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This research introduces an accelerated training approach for Vanilla Physics-Informed Neural 
Networks (PINNs) that addresses three factors affecting the loss function: the initial weight state 
of the neural network, the ratio of domain to boundary points, and the loss weighting factor. The 
proposed method involves two phases. In the initial phase, a unique loss function is created using a 
subset of boundary conditions and partial differential equation terms. Furthermore, we introduce 
preprocessing procedures that aim to decrease the variance during initialization and choose domain 
points according to the initial weight state of various neural networks. The second phase resembles 
Vanilla-PINN training, but a portion of the random weights are substituted with weights from the 
first phase. This implies that the neural network’s structure is designed to prioritize the boundary 
conditions, subsequently affecting the overall convergence. The study evaluates the method using 
three benchmarks: two-dimensional flow over a cylinder, an inverse problem of inlet velocity 
determination, and the Burger equation. Incorporating weights generated in the first training phase 
neutralizes imbalance effects. Notably, the proposed approach outperforms Vanilla-PINN in terms of 
speed, convergence likelihood and eliminates the need for hyperparameter tuning to balance the loss 
function.
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The rapid advancements in the field of artificial intelligence (AI) have inspired researchers to explore new ways 
to integrate AI techniques into their respective fields. Raissi et al.’s pioneering work demonstrated the potential 
of neural networks as a powerful tool for solving partial differential equations (PDEs)1. The incorporation of a 
PDE loss term into the loss function, along with the mean squared error of predicting boundary conditions, led 
to the attainment of this solution. This breakthrough has since motivated many researchers to further investigate 
the use of deep learning techniques in various fields, including physics, finance, and engineering2–4. The vanilla 
form of PDEs solver, known as Physics-Informed Neural Networks (PINNs), represents a novel technique that 
has shifted attention from data-driven models to this emerging field5–8. The Vanilla PINN possesses notable 
versatility due to its mesh-free characteristics, enabling it to tackle a diverse range of challenges. It has proven its 
effectiveness in different scenarios, ranging from forward to inverse problems9. For instance, it has successfully 
addressed the lid-driven cavity test case, which is governed by the incompressible Navier-Stokes equation10. 
Additionally, it has demonstrated its ability in handling multiphase problems11, as well as scenarios involving 
flow past a cylinder and conjugate heat transfer12. These accomplishments solidify its status as a reliable approach 
for addressing various fluid mechanics challenges. However, the convergence issues and slow training time 
remain challenges.

As such, the pursuit to enhance the convergence speed of PINN has become a prominent research topic, 
marking the beginning of a new era in the field. An enhanced, yet more expensive approach to speeding up 
the convergence speed of PINNs is through the use of decomposition methods. One example of using this 
technique to speed up the convergence of PINNs is the work of Alena Kopaničáková et al. They employed a 
decomposed neural network strategy by dividing it into sub-networks, with each sub-network being trained 
separately on a dedicated GPU13. While techniques such as decomposition methods can lead to a faster 
convergence rate, they require expensive resources for solving PDEs. This poses a potential drawback, even 
for simple problems. However, there are other approaches that can accelerate convergence speed without the 
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need for such resources. One such approach is transfer learning14. Transfer learning is a powerful approach that 
involves leveraging knowledge from a pre-trained model to enhance the learning of another model15. Although 
recent advancements in transfer learning techniques have demonstrated their potential in training deep learning 
models16–18, they are not widely applied to solve PDEs using neural networks. The fact that solutions to PDEs are 
specific to the problem being solved can make it difficult to effectively use transfer learning. The transferability 
of such tasks is considerably more challenging than that of classic tasks like image classification. Despite this 
difficulty, researchers have discovered novel applications of transfer learning for PINNs19–21. In addition to 
transfer learning, another technique that can help accelerate the convergence of neural networks is warm-up 
training. Warm-up training can help the model slowly adapt to the data and allows adaptive optimizers to 
compute correct statistics of the gradients22. Few studies have investigated the potential of warm-up training 
in this field23. Junjun Yan et al. utilized warm-up training to generate pseudo-labels, which were subsequently 
employed in the main training loop24. Another popular approach to warm-up training involves initial training 
for a defined number of iterations with the ADAM optimizer, followed by another training loop with LBFGS, 
which leads to faster convergence in comparison to vanilla PINN25.

Another field of study aimed at improving the convergence speed of vanilla PINN involves addressing the 
intrinsic problems with this method. As research in this area has progressed, new and improved methods have 
been developed that build upon the original vanilla form. These methods involve modifications to various 
components of the vanilla form, such as the architecture26, activation function27, training method28, sampling29, 
and loss function30. One of the challenges in PINN is dealing with an imbalanced loss function, where either the 
PDE loss term or the boundary condition loss term can dominate, depending on the problem context31. This issue 
can lead to a biased model that exhibits poor convergence. Lu et al. presented DeepXDE as a means to optimize 
the loss function of PINNs for PDEs. They proposed an approach called residual-based adaptive refinement 
(RAR), which incorporates supplementary collection points into areas characterized by high PDE residuals32. 
Nabian et al. introduced a collection point resampling strategy that utilizes importance sampling, relying on the 
loss function distribution to improve convergence33. Several studies have concentrated on addressing training 
issues through the use of adaptive sampling strategies34–37. These studies aim to optimize the training process by 
selecting strategically the most effective domain points at each stage of training. The primary objective of this 
approach is to maintain a balanced training procedure, which in turn, facilitates a more efficient convergence 
process. By ensuring a balanced distribution of domain points, these methods aim to optimize the learning 
process and improve the overall performance of the model. An alternative approach to selecting the optimal 
domain points at each training step involves the application of loss weighting strategies, which allow for direct 
control over the value of each term in the loss function. Wang et al. introduced a method known as ‘learning 
rate annealing for PINNS’ that dynamically adjusts the weights during the training process38. The fundamental 
principle of this method is the automatic adjustment of weights based on the statistics of the back-propagated 
gradient during model training, ensuring a balanced distribution across all elements of the loss function. This 
approach proved to be a more effective alternative to the previously employed method of manually adjusting the 
weights to balance the loss function39. In a different research study, Maddu et al. introduced a method that utilizes 
gradient variance to achieve a balanced training process for PINNs. This method, known as Inverse-Dirichlet 
Weighting, also incorporates a momentum update with a specific parameter. Experimental results indicate that 
this approach effectively mitigates the issue of gradient vanishing40. However, these methods, which use adaptive 
weighting schemes and dynamic updates for loss function balancing, may not be universally effective. The 
process of determining optimal weight values can be computationally intensive and potentially unsuccessful. 
The existing mentioned studies primarily concentrate on one factor to balance the loss function, neglecting 
other potential factors. These studies do not take into account all the elements that contribute to balancing the 
loss function. Furthermore, their proposed methods require calculation at every step of training, which makes 
them computationally intensive. This focus on a single aspect and the computational cost associated with their 
methods highlight the need for more comprehensive and efficient approaches.

