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Maintaining quantum coherence and entanglement in the presence of environmental noise, 
particularly within non-Markovian contexts, represents a significant challenge for the progression 
of quantum information science and technology. This study offers a substantial advancement by 
investigating the dynamics of a two-qubit system subjected to diverse noise conditions, encompassing 
relaxation, dephasing, and their cumulative effects. By employing quantum-state-diffusion equations 
specifically crafted for non-Markovian environments, we introduce an innovative strategy to 
counteract the detrimental influences of environmental noise on quantum teleportation fidelity and 
entanglement concurrence. Our results underscore the potential for external interventions to markedly 
improve the resilience of quantum information processing tasks over prolonged durations, especially 
in settings where dephasing noise prevails. A key revelation is the intricate relationship between 
dephasing noise and the initial state of entanglement, which profoundly impacts the occurrence of 
entanglement sudden death. This research not only deepens our comprehension of quantum system 
dynamics under noisy circumstances but also furnishes practical directives for engineering robust 
quantum systems, a necessity for the development of scalable quantum technologies.

Abbreviations
QSD	� Quantum-state-diffusion
EPR	� Einstein–Podolsky–Rosen
ESD	� Entanglement sudden death
OU	� Ornstein–Uhlenbeck

Quantum entanglement, a cornerstone of quantum mechanics, embodies the non-local correlations between 
quantum particles that challenge classical physics, famously critiqued by Einstein as “spooky action at a 
distance”1–3. This phenomenon is not merely a theoretical curiosity but serves as a fundamental resource in 
quantum information science, enabling revolutionary applications such as quantum teleportation, dense coding, 
cryptography, computing, and communications. However, the inherent openness of quantum systems to their 
environment exposes them to decoherence, a process that erodes entanglement and threatens the integrity of 
quantum information4. Decoherence is a critical challenge in quantum computing and quantum communication, 
as it can lead to the loss of quantum coherence and the degradation of quantum states.

Understanding the dynamics of quantum systems in the presence of environmental noise is crucial for the 
development of robust quantum technologies. In this context, it is important to distinguish between Markovian 
and non-Markovian processes. Markovian processes assume that the system’s evolution is memoryless, i.e., 
independent of its past, whereas non-Markovian processes account for memory effects, with the system’s 
evolution depending on its history. In environments with pronounced memory effects, such as structured 
environments where the correlation time of the environment is comparable to the system’s time scale, non-
Markovian approximations are more suitable for describing the decoherence process5–9. The Markovian 
approximation, while useful in many scenarios, fails to accurately capture the dynamics in such environments, 
necessitating the use of non-Markovian models to describe the system’s evolution. Even in relatively isolated 
systems, entanglement loss remains a persistent challenge due to unavoidable interactions with auxiliary systems 
or interfaces that are essential for the storage, evolution, reading, and coherent manipulation of quantum states. 
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These interactions, albeit necessary, introduce noise that can corrupt quantum information, making it imperative 
to operate under conditions that minimize external noise interference10,11. The challenge lies in maintaining the 
delicate balance between the necessity of these interactions and the detrimental effects of environmental noise.

To counteract the adverse effects of environmental noise, several strategies have been developed, including 
quantum error correction, decoherence-free subspaces, and dynamical decoupling12–20. Quantum error 
correction employs redundant encoding to detect and correct errors, while decoherence-free subspaces leverage 
symmetries in the system-environment interaction to protect quantum states. Dynamical decoupling, conversely, 
uses fast, periodic control pulses to suppress the interaction between the quantum system and its environment, 
effectively “decoupling” the system from the noise. In this landscape, quantum teleportation emerges as a 
groundbreaking process that enables the transfer of quantum states between distant parties without the physical 
transmission of particles. This phenomenon relies on quantum entanglement and classical communication21. In 
this process, two parties, typically referred to as Alice and Bob, share a pair of entangled particles. When Alice 
wishes to teleport a quantum state, she performs a joint measurement on her particle and the state to be teleported, 
collapsing the system into one of several possible outcomes. This measurement generates classical information, 
which Alice sends to Bob. Upon receiving this information, Bob applies a corresponding unitary operation to 
his entangled particle, effectively reconstructing the original quantum state. However, the implementation of 
quantum teleportation is enhanced by addressing the challenges posed by non-Markovian noise, which can 
degrade the fidelity and entanglement of the teleported state. Non-Markovian noise refers to memory effects 
in the environment that influence the dynamics of quantum systems over time, leading to complex interactions 
inadequately described by Markovian models22,23. The proposed mitigation strategies include advanced error 
correction techniques and adaptive protocols that dynamically respond to the noise characteristics during the 
teleportation process. By incorporating these strategies, the model aims to improve the robustness of quantum 
teleportation against environmental disturbances, thereby enhancing the overall fidelity of the teleported states 
and preserving the entanglement between the particles24,25. This advancement is crucial for developing reliable 
quantum communication networks and quantum computing systems, where maintaining high fidelity and 
entanglement is essential for practical applications.

