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Optimization of drug solubility
inside the supercritical CO, system
via numerical simulation based on
artificial intelligence approach

Meixiuli Li*, Wenyan Jiang?*?, Shuang Zhao?, Kai Huang* & Dongxiu Liu?

In this research paper, we explored the predictive capabilities of three different models of Polynomial
Regression (PR), Extreme Gradient Boosting (XGB), and LASSO to estimate the density of supercritical
carbon dioxide (SC-CO,) and the solubility of niflumic acid as functions of the input variables of
temperature and pressure. The optimization of hyperparameters for these models is achieved using the
innovative Barnacles Mating Optimizer (BMO) algorithm. For SC-CO, density estimation, PR exhibits
remarkable accuracy, showing an R-squared value of 0.99207 for data fitting. XGB performs admirably
with an R? of 0.92673, while LASSO model demonstrates good predictive ability, showing an R? of
0.81917. Furthermore, we assess the models’ performance in predicting the solubility of niflumic

acid. PR exhibits excellent predictive capabilities with an R? of 0.96949. XGB also delivers strong
performance, yielding an R-squared score of 0.92961. LASSO performs well, achieving an R-squared
score of 0.82094. The results indicated promising performance of machine learning models and
optimizer in estimating drug solubility in supercritical CO, as the solvent applicable for pharmaceutical
industry.
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Due to the inherent hydrophobic nature of pharmaceuticals, most drugs are poor soluble or practically insoluble
in aqueous solutions which makes the commercialization stage of some drugs impossible. Another problem
with low solubility of drugs is that they need to be taken at higher dosage to achieve the therapeutic effects. So,
their efficacy is low, and it should be enhanced. Different techniques can help improve the solubility of drug
substances which rely on increasing the solubility through chemical and physical methods!~>. For instance, ball
milling is a facile method to reduce the size of drug particles and increase their solubility due to the smaller
size*. The method of pharmaceutical cocrystallization is another approach to enhance drugs solubility which is
based on molecular interactions between drug and a coformer to build a combination of species with enhanced
solubility in aqueous media®.

For commercialization and application of a wide range of medications, more attractive processes and
techniques are needed. For instance, the method of drugs nanonization via supercritical fluids has been assessed
and studied recently to enhance the solubility of medications by production of nanosized drugs particles. The
method is attractive owing to the utilization of supercritical fluids such as CO, (SC-CO,) which are green
solvents®. There are different steps involved in this process among which the drug solubility in the supercritical
fluid is the most important one as the process efficiency is determined by the solubility of drug. Furthermore, due
to the variation of pressure and temperature, the solubility must be evaluated as a function of these parameters.
Some techniques have been proposed to evaluate drugs solubility in SC-CO,such as thermodynamics and
machine learning. Despite the physical basis of thermodynamic models in evaluating drug solubility”$, machine
learning models have offered higher precision in estimation of drugs solubility in supercritical fluids®-12.

Machine learning (ML) models have emerged as effective methods for data analysis and predictive modeling
across a wide range of domains. Over the previous decade, there has been significant progress in the field of
ML, as evidenced by the development of a plethora of algorithms and models aimed at addressing a wide range
of applications including drug development!*!4. Several ML models have been already reported for correlation
of drugs solubility, but new models should be customized for a new drug to make the generalized framework
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for analysis of drugs solubility in SC-CO, solvent. Here, for the first time Polynomial Regression (PR), Extreme
Gradient Boosting (XGB), and LASSO are developed and optimized for estimation of niflumic acid solubility
in SC-CO,. The Barnacles Mating Optimizer (BMO) was used to train and optimize these models. Indeed,
utilization of ML models, optimization, and implementation for niflumic acid is carried out for the first time in
this research.

In the field of linear regression analysis, LASSO regression is a powerful and widely used technique. It
effectively addresses multicollinearity, overfitting, and high-dimensional data, balancing model interpretability
and predictive accuracy. LASSO promotes feature selection and regularization, which helps to develop more
robust and parsimonious models in a variety of domains!>!¢. PR is a useful extension of linear regression that
allows us to model nonlinear relationships between variables. This technique can capture complex patterns in
data and provide valuable insights into the underlying relationships by introducing higher-order polynomial
terms'”. The XGBoost regression algorithm is a commonly used machine learning algorithm that is well-known
for its high predictive accuracy and efficient handling of complex datasets. XGBoost produces robust and
interpretable regression models for a variety of applications by combining gradient boosting, regularization, and
decision trees. Its ability to handle missing data, identify feature importance, and resist overfitting adds to its
appeal among data scientists and practitioners seeking accurate and reliable predictive modeling'®°.