In this study, we introduce additional factors that could cause an imbalance in the loss function for the 
first time. We propose an innovative training methodology that balances the loss function by taking all these 
factors into account. In the first phase of our proposed methodology, we introduce a novel loss function that is 
more efficient than other balancing strategies, as it thoroughly addresses all factors contributing to the balance 
of the loss function. We further enhance this phase by a new hypothesis that an initial weight state with lower 
variance is beneficial, and by using a new strategy for selecting the input space based on the Xavier initialization 
scheme.The second phase of our methodology is similar to the training of vanilla Physics-Informed Neural 
Networks (PINN). However, a key distinction lies in the utilization of the weights produced in the first phase. 
These weights are used to replace a proportion of the random weights in the neural network structure. In our 
methodology, the systematic replacement of weights not only balances the training process of the vanilla PINN 
for all factors but also offers a computational advantage as it is faster than traditional loss weighting strategies 
and adaptive methods. In this study, we employed three benchmarks to evaluate our methodology against the 
vanilla PINNs. Included benchmarks are as follows: a two-dimensional (2D) flow over a cylinder, an inverse 
problem to determining the inlet velocity in a 2D flow over a cylinder, and the Burgers’ equation. Notably, in 
Section “Vanilla PINN loss function”, we present the formulation of the vanilla PINN loss function as applied 
to the benchmarks under consideration, and we discuss the training challenges raised with this formulation in 
Section “Vanilla PINN training challenges”. In the subsequent sections, we introduce our alternative approach 
and conduct a comparative analysis with vanilla PINN.

Vanilla PINN loss function
In vanilla PINN, the loss function is defined by Eq.  (1). The typical process for forming this loss function 
involves calculating derivatives based on the input for the first term while including all boundary conditions 
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into the second term. Please note that in the studies mentioned earlier38–40, λ  is used as the weighting factor in 
conjunction with adaptive strategies.

	 Loss F unction = Lpde + λ × Lboundary � (1)

Navier-Stokes equations have been the primary choice for addressing laminar flow in the majority of research 
studies in this field41–43. Navier-Stokes equations are used to address the first two benchmarks. In these two 
benchmarks Lpde is a simplified version of the full Navier-Stokes equations under several assumptions: the 
flow is steady and two-dimensional (2D), the fluid is incompressible and Newtonian and the conservation of 
momentum is applied.

	 Lpde = f0
2 + f1

2 + f2
2� (2)

	
f0 = ∂ u

∂ x
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∂ y
� (3)
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(
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σ xx = −p + 2 × µ × ∂ u

∂ x
� (6)

	
σ yy = −p + 2 × µ × ∂ v

∂ y
� (7)

	
σ xy = µ (∂ u

∂ y
+ ∂ v

∂ x
)� (8)

Where ρ  represents the fluid density, u and v denote the x and y components of the velocity vector, µ  
represents the dynamic viscosity, p corresponds to the fluid pressure, and σ  denotes the stress. The loss 
function quantifies the difference between the predicted output of the neural network and the boundary value 
and uses PDE loss to understand the governing equation. In the first benchmark, the density of the fluid is 1 kg

m3

and the viscosity of the fluid is 0.02 kg
ms  with an inlet Reynolds number of 26.6. The channel in this benchmark 

is characterized by a length of 1 m and a height of 0.4 m. Within this channel, the 2D cylinder has a diameter 
of 0.1  m. The positioning of the cylinder is such that it is located 0.15  m from the inlet and an equivalent 
distance from the bottom of the channel. The boundary condition applied to the wall of the channel is the no-
slip condition, implying that the fluid velocity at the wall is zero. Furthermore, the pressure at the outlet of the 
channel is defined as zero. The velocity at the inlet is defined as follows:

	
u = 4 × y × (0.4 − y)

0.42 � (9)

The first benchmark is a forward problem where known boundary conditions are used to calculate velocity 
and pressure in the domain. On the other hand, the second benchmark poses an inverse problem. In this case, 
the inlet boundary condition is not included. Instead, the loss function utilizes 60 domain points with known 
velocity values. The final goal is to determine the inlet velocity.

	 Lboundary = ∥P redictions (x, y |w) − Labels∥2� (10)

Equation (11) quantifies the difference between the predicted output of the neural network and the boundary 
condition or the data available for the inverse problem. The formulation of this new loss term, which is central 
to the solution of the inverse problem, is defined as follows:

	

LInverse problem = 1
n

n∑
i=0

P redictions (x, y |w) − u(x, y)2

+ P redictions (x, y |w) − v(x, y)2

� (11)

The final benchmark, referred to as Burger’s equation, is an unsteady problem with µ = 0.01 kg
m.sec  (Eq. (12)). 

In this benchmark, Burger’s equation is solved within a specific domain and time frame. The spatial variable, 
denoted as x, spans from 0 to 4 m. Concurrently, the time interval for the solution is defined from 0 to 5 s. The 
initial condition for this problem is derived by substituting u(x, t = 0) into Eq. (13). The boundary conditions 
are defined such that the value of the output is zero when x equals either 0 or 4. With these settings in place, 
Burger’s equation can be solved to yield an exact solution which is Eq. (13).

	
f0 = +∂ u

∂ t
+ u

∂ u

∂ x
− µ

∂ 2u

∂ x2 � (12)
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u(x, t) = 2 × 0.01 × π × sin (π x) × e−0.01π 2× (t−5)

2 + cos (π x) × e−0.01π 2× (t−5)
� (13)

Lpde for the last benchmark is formed by calculating the square of f0 and averaging across the entire domain 
point. In conclusion, based on the PDE and the boundary conditions, the loss function for each benchmark is 
formed as follows:

	

LBenchmark1 =Lpde + λ × (no-slip boundary condition on side walls
+ inlet velocity boundary condition
+ no-slip boundary condition on the cylinder + outlet pressure)

� (14)

	

LBenchmark2 =Lpde + λ × (no-slip boundary condition on side walls + LInverse problem

+ no-slip boundary condition on the cylinder + outlet pressure )
� (15)

	 LBenchmark3 = Lpde + λ × ( u (x, t = 0) + u (x = 0, t) + u (x = 4, t)) � (16)

Vanilla PINN training challenges
The loss function of vanilla PINN consists of two terms: the boundary loss and the PDE loss. The boundary loss 
measures how well the model matches the ground truth values of the boundary condition, while the PDE loss 
measures how well the model satisfies the derivative values that form the PDE equation. During training, the 
neural network’s weights are updated iteratively to minimize the loss function. This iterative update allows for 
the calculation of the desired outputs within the given domain. However, converging to a global minimum can 
be challenging because these two terms in the loss function have different scales and magnitudes. This difference 
makes the loss function imbalanced and difficult to optimize.

