC) and average precision score (AP)33. The formulas are as follows:

	

ACC =
TP + TN

TP + FP + FN + TN

SP =
TN

FP + TN

SN =
TP

TP + FN

MCC =
TP × TN − FP × FN√

(TP + FN) (TN + FP ) (TP + FP ) (TN + FN)

F1 =
2× TP

2× TP + FP + FN

� (12)

Where TP, TN, FP, and FN represent correctly predicted positive samples, negative samples, and incorrectly 
predicted positive samples, negative samples, respectively. ACC represents the proportion of samples that are 
correctly predicted and reflects the global accuracy of the model. SP and SN are used to measure the ability of 
the model to correctly predict negative and positive samples, respectively. MCC combines true positives, true 
negatives, false positives, and false negatives, and is a more balanced index. F1 score is the average of precision 
and recall. When F1 is high, it also means that both precision and recall are high. The ROC curve can reflect 
the relationship between the true positive rate and the false positive rate of the model, the closer the curve is to 
the top left corner, the higher the accuracy of the model. The two ROC curves can be quantitatively compared 
by calculating AUC values. The precision-recall curve focuses on positive samples and is more suitable for 
imbalanced datasets. AP is the area under PR curve.
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Results and discussion
Experimental settings
HemoFuse is built in Python under the PyTorch framework. In the model training process, the cross-entropy 
loss function and Adam optimizer are used to continuously optimize the model parameters and reduce the 
loss. The batch size is 15, the learning rate is 0.001, and the iteration epoch number is 100. After the shallow 
features are extracted, we use a transformer layer with built-in 8 attention heads and Bi-GRU with 64 neurons 
to extract the deep features. In the feature cross fusion module, the number of heads for cross attention is 8. In 
the classification, the number of convolution kernels in the CNN layer is 64, the kernel size is 3, and the dropout 
ratio is 0.5. The number of neurons in the linear layers decreases layer by layer to 512, 128, 64, 2 with a dropout 
ratio of 0.6. Finally, it is normalized by the softmax function.

Ablation experiments with different hand-crafted feature methods
Feature representation is the cornerstone of classification models, and given previous studies on hemolytic 
peptides, we believe that hand-crafted feature extraction methods are able to extract beneficial features of peptide 
sequences. This paper aims to find some hand-crafted feature methods that have not been used in hemolytic 
peptides, so as to provide more possibilities for the identification model. BLOSUM62, DDE, and CKSAAP are 
all applied to hemolytic peptides for the first time. In addition, the experimental results show that DPC helps to 
improve the performance of the proposed model, so we also use it. Figure 4 is for the results of the four methods 
of ablation experiments. It is clear that both BLOSUM62 and DDE achieve incredible results. BLOSUM62 is 
the best method on the dataset 1 and 4, and its ACC values are 0.8177 and 0.8517, respectively. And on the 
dataset 4, its SN value is slightly higher than the SN value of combined features, which indicates that it is good 
at identifying positive samples. On the dataset 2 and 3, DDE has the best overall performance, with ACC values 
of 0.7846 and 0.8743, respectively, which are less than 1% different from the ACC values of combined features. 
The overall performance of CKSAAP and DPC is inferior, but they can produce better results when combined 
with the first two feature methods. On the dataset 1, the addition of CKSAAP and DPC improves the ACC, SN, 
MCC, and F1 values of the model by 2.47%, 4.51%, 5.02%, and 2.53%, respectively, compared with the best single 
method. Figure 5 shows the corresponding ROC and PR curves. CKSAAP and DPC have greater improvement 
on the datasets 1 and 4. Compared with the best single method, the AUC values are increased by 2.31% and 
3.49%, and the AP values are increased by 1.72% and 4.71%, respectively.

The effectiveness of cross-attention mechanism
In this paper, multi-head cross-attention mechanism is used to establish the connection between word 
embedding features and hand-crafted features, focusing on the key information of sequences. To illustrate the 

Fig. 4.  Results of ablation experiments with different hand-crafted feature methods.
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advantages of cross-attention mechanism, we compare it with common self-attention mechanism. Compared 
with cross-attention mechanism, self-attention mechanism has higher requirements on the input features, and 
all dimensions need to be equal. So we add a linear layer in front of multi-head self-attention module to align 
the dimensions of the two features. As shown in Fig. 6, the overall performance of cross-attention is better than 
that of self-attention. The ACC values on the four datasets are increased by 2.96%, 2.16%, 3.88%, and 4.14%, 
and the MCC values are increased by 3.68%, 4.02%, 8.31%, and 8.77%, respectively. To sum up, multi-head 
cross-attention can mine more discriminative features, thus improving the identification ability of the model. In 
addition, cross-attention mechanism abandons the feature concatenation operation, which greatly reduces the 
feature dimension and accelerates the training speed of the model.