In complex systems where multiple noise sources coexist, the interplay between these noises can either 
enhance or suppress coherence, internal correlations, and entanglement. This paper introduces an innovative 
approach to controlling non-Markovian relaxation processes through a Markovian dephasing process26–30. By 
harnessing this phenomenon, it becomes feasible to manipulate the impact of noise on the system via controlled 
noise sources31–37. This control strategy is akin to sculpting the noise landscape to favor the preservation of 
quantum information, guiding a quantum system through a noisy environment while maintaining its quantum 
coherence and entanglement. A significant body of research has been dedicated to understanding the dynamics 
of entanglement in quantum systems, often quantified by Wootters’ concurrence38–41. Most studies have focused 
on two-qubit atomic systems under the Markovian approximation. However, our investigation delves into the 
optimization of quantum teleportation and the evolution of entanglement dynamics by blending noises from two 
distinct environments for two-qubit atomic systems under the non-Markovian approximation. We employ the 
quantum-state-diffusion approach to solve the master equations for non-Markovian processes, elucidating how 
different noise mixtures influence quantum teleportation and entanglement dynamics. This approach allows us 
to visualize the intricate interplay between noise and quantum information, revealing strategies to enhance the 
robustness of quantum systems against environmental decoherence. By understanding how to blend and control 
noise sources, we can potentially improve the fidelity of quantum operations and the stability of quantum states.

The paper is structured as follows. The physical model section outlines the mathematical model for our 
system and details the non-Markovian quantum-state-diffusion method. Results section presents the numerical 
results of fidelity for a range of noise strengths and memory capacities, as well as an analysis of entanglement 
dynamics for varying noise parameters. Finally, conclusions section summarizes our findings, highlighting the 
implications for the control and preservation of quantum information in noisy environments.

The physical model
Two-qubit model
In the ensuing work, we delve into a two-qubit system wherein each qubit autonomously interacts with its 
respective local environment, as visualized in Fig. 1.

The two atoms, positioned within their individual local environments, are sufficiently distant to prevent 
any direct interaction, with the exception of the initial quantum entanglement that connects them. Within 
this system, we employ the non-Markovian quantum-state-diffusion (QSD) methodology to obtain the exact 
solution of the model, accounting for both relaxation and dephasing noise phenomena8,42,43. The Hamiltonian 
can be expressed as follows (ℏ = 1)

	 Htot = Hsys + Henv + Hint,� (1)

where
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In the heart of the model lie the isolated system’s Hamiltonian, Hsys, and the environment’s Hamiltonian, 
Henv. Their interaction is encapsulated within Hint. Notable quantities include the qubit frequencies ωA 
and ωB associated with qubits A and B, respectively, alongside the Pauli matrices σz and the raising operator 
σ− = (σx − iσy) /2. Dephasing noise, characterized by ξ(t), contributes to the dynamics. Environmental modes 
are represented by annihilation operators bk and eigenfrequencies ωk. The relaxation channels for each qubit are 
defined by collective operators: BA =

∑
k gAkb

A
k  for qubit A and BB =

∑
k gBkb

B
k  for qubit B, with gAk and gBk 

representing coupling strengths to respective modes.
Utilizing a time-varying unitary transformation U = exp
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])]
 and the 

integral Ξ(t) =
∫ t

0 dsξ(s), which captures the cumulative effect of environmental noise over time, the total 
Hamiltonian in the rotating frame can be reformulated accordingly as

	

Hrot = U+HtotU − iU+dU
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= Hsys + σA

−B
†
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The time-domain representations of the collective operators A and B can be expressed as follows:

	

BA(t) =
∑
k

gAkb
A
k e

−iωAkt

BB(t) =
∑
k

gBkb
B
k e

−iωBkt.
� (6)

Both equations describe the complex sinusoidal components (denoted by bAk  and bBk , each weighted by their 
respective coefficients gAk and gBk, and oscillating at angular frequencies ωAk and ωBk) that make up the overall 
operators BA and BB as functions of time t.

Non-Markovian QSD method
In the framework of the QSD approach, one can project all of the environment modes onto the Bargmann 
coherent states || z⟩ =

∑∞
n=0

zn√
n!
|n⟩. As we know, the full state wave function of the system and the environment 

|ψtot(t)⟩ should satisfy the Schrödinger equation

	 ∂t |ψtot(t)⟩ = −iHrot |ψtot(t)⟩ .� (7)

It is difficult to solve for the wave function directly due to the presence of environmental degrees of freedom. 
Therefore, the completeness of coherent states needs to be utilized to reduce the environmental degrees of 
freedom as

	
|ψtot(t)⟩ =

∫
d2z

π
e−|z|2||z⟩⟨z|| · |ψtot(t)⟩ ,� (8)

Fig. 1.  The entangled state of two separate 2-level atoms is illustrated in the schematic diagram. Initially, qubits 
A and B each independently interact with their respective local environments, maintaining their quantum 
coherence without direct coupling.
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where the Bargmann coherent states ||z⟩ = ||z1⟩ ⊗ ||z2⟩ ⊗ ||z3⟩ ⊗ · · · ||zk⟩ ⊗ · · ·  and ||zk⟩ represents the 
stochastic variable of fluctuation of the kth mode of the environment. Since the Bargmann coherent state is 
complete, this set of stochastic variables is consistent with a Gaussian distribution. We can represent the complex 
effects of the environment through Gaussian noise. Therefore, the state vector of the two-qubit system can be 
projected onto the Bargmann coherent states as follows:

	 | ψt (z
∗)⟩ = ⟨z∥ · ||ψtot(t)⟩ . � (9)