To investigate factors that lead to an imbalance in the vanilla PINN loss function, the first benchmark is 
utilized. Note that vanilla PINN in this case takes x and y as inputs and outputs u, v, p, σ xx, σ xy  and σ yy . 
Latin hypercube sampling (LHS) and random sampling methods are used to select domain points and boundary 
points, respectively. Figure 1 shows the distribution of the selected points. The density of selected points around 
the cylinder is higher than other parts of the domain to capture the underlying physics more accurately.

In this test case, we observed that a minor adjustment in the ratio of the number of domain points to 
boundary points, from 0.035 in Case 1 to 0.033 in Case 2, led to a change in the optimal value of λ . To quantify 
this impact, we trained the vanilla PINN for different values of λ  for each case and reported the average 
training time in Table 1. The reason for reporting the average training time is that the convergence of the neural 
network is significantly influenced by its initial state. A more detailed explanation of this effect is provided in 
Section “Results and discussion” of this paper. The data in Table 1 illustrates how different ratios can influence 
the optimal value of λ . A minor adjustment in the ratio of the number of domain points to boundary points can 

λ = 0.1 λ = 0.5 λ = 1 λ = 1.1 λ = 1.5 λ = 5
Case 1 Not Converged 40.883 17.900 15.283 25.050 14.266

Case 2 Not Converged 13.450 27.550 25.583 15.933 28.616

Table 1.  Training time, in minutes, for different λ  to converge to a loss value of 10− 3 in case 1 and case 2.

 

Fig. 1.  Initial test case to identify different factors causing the loss function imbalance.

 

Scientific Reports |        (2024) 14:23836 4| https://doi.org/10.1038/s41598-024-74711-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


result in a significant change in training time or even cause divergence. For instance, when λ  is 0.5, the average 
training time is considerably faster in Case 2 compared to Case (1) Conversely, the training time for λ  =1 is 
faster in Case 1 than in Case (2) The training process is halted when the loss value reaches a threshold of 10− 3. 
This observation underscores the sensitivity of the training process to the initial conditions, domain to boundary 
points, and λ  value.

From Table 1, three factors can be identified that potentially cause the loss function to be imbalanced.

	1.	� The first cause is related to the initial weights state of the neural network. This is a random factor and cannot 
be controlled or predicted, which is why the average training time is reported in Table 1. The randomness of 
the initial weights can lead to different learning paths during the training process, and consequently, to dif-
ferent local minima in the loss function. As a result, both the training time and the likelihood of convergence 
can vary across different runs, even when the same hyperparameters are used.

	2.	� As indicated in Table 1, the ratio of domain points to boundary points is a crucial factor that can result in 
an imbalance within the loss function. This imbalance occurs because the number of domain points can 
fluctuate depending on various scenarios, leading to the dominance of either the PDE loss or the boundary 
condition loss31.

	3.	� The final factor, as outlined in Table 1, is the λ  value. This factor is particularly beneficial for researchers as 
it can be directly set in the loss function. The λ  value directly controls the average value of the boundary 
condition loss term in the loss function. However, it is important to note that the incorrect selection of this 
hyperparameter can exacerbate the imbalance in the loss function.

While the tuning of the λ  value can be beneficial in optimizing the loss function, it can become more 
challenging when a lower threshold for total loss value, such as 10− 4, is set as a threshold to stop the training. As 
a result, the process becomes even more challenging and time-consuming, with an increased risk that the loss 
function may not converge to the desired threshold. Figure 2 illustrates how the different λ  values can affect 
the time of convergence and whether convergence is possible for the set threshold. In the majority of existing 
research38–40, the primary emphasis is placed on the third factor, often overlooking the simultaneous influence 
of all three factors. For instance, the initial weight state, a factor that has not been previously addressed, exhibits 
a complex relationship with the λ  factor. The intricate interplay among the initial weights state, the λ  value, 
and the ratio of domain to boundary points are clearly demonstrated in Table 2 of this study. For a fixed λ  
value and domain to boundary points ratio, it is observed in this table that only a few initial weight states lead 
to convergence for the Vanilla PINN. It is important to note that a more in-depth exploration of the factors 
contributing to the imbalance in the loss function is conducted in Table 2 of this paper, following the proposition 
of a comprehensive solution.

Fig. 2.  Illustration of how tuning λ  can impact the ability to reach different thresholds of 10− 3 and 10− 4 for a 
constant ratio of domain to boundary point.
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Methodology
As outlined in Section “Vanilla PINN training challenges”, imbalanced loss function can complicate the training 
process. We propose that incorporating weights and biases, which are trained to learn boundary conditions, into 
the neural network can balance the loss function during training. This proposition is based on the assumption 
that such initialization could steer the network toward solutions that align with the subset of boundary 
conditions. The logic behind this is that if a proportion of weights and biases of a neural network is capable of 
predicting the boundary conditions, then this proportion will influence the network’s predictions. This suggests 
that the structure of the neural network is designed to favor the boundary conditions, which in turn influences 
the overall convergence of the loss function. This implies that, due to the omission of some boundary conditions 
in the loss function, the solution learned by the neural network is not unique and differs from the exact solution. 
Consequently, the boundary it learns is aligned with the boundary conditions of the main problem. However, 
the solution learned within the domain does not match the exact solution.

In this study, our approach is named ‘Feature-Enforcing-PINN’ for clarity, and the term ‘smart weights’ is 
used for weights and biases informed by boundary conditions. The process of incorporating smart weights into 
the neural network is termed ‘smart initialization’. Our research methodology’s contributions are organized 
as follows: In Section  “Loss function for the smart weights”, we introduce the Primary Loss Function. This 
novel loss function is specifically designed to guide the neural network to learn only a subset of the boundary 
conditions, rather than the exact solution of the PDE. Following this, in Section “Reducing variance”, we discuss 
the crucial role of variance reduction prior to training the neural network in our approach. This step is essential 
to ensure the stability and efficiency of the learning process of FE-PINN. In Section “Progressive neural network 
training: from trivial to exactsolutions”, we present our new strategy for selecting domain points. Training the 
neural network with the Primary Loss Function and the aforementioned preprocessing steps results in what we 
refer to as ‘smart weights’. Subsequently, we augment the network structure by adding extra layers with random 
weights. Finally, the enhanced neural network is trained on the complete loss function. This comprehensive 
novel approach ensures that our neural network’s loss function is balanced and remains unaffected by the three 
primary causes discussed in Section “Vanilla PINN loss function”, which typically render the vanilla PINN loss 
function imbalanced. Finally, in Section “Results and discussion”, we conduct a comparative analysis between 
our proposed methodology, which we refer to as FE-PINN, and Vanilla PINN.

