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The microphase-separated structures of block copolymers are inherently highly ordered local 
structures, commonly characterized by differences in domain width and curvature. By focusing on 
diblock copolymers, we propose local order parameters (LOPs) that accurately distinguish between 
adjacent microphase-separated structures on the phase diagram. We used the Molecular Assembly 
structure Learning package for Identifying Order parameters (MALIO) to evaluate the structure 
classification performance of 186 candidate LOPs. MALIO calculates the numerical values of all 
candidate LOPs for the input microphase-separated structures to create a dataset, and then performs 
supervised machine learning to select the best LOPs quickly and systematically. We evaluated the 
robustness of the selected LOPs in terms of classification accuracy against variations in miscibility 
and fraction of block. The minimum local area size required for LOPs to achieve their classification 
performances is closely related to the characteristic sizes of the microphase-separated structures. The 
proposed LOPs are potentially applicable over a large area on the phase diagram.

Block copolymers are commonly used in automotive parts, electronic devices, and filtration membranes. Such 
polymers are composed of several blocks that spontaneously form microphase-separated structures, depending 
on the miscibility and fraction of these blocks1,2. For example, at high temperatures, block copolymers form 
homogeneous and disordered polymer melts. As the polymer melts are cooled, the miscibility decreases and 
the blocks form morphologies that are separated from each other in a manner that minimizes the contact 
between the blocks. Spontaneous formation of this morphology, known as self-assembly, is expected to play 
an important role in improving the functionality and manufacturing efficiency of nanodevices. In previous 
studies, the nanostructure of polymer thin films coated on semiconductor substrates was controlled to less than 
10 nm3–5. Other studies have been conducted to reduce the time required for film formation in semiconductor 
manufacturing6,7. The development of porous polymer films based on co-continuous structures has also been 
actively investigated8,9. In developing these polymer products based on self-assembly, progress has been made in 
understanding the morphology, formation rate, and properties of the polymers.

The thermal and mechanical properties of block copolymer products are highly dependent on 
microphase-separated structures10. Transmission electron microscopy(TEM)11–14, small-angle X-ray 
scattering(SAXS)11–13,15,16, and neutron scattering(NS)15,17 are often used to identify these structures at the 
nanoscale. TEM images allow direct observation of nanoscale structures, but pre-processing of the sample 
may limit the structural information away from its inherent state. While scattering profiles have quantitative 
information about the shape and size of the structure, it is difficult to obtain even the molecular arrangement in 
real space. Therefore, Matsen et al. numerically calculated the segment profiles of polymer in lattice space based 
on self-consistent field theory and estimated equilibrium structures such as lamellar, gyroid, and cylindrical 
phases18–21. This is a numerical simulation method for analyzing the conformation of polymer chains and 
the curvature of domain surfaces, by numerically calculating the free energy described by the Flory–Huggins 
parameter χ and the fraction f of the polymer segments. Calculating the free energy of polymers in lattice 
space enables estimation of the phase equilibrium structures on a continuum-scale in accordance with f and 
χ. However, averaged many-body interactions and fixed lattices of polymers inhibit understanding of the 
morphology formation caused by changes in external field and thermodynamic conditions2,22,23.

Molecular-level modeling solves the above problem, but there should not be a gap between the model and 
continuum-scale structural information. Therefore, backmapping, which estimates molecular-level structures 
based on continuum-scale structural information, has been considered24–27. Aoyagi et al. backmapped the 
microphase-separated structures of block copolymers from a continuum model to a coarse-grained molecular 
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configuration24 by a density biased Monte Carlo (DBMC) method28. Pezeshkian et al. proposed a method to 
backmap the coarse-grained molecular configurations of lipid membranes from the continuum model of lipid 
membranes represented by triangular polygonal meshes27. Backmapping reveals molecular behaviors that cannot 
be easily discussed at the continuum-scale. For example, a continuum spherical structure was backmapped to 
a Kremer–Grest bead spring (KGBS) model29,30, in which polymer segments and their bonds are represented 
by beads and springs, and the entanglement and mechanical properties of the polymer chains during extension 
were evaluated24,25. Nevertheless, the relationship between polymer chain dynamics and the formation process 
of microphase-separated structures is still not fully understood. This is because microphase-separated structures 
are inherently highly ordered structures. Furthermore, there are limitations in characterizing the ordered 
structure simply by the width and curvature of the domains formed by polymer segments31–33.