Visualization of features before and after fusion
We use t-distributed stochastic neighbor embedding technique (t-SNE) to visualize the features obtained from 
word embedding feature module, hand-crafted feature module, and multi-head cross-attention module on a 
two-dimensional plane. As shown in Fig. 7, the four rows represent feature visualizations of the three modules 
on four independent test datasets, respectively. It can be seen that the positive and negative samples after 
embedding feature encoding are mixed states. However, relatively speaking, the negative samples at this time 
have a slight tendency to aggregate, which is obvious on the independent test dataset 3 and 4, as shown in Fig. 7 
(C-D). The second column is the feature distribution obtained by hand-crafted feature module. Because the 
built-in Bi-GRU is used for depth feature extraction, there is a clear boundary between the positive and negative 
samples. After multi-head cross-attention module and CNN layer, two obvious clusters are formed, and only a 
small number of samples are not separated correctly. The interval between the positive and negative samples is 
also further compared to the previous module. Thus, each of the submodules of HemoFuse can extract beneficial 
information to achieve the desired effect.

Comparison with other state-of-the-art methods
The model in this paper converts peptide sequences into word embedding feature vectors and hand-crafted 
feature vectors respectively, and innovatively uses multi-head cross-attention mechanism to complete further 
fusion. This operation can effectively integrate and fuse information from multiple modalities. In order to 
show that the structure of our model is feasible and effective, it is compared with nine existing models on four 
independent test datasets, and the results are shown in Tables 2, 3, 4 and 5. From the results of the dataset 1, 
we can see that our model is of great potential in identifying hemolytic peptides, second only to the best model 
HemoDL. Although the performance on the dataset 2 is unsatisfactory, it still outperforms most other models. 
On the dataset 3 and 4, the overall performance of HemoFuse is improved to some extent. It is worth noting that 
on the dataset 3, the SP and SN values are 0.8884 and 0.8706, respectively, and the MCC value is also increased 
by 2.17% compared with HemoDL. This indicating that the model can correctly distinguish the positive and 
negative samples on imbalanced datasets.

To test the comprehensive performance of the model, we combined the dataset 1–4 and controlled the 
similarity between sequences within 0.7. The model is also trained and tested in the same way on the integrated 
dataset, and the results are shown in Table 6. HemoFuse achieves surprising results, with improvements in all 
metrics. ACC, SP, SN, MCC, F1, AUC, AP are increased by 3.32%, 3.89%, 5.93%, 10.6%, 8.17%, 5.88%, 2.72%, 
respectively. These results show that our model has strong identification and generalization ability, so it can be 
used to predict hemolytic activity.

Case study
To conduct the case study, we incorporate 10 peptides with varying degrees of hemolytic activity and 10 non-
hemolytic peptides. These data come from Adiba et al.30, collected from the DBAASP and Hemolytik databases, 
which contain detailed information on experimentally verified cell toxicity/hemolytic activity of peptides. 

Fig. 5.  ROC and PR curves of different hand-crafted feature methods.
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By using these unseen data, we more accurately simulate real-world prediction scenarios, thereby effectively 
assessing the model’s practical utility and generalizability. The experimental results, as shown in Tables 7 and 
8, demonstrate a total accuracy of 90% for identifying both positive (hemolytic) and negative (non-hemolytic) 
samples. This result indicates that our model is capable of accurately recognizing different levels of hemolytic 
activity, particularly for peptides with lower hemolytic activity, which represents a more challenging task. 
Moreover, the model performs excellently in distinguishing between hemolytic and non-hemolytic peptides, 
proving its ability to discern subtle differences between the two categories. Misclassifying a hemolytic peptide 
as non-hemolytic in vivo could potentially lead to underestimating the degree of cellular damage, affecting 
disease diagnosis. Therefore, the model’s actual performance is crucial for understanding the occurrence and 
development of hemolysis in various diseases.

Discussion
Based on the experimental results, the proposed model, HemoFuse, demonstrates strong recognition capability 
by effectively integrating sequence features extracted from multiple aspects and performing classification tasks. 
As shown in Figs. 4 and 5, the four hand-crafted features are feasible and effective for identifying hemolytic 
peptide sequences, and their combination further enhances the model’s recognition ability. Figure 6 illustrates 
that the performance of cross-fusing features from two modalities is superior to simply concatenating them 
before inputting them into the self-attention mechanism. Word embedding features and hand-crafted features 
extract peptide sequence information using different rules: word embeddings utilize contextual information, 
while hand-crafted features focus on compositional information. The cross-attention mechanism captures the 
relationship between these two types of information, leading to improved model performance.