By a straightforward derivation, projecting Schrödinger’s equation to the stochastic state ||z⟩, we can obtain a 
formal QSD equation

	
∂

∂t
ψt (z

∗) =
[
−iHsys + LAz

∗
At + LBz

∗
Bt − L†

AŌA (t, z
∗)− L†

BŌB (t, z∗)
]
ψt (z

∗) ,� (10)

where Ōi(t, z
∗) ≡

∫ t

0 dsGi(t− s)Oi(t, s, z
∗) (where i = A,B ) are defined as system operators that incorporate 

time integration. This indicates that the system’s evolution is influenced by both the current and historical states 
of the environment, a characteristic of non-Markovian processes, in contrast to Markovian processes, which 
depend solely on the present state. These operators are intrinsically linked to the coupling between the system 
and the environment through the system operators Oi(t, z

∗) and coupling operators Li (e.g., σA
− and σB

−). This 
relationship emphasizes that the system’s dynamics are governed not only by its Hamiltonian Hsys but also by 
its interactions with the environment. In quantum teleportation and other quantum information tasks, these 
operators are crucial for quantifying the impact of environmental noise on system performance. By analyzing 
and controlling these terms, strategies can be developed to mitigate noise effects, thereby enhancing fidelity 
and entanglement in quantum communication and computation. The operator Oi (t, s, z

∗) is derived from the 
equation

	

δψt (z
∗)

δz∗it
=Oi (t, s, z

∗)ψt (z
∗) . � (11)

Since these two qubits are in the equivalent environment, they exhibit the same form of combined correlation 
function. For environmental noise z∗it = −i

∑
k g

∗
ikz

∗
ke

iωikt−iΞi(t), the correlation function Gi(t− s) can be 
written as

	

Gi(t− s) = M [z∗itz
∗
is]

=
∑∣∣g2k

∣∣ ei[Ξ(t)−Ξ(s)]−iωk(t−s)
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−
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0
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]
,

� (12)

where ωk = ωAk = ωBk, gk = gAk = gBk, Ξ = ΞA = ΞB and M [·] =
∫

d2z
π e−|z|2 means an ensemble average. 

For both two qubits, α(t− s) = Γαγα
2 e−γα|t−s| and β(t− s) =

Γβγβ
2 e−γβ |t−s| represent Ornstein–Uhlenbeck 

(OU) noise correlation functions of dephasing and relaxation noise, respectively. γα and γβ are inverse memory 
capacities of the relevant noise. For a long system-environment memory, the backflow of information into the 
quantum systems delays the decoherence between the qubits. Γα and Γβ are the coupling strengths between 
the qubits and their environments, respectively. Therefore, the combined noise correlation function can be 
expressed as

	
Gi(t− s) =

Γβγβ
2

e−γβ |t−s| exp

{
−Γα

2

[
(t− s) +

e−γα(t−s) − 1

γα

]}
.� (13)

Obviously, the combined correlation function Gi(t− s) no longer maintains the form of linear exponential 
decay and the combination of two OU noise sources will not yield another OU noise. However, if one of them is 
under Markovian approximation, e.g., when γα → ∞ the correlation function of the dephasing noise becomes 
α (t− s) = Γαδ (t− s). By using the above conditions, the combined correlation function Gi(t− s) reduces to

	
Gi(t− s) =

Γ̃βγ̃β
2

exp [−γ̃β|t− s|] ,� (14)

where, Γ̃β = rΓβ, r = γβ/γ̃β and γ̃β = γβ + Γα/2. Since the fact that the coupling strength of noise Γ̃β < Γβ 
and γ̃β > γβ, it is not difficult to observe the important difference between the combined noise correlation 
function and the pure non-Markovian relaxation noise correlation function. Due to the fact that the non-
Markovian memory capacities γα and γβ for relaxation and dephasing noises are from separable distinct sources, 
the competition between these two sources produces interesting behaviors in the control dynamics. Then, we 
bring Eq. (11) into the “consistency condition” δ

δz∗it

∂ψt(z
∗)

∂t = ∂
∂t

δψt(z
∗)

δz∗it
 to obtain the time evolution equation of the 

operator Oi (t, s, z
∗) shown as
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As a result, by tackling the given equation, we obtain the proper expression for the operator Oi (t, s, z
∗). When 

dealing with two-qubit systems in dissipative scenarios, both Oi (t, s, z
∗) and its counterpart Ōi (t, z

∗) can be 
retained in their respective straightforward forms

	

Oi (t, s, z
∗) = fi (t, s) σ

i
−,

Ōi (t, z
∗) = Fi (t) σ

i
−.