Loss function for the smart weights
In the process of solving PDEs, the absence of the necessary boundary conditions often leads to non-unique 
solutions, thereby opening up a range of potential answers. Drawing from this analogy, we have devised 
a loss function, referred to as the Primary Loss Function, to find one of the non-unique solutions. Training 
a neural network with this loss function results in a set of parameters, which we termed smart weights in 
Section  “Methodology”. Note that smart weights are used to replace a proportion of random weights in the 
structure of a neural network in the training process of Vanilla PINN. The Primary Loss Function is defined as 
follows for each benchmark:

	 P LBenchmark1 = no-slip boundary condition on side walls + inlet velocity boundary condition + Lpde� (17)

Ratio FE-PINN

Vanilla PINN

λ = 1 λ = 1.2 λ = 1.4 λ = 1.6 λ = 1.8
Case 1 20.72 1.2 + 21.5 Not Converged Not Converged Not Converged Not Converged Not Converged

Case 2 20.72 1.2 + 26.0 Not Converged 56.5 Not Converged Not Converged Not Converged

Case 3 20.72 1.3 + 24.1 Not Converged Not Converged 54:6 57.8 53.6

Case 1 34.76 1.0 + 32.4 Not Converged 62.5 58.2 49.8 Not Converged

Case 2 34.76 1.3 + 18.2 30.0 Not Converged Not Converged Not Converged Not Converged

Case 3 34.76 1.3 + 28.1 Not Converged 44.8 Not Converged 38.8 38.1

Case 1 38.28 1.1 + 24.0 29.1 47.8 Not Converged Not Converged 48.3

Case 2 38.28 1.1 + 28.0 32.7 48.8 Not Converged 43.1 Not Converged

Case 3 38.28 1.1 + 17.3 Not Converged 52.3 Not Converged Not Converged 47.4

Case 1 41.7 1.2 + 20.4 Not Converged 42.4 35.6 Not Converged 38.4

Case 2 41.7 1.2 + 21.1 Not Converged 56.6 42.3 57.6 Not Converged

Case 3 41.7 1.0 + 23.3 31.1 51.9 Not Converged Not Converged Not Converged

Case 1 43.81 1.3 + 26.5 Not Converged Not Converged 41.7 44.9 Not Converged

Case 2 43.81 1.1 + 17.9 Not Converged 40.6 Not Converged 41.8 44.2

Case 3 43.81 1.2 + 22.0 Not Converged 51.4 37.2 47.2 39.8

Case 1 45.23 1.1 + 24.0 Not Converged Not Converged Not Converged Not Converged Not Converged

Case 2 45.23 1.3 + 18.0 26.3 38.3 Not Converged Not Converged Not Converged

Case 3 45.23 1.0 + 22.4 32.5 48.8 40.3 43.7 43.5

Table 2.  The training time, measured in minutes, is given for both vanilla PINN and FE-PINN under different 
ratios and initial weight states.
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	 P LBenchmark2 = no-slip boundary condition on side walls + LInverse problem + Lpde � (18)

	 P LBenchmark3 = u(x = 0, t) + Lpde� (19)

Different forms of the Primary Loss Function can influence both phases of the training process. Increasing the 
number of conditions in this loss function tends to extend the training time in the first phase, although it may 
not always yield additional benefits in the second phase. Therefore, the number of terms in the loss function 
should be carefully tuned based on the specific design requirements. Initially, it is recommended to exclude 
at least one boundary condition, ideally one from each dimension. Additionally, removing obstacles such as 
cylinders can help avoid complications. Incorporating data from the inverse problem is also beneficial, as it 
positively impacts the training process.

Please note that the loss function defined in this section is solely for the creation of smart weights, which 
is distinct from the vanilla PINN loss function outlined in Section “Vanilla PINN loss function”. The notable 
distinction in training time between smart initialization and the main training loop arises from the existence 
of multiple valid solutions for the primary loss function, which aids the neural network in identifying a global 
minimum. Moreover, the application of variance reduction techniques, as discussed in Section “Loss function for 
the smart weights”, significantly reduces the initial loss, providing a more favorable starting point. Additionally, 
the reduction in the number of PDE points further enhances convergence speed, thereby optimizing the training 
process.

Reducing variance
During the training process, smart weights can lose their information about the primary loss function after a few 
iterations. This occurs because both types of weights have similar update rates due to their comparable gradients 
and identical learning rates. As a result, the training process becomes imbalanced, resembling the behavior of a 
vanilla PINN, as discussed in Section “Vanilla PINN training challenges”.

To prevent smart weights from losing their information, a novel initialization approach is employed before 
the first phase of training, wherein random weights are initialized with a lower variance, resulting in smaller 
initial gradients. After reducing variance and training the neural network with the Primary Loss Function, the 
newly created smart weights replace a portion of the random weights within the structure of the neural network. 
These random weights, initialized using the Xavier method, exhibit a higher variance and larger gradients, 
causing them to update more rapidly during training on the complete loss function from Section “Vanilla PINN 
loss function”. Since smart weights are predominantly identical and possess smaller gradients, they undergo 
minimal changes during training on the vanilla PINN loss function. This strategy ensures that the smart weights 
maintain their boundary condition knowledge for more iterations due to their lower variance, smaller gradients, 
and consistent response to input. To illustrate the influence of variance reduction on the gradient and Lpde 
before training, Table 3; Fig. 3 are presented. Figure 3 compares the outputs and their derivatives with respect 
to inputs after and before reducing initialization variance. For instance, in the first benchmark, output values 
(u, v, p) after reducing variance are near zero and exhibit minimal changes, while those before this process vary 
more significantly as illustrated in Fig. 3a, b. Additionally, derivative values after reducing variance are much 
smaller, indicating smoother variation across the domain as shown in Fig. 3c, d. This observation is confirmed 
by repeating the process with different random seeds. Table 3 presents the Lpde for both networks, showing that 
the network with lower variance assigns a lower PDE loss value due to its smaller derivative values. This pattern 
holds across different random seeds and domain points, suggesting that the procedure is systematic rather than 
random. The initial lower loss value of Lpde helps the neural network start the training process in a better initial 
state, which makes convergence faster. Note that this process is specifically designed for this stage based on the 
multiple valid answers of this phase and is not a useful strategy in the next stage. Furthermore, if this factor is 
low, it causes divergence, while if it is near one, it doesn’t impact the training. Based on the empirical data of our 
study, we suggest using a factor between 1/√5 and 1/√10. Please note that this recommendation is derived from 
the three benchmarks discussed in this study. Adjusting this factor may prove beneficial for new benchmarks.