Recently, attempts have been made to introduce local order parameters (LOPs) as a method of characterizing 
highly ordered molecular local structures. Various LOPs that have been independently devised over recent 
decades, with the help of machine learning, are useful in classifying various patterns of ordered structures beyond 
what was previously assumed. LOPs can accurately distinguish not only basic crystal structures such as face-
centered cubic lattice, body-centered cubic lattice, and hexagonal close-packed34; but also ice polymorphs35–37, 
ordered structures in liquid crystals38,39, Weaire–Phelan structures40, and polymer lamellar structures41. 
Furthermore, some of these LOPs also explain global ordering by rationally describing the nucleation-to-
percolation transition38,39. Such features of LOPs might provide new insights into the relationship between 
microphase-separated structures of block copolymers and polymer dynamics. In fact, it has been proposed to 
introduce the LOP into the Ginzburg–Landau-type free energy to describe the liquid–liquid phase separation 
structure and dynamics of water42, which is much simpler than that of block copolymers. The introduction 
of the LOP and Ginzburg–Landau equation also for block copolymers may provide a detailed description of 
the changes in mesoscale ordered structures associated with phase transitions. Furthermore, since the LOP is 
representative of molecular-scale ordered structures in this approach, it may lead to an understanding of the 
formation process of multiscale ordered structures. However, LOPs have not been evaluated in the structures of 
basic diblock copolymers.

In this study, we quickly and systematically searched for LOPs that can distinguish microphase-separated 
structures by machine learning from a large number of candidate LOPs. In particular, we focused on classifying 
four types of ordered structures among the microphase-separated structures that manifest in diblock copolymers. 
First, we calculated segment profiles on the lattice space corresponding to the lamellar, gyroid, and cylindrical 
structures based on self-consistent field theory, and then created each structure represented by the KGBS model 
by backmapping. Subsequently, we searched for LOPs that distinguish neighboring microphase-separated 
structures (disorder and cylinder, cylinder and gyroid, gyroid and lamella, as well as cylinder and lamella) on the 
phase diagram by using the Molecular Assembly structure Learning package for Identifying Order parameters 
(MALIO)39. MALIO computed the numerical values of all candidate LOPs for the input microphase-separated 
structures to create a dataset, and then performed supervised machine learning to select the best LOPs. Finally, 
we evaluated the applicability of the discovered LOPs over a large area on the phase diagram.

Results and discussion
Before attempting to find LOPs that distinguish microphase-separated structures, we reveal the difficulty of 
characterizing these structures without LOPs by comparing the radial distribution functions (RDFs) for each 
structure on f = 0.33. Figure 1 shows (a) RDFs computed without distinguishing between block types, (b) RDFs 
computed for only the A-blocks, and (c) RDFs computed for only the B-blocks. When block species were not 
distinguished, lamellar, gyroid, cylinder and disorder were barely distinguishable. In addition, even when we 
calculated RDFs for only the A- or B-blocks, the RDFs of the three ordered structures almost overlapped. In 
other words, the RDFs were only capable of distinguishing disordered structure from the rest. We evaluated 
LOPs with the aim of overcoming these difficulties and clearly distinguishing complex ordered structures with 
simple scalar parameters.

The search for LOPs that distinguish between disordered and cylindrical structures is expected to be the 
easiest problem in this study (see Fig. 1b,c), and therefore we considered two options in the LOP search through 
this problem. The first is whether or not to include block type (A or B) information in the structures to be input 
into MALIO. If the block species information is not given, it is unlikely that a useful LOP will be found because 
both structures are indistinguishable. In fact, the best-performing LOP proposed by MALIO had a classification 
accuracy of ca. 0.555, which implies a classification failure. Note that the classification accuracy defined in the 
Methods section is the correct response rate to multiple choice questions. The theoretical minimum correct 
response rate for classifying a large number of local structures into two names is 0.5, which is equal to the 
theoretical correct response rate for randomly answering a large number of multiple choice questions with two 
options. Given information on block species, it is efficient to find useful LOPs from only the information on the 
species (A) with the lowest number of particles in the structure. As described in the next section, “Disordered 
and cylindrical structures,” by inputting only the A-block structures into MALIO, we found LOPs with high 
classification accuracy.