� (16)

The integral form of the equation for Fi(t) is given by:

	
Fi(t) =

∫ t

0

Gi(t− s)fi(t, s) ds.� (17)

Here, the coefficient function fi(t, s) must satisfy certain conditions or properties, which are not specified in this 
excerpt. To provide a complete statement, it may be necessary to include information about those constraints or 
the relationship it bears with Gi(t) and Fi(t). For example: fi(t, s) must adhere to specific mathematical rules, 
such as being continuous or differentiable, to ensure the solvability of the integral and the well-definedness of 
the function Fi(t),

	 ∂tfi (t, s) = (iω + Fi (t)) fi (t, s) .� (18)

To calculate Fi(t) efficiently, we typically work with the master equation derived from the QSD Eq.  (10). 
Starting with the density matrix ρ(t, z∗) = |ψt(z

∗)⟩⟨ψt(z
∗)| including noise, the system’s final density matrix 

ρs(t) = M [ρ(t, z∗)] is obtained by averaging over all noise realizations. By applying Novikov’s theorem42,44,45 in 
conjunction with the QSD equation, the master equation is then derived

	

ρ̇s (t) =− i
[ω
2

(
σA
z + σB

z

)
, ρs

]

+ FAR(t)
(
2σA

−ρsσ
A
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A
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A
+σ

A
−
)

+ FBR(t)
(
2σB

−ρsσ
B
+ − σB

+σ
B
−ρs − ρsσ

B
+σ

B
−
)
.

� (19)

In the equation, FAR(t) represents the real part of FA(t), while FBR(t) corresponds to the real part of FB(t). The 
system’s initial state is considered a pure state expressed as:

	 |Ψ0⟩ = α1 |1⟩ + α2 |2⟩ + α3 |3⟩ + α4 |4⟩ .

Here, the basis kets correspond to: |1⟩ = |eAeB⟩, |2⟩ = |eAgB⟩, |3⟩ = |gAeB⟩, and |4⟩ = |gAgB⟩. Each amplitude 
αi, where i ranges from 1 to 4, denotes the probability amplitude of the state |i⟩, satisfying the normalization 
condition 

∑4
i=1 |αi|2 = 1.

Results
Fidelity control
In the endeavor to perfect quantum teleportation, it is imperative to evaluate the discrepancy between the actual 
and ideal quantum information transmission. To this end, we introduce a distance metric F ≡ |⟨Ψ2| Ψ1⟩|2 , 
which quantifies the degree of overlap between a state |Ψ1⟩ and a reference state |Ψ2⟩. This metric serves as a 
measure of the quantum coherence and fidelity between the two states. By employing the exact equation of motion 
(Eq. 19) and the initial state |Ψ0⟩, the fidelity can be mathematically formulated as F (t) ≡ ⟨Ψ0| ρs (t) |Ψ0⟩ . In 
quantum information theory, fidelity is not merely a measure of similarity between quantum states but also a 
critical indicator of the quality of information transmission in quantum communication. Specifically, the fidelity 
directly reflects the extent of noise affecting the quantum state during transmission; a fidelity of 1 indicates 
perfect transmission, while a fidelity close to 0 signifies nearly complete information loss. Therefore, analyzing 
fidelity allows us to gain deeper insights into the impact of environmental noise on quantum states and provides 
a theoretical basis for optimizing quantum transmission processes. Moreover, variations in fidelity can reveal the 
dynamic behavior of the system across different time scales, helping us identify effective strategies to enhance 
the stability and transmissibility of quantum states in non-Markovian noise environments. EPR systems, named 
after the influential paper by Einstein, Podolsky, and Rosen, are fundamental to quantum communication, 
utilizing quantum entanglement to create correlated particle pairs. This property allows the state of one 
particle to instantaneously influence the state of another, regardless of distance, which is crucial for secure 
quantum communication protocols like quantum key distribution. However, EPR systems face challenges from 
environmental interactions that can lead to decoherence, degrading entangled states. To investigate this, the 
analysis begins with a Bell state as the initial state of the system, represented as: |Ψ0⟩ = 1√

2
(|2⟩ + |3⟩). This Bell 

state is one of four maximally entangled states, characterized by symmetry and equal probability of measuring 
either qubit in the states |2⟩ and |3⟩. By studying the effects of environmental interactions on this state, insights 
into the resilience of quantum communication systems against decoherence can be gained, which is essential for 
enhancing their reliability and security.
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To explore the impact of inversion memory capacity γβ (spanning from 0.1 to 2) on the dynamics of 
entanglement during quantum teleportation, we performed a numerical evaluation of the fidelity, as illustrated 
in Fig. 2. Each graph maintains a constant noise intensity for the relaxation process, while dephasing noise of 
varying intensities is applied to the respective environments. The black solid line, labeled R, signifies the fidelity 
of the qubit system under pure relaxation noise, while the blue lines, labeled C, represent the fidelity in the 
presence of both relaxation and dephasing noise. Distinct line styles on the blue curves denote different strengths 
(decoherence rates) of the dephasing noise. The inset in each panel of Fig. 2 depicts the evolution of the probability 
amplitudes of the ground state |4⟩ = |gAgB⟩. The three graphs in Fig. 2 are arranged in ascending order of γβ, 
corresponding to a decreasing memory capacity for relaxation noise. For a long system-environment memory 
time (γβ/ω = 0.1), Fig. 2a clearly demarcates two regions: one dominated by pure relaxation noise (black curve) 
and the other by mixed noises with varying dephasing rates Γα. In the moderate-time scale (0 < ωt < τ , where 
τ  is the critical time marking the intersections of the black curve and the blue curves), the fidelity under mixed 
noises is observed to surpass that under pure relaxation noise. Importantly, a higher dephasing strength Γα 
results in a longer critical time and higher fidelity, indicating that our noise control strategy can enhance fidelity 
under short-time constraints.