However, several issues warrant further investigation. As shown in Tables 2, 3, 4 and 5, the model exhibits 
higher sensitivity (SN) values on datasets 1 and 2, while the specificity (SP) value is higher on dataset 4. We 
hypothesize that these results are related to dataset balance. Datasets 1 and 2 have a higher proportion of 

Fig. 6.  Analysis results of different attention mechanisms.
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positive samples, whereas dataset 4 has more negative samples. The model’s ability to recognize certain sample 
types is significantly influenced by the quality of the data. To address this, we conduct experimental analysis 
on an integrated dataset derived from four datasets, but even after CD-HIT processing, the dataset remained 
imbalanced. Therefore, future research will involve collecting more hemolytic peptide sequences to train the 
model, aiming to reduce the model’s dependency on dataset balance. Additionally, the model’s training time is 
relatively long, which may be due to the model’s complexity or the computing resources used. In the next steps, 
we will attempt to streamline the model to improve training efficiency without compromising performance.

Conclusions
The hemolytic activity of therapeutic peptides is one of the key factors restricting their entry into clinical 
trials, so it is urgent to find more available low hemolytic peptides. In view of the tedious and time-consuming 
biological experiments, the classification model of deep learning is the best scheme to identify hemolytic 

Fig. 7.  Visualization of the features of different modules.
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peptides. Following the principle that multiple features can obtain richer sequence information, we use word 
embedding technique, BLOSUM62, DDE, DPC and CKSAAP to extract features. Since these methods are based 
on two different ideas, multi-head cross-attention mechanism is used to integrate the information from the 
two modalities. Cross-attention mechanism improves the accuracy and robustness of the model by effectively 
exploiting the interaction information between two input features. Experimental results show that the proposed 
model is competitive in identifying hemolytic peptides compared with the baseline model. However, it is worth 
considering that although HemoFuse performs better than other existing models on the integrated dataset, it 
does not significantly improve on the four basic datasets. Therefore, we will continue to explore appropriate 
methods to improve the model to promote the development of peptide drugs.

Model ACC SP SN MCC F1 AUC AP

HemoPI 0.8382 0.8861 0.7702 0.6641 0.7973 0.9021 0.8647

HemoPred 0.8435 0.8838 0.7864 0.6756 0.8059 0.9079 0.8559

HLPpred-Fuse 0.8221 0.8587 0.7702 0.6319 0.7816 0.9031 0.8625

HAPPENN 0.8462 0.8883 0.7864 0.6810 0.8086 0.9041 0.8646

HemoPImod 0.8368 0.8792 0.7766 0.6616 0.7973 0.8950 0.8350

HemoNet 0.8368 0.8792 0.7766 0.6616 0.7973 0.9040 0.8460

AMPDeep 0.8475 0.9066 0.7637 0.6835 0.8054 0.8988 0.8669

EnDL-HemoLyt 0.8315 0.8861 0.7540 0.6499 0.7871 0.9005 0.8666

HemoDL 0.8703 0.9179 0.8025 0.7311 0.8364 0.9245 0.8851

HemoFuse 0.8810 0.8884 0.8706 0.7559 0.8581 0.9448 0.9198

Table 4.  Comparison with other state-of-the-art methods on the dataset 3.

 

Model ACC SP SN MCC F1 AUC AP

HemoPI 0.7600 0.6824 0.8248 0.5144 0.7891 0.8419 0.8487

HemoPred 0.7815 0.7500 0.8079 0.5589 0.8011 0.8615 0.8827

HLPpred-Fuse 0.7753 0.7229 0.8192 0.5457 0.7988 0.8622 0.8810

HAPPENN 0.7630 0.7027 0.8135 0.5206 0.7890 0.8618 0.8658

HemoPImod 0.7600 0.7940 0.8022 0.5146 0.7845 0.8362 0.8447

HemoNet 0.7876 0.7162 0.8474 0.5709 0.8130 0.8629 0.8653

AMPDeep 0.7907 0.7500 0.8248 0.5771 0.8111 0.8559 0.8737

EnDL-HemoLyt 0.7969 0.7567 0.8305 0.5896 0.8166 0.8663 0.8716

HemoDL 0.8153 0.7567 0.8644 0.6270 0.8360 0.8900 0.9009

HemoFuse 0.7908 0.7162 0.8531 0.5773 0.8162 0.8554 0.8890

Table 3.  Comparison with other state-of-the-art methods on the dataset 2.