Progressive neural network training: from trivial to exact solutions
An alternative strategy for LHS involves the computation of PDE residuals at each iteration of training the neural 
network. If these residuals exceed a predetermined threshold for domain points, they are chosen as input points 
for that iteration. This iterative method, introduced by Arka Daw et al., is feasible because PDE residuals are a 
function of a neural network’s weight state44.

The Xavier initialization method, when applied with different random seeds, results in different weight 
configurations for a neural network. As the loss function is dependent on the weight state, this leads to diverse 

Total domain points Xavier-initialized network (Lpde) Network with reduced variance (Lpde)

random seed #1 371,760 1.2691 0.0034

random seed #2 371,760 1.4661 0.0049

random seed #3 371,760 0.9479 0.0007

random seed #4 371,760 0.5480 0.0043

Table 3.  Comparison of PDE loss values between a Xavier-initialized network and a network with reduced 
variance, evaluated across various random seeds.
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Fig. 3.  The first set of three figures, labeled as (b), illustrates the variables (u, v, p) for the neural network post-
variance reduction. In contrast, figures labeled as (a) represent the neural network initialized using the Xavier 
scheme. The final set of three figures exhibits the value of du/dx for two scenarios: one for the neural network 
after variance reduction (d), and the other for a neural network initialized using the Xavier scheme(c). Please 
note that all the figures presented are post-variance reduction and prior to the commencement of any training.
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outcomes when calculating the PDE residual for domain points. Utilizing different random seeds and selecting 
domain points that surpass a specific PDE residual threshold result in a unique set of domain points for each 
initial weight state. Consequently, with each change in the random seed, the focus shifts to a different part 
of the domain, from which the domain points are then selected. This results in a higher density of points in 
that area compared to the rest of the domain. This non-uniform distribution leads to the exclusion of certain 
parts of the domain from the selection of domain points. This exclusion allows the neural network to focus 
on its interpolation capabilities within the excluded areas. To clarify, the process we utilize for the selection of 
domain points is designed with an emphasis on using interpolation across the excluded parts of the domain. In 
other words, rather than learning the exact solution, the network is trained to make predictions within certain 
boundaries. This is due to the presence of only a subset of boundary conditions in the Primary Loss Function. 
This procedure, which employs N different random seeds to select domain points, is executed before the training 
process begins. This strategy for domain point selection is a modification of the method introduced by Arka 
Daw. Note that N is a hyperparameter that determines the number of different random seeds used for initializing 
the neural network’s weights. The choice of N can influence the diversity of the domain points selected during 
training. However, for a wide range of values, the outcome remains consistent, indicating that the exact value 
of N is not critical to the strategy’s success. Empirical observations suggest that using between 5 and 10 random 
seeds yields similar results.

This approach is used to select domain points for all the benchmarks in the first training phase, with the 
number of domain points directly influencing the computational complexity. By using domain point selection 
based on the initial weight state as a criterion, the approach aims to reduce domain points for generating smart 
weights in the smart initialization phase. We train a neural network on the Primary Loss Function for each 
benchmark using the selected domain points. This training occurs after the preprocessing step outlined in 
Section  “Reducing variance”. All benchmarks are trained exclusively using a GPU RTX 4080. Following the 
initial training phase, smart weights are produced. Upon the generation of smart weights for each benchmark, 
these weights are subsequently utilized to substitute a proportion of the weights within a neural network, which 
was initialized via the Xavier initialization method. In the training process of a neural network, we strategically 
replace the weights in both the output layer and the initial few layers with smart weights. This replacement ensures 
that these critical layers have a more pronounced impact on the learning process and the overall performance 
of the network. It’s important to note in a neural network these layers have distinct roles. The output layer, for 
instance, is crucial as it is directly responsible for the final prediction made by the neural network. Conversely, 
the initial layers are typically tasked with learning the basic features of the input data, serving as the foundation 
for the subsequent layers. This strategic weight replacement enhances convergence and balances the training 
for the second phase. After the addition of smart weights, the second training process is carried out on the loss 
function, defined in Section “Vanilla PINN loss function”. Unlike the first training phase, the LHS method is 
used to select domain points for this phase. Figure 4 depicts the structure of the neural network for the first two 

Fig. 4.  A schematic of the FE-PINN structure.
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benchmarks. In this figure, the smart weights, which are obtained after training on the Primary Loss Function, 
are represented by blue lines. Conversely, the red lines illustrate the random weights that were added using 
Xavier initialization. It is imperative to acknowledge that the initial two benchmarks utilize ‘x’ and ‘y’ as inputs, 
whereas the final benchmark employs ‘x’ and ‘time’. The neural network for the first two benchmarks comprises 
eight hidden layers, each encompassing 40 neurons. The weights of half of these hidden layers, precisely four, are 
substituted with smart weights. Conversely, the neural network for the final benchmark consists of four hidden 
layers, with the weights of half of these layers, precisely two, being replaced with smart weights. It is noteworthy 
that the increased complexity of the first two benchmarks, in comparison to the last one, necessitates a greater 
number of hidden layers in these two benchmarks.

Results and discussion
First benchmark
In the initial training process, the ADAM optimizer with a learning rate of 3 × 10−4 is used, focusing on 
P LBenchmark1  with an average training time of 1.2  min. This enables the network to predict (u), (v), and 
(p) values for the primary loss function of the first benchmark, as shown in Fig. 5. Note that this figure shows 
one possible solution where the network learns specific terms in the primary loss function and one of the non-
unique solutions of the PDE due to the absence of some boundaries.

Upon the creation of smart weights and the enhancement of the network’s complexity by appending 
additional layers atop them before the output layer, the subsequent step entails training the newly established 
model by utilizing the complete loss function represented by LBenchmark1 . In the second training process, the 
parameter λ  is kept at 1 for the entire training process for FE-PINN while tuned for vanilla PINN. Domain 
points are selected by utilizing the LHS method, as depicted in Fig. 1. The optimization process employs the 
LBFGS method from the Torch library.