In Fig. 2b, for a moderate system-environment memory time (γβ/ω = 0.5), the black curve exhibits a more 
rapid decline compared to the previous scenario. Notably, for a significant dephasing strength (Γα/ω = 4), the 
critical time experiences a substantial increase. Figure 2c demonstrates the scenario involving relaxation noise 
with a short system-environment memory (γβ/ω = 2) and dephasing noise. It is evident that the effective decay 
rate based on relaxation noise can be consistently mitigated by the addition of dephasing noise. The inset in 
Fig. 2 reveals the evolution of the probability amplitude Pgg of the state |4⟩. A clear correlation between the 
fidelity and Pgg is observed, suggesting that the loss of fidelity is directly associated with the decay of the two 
qubits from a Bell state |Ψ0⟩ to a ground state |gAgB⟩. This observation underscores the significance of managing 
environmental interactions to preserve quantum information during teleportation processes, highlighting the 
potential benefits of strategic noise control in enhancing the fidelity of quantum state transfer. This insight not 
only emphasizes the need for precise environmental control but also opens avenues for developing more robust 
quantum communication protocols, which could potentially lead to advancements in quantum computing and 
cryptography, thereby contributing to the broader field of quantum information science. Given that the two 
qubits are situated in distinct environments (A) and (B), we investigated a scenario where dephasing noise is 
localized to only one environment (specifically, (ΓBα/ω = 0)). The fidelities for these distinct noise scenarios, 
under four varying dephasing strengths (ΓAα) in environment (A), are analyzed numerically and visualized in 
Fig. 3. The black solid curve, marked with R, delineates the fidelity of the qubit system under the influence of 
pure relaxation noise alone. In contrast, the four curves labeled C represent the composite noise processes, which 
include both relaxation and dephasing effects.

In a moderate-time scale (0 < ωt < τ ), where (3.2 < τ < 4.5) as depicted in Fig.  3, the fidelity under 
mixed noises in environment (A) is observed to be superior to that under only purely relaxation noise in both 
environments (A) and (B). This can be attributed to the reduced complexity of noise interactions in a single 
environment, which effectively shields the qubit system from the more severe degradation of coherence that 
would otherwise occur under dual environmental noise. The single-noise environment scenario allows for a 
more controlled interaction between the qubit and its environment, leading to a slower decay of coherence. A 
comparison between Figs. 2a and 3 reveals that the critical time (τ )-the pivotal moment at which the fidelity 
starts to markedly deteriorate-when dephasing noise is present in both environments is extended compared 
to when it is confined to a single environment. This extension of the critical time can be further understood 
through the lens of non-Markovian effects, which become particularly pronounced in the presence of memory-
intensive noise processes. Non-Markovianity implies that the system’s evolution is not only dependent on its 
current state but also on its history of interactions with the environment. In our case, the system’s exposure 

Fig. 2.  The fidelity of the teleportation of two 2-level atoms system, where the relaxation noise and the 
dephasing noise are both present in their respective environments. Here R and C represent the dynamics under 
pure relaxation noise and a mixture of noises. The inset figure indicates the evolution of probability amplitudes 
Pgg of the state |4⟩. We choose other parameters as Γα/ω = ΓAα/ω = ΓBα/ω, Γβ/ω = ΓAβ/ω = ΓBβ/ω = 1, 
γβ/ω = γAβ/ω = γBβ/ω = (a)0.1, (b)0.5 and (c)2.
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to noise in both environments leads to a more gradual loss of fidelity initially, as the noise correlations exhibit 
memory, causing temporary coherence revivals. These revivals are indicative of the system’s ability to ‘remember’ 
and potentially reverse some of the noise-induced degradation, a characteristic signature of non-Markovian 
dynamics. However, in the region where (ωt > τ ), the fidelity decays at a slower pace when dephasing noises are 
restricted to a single environment, suggesting that the system has adapted to the noise, leading to a stabilization 
of the fidelity decay rate. In contrast, the system subjected to noise in both environments continues to experience 
a more pronounced decay due to the cumulative effect of noise from both sides. The non-Markovian nature of 
the noise in this scenario implies that the system’s coherence is not only affected by the immediate noise but also 
by the historical influence of the noise, which can lead to a more complex interplay between the system and its 
environment. These underscore the critical role of understanding the distribution and nature of environmental 
noise sources in preserving the coherence and fidelity of quantum systems. This is particularly crucial in the 
context of quantum computing and information processing, where maintaining qubit coherence is essential for 
reliable quantum operations. Understanding and controlling environmental noise, especially non-Markovian 
noise, is a key challenge in advancing quantum technologies. Strategic manipulation of the noise environment 
could potentially enhance qubit performance by exploiting memory effects to prolong coherence times, thereby 
advancing the field of quantum computing.