The second is the choice of method for extracting local structure. MALIO extracts the local structure of all 
beads in the input structures by cutoff or count-up methods, but the difference in these extraction methods can 
have a substantial impact on the accuracy with which the structures is classified. For this reason, we compared 
the classification accuracies of the two extraction methods. The cutoff method defines the “spherical” local 
structure of a certain bead as all beads within a cutoff radius rc centered on that bead. The count-up method 
defines the local structure of a certain bead by counting up to an upper limit number Nlim of beads in order of 
proximity from that bead. The classification accuracy of the count-up method was nearly equal to that of the 
cutoff method. However, the count-up method lacked neighboring particles for LOP calculation when we set the 
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Nlim value above a certain level. This is because of a combination of the count-up method’s property of using Nlim 
neighboring particles for the LOP calculation in order of shortest distance and the fact that there is a space where 
there were no particles under the “A or nothing” condition in which all B-blocks are removed.

Therefore, we used only the A-blocks as the input structures, and we used the cutoff method to determine the 
local structure. Thus the shape of the local structure was spherical. In the following sections, we reveal the results 
of the search for LOPs that distinguish disordered and cylindrical, cylindrical and gyroid, gyroid and lamellar, as 
well as cylindrical and lamellar structures.

Disordered and cylindrical structures
Table 1 shows the classification accuracy (c) of LOPs that distinguish disordered and cylindrical structures on 
f = 0.33. Here, we set rc = 2.850, 3.700, and 4.700 σu based on the peak positions of the RDFs for the disordered 
and cylindrical structures (Fig. 1b). The first column in Table 1 is the cutoff radius rc defining the local structure 
size for calculating LOP values. The second and subsequent columns show LOPs with the highest classification 
accuracy for each definition function and their classification accuracy. The subscripts of LOPs are the internal 
parameters included in the definition function. For details on internal parameters, see Sect. S1 in Supplementary 
Materials, and Ref.39,40. For all LOPs, the classification accuracy tended to improve with increasing rc. For the 
classification of disordered and cylindrical structures on f = 0.33, the most appropriate LOP was QS

6. The QS
6 

showed a high classification accuracy of c = 1.000 even in the relatively small local structure size of rc = 4.700 σu
. The diameter of the local area (= 9.4 σu) was smaller than the diameter of the cylinder (≈ 16 σu), the 
characteristic size of a cylindrical structure, but larger than the minimum thickness of the space between the two 
cylinders (≈ 8.5 σu). The distinction between disordered and cylindrical structures using QS

6 with rc = 4.700 σu 
was also performed for f = 0.32 and χN = 40. The QS

6 with rc = 4.700 σu was able to distinguish between the 
two structures with the high classification accuracy of c = 1.000 under both conditions. The diameter of the 
local area was larger than the minimum thickness of the space between the two cylinders for f = 0.32, 0.33 and 
χN = 40. Therefore, by using QS

6 and setting rc = 4.700 σu, the disordered and cylindrical structures could be 
classified with sufficient accuracy over a wide range on the phase diagram.

Cylindrical and gyroid structures
Table 2 shows the classification accuracy (c) of LOPs that distinguish between cylindrical and gyroid structures 
on f = 0.33. Here, we set rc = 3.700, 4.750, 5.650, and 6.575 σu based on the peak positions of the RDFs for 
the cylindrical and gyroid structures (Fig. 1b). Even for the LWT, LQT, and A series, which have the highest 
classification accuracy among those shown in Table 2 (c ≤ 0.96), it was impossible to accurately characterize 
and distinguish the ordered structures with rc ≤ 6.575 σu. Consequently, we conducted an additional evaluation 
by using the LWT, LQT, and A series with rc = 7.500 and 8.500 σu; LQT