In our investigation of balancing factors outlined in Section “Vanilla PINN training challenges”, we refer to 
Table 2. It’s crucial to note that the initial weight state of both the vanilla PINN and FE-PINN share the same 
weights in the red layers of Fig. 4 for each row of Table 2. The key difference lies in the blue layers, which are 
created using a smart initialization process for FE-PINN, while Xavier initialization is used for the vanilla PINN. 
Smart weights as blue layers for our model make the loss function balanced while random weights as blue layers 
make the vanilla PINN loss function imbalanced. The time required for smart initialization is detailed in the 
second column of Table 2, represented by the first number before the addition sign, and the second number is 
the training time of FE-PINN. In order to address the second cause mentioned in Section “Vanilla PINN training 
challenges”., we report the time required for convergence, considering various ratios of domain to boundary 
points. Each ratio is reported three times to account for the potential influence of the initial weight state on the 
convergence process which is the first cause. For instance, at a ratio of 41.7, FE-PINN converges to the desired 
threshold, which is 10− 4, but the vanilla PINN cannot converge in two of the three cases for λ = 1. The reasons 
behind the failure of the vanilla PINN to converge are the first two causes mentioned earlier. However, in certain 

Fig. 5.  Smart weights predicting u, v, and p for the first benchmark after the initial training phase on the 
P LBenchmark1 .
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cases, such as ratios of 43.81 and 20.72, the vanilla PINN fails to converge to the desired threshold with three 
different initial weight states for λ = 1. This suggests that the imbalance is caused by the ratio of domain points 
to boundary points in these instances. In contrast, FE-PINN ensures that the loss function remains balanced 
across different ratios and converges in all cases of Table 2. Also, in some ratios where the initial weight state 
causes the vanilla PINN to fail to converge, FE-PINN still converges. For instance, in the first case of ratio 20.72 
with the same initial weight state in the red layers (Fig. 4) for both models, FE-PINN converges in 22.7 min while 
the vanilla PINN fails to converge. In the second case, when the vanilla PINN manages to converge with a λ  
value of 1.2, our model still converges two times faster. It’s important to note that in all cases where vanilla PINN 
converges, not only does our model converge, but it also converges faster than the vanilla PINN. Tables 2 and 4 
demonstrate the fact that the loss function is balanced for all three causes mentioned in Section “Vanilla PINN 
training challenges”, highlighting a key feature of FE-PINN and its robust performance across various scenarios. 
Taking into account the impact of the λ  value on the convergence of vanilla PINN, the training times for λ  
values of 1.2, 1.4, 1.6, and 1.8 are reported in Table 2. For this benchmark, it is observed that the likelihood of 
non-convergence is higher for a λ  value of 1 compared to other λ  values. Interestingly, the λ  value of 1.2 
emerges as the most successful, achieving convergence 72% of the time. Upon calculating the average time 
required for convergence at a λ  value of 1.2, it is found to be approximately 49.4 min. In contrast, the average 
training time for the FE-PINN is about 24.3 min, which is more than twice as fast as the vanilla PINN. Also, 
it’s important to note that FE-PINN converges in all cases across all three benchmarks. This demonstrates that 
there is no need to tune the λ  value, find the optimum ratio of domain points to boundary points, and that the 
convergence of FE-PINN is independent of initial states. This is why the training time for FE-PINN is reported 
only at a λ  value of 1.

Table 2 reveals that for λ  value of 1, the vanilla PINN only converges 33% of the time, underscoring the 
necessity for hyperparameter tuning. The smart initialization introduced in this study can replace the time-
consuming process of λ  tuning. As shown in Table 4, on average, the smart initialization and training times in 
FE-PINN are faster compared to the hyperparameter tuning and training times of the vanilla PINN, respectively. 
We employ a random search to quantify the average time required to find the optimal λ  value for the vanilla 
PINN. This process is repeated five times to ensure the total time is independent of randomness. For each 
iteration, the tuning time and the convergence time of the best λ  value are measured. The average times are 
then calculated and reported in Table 4. On average, the smart initialization process in FE-PINN is 144 times 
faster when using the P LBenchmark1  instead of tuning λ  directly. This demonstrates that our approach not 
only eliminates the need for hyperparameter tuning but also trains faster on the target task. The Big O notation 
is utilized to characterize the growth rate of the number of operations, disregarding constant factors and lower-
order terms. The Big O (time complexity) of training a vanilla PINN is dependent on various factors such as 
the total number of layers, the total number of neurons per layer, the number of input and output features, the 
number of domain points, the number of epochs, calculated derivatives, the optimization algorithm, and the 
tuning of the λ  value. Note that in Table 4, both FE-PINN and the vanilla PINN share identical characteristics, 
with one distinction: the λ  value in the vanilla PINN necessitates tuning, but our approach replaces this process 
with a low-cost, smart initialization process. The difference between the Big O notation for FE-PINN and the 
vanilla PINN lies in the necessity to explore the optimal value for λ  in the loss function of the vanilla PINN. For 
the vanilla PINN, in the best-case scenario, the first selected λ  value converges to the desired threshold (O(1)), 
while in the worst-case scenario, all possible values must be explored (O(n)), where n is the number of iterations 
performed to find the best value of λ . However, in the case of our approach, there is no need for such a process. 
Instead, a low-cost smart initialization can replace the exploration of different λ  values, with an average training 
time of just one minute. It is important to note that for the FE-PINN, the time complexity is O(1), which means 
it is constant and does not depend on finding the optimum λ  value.

Figure  6 provides a clear illustration of how the loss function of FE-PINN achieves its global minimum 
more efficiently compared to PINN. This example corresponds to Table 2 for the ratio 41.7, case 1. The blue line 
represents FE-PINN, while the other line represents PINN with a lambda value of 1.8. The red line indicates the 
stopping criteria. This figure demonstrates that significantly fewer epochs are required to train FE-PINN.

Although the computational cost for the forward and backward phases of each epoch is equivalent for both 
PINN and FE-PINN due to our design, the overall computational cost of FE-PINN is lower. This reduction 
is attributed to FE-PINN requiring fewer epochs to converge to the desired threshold, achieved through the 
implementation of smart weights, resulting in a lower total number of operations.

In Fig. 7, the outputs of our methodology and the vanilla PINN are compared visually. Note the difference 
between Figs. 5 and 7. Figure 5 is the prediction of our model after the first training phase while Fig. 7 is the 
result of the second training phase. Finally, the FE-PINN predictions are validated using simulation results, 
keeping the ‘y’ constant for velocity magnitude in Fig. 8.

Average tuning time Smart initialization Average training time Total time for reaching 10− 4

Vanilla PINN 172.3 – 47.4 219.6

FE-PINN – 1.2 21.4 22.6

Table 4.  Time on average, in minutes, required for tuning time, smart initialization and training time for 
vanilla PINN and FE-PINN.
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Fig. 7.  A comparison is made between the (u, v,p) predicted by (a) FE-PINN and (b) vanilla PINN for the flow 
over a 2D cylinder.