Entanglement dynamics
To further illuminate the temporal evolution of entanglement within our quantum system, we leverage Wootters’ 
concurrence as a pivotal metric. This measure, specifically designed for a two-qubit system, is mathematically 
defined as:

	
C = Max

{
0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
,� (20)

where λi(i = 1, 2, 3, 4) are the eigenvalues, arranged in descending order, of the matrix

	 M = ρs (t) (σy ⊗ σy) ρ
∗
s (t) (σy ⊗ σy) ,� (21)

with ρ∗s(t) denoting the complex conjugate of ρs(t) and σy being one of the Pauli matrices. The concurrence 
ranges from C = 0, indicating a separable state, to C = 1, representing a maximally entangled state.

A deeper examination of the matrix M and its eigenvalues λi reveals that these eigenvalues are derived by 
applying the operation (σy ⊗ σy) to the density matrix ρs(t) and its complex conjugate. This operation flips the 
sign of the off-diagonal elements, which is crucial for coherence terms. The eigenvalues λi are the roots of a 
quartic polynomial, real, non-negative, and ordered in descending order. Their physical significance lies in their 
relation to the purity of the quantum state: the sum of the eigenvalues equals the trace of M, which also equals 
the trace of ρs(t). Given that the trace of a density matrix is always 1, the sum of the eigenvalues of M is also 1, 
implying they can be interpreted as probabilities of measuring specific states.

Entanglement is directly linked to these eigenvalues. The concurrence C quantifies the degree of correlation 
between the two qubits. A separable state, characterized by C = 0, occurs when the eigenvalues of M are all equal, 
suggesting the state can be described as a product of two individual qubit states. Conversely, a maximally entangled 

Fig. 3.  The fidelity of the teleportation of two 2-level atoms system, where the relaxation noise and the 
dephasing noise are both present in their respective environments. Here R and C represent the dynamics 
under pure relaxation noise and the mixture of noises, respectively. We choose Γβ/ω = ΓAβ/ω = ΓBβ/ω = 1, 
γβ/ω = γAβ/ω = γBβ/ω = 0.1 and ΓBα/ω = 0.
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state, with C = 1, occurs when one eigenvalue of M is 1 and the others are 0, indicating a superposition of two 
orthogonal qubit states with equal probability amplitudes. The eigenvalues of the matrix M and the concurrence 
C provide a robust framework for understanding the entanglement of quantum states. The concurrence C offers 
a quantitative measure of entanglement, enabling comparisons between different quantum states and tracking 
the evolution of entanglement over time. This is crucial for enhancing the fidelity and entanglement in quantum 
teleportation protocols, particularly in the context of non-Markovian noise mitigation strategies.

In our subsequent analysis, we concentrate on the temporal dynamics of entanglement under various initial 
conditions, focusing on the Bell states

	 |Ψ0⟩ = cos (θ/2) |2⟩ + sin (θ/2)eiϕ |3⟩

and

	 |Φ0⟩ = cos (θ/2) |1⟩ + sin (θ/2)eiϕ |4⟩ .

By calculating the density matrix ρs (t) and substituting it into Eq.  21, we can track the evolution of the 
concurrence over time. It is imperative to note that the initial states are characterized by the parameters θ and 
ϕ. A critical aspect of our investigation is the influence of different initial states and dephasing rates Γα on the 
entanglement dynamics of the atomic system.

In Fig. 4, we depict the time evolution of the concurrence as a function of ωt and θ for the initial states |Ψ0⟩ 
and |Φ0⟩. Our observations reveal that entanglement sudden death (ESD), a phenomenon where entanglement 
abruptly ceases to exist, is a characteristic feature for the initial state |Φ0⟩, with the ESD time being dependent on 

Fig. 4.  Time evolution of the concurrence as a function of ωt and θ for distinct initial states under varying 
noise conditions. (a) The initial state |Ψ0⟩ = cos (θ/2) |2⟩ + sin (θ/2) |3⟩, under pure relaxation noise. (b) The 
same initial state as in (a), encountering a combination of noises with Γα/ω = ΓAα/ω = ΓBα/ω = 2. (c) The 
initial state |Φ0⟩ = cos (θ/2) |1⟩ + sin (θ/2) |4⟩, under pure relaxation noise. (d) The same initial state as in (c), 
under mixed noise conditions attributed to Γα/ω = ΓAα/ω = ΓBα/ω = 2. The remaining parameters are set as 
Γβ/ω = ΓAβ/ω = ΓBβ/ω = 1 and γβ/ω = γAβ/ω = γBβ/ω = 0.5.
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the parameter θ. Notably, the phase ϕ does not exert an influence on the entanglement dynamics and is thus set 
to zero for the sake of simplicity and clarity in our analysis. The presence of dephasing noise significantly impacts 
the ESD time. Specifically, for θ > π/2, the probability amplitude of state |1⟩ is less than that of state |4⟩, leading 
to the absence of ESD. Conversely, for θ < π/2, the probability amplitude of state |1⟩ is greater than that of state 
|4⟩, enabling the occurrence of ESD within this parameter range. For the initial state |Ψ0⟩, which commences 
with a non-zero concurrence, the decay of entanglement is gradual, with the entanglement death occurring at an 
infinite time under ideal conditions, indicating a more robust entanglement against environmental decoherence.