Data of solubility

The dataset utilized in this work is collected from a previous work?® and contains four distinct variables for drug
solubility in supercritical CO,, namely Temperature, Pressure, Solvent Density, and Solubility of niflumic acid.
The experimental conditions are represented by the Temperature and Pressure values, while the corresponding
measurements are provided by the Solvent Density and Solubility of niflumic acid as reported in?. As such, two
inputs and two outputs are assumed for building the machine learning models in this study.

Methodology
Barnacles mating optimizer (BMO)
BMO draws inspiration from the mating behavior of barnacles which is used for tuning models in this work.
These microorganisms are regarded as promising candidates (combinations of hyperparameters in this study)
in this algorithm?!. The BMO process comprises two primary stages, namely selection and reproduction. Two
parent barnacles are chosen for the selection phase according to the length of their penises (pl).

The Hardy-Weinberg principle is used by the algorithm to generate offspring during the reproduction stage.
If the pl of the father’s barnacle falls within the selection range of the parent barnacles, the father inherits p% of
the characteristics and the mother inherits (1-p)%. If the father’s pl is outside the range of acceptable mutations,
anew generation is generated by modifying only the maternal traits. This approach promotes exploitation when
the father’s plis within the range and exploration when it is not?2.

The formulation for generating offspring from the parents’ mating process is expressed through the following
Eqs?"22:

Npew __ N N
i - pxbarnacled + qxbarnaclem

x
In this process, the generation of offspring relies on two random numbers, p and g, both falling within the
range of [0, 1]. Here, barnacled represents the solution for the father, and barnacle,, represents the solution for
the mother. If barnacled chooses barnacle8, it exceeds the cap, leading to the termination of the usual mating
process.

Instead, the algorithm employs a method called “sperm cast,” a term coined in BMO, to generate the offspring.

This approach facilitates exploration during the mating process?*:

S Npew __ =
z; ' = rand () X 'Lbarnrz(ilr),,,

The function rand() generates a random number within the interval [0, 1].

LASSO regression
LASSO (Least Absolute Shrinkage and Selection Operator) is an advanced statistical technique used in linear
regression applications. It was introduced as a method to handle multicollinearity and perform feature selection
by imposing a penalty on the absolute values of the regression coeflicients. This model has gained popularity due
to its ability to effectively handle high-dimensional datasets and produce interpretable and sparse models'®%,
The primary objective of LASSO regression is to determine the best linear model by minimizing the sum of
squared residuals while simultaneously shrinking the less informative coefficients to zero. This encourages the
selection of the most relevant features and avoids overfitting, leading to a more robust and generalizable model.
Let’s consider a linear regression problem with n observations and p predictors. The model can be represented
as:

y=Bo+ B +Pora+... +PB 1+ €
where:

« - ystands for the dependent variable,
o - (3, indicates the intercept,
o - z;’s are the predictors,

Scientific Reports |

(2024) 14:22779 | https://doi.org/10.1038/s41598-024-74553-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

o - f3 s are the coefficients, and
o - € represents the error.

The LASSO regression optimizes the following objective function?:
. n p 2 p
argn};n {Z i (y/‘, - (13 0ot Z j:lB 7%/)) +A Z i1 |B ]|}

The symbol A\ represents the regularization factor. As A increases, the penalty for non-zero coefficients
strengthen, leading to more shrinkage and feature selection.

Extreme gradient boosting (xgboost)

XGBoost has gained widespread acclaim for its high predictive performance and versatility across a wide range
of domains. As an ensemble learning technique, XGBoost combines the strengths of gradient boosting and
regularization to deliver robust and accurate regression models!>%.

The primary objective of XGBoost regression is to create an optimized regression model that can effectively
predict continuous numeric values. By employing a combination of weak learners (Decision Trees in this study),
typically decision trees, XGBoost progressively improves its predictive capability through iterative boosting.
It aims to minimize the overall prediction error and deliver superior results compared to traditional gradient
boosting algorithms. A Flowchart for overall process of XGBoost is displayed in Fig. 12°.