4  with rc = 8.500 σu can distinguish 
cylindrical and gyroid structures with c = 0.999 (Fig. 2). The diameter of the local area for calculating LOP 
values (= 15 σu) was shorter than the diameter of the cylinder (≈ 16 σu), while the diameter of the local 
area (= 17 σu) was longer than the diameter of the cylinder. Furthermore, using LQT

4  with rc = 8.500 σu to 
distinguish cylindrical and gyroid structures on f = 0.32 and χN = 40, respectively, we distinguished the two 
ordered structures with high classification accuracy of c = 0.999 and 1.000 in both conditions. The increase 

Fig. 1.  RDFs of microphase-separated structures. We calculated RDFs from (a) molecular structures with 
no distinction between the A- and B-blocks, (b) molecular structures consisting only of the A-blocks, and (c) 
molecular structures consisting only of the B-blocks. The solid red and dotted green, dotted blue, and dotted 
orange lines indicate lamellar, gyroid, cylindrical, and disordered structures, respectively. From (b,c), it is clear 
that it is easy to distinguish the disordered structure from ordered structures, but it is not easy to distinguish 
between ordered structures .
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in classification accuracy on χN = 40 corresponded to a decrease in cylinder diameter, indicating that the 
diameter of the local area must be set larger than the cylinder diameter for accurate classification of cylindrical 
and gyroid structures. Therefore, by using LQT

4  and by defining a sufficient local structure size of rc = 8.500 σu, 
cylindrical and gyroid structures could be classified with high accuracy over a wide range on the phase diagram.

Gyroid and lamellar structures
Table 3 shows the classification accuracy (c) of LOPs distinguishing gyroid and lamellar structures on f = 0.33
. Here, we set rc = 3.750, 4.750, 5.650, and 6.575 σu based on the peak positions of the RDFs for the gyroid 
and lamellar structures (Fig. 1b). When we classified gyroid and lamellar structures by setting rc = 5.650 and 
6.575 σu, LQT

4 , W L
4  and LWT

4  exhibits a high classification accuracy of c = 1.000. However, it was reported that 
the W L and LWT series could not be accurately distinguished between highly ordered molecular structures41. 
Therefore, we adopted the LQT

4 , which showed the highest classification accuracy among all LOPs. The 
distinction between gyroid and lamellar structures using LQT

4  with rc = 5.650 σu was also made for f = 0.32 
and χN = 40. The LQT

4  with rc = 5.650 σu exhibited the high classification accuracy c = 1.000 when f = 0.32

, while the accuracy was as low as c = 0.625 when χN = 40. We assumed that the decrease in classification 
accuracy on χN = 40 was associated with an increase in the lamellar thickness. LQT

4  accurately distinguishes 
between gyroid and lamella when the spherical local structure contains interfacial structures. In other words, 
LQ

T
4  is sensitive to the difference between the interfacial structures of gyroid and lamella. When the lamellar 

thickness is larger than the spherical local structure, the interface structure of the lamella is less likely to be 
contained within the local structure. This makes it difficult to distinguish the interface structure from that of 
the gyroid, leading to a decrease in classification accuracy. Therefore, additional structure classification was 
performed by setting the local structure size for calculating LOPs (i.e., twice the cutoff radius) equal to the 
lamellar thickness. Figure 3a shows the classification accuracy of LOPs for the QS, QL, LQ, and LQT series. 
The LQT

4  with rc = 7.500 σu showed the highest classification accuracy of c = 1.000. The fact provides strong 
evidence that LQT

4  has universality to distinguish between gyroid and lamella, as long as the appropriate local 
structure information is provided for the LOP calculation. In other words, LQT

4  has the ability to distinguish 
between gyroid and lamella over a wide area on the phase diagram.