To provide a comprehensive understanding of the intricate dynamics of ESD, we conducted a detailed analysis 
of the cross-sections illustrated in Fig. 5. The trends in ESD times and non-Markovian effects are summarized 
in Table 1. These cross-sections depict the time evolution of the concurrence as a function of ωt for the initial 
states |Φ0⟩, with θ as a variable parameter. This analysis offers valuable insights into the relationship between 
system parameters and the onset of ESD, elucidating the mechanisms that govern the stability of quantum 
entanglement. In Fig. 5a and b, we observe a consistent trend in ESD time as θ varies. Specifically, within the 
interval 0 < θ < π/2, the ESD time increases with θ. This behavior can be attributed to the enhanced resilience 
of the system’s entanglement against decoherence processes as θ increases. Larger values of θ correspond to 
states that are less susceptible to relaxation, thereby delaying the onset of ESD. This delay results from the 
system evolving towards a more stable configuration, significantly reducing its vulnerability to entanglement 
degradation. As θ approaches π/2, the ESD time asymptotically approaches infinity, indicating a complete 
suppression of ESD within this parameter regime. This phenomenon can be explained by the system’s evolution 
towards a configuration that is highly resistant to entanglement degradation, effectively preventing the sudden 
death of quantum correlations.

Figure 5c further explores the influence of dephasing noise on concurrence and the occurrence of ESD. In the 
moderate time scale 0 < ωt < τ , where τ  is the critical time at which the lines labeled R and C intersect (e.g.,in 
Fig. 5c, the point τa for θ = π/3 or τb for θ = π/2), the presence of mixed noises results in a higher concurrence 
compared to the scenario under purely relaxation noise. This unexpected outcome can be attributed to the Non-
Markovian nature of the noise, wherein the system retains memory of its past interactions with the environment. 
In this regime, dephasing noise partially mitigates the effects of relaxation noise, thereby preserving entanglement 
to a greater extent. The Non-Markovian dynamics allow the system to exploit its memory of previous states, 
leading to a temporary enhancement of coherence that counters the immediate effects of relaxation.

Conversely, for the time scale ωt > τ , the curve under mixed noise experiences ESD more rapidly. This 
acceleration arises from the combined effects of relaxation and dephasing noise, which, beyond the critical 
threshold τ , leads to cumulative degradation of entanglement. The absence of intersection of curves for θ = π/6 
indicates that ESD occurs prior to the intersection, suggesting a delayed ESD time under mixed noises. This 
delay can be attributed to the intricate interplay between relaxation and dephasing mechanisms, which can 
either hasten or delay the onset of ESD depending on the specific time scale and system parameters.

Scenario ESD Time Non-Markovian Effects

Pure relaxation noise Fig. 5a Increases with θ No memory effects

Mixed noise conditions Fig. 5b Increases with θ Memory effects

Figure 5c (θ = π/6) ESD occurs prior to intersection Memory effects enhance coherence

Figure 5c (θ = π/3) ESD occurs after intersection Memory effects enhance coherence (ωt < τa)

Figure 5c (θ = π/2) ESD occurs after intersection Memory effects enhance coherence (ωt < τb)

Table 1.  Summary of the ESD times and non-Markovian effects under different noise conditions.

 

Fig. 5.  The time evolution of the concurrence versus ωt with different initial state parameters θ. Here, (a) 
represents the cross sections of Fig. 4c and (b) represents the cross sections of Fig. 4d. For straightforward 
comparison of differences, (c) contains the curves in both (a) (i.e., curves R under pure relaxation noises) and 
(b) (i.e., curves C under mixture noises).
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Notably, the critical time τ  serves as a boundary where the Non-Markovian memory of the environment 
transitions from protecting the system’s coherence to facilitating its degradation. This transition underscores 
the pivotal role of environmental memory in the dynamics of quantum entanglement, highlighting that while 
Non-Markovian effects can initially enhance entanglement, they can also lead to more rapid decoherence 
once a certain threshold is crossed. Thus, the interplay between different types of noise and their temporal 
characteristics is crucial in understanding the stability and longevity of quantum entanglement in realistic 
scenarios. Furthermore, the Non-Markovian nature of the noise introduces a temporal correlation that affects the 
system’s response to environmental perturbations. This correlation can lead to a backflow of information from 
the environment to the system, which in turn can temporarily restore or enhance the system’s coherence. This 
phenomenon is particularly evident in the regime 0 < ωt < τ , where the Non-Markovian effects counteract the 
detrimental impacts of relaxation noise, leading to an increase in concurrence. However, as the system evolves 
beyond the critical time τ , the cumulative effect of Non-Markovian noise can exacerbate the degradation of 
entanglement, leading to a more rapid onset of ESD. This dual role of Non-Markovian noise, both protecting and 
degrading entanglement, highlights the complex and time-dependent nature of its impact on quantum systems.