 

Model ACC SP SN MCC F1 AUC AP

HemoPI 0.7920 0.7717 0.8090 0.5808 0.8090 0.8682 0.8911

HemoPred 0.7673 0.7608 0.7727 0.5324 0.7834 0.8661 0.8811

HLPpred-Fuse 0.7772 0.7391 0.8090 0.5499 0.7982 0.8666 0.8950

HAPPENN 0.7970 0.7826 0.8090 0.5912 0.8127 0.8550 0.8688

HemoPImod 0.7970 0.8043 0.7909 0.5933 0.8093 0.8552 0.8789

HemoNet 0.8168 0.7717 0.8545 0.6298 0.8355 0.8824 0.8847

AMPDeep 0.7722 0.7934 0.7545 0.5458 0.7830 0.8697 0.8804

EnDL-HemoLyt 0.7970 0.8369 0.7636 0.5983 0.8038 0.8853 0.8927

HemoDL 0.8465 0.8586 0.8363 0.6928 0.8558 0.9145 0.9222

HemoFuse 0.8424 0.7826 0.8919 0.6817 0.8609 0.9048 0.9109

Table 2.  Comparison with other state-of-the-art methods on the dataset 1.
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Sequence Activity Real label Predicted label Predicted score

ALWFTMLKKLGTMALHAGKAALGAAANTISQGTQ 100% hemolysis at 70µM 1 1 0.9987

AGWGSIFKHIFKAGKFIHGAIQAHND 50% hemolytic at > 256 µg/ml 1 1 0.9997

AQDIISTIGDLVKWIIDTVNKFTKK > 75% hemolysis at 30µM 1 1 0.9738

VKVGINGFGRIGRLVTRAAFHGKKVEVVAIND 10% hemolytic at 50.0 µg/ml 1 1 0.9918

PICTRNGLPVCGETCFGGTCNTPGCTCTW 100% hemolysis at > 0.5 mg/ml 1 1 0.9990

RFGRFLRKIRRFRPKVTITIQGSARFG 50% hemolysis at 40µM 1 1 0.9920

NPVLVKDATGSTQFGPVQALGAQYSMWKLK 100% hemolysis at 0.77mM 1 1 0.9924

KFGKIVGKVLKQLKKVSAVAKVAMKKG 50% hemolysis at 274µM 1 1 0.9981

GLWDTIKQAGKKFFLNVLDKIRCKVAGGCRT 10% hemolytic at 4 µg/mL 1 1 0.9995

CTCSWPVCTRNGLPVCGETCVGGTCNTPG 50% hemolysis at > 400µM 1 0 0.1752

Table 7.  Case study on different active hemolytic peptides.

 

Model ACC SP SN MCC F1 AUC AP

HemoPI 0.6891 0.8287 0.4480 0.2993 0.5137 0.7210 0.5503

HemoPred 0.6920 0.8101 0.4880 0.3138 0.5374 0.7354 0.5771

HLPpred-Fuse 0.6744 0.7870 0.4800 0.2780 0.5194 0.7367 0.6058

HAPPENN 0.6803 0.7962 0.4800 0.2891 0.5240 0.7150 0.5755

HemoPImod 0.6891 0.7870 0.5100 0.3157 0.5508 0.7281 0.6091

HemoNet 0.6891 0.8009 0.4960 0.3099 0.5391 0.7328 0.6084

AMPDeep 0.6598 0.7777 0.4560 0.2440 0.4956 0.7104 0.5697

EnDL-HemoLyt 0.6774 0.7962 0.4720 0.2815 0.5175 0.7218 0.5849

HemoDL 0.7243 0.8425 0.5200 0.3849 0.5803 0.7799 0.6846

HemoFuse 0.7575 0.8814 0.5793 0.4909 0.6620 0.8387 0.7118

Table 6.  Comparison with other state-of-the-art methods on the integrated dataset.

 

Model ACC SP SN MCC F1 AUC AP

HemoPI 0.8043 0.8197 0.7866 0.6065 0.7885 0.9005 0.8977

HemoPred 0.8331 0.8583 0.8039 0.6640 0.8171 0.9075 0.8969

HLPpred-Fuse 0.8239 0.8562 0.7866 0.6455 0.8055 0.9014 0.9002

HAPPENN 0.8365 0.8841 0.7816 0.6716 0.8160 0.9105 0.9066

HemoPImod 0.8285 0.8519 0.8014 0.6548 0.8125 0.9061 0.8987

HemoNet 0.8239 0.8261 0.8213 0.6466 0.8122 0.9026 0.8940

AMPDeep 0.8342 0.8583 0.8064 0.6664 0.8186 0.9083 0.9004

EnDL-HemoLyt 0.8423 0.8755 0.8039 0.6827 0.8254 0.9156 0.9139

HemoDL 0.8791 0.9012 0.8535 0.7568 0.8675 0.9383 0.9341

HemoFuse 0.8816 0.9485 0.8045 0.7662 0.8632 0.9510 0.9490

Table 5.  Comparison with other state-of-the-art methods on the dataset 4.
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