Cylindrical and lamellar structures
Table 4 shows the classification accuracy (c) of LOPs that distinguishes between cylindrical and lamellar 
structures on f = 0.33. Here, we set rc = 3.700, 4.750, 5.650, and 6.550 σu based on the peak positions of the 
RDFs for the cylindrical and lamellar structures (Fig. 1b). LQT

4  with rc = 5.650 σu showed a high accuracy 
of c = 1.000 in the structural classification of cylindrical and lamellar structures. The local structure size for 
calculating LOPs was larger than the lamellar thickness. The distinction between cylindrical and lamellar 
structures using LQT

4  with rc = 5.650 σu was also made for f = 0.32 and χN = 40. LQT
4  with rc = 5.650 σu 

Fig. 2.  Classification accuracy (c) of LOPs to distinguish between cylindrical and gyroid structures on 
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exhibited the high classification accuracy c = 1.000 when f = 0.32, while the accuracy was as low as c = 0.733 
when χN = 40. Therefore, additional structure classification was performed by setting the local structure size 
equal to the lamellar thickness. Fig. 3b shows the classification accuracy of LOPs for the QS, QL, LQ, and LQT 
series. The LQT

4  with rc = 7.500 σu showed the highest classification accuracy of c = 0.993. The fact implies that 
LQ

T
4  has the universality to distinguish between cylindrical and lamellar structures, i.e., the ability to distinguish 

between the two structures over the wide area on the phase diagram.

Conclusion
In this study, to accurately characterize microphase-separated structures of diblock copolymers, we searched 
for LOPs that accurately distinguish adjacent structures on the phase diagram. We used f = 0.32, 0.33, and 
χN = 40 as the straight lines on the phase diagram where four representative microphase-separated structures 
(i.e., disorder, cylinder, gyroid, and lamella) occur. f = 0.33 was especially important because of the large 
area on the phase diagram for each structure and its correspondence with the change in structural order with 
temperature. We created four microphase-separated structures by careful backmapping from the continuum 
model to the KGBS model, and we used the machine learning software MALIO to evaluate the structural 
classification performance of the 186 LOP candidates. We used the structure of the A-blocks as the minimum 
structural information to be input into MALIO. MALIO calculated the numerical values of all LOP candidates 
for the input structures to create a dataset, and then performed supervised machine learning to select the best 
LOPs in a fast and systematic manner.

In general, LQT
4  exhibited superior performance in distinguishing between ordered structures. In other 

words, it gave the smallest local structure area for LOP calculation that achieved high classification accuracy. On 
f = 0.33, lamellar and gyroid, cylindrical and gyroid, and cylindrical and lamellar structures were classified with 
high accuracy using LQT

4  of rc = 5.650, 8.500, and 5.650 σu, respectively. The cylindrical and lamellar structures 
are not adjacent on the phase diagram on f = 0.33, but they can be adjacent under other conditions, hence 
the classification was performed. QS

6 of rc = 4.700 σu was superior in distinguishing cylindrical structure from 
adjacent disordered structure. These results were similar on f = 0.32, suggesting the high robustness of the LOPs 
selected by MALIO to f. Furthermore, on χN = 40, the LOPs selected were exactly the same as in the constant 
condition of f. The values of rc were also the same, except for the classifications containing lamellar structure. 
For the classification including lamellar structure, increasing rc to approximately half of the lamellar thickness 
(7.5 σu) resulted in a classification accuracy of c = 0.993 or better for LQT

4 . Therefore, the LOPs selected by 
MALIO are highly robust to χN . The LOPs proposed in this study might be applicable to a wide area on the 
phase diagram.

The minimum local area size required for the LOPs selected by MALIO to achieve their classification 
performance seems to be closely related to the characteristic size of microphase-separated structures. For 
structure classification including disordered structure, high classification accuracy was achieved by defining a 
relatively small local structure area. This means that whether the blocks form domains or are uniformly distributed 
can be determined with less information contained in the local structure area. The accurate classification of 

Fig. 3.  Classification accuracy (c) of LOPs that distinguish between the ordered structures, which include 
lamellar structure on χN = 40. (a) Structural classification of gyroid and lamellar structures. (b) Structural 
classification of cylindrical and lamellar structures. Among QS

4, QL
4 , LQ4, and LQT

4  exhibited high robustness 
to χN .
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cylindrical and gyroid structures required the definition of a local structure area of rc = 8.500 σu, which exceeds 
a maximum diameter of the cylindrical structure of approximately 16 σu. The accurate classification of cylindrical 
and lamellar, or gyroid and lamellar structures required the definition of a local structure area of rc = 7.500 σu
, which corresponds to a maximum lamellar thickness of about 15 σu. This means that the accurate distinction 
between highly ordered domains requires information contained in the local structure area equivalent to a size 
representative of the structure of domain. Although it is difficult to easily measure the domain size of gyroid 
structure, we obtained high classification accuracy by defining the local structure area based on the characteristic 
domain size of lamellar or cylindrical structures.