 

Fig. 6.  Illustration of how FE-PINN and PINN total loss values change versus Epoch.
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Second benchmark
Vanilla PINN has shown potential in addressing inverse problems, which are inherently ill-posed due to the 
presence of unknown boundary conditions. In this section, we present a comparative analysis of the performance 
of FE-PINN and the vanilla PINN in resolving an inverse problem characterized in Section “Vanilla PINN loss 
function”. Benchmark 2 is depicted in Fig. 9. Furthermore, we have 60 domain points with known u and v values, 
as denoted by the blue marks in Fig. 9. As previously described, the neural network is initially trained on the 
P LBenchmark2  using Adam optimizer. Following the smart initialization process introduced in this study, the 
model is then trained on LBenchmark2  to solve the problem.

In order to ensure a fair comparison, both FE-PINN and the vanilla PINN are trained under comparable 
conditions. This includes employing the same learning rate, the same optimization algorithm (LBFGS), an 
identical number of domain and boundary points, and a similar structure. It is important to note that the 
structure of both the vanilla PINN and our approach remains consistent with the previous section, encompassing 
the same number of layers, inputs, and neurons. The training phase for both methods is terminated when the 
loss value reaches a threshold of 10− 4. Table 5 provides a comparison of the average training time of FE-PINN 

Fig. 9.  Inverse Problem of finding inlet velocity.

 

Fig. 8.  Validation results for FE-PINN.
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and the vanilla PINN. In this benchmark, akin to the previous one, three distinct initial states are considered 
for each ratio, with varying λ  values. This approach is designed to account for the three factors contributing 
to the imbalance of the loss function, as detailed in Section “Vanilla PINN training challenges”. Empirical data 
from Table 5 suggests that the FE-PINN consistently converges faster than the Vanilla PINN across all cases. 
However, it is noteworthy that the Vanilla PINN fails to converge in some instances, underscoring the superior 
reliability and efficiency of the FE-PINN method in these scenarios. In order to quantify the effectiveness of 
FE-PINN across various causes of imbalance, the training time and smart initialization time of FE-PINN are 
averaged across all 18 cases presented in Table 5. A similar averaging process is employed for Vanilla PINN 
across different λ  values. The results suggest that the average total training time for FE-PINN is 13.4 min in 
all 18 cases in Table 5. In contrast, the average total training times for Vanilla PINN are 25.7, 21.8, 22.7, 23.6, 
and 23.5 min respectively for each λ  value ranging from 1 to 1.8. Another crucial observation is that, across 
various ratios, only at the ratio of 43.25 does the Vanilla PINN successfully converge to the fixed threshold in 
all instances while FE-PINN converges in all cases. The final cause of imbalance, which is the initial state of 
the neural network, also plays a crucial role. For instance, in Case 3 of ratio 21.47, the Vanilla PINN could not 
converge for different λ  values due to its initial weight state, while the FE-PINN converged in approximately 
15 min. It’s also important to note that to account for the effect of the initial state, like all the benchmarks, in 
each row of Table 5, the initial weights of FE-PINN and Vanilla PINN are exactly the same. The only difference 
is that the blue layers in Fig.  4 are replaced with smart weights for FE-PINN. This approach ensures a fair 
comparison while highlighting the effectiveness of smart weights in FE-PINN. As demonstrated in Tables  2 
and 5, the relationship between the initial weight state, the ratio of the domain to boundary points, and the λ  
value on the convergence of Vanilla PINN is a complex interplay. Often, more than one factor influences the 
convergence process, suggesting the intricacy of identifying the optimal state for each of these three factors. 
Finding the optimum state can be challenging prior to the training process and typically necessitates a trial-and-
error approach. However, the smart initialization process of FE-PINN eliminates this trial-and-error process. 
This is a key feature of our approach, in addition to its faster convergence speed, underscoring the efficiency 
and effectiveness of FE-PINN in handling these complexities. As a final note, the validation of this benchmark 
is conducted using the R-squared metric to compare the effectiveness of these models in predicting the inlet 
velocity. It was observed that for all cases that reach the threshold of 0.0001, the R-squared value is greater than 
or equal to 0.999. This high R-squared value suggests a strong correlation between the predicted and actual 
values, indicating the high accuracy of the models in predicting the inlet velocity.

Third benchmark
The final benchmark under consideration necessitates fewer derivatives to be computed and has fewer boundary 
conditions compared to the first two benchmarks. The decrease in terms within the loss function results in a 
more balanced loss function relative to the first benchmark. Consequently, the loss function is less influenced by 
the three primary sources of imbalance, as outlined in Section “Vanilla PINN training challenges”. The empirical 
evidence supporting this claim is clearly shown in the results presented in Tables 2 and 5, and 6.

To investigate the influence of the initialization with random weights, the ratio of the domain to boundary 
points, and λ  value on the balance of the loss function for this benchmark, we refer to Table 6. In the given 
table, each row, such as the one represented by Table 2, maintains the same random weights across all models in 

Vanilla PINN

Ratio FE-PINN λ = 1 λ = 1.2 λ = 1.4 λ = 1.6 λ = 1.8
Case 1 21.47 0.8 + 12.7 21.2 18.5 20.2 19.3 21.6

Case 2 21.47 0.8 + 12.9 28.1 Not Converged Not Converged Not Converged Not Converged

Case 3 21.47 0.8 + 14.2 Not Converged Not Converged Not Converged Not Converged Not Converged