Polynomial regression (PR)

PR method allows for the modeling of nonlinear relationships between the inputs and outputs for complicated

tasks. By introducing polynomial terms, this technique can capture complex patterns where linear models fail. In

this model description, we explore the key concepts and benefits of polynomial regression?”?%. In this regression

method, PR model is employed to fit a polynomial function to the data in order to approximate the underlying

relationship between the variables. Polynomial regression can capture curved and nonlinear trends in the data®.
The PR of order dis given by'*:

d
y=PBo+ Bz +Porat... +Bpxl)+Bp+1x%+ﬁp+2xlx2+"' +Bp+nx‘;+ €

where d is the PR order, x{ represents the d-th power of the i-th predictor, and 3 p+1to 3., are the additional
parameters to be estimated.

For the ML modeling and optimization tasks, Python software was used along with machine learning,
optimization, and plotting libraries.

Results and discussion

The results of three models in estimating the solubility of niflumic acid and corresponding density of solvent
using temperature and pressure as inputs are presented in this section. Indeed, both responses have been
modeled and their values are compared by three models to find out the accuracy of optimized models in this
study. The results of analyses for all models and responses are listed in Tables 1 and 2. Three important criteria
have been considered for comparison including R? (Coefficient of Determination), RMSE (Root mean square
error), and Maximum Error.

From the results listed in Tables 1 and 2, it is evident that Polynomial Regression (PR) consistently outperforms
the other ML models in predicting both outputs, i.e., SC-CO, density and niflumic acid solubility. The comparison
of real and predicted values for both outputs is shown in Figs. 2 and 3 which illustrates the dataset for training
and testing. PR achieves remarkable accuracy, with high R? scores of 0.992 and 0.969 for density and solubility,
respectively, and RMSE values of 12.203 and 0.256. XGB also demonstrates good predictive performance, with
R-squared scores 0f 0.927 and 0.930, and RMSE values of 28.623 and 0.286. LASSO, as a regularization technique,
provides competitive results, with R-squared scores of 0.819 and 0.821, and RMSE values of 40.774 and 0.462. So,
the criteria confirmed that PR can be chosen the most accurate model for description of density and solubility.

Based on the outcomes of modeling, PR model was used as the model for generating the 3D Response
Surfaces of two outputs, which are shown in Figs. 4 and 5. Also, the individual effect of inputs on both outputs
visualized in Figs. 6, 7, 8 and 9. The results revealed that the solubility is increased with pressure of solvent as
it behaves like gas solvents and its density varies with pressure unlike organic liquid solvents. This is indeed an
important advantage of supercritical fluids whose solubility can be tuned with manipulating process pressure in
addition to the temperature. On the other hand, the temperature reduces the solvent density (see Fig. 7) which
has negative effect on the solubility, while the solubility is enhanced with increasing temperature which is due
to the various phenomena involved in the solubility before and after cross-over pressure point in the system™.
For determination of optimum point of operation, some economical evaluations are needed to find the cost of
operation at each pressure and temperature.

Conclusion

In this research study, we compared three models - Polynomial Regression (PR), Extreme Gradient Boosting
(XGB), and LASSO - for estimating SC-CO, density and niflumic acid solubility using temperature and pressure
inputs. PR emerged as the most accurate model with R-squared scores of 0.992 for density and 0.969 for solubility,
achieving low RMSE values of 12.203 and 0.256, respectively. XGB also performed well with R-squared scores
of 0.927 and 0.930, and RMSE values of 28.623 and 0.286. LASSO demonstrated competitive results, with
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Fig. 1. The XGBoost Flowchart.

R-squared scores of 0.819 and 0.821, and RMSE values of 40.774 and 0.462. The BMO algorithm improved
the models’ performance. Overall, PR is the recommended model for accurate and interpretable predictions
in these applications. The findings have practical implications for materials science, chemical engineering,
and pharmaceutical research, supporting informed decision-making and process optimization. The developed
methodology can be used as a generalized approach for data-driven decision making in pharmaceutical
processing.
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Model | R-squared Score | RMSE | Max Error
PR 0.992 12.203 | 20.803
XGB 0.927 28.623 | 60.604
LASSO | 0.819 40.774 | 97.099

Table 1. SC-CO, density estimation by ML models.

Model | R-squared Score | RMSE | Max Error
PR 0.969 0.256 | 0.578
XGB 0.930 0.286 | 0.394
LASSO |0.821 0.462 | 1.037

Table 2. Solubility estimation by ML models.
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