Overall, the strategy of systematically screening a large number of LOP candidates was effective in finding 
LOPs that distinguish microphase-separated structures. Whether the proposed LOPs can describe changes 
in local order structure during phase transitions will need to be demonstrated in future studies, such as by 
conducting careful structural transition simulations. However, the LOPs proposed in this study can at least 
reliably distinguish the ordered structure before and after the phase transition, and is therefore a promising first 
candidate for parameters that describe the details of the phase transition. The introduction of a good quality 
LOP into the Ginzburg-Landau equation may lead to a detailed description of the mesoscale ordered structure 
transition associated with phase transitions. Furthermore, since the LOP is determined from the molecular-scale 
ordered structures, it may lead to an understanding of the formation process of the multiscale ordered structure. 
Changes in ordered structure and formation processes of block copolymers are typical problems that are not 
easily accessible experimentally. It is expected that LOPs discovered in a scheme similar to this study will help to 
solve these problems, leading to more precise control of pattern formation, etc. at the experimental level.

Methods
AnBm diblock copolymers consisting of two types of polymer blocks (A and B) were prepared by backmapping 
from the continuum model to the KGBS model. The number of polymer segments in the A- and B-blocks of 
one polymer chain is indicated by n and m, respectively, and the fraction of block f = n/(n +m) = n/N . It is 
clear that the four microphase-separated structures (disorder, cylinder, gyroid, and lamella) exist on the lines 
f = 0.32, 0.33, and χN = 40 shown in Fig. 4. For f = 0.32 and 0.33, disordered, cylindrical, gyroid, and lamellar 
structures were created by setting χN  to 0, 20, 40, and 79, respectively. Note that N was set to 125 and 120 for 
f = 0.32 and 0.33, respectively. Recall that when f is fixed, the variation of χN  corresponds to a temperature 
increase or decrease. For χN = 40, disorder, cylindrical and lamellar structures were created by setting f to 0.05, 
0.25 and 0.50, respectively, while setting N = 120. Note that the gyroid structure is at the intersection of the lines 
f = 0.33 and χN = 40, so the gyroid structure created for the line f = 0.33 was used. In the next subsection, the 
procedure for creating the structures with the continuum model will be explained, using the condition f = 0.33 
as an example.

Microphase-separated structures calculated from continuum models
First, to obtain the equilibrium structure of the AB block copolymer corresponding to each point shown in Fig. 
4, the segment profile of each structure was calculated with Simulation Utilities for Soft and Hard Interfaces 
(SUSHI)43 developed by Honda et al. SUSHI places polymer chains in a lattice space and calculates segment 
profiles that minimize the free energy of polymers. The segment profile of lamellar structure was calculated 
by defining a one-dimensional (1D) lattice (Fig. 5a). Here, red and blue represent the profiles of the polymer 

Fig. 4.  Phase diagram of diblock copolymers depicted with data from Ref.18. (DIS) Disordered, (C) cylindrical, 
(G) gyroid, (L) lamellar phases. The black dotted, red solid, and blue solid lines are constant conditions with 
f = 0.33, f = 0.32, and χN = 40, respectively. The blue, green, and red points represent cylindrical, gyroid, 
and lamellar structures, respectively, sampled in this work. We created all the microphase-separated structures 
corresponding to the points by backmapping from the continuum model to the KGBS model.
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segments of the A- and B-blocks, respectively. By defining two-dimensional (2D) and three-dimensional (3D) 
lattices, segment profiles of cylindrical and gyroid structures were calculated as well (Fig. 5b–d). These segment 
profiles were then backmapped to the KGBS model with coarse-grained molecular dynamics program by Nagoya 
Cooperation (COGNAC)28 developed by Aoyagi et al.