Case 1 26.94 0.7 + 10 21.8 16.1 18.7 30.1 17.4

Case 2 26.94 0.8 + 11.5 20.7 15.7 16.2 22.3 19.4

Case 3 26.94 0.8 + 9.3 28.6 28.5 23.1 Not Converged 23.9

Case 1 32.39 0.8 + 14.8 Not Converged Not Converged 26.3 30.4 30.5

Case 2 32.39 0.7 + 15.4 21.5 23.4 22.1 24.5 30.4

Case 3 32.39 0.7 + 10.6 15.5 15.4 18.1 15.4 13.9

Case 1 37.80 0.7 + 12.4 Not Converged 20.9 Not Converged 22.8 27.1

Case 2 37.80 0.7 + 13.7 25.5 Not Converged 26.32 24.1 25.1

Case 3 37.80 0.7 + 12.1 20.5 28.2 23.6 22.9 22.6

Case 1 43.25 0.8 + 13.3 31.9 23.6 22.4 18.7 21.8

Case 2 43.25 0.6 + 11.2 29.5 20.4 21.5 24.4 18.5

Case 3 43.25 0.6 + 15.4 24.3 21.0 28.7 26.5 21.5

Case 1 48.675 0.6 + 14.6 40.2 28.2 Not Converged 26.7 35.7

Case 2 48.675 0.6 + 12.7 23.1 22.5 22.9 19.8 25.3

Case 3 48.675 0.6 + 12.5 33.3 23.3 27.8 29.9 21.7

Table 5.  Displaying the time, in minutes, required to converge to a total loss value of 10− 4.
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each row. However, there is a distinct difference when it comes to the first hidden layer and the output layer for 
the ‘FE-PINN’ column. Random weights in these layers are replaced by smart weights. Note that for every ratio, 
each of the three cases uses a unique random seed. This accounts for the influence of the initial weight state on 
the results. In the third column of the table, the first number indicates the outcome of the smart initialization 
process. This process involves training the neural network on the P LBenchmark3 . The second number, which 
follows the addition sign, represents the training time. All times for this benchmark are reported in seconds. 
The training process is designed to stop once the total loss value reaches a threshold of 1 × 10− 6. When this 
threshold is reached, the neural network is able to accurately predict the solution, as illustrated in Fig. 10. Upon 
closer examination of Table  6, it becomes apparent that our proposed method exhibits a faster convergence 
rate compared to the vanilla PINN across all considered ratios in each case. For the vanilla PINN to achieve a 
training time comparable to our method, the three main factors that influence the loss function must be in their 
optimal states. For instance, in Case 3, where the ratio is 11.25, all three factors are near their optimal states for 
the vanilla PINN with a λ  value of 1. Consequently, the training time of the vanilla PINN is comparable to the 
sum of our approach’s training time and its smart initialization process in this case. In contrast, in case 1 from 
the previous ratio, the only altered factor is a new random weight state. Note that in this case, the training time is 
different from case 3 as expected since the randomness of the initial weights can lead to different learning paths 
during the training process. However, in this case, FE-PINN converges 1.5 times faster than the vanilla PINN. 
This suggests that, despite the change in random weights, the loss function remains balanced due to the presence 
of smart weights for FE-PINN. However, in the case of vanilla PINN, this change in random weights results in 
a more imbalanced loss function, which is the reason for its longer training time compared to FE-PINN. It is 
important to note that finding an initial state that results in a balanced loss function is nearly impossible in the 
vanilla PINN as it is entirely dependent on randomness. In our approach, the smart weights neutralize the effect 
of the initial state on the loss function. This demonstrates the robustness of our approach in maintaining balance 
and achieving faster convergence, regardless of the randomness introduced by different seeds. Furthermore, 
FE-PINN consistently outperforms the vanilla PINN across all ratios, indicating that its loss function is highly 
balanced and less affected by different causes. Notably, this balance is maintained across an extensive range of 
ratios, demonstrating the method’s adaptability and robustness. This characteristic is particularly significant as 
it negates the necessity to identify an optimum ratio for convergence. Lastly, while the λ  factor can be tuned for 
the vanilla PINN to match the convergence speed of our approach, this process is time-consuming compared 
to the process of smart initialization, which in this case took only about 5 s. This is significantly faster when 
compared to the time-consuming task of tuning the λ  factor for this benchmark. Therefore, our approach not 
only addresses all causes that make loss function imbalance but also reduces the training time. It’s important to 
highlight that the last benchmark is less complex than the initial one. Consequently, it has a higher probability 
of converging to the desired threshold, primarily due to a more balanced loss function. Our methodology 
demonstrates efficacy even in the context of simpler benchmarks. However, the effectiveness of our approach 
becomes more evident when tackling more complex problems where the loss function is significantly influenced 
by imbalances, as observed in the first benchmark.

Conclusion
This study tackles the convergence issues of the Vanilla Physics Informed Neural Network (PINN), a method for 
solving partial differential equations (PDEs). The main issue with the Vanilla PINN is its struggle to converge due 
to an imbalanced loss function. We identified three main factors contributing to this imbalance: the initial weight 
state of a neural network, the ratio of the domain to boundary points, and the loss weighting factor. To tackle 

Ratio FE-PINN

Vanilla PINN

λ = 1 λ = 1.2 λ = 1.4 λ = 1.6 λ = 1.8
Case 1 6.25 6 + 46 81 86 92 95 110

Case 2 6.25 4 + 32 68 65 72 72 80

Case 3 6.25 4 + 42 71 82 82 83 88

Case 1 8.75 4 + 46 72 64 67 74 79

Case 2 8.75 6 + 61 72 78 88 82 73

Case 3 8.75 6 + 35 47 55 57 56 62

Case 1 11.25 5 + 34 59 57 60 61 64

Case 2 11.25 6 + 40 79 89 92 92 91

Case 3 11.25 5 + 61 67 83 96 95 96

Case 1 15 5 + 49 93 98 106 121 123

Case 2 15 5 + 60 72 89 92 97 101

Case 3 15 5 + 28 81 89 96 109 119

Case 1 18.75 5 + 82 91 96 101 106 114

Case 2 18.75 5 + 39 105 107 112 139 135

Case 3 18.75 4 + 41 106 106 122 130 134

Table 6.  Displaying the time, in seconds, required to converge to a total loss value of 10− 6.
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these challenges, We propose a process termed as Feature-Enforcing PINN (FE-PINN). This is a progressive 
approach to neural network training that transitions from trivial to exact solutions. First, we introduce a novel 
loss function and a new preprocessing step including reducing initialization variance, and domain point selection 
based on different initial neural network states, producing “smart weights”. Finally, to transition from a trivial 
solution to the exact solution, a proportion of random weights are replaced by smart weights. Subsequently, the 
rest of the training is carried out in a manner similar to vanilla PINN. Three benchmarks were used to compare 
our approach with the Vanilla PINN. Our findings indicate that our approach converges faster than the Vanilla 

Fig. 10.  Validation results for FE-PINN.
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PINN, even when hyperparameter tuning is employed to balance the loss function. In contrast to the Vanilla 
PINN, the smart weights in our study neutralize the effects of the three aforementioned factors on the loss 
function. Our approach performs best in more complex problems, which have more boundary conditions and 
derivatives. In these scenarios, the Vanilla PINN fails to converge and needs to find an optimum state for the 
imbalance factors. However, our approach is not affected by these factors. Even in simpler problems, our approach 
is still faster than the Vanilla PINN. It is noteworthy that the initial phase of our training methodology exhibits 
superior efficiency and speed compared to the process of determining the optimal ratio and loss weighting 
strategies. For instance, in the first benchmark, the initial phase of training was completed in approximately one 
minute, which is 144 times faster than the loss weighting process in a Vanilla PINN. The approach introduced in 
this study effectively balances the loss function for various factors, while maintaining a faster speed. This makes 
it robust and suitable for a wide range of applications. Ultimately, since the second phase of FE-PINN mirrors 
vanilla PINN, employing methods like adaptive activation functions and adaptive sampling can potentially yield 
better results and warrants further investigation. Additionally, other approaches such as varying learning rates 
for different layers of the network, instead of focusing solely on variance reduction, can also be explored. These 
strategies may enhance the performance and efficiency of the FE-PINN framework, making it a promising area 
for future research.
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