Furthermore, the non-Markovian dynamics, characterized by the time-dependent dephasing rates Γα, 
introduce memory effects that can lead to the revival of entanglement even after periods of decay. This is in 
stark contrast to Markovian dynamics, where the system’s evolution is independent of its history. In our system, 
the non-Markovian nature of the noise is evident in the fluctuating dephasing rates, which are influenced by 
the system’s past interactions with the environment. The presence of non-Markovian effects can be seen in the 
delayed ESD time under mixed noises, as the complex interplay between relaxation and dephasing mechanisms 
can either hasten or delay the onset of ESD. For certain parameter regimes, particularly when θ is close to π/2, the 
system exhibits a higher resistance to entanglement degradation, which can be attributed to the non-Markovian 
memory effects that preserve entanglement for longer durations. In the context of the initial states |Φ0⟩ and 
|Ψ0⟩, the non-Markovian dynamics result in a more nuanced picture of entanglement sudden death. For |Φ0⟩ , 
the ESD time is not only dependent on θ but also on the history of the system’s evolution, which can affect the 
rate at which entanglement decays or revives. On the other hand, for |Ψ0⟩, the gradual decay of entanglement 
suggests that the non-Markovian effects are less pronounced, allowing for a more robust entanglement against 
environmental decoherence.

Figure 6 enriches our understanding by exploring the impact of varying environmental parameters on the 
system’s dynamics. Specifically, we consider environments A and B with differing inversion memory capacity 
parameters γAβ and γBβ. By fixing γAβ/ω = 1 and systematically varying γBβ/ω across a range of values (0, 
0.1, 0.2, 0.5, and 1), we observe that the concurrence decreases at an accelerated rate as the inversion memory 
capacity γBβ increases. This acceleration can be attributed to the enhanced interaction between the system and the 
environment, leading to faster decoherence rates and a more rapid degradation of entanglement. The increased 
interaction strength results in a more pronounced effect of the environment on the system, hastening the loss 
of entanglement. Notably, Non-Markovian noise introduces memory effects that can temporarily preserve 
coherence; however, as γBβ increases, the system becomes more susceptible to rapid environmental fluctuations 
that overwhelm these memory effects. Specifically, while Non-Markovian noise allows for a backflow of 
information from the environment to the system, counteracting decoherence, high values of γBβ lead to stronger 
environmental fluctuations that surpass this coherence preservation, resulting in a faster decay of entanglement. 
Moreover, the entanglement sudden death (ESD) time is shortened under these conditions, reflecting the 
accelerated entanglement degradation. Notably, when the inversion memory capacity of a single environment 
γBβ approaches 0, the ESD time increases to infinity, even in the presence of a non-zero inversion memory 
capacity in the other environment (i.e., γAβ). This observation underscores the pivotal role of environmental 

Fig. 6.  The time evolution of the concurrence versus ωt with different parameters γBβ. Here we choose other 
parameters as initial state parameters θ = π/3, ΓAβ/ω = ΓBβ/ω = 1, γAβ/ω = 1 and ΓAα/ω = ΓBα/ω = 2.
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parameters in determining the robustness of entanglement against ESD. The interplay between Non-Markovian 
noise and the system’s dynamics highlights the critical importance of managing these parameters in quantum 
information processing tasks to ensure the longevity and stability of quantum entanglement. By understanding 
how Non-Markovian effects influence the system’s response to environmental changes, we can better design 
protocols that mitigate the adverse effects of noise, thereby enhancing the fidelity of quantum teleportation.

Conclusions
In conclusion, our research has significantly advanced the field of quantum information science by elucidating the 
dynamics of entanglement within quantum systems, focusing particularly on the interplay between initial state 
parameters and environmental influences. We have underscored the critical role of dephasing rates and initial 
state configurations in determining the robustness and longevity of quantum correlations, which is foundational 
for developing strategies to protect quantum information against environmental noise. This knowledge is 
essential for the advancement of quantum technologies, especially in quantum computing, communication, 
and cryptography, where maintaining quantum coherence and entanglement is crucial. Our detailed analysis 
has provided a deeper understanding of entanglement sudden death (ESD) dynamics, enabling more precise 
prediction and control over its onset. This enhanced understanding is pivotal for optimizing quantum systems 
to ensure stability and functionality over the requisite operational timescales. The insights from this study will be 
invaluable in guiding future research and development efforts in quantum information science and technology, 
ensuring that quantum coherence and entanglement can be maintained over longer timescales and under more 
challenging environmental conditions

Building upon these findings, future research could explore the impact of incorporating a controllable time-
varying magnetic field or applying analogous approaches to other open system models, such as cavity quantum 
electrodynamics and Heisenberg spin chains. This extension will not only deepen our understanding of the 
underlying physics but also potentially lead to innovative strategies for enhancing quantum coherence and 
entanglement in practical quantum systems. By skillfully manipulating environmental conditions and system 
parameters, we can engineer quantum systems that are more resilient to decoherence, paving the way for the 
realization of practical quantum devices with enhanced performance and reliability.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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