Backmapping from continuum model to Kremer–Grest bead spring model
Using the DBMC method implemented in COGNAC, the segment profiles of cylindrical, gyroid, and lamellar 
equilibrium structures were efficiently backmapped to the KGBS model. The DBMC method sequentially places 
KG beads of polymer chains based on the Monte Carlo method weighted by the segment profiles. The number 
of KG beads, N, was set to 120 to clearly represent the polymer chains of the A40B80 diblock copolymer. The 
number of molecules M = 1940, mass m = 1.0mu, and density ρ = 0.90mu/σ

3
u were set. The units of energy, 

length, mass, and time are represented by ϵu, σu, mu, and τu (τu =
√
muσ2/ϵu), respectively. The unit of 

temperature T is ϵu/kB, where kB is the Boltzmann constant. The initial placement of KG beads that comprise 
the lamellar structure was achieved by scaling the 1D lattice size of the continuum model to the unit cell size 
of the KGBS model in the z-direction by the DBMC method. The unit cell sizes in the x- and y-directions were 
calculated from M and ρ. The initial placement of KG beads comprising the gyroid and cylindrical structures was 
achieved similarly. For disordered structures, KG beads were placed randomly. The intermolecular interactions 
are represented by Lennard–Jones (LJ) potential ULJ, and the intramolecular interactions are represented by a 
combination of the finite extensible nonlinear elastic (FENE) potential UFENE and ULJ.

	
ULJ
ij = 4ϵij

[(
σij
rij

)12

−
(
σij
rij

)6
]
,� (1)

	
UFENE
ij = −1

2
KR2

0 ln

[
1−

(
rij
R0

)2
]
,� (2)

where the subscripts i and j denote the index of KG beads. The parameter σij  was set to 1.0 σu regardless of the 
combination of block types determined by the i,j pairs. On the other hand, the parameter ϵij  was set to 1.0 ϵu 
when i and j were the same block type, and 1.0 ϵu − δϵ when they were different block types. δϵ is a parameter 
for adjusting the miscibility between the A- and B-blocks; and was set to 0.00, 0.10, 0.15 and 0.50 ϵu for the 
disordered, cylindrical, gyroid, and lamellar structures, respectively. The δϵ values were determined by creating 
lamellar structures of A50B50 diblock copolymer on χN = 20, 40, 79 and comparing the interface profiles in the 
continuum and KGBS models. The LJ interactions were truncated at 2.5 σu. The maximum extent of the bond 
R0 = 1.5 σu, and the spring constant K = 30 ϵu/σ

2
u were set. The velocity verlet method was used for numerical 

integration, and the time increment in the time evolution was set to 0.005 τu. Coarse-grained molecular 
simulations were performed with the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)44.

Fig. 5.  Segment profiles of microphase-separated structures calculated with SUSHI. (a) 1D profile of lamella, 
(b) 2D profile of cylinder, (c,d) 3D profile of gyroid. Red and blue are the segment profiles of the A- and 
B-blocks, respectively. (d) Surface view of the interface between the A- and B-blocks. Figure (b–d) were 
generated with SUSHI [Version: 11.0 Revision 200530, URL:https://octa.jp/].
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The DBMC method places KG beads with fixed bond length between beads, and therefore whether all polymer 
chains form a natural chain conformation is unclear. Therefore, to stabilize the conformation, relaxation 
calculations were performed under NVT (T = 1.0ϵu/kB) at 6.0× 104 τu. The constant bead number, volume, and 
temperature (NVT) was performed by the Nose–Hoover method. Next, relaxation calculations were performed 
under NPT (T = 1.0ϵu/kB, P) at 1.5× 106 τu. The constant bead number, pressure, and temperature (NPT) were 
performed by the Parrinello–Rahman method. The structures thoroughly relaxed by the NPT simulations (Fig. 
6) were selected as the structures that should be input into MALIO.

MALIO
MALIO is a machine learning package that identifies local structures hidden in complex structures based on 
LOPs39. MALIO implements and templates promising concepts of LOPs including algorithms, and takes proper 
account of the homogeneity of the dataset. When the structures to be distinguished are input into MALIO, a 
data set of values of a large number of candidate parameters are generated based on the templates (i.e., LOP 
definition functions). The data set is processed by a strategic scheme implemented in MALIO to select the LOP 
that best distinguishes the structures. The original versions of the 14 LOP definition functions considered in this 
study are outlined below, but note that the LOPs implemented in MALIO have been modified to exploit more 
of the potential of the original definition functions (see Section S1 of Supplementary Materials for details on 
the definition functions actually implemented). The neighborhood parameter A was developed by Honeycutt 
and Andersen46,47, and by Radhi and Behdinan48, to characterize the crystal structure of the LJ fluid based on 
the distance between the pair particles and neighbor particles. The bond-angle order parameter B was used by 
Ackland and Jones49 to identify dislocation defects in colloidal suspensions, based on the bond angle between 
the central particle and its neighbors. The centrosymmetry parameter C was used by Kelchner et al.50 to analyze 
dislocations and defects on metal surfaces, based on the distance between the central particle and its neighbors. 
The neighbor distance parameter D was used by Stukowski51 to identify the crystal structure at grain boundaries 
by introducing a scale factor related to the neighbor distances. The angular Fourier series parameter F was 
developed by Bartok and coworkers52,53 to analyze potential energy surfaces in bulk crystals and in silicon, 
based on periodic properties of the structure. The tetrahedral order parameter I was developed by Chau and 
Hardwick54,55 to evaluate tetrahedral configurations of molecules; and was applied to water, methane, as well as 
LJ fluids. The bond-orientational order parameters QS and W S, based on spherical harmonic functions, were 
originally developed by Steinhardt and coworkers56 to quantitatively evaluate orientational order in supercooled 
liquids as well as metallic glasses. The modified bond-orientational order parameters QL and W L, developed 
by Lechner and Dellago57, were used to distinguish between crystals and supercooled liquids in LJ fluids by 
locally averaging the spherical harmonic function term. The alternative bond-orientational order parameters 
LQ and LW, for which the spherical harmonic function term was normalized, were used for analyzing local 
molecular structures in ice nucleation, growth, or melting58,59. The modified alternative bond-orientational 
order parameters LQT and LWT, locally averaged over the normalized spherical harmonic function of LQ and 
LW, were first devised in Ref.39 and implemented in MALIO. Considering the internal parameters included in 
each definition function, the total number of candidate LOPs in this work was 186 (see Sect. S1 for details on 
internal parameters in Supplementary Materials).

The procedure for searching for the LOPs using MALIO is shown in Fig. 7. The 3D particle coordinates of 
two adjacent structures (disorder and cylinder, cylinder and gyroid, gyroid and lamella, as well as cylinder and 
lamella) on the phase diagram shown in Fig. 4 were input into MALIO. From the inputs, the local structures 
needed to calculate the LOP values were extracted in accordance with the cutoff or count-up method. The cutoff 

Fig. 6.  Microphase-separated structures of KGBS model on f = 0.33. (a) Lamellar structure, 
65 σu × 65 σu × 62 σu, (b) gyroid structure, 64 σu × 64 σu × 64 σu, (c) cylindrical structure, 
84 σu × 49 σu × 63 σu, (d) disordered structure, 64 σu × 64 σu × 64 σu. The molecular structures consist of 
beads in the A- and B-blocks, but the beads in the B-blocks are not shown. The figures were generated with 
Open Visualization Tool (OVITO)45 [Version: 2.9.0, URL: https://www.ovito.org/]..
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method defines the local structure of bead i as all beads within a cutoff radius rc centered at bead i. The count-
up method defines the local structure of bead i by counting up to an upper limit number Nlim of beads in 
order of proximity from bead i. For all local structures, 186 LOP values were calculated and stored as a data set 
along with the corresponding input structure names. Supervised machine learning was performed to learn the 
correspondence between LOP values and structure names. The random forest method60 was used as the classifier, 
the number of decision trees was set to 100, and the maximum depth was set to 10. All other parameter settings 
were set to the Scikit-learn defaults. Furthermore, k-fold cross validation, implemented in Scikit-learn61, was 
performed five times to confirm that there was no overlearning. MALIO estimates the classification accuracy of 
LOPs c = Zcorrect/Ztotal; where Zcorrect is the number of correct structure names predicted by LOPs, and Ztotal is 
the number of all structure names input to MALIO.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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