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There would be the differences in spectra, scale and resolution between the Remote Sensing 
datasets of the source and target domains, which would lead to the degradation of the cross-domain 
segmentation performance of the model. Image transfer faced two problems in the process of domain-
adaptive learning: overly focusing on style features while ignoring semantic information, leading 
to biased transformation results, and easily overlooking the true transfer characteristics of remote 
sensing images, resulting in unstable model training. To address these issues, we proposes a novel 
dual-space generative adversarial domain adaptation segmentation framework, DS-DWTGAN, to 
minimize the differences between the source domain and the target domain. DS-DWTGAN aims to 
mitigate the distinctions between the source and target domains, thereby rectifying the imbalances 
in style and semantic representation.The framework introduces a network branch leveraging 
wavelet transform to capture comprehensive frequency domain and semantic information. It aims 
to preserve semantic details within the frequency domain space, mitigating image conversion 
deviations. Furthermore, our proposed method integrates output adaptation and data enhancement 
training strategies to reinforce the acquisition of domain-invariant features. This approach effectively 
diminishes noise interference during the migration process, bolsters model stability, and elevates the 
model’s adaptability to remote sensing images within different domains. Experimental validation 
was conducted on the publicly available Potsdam and Vaihingen datasets. The findings reveal that 
in the PotsdamIRRG to Vaihingen task, the proposed method attains outstanding performance with 
mIoU and mF1 values reaching 56.04% and 67.28%, respectively. Notably, these metrics surpass the 
corresponding values achieved by state-of-the-art (SOTA) methods, registering an increase of 2.81% 
and 2.08%. In comparison to alternative approaches, our proposed framework exhibits superior 
efficacy in the domain of unsupervised semantic segmentation for UAV remote sensing images.

Recently, semantic segmentation of remote sensing images using fully supervised learning has attained high 
accuracy and robustness, however, it necessitates a substantial amount of labeled data1–3. Pixel-level annotation 
in remote sensing is both time-consuming and costly4. Remote sensing images exhibit inconsistencies in 
landscapes across various regions and variations in image acquisition due to different sensors or weather 
conditions. Consequently, significant disparities arise in data styles across regions or within the same region at 
different times or under different sensor setups. This disparity results in a notable degradation in segmentation 
performance of fully supervised models in practical cross-domain segmentation tasks due to the absence of 
semantic annotation information in the target domain5,6. Particularly when dealing with Earth observation data 
from multiple platforms, the disparities between datasets escalate the intricacy of image semantic annotation5,6,17.

Unsupervised semantic segmentation methods aim to minimize differences in feature distribution between 
the source and target domains by leveraging shared information. This enables the model to better adapt to the 
feature distribution of the target dataset, thus bolstering its both the generalization capabilities of the model 
and the precision of image semantic segmentation. This method can mitigate issues of insufficient or unlabeled 
annotations in the target dataset while enhancing the performance of semantic segmentation models. By 
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leveraging the unsupervised domain adaptation semantic segmentation approach, the segmentation performance 
of remote sensing images can be significantly improved, offering superior support for applications such as the 
automatic interpretation and target detection of drone remote sensing images. Unsupervised domain adaptation 
methods are currently mainly divided into several categories, including self supervised training8–10, adversarial 
learning6,7,11–13, and image to image conversion14–16, while there are also some emerging methods being explored 
and applied. Self-supervision, while capable of diminishing reliance on annotated data, encounters difficulties 
in acquiring high-quality feature representation and demonstrating sufficient generalization ability. Although 
adversarial training can effectively capture the mapping relationship between these two domains, he training 
process exhibits instability, rendering convergence a formidable task. Image style transfer migrates semantic 
segmentation knowledge from the source domain to the target domain, aiming to preserve the stylistic attributes 
of the latter. This process empowers the adapted model to more effectively accommodate novel data17,18. In 
simple terms, convolutional neural networks must acquire a mapping technique capable of converting source 
domain images into a novel feature space, ensuring a high degree of visual coherence with the target domain 
data.The similarity between samples in the source domain and the target domain has a significantly positive 
impact on the performance of image segmentation. Tasar et al.14 proposed a ColorMapGAN, a color mapping 
generative network capable of transforming the colors of training images into those of target images without 
any structural changes to objects in the training images. Similarly, Zhao et al.19 designed ResiDualGAN based 
on residual networks and explored the adaptive potential of Generative Adversarial Networks (GAN) in cross-
domain semantic segmentation tasks for remote sensing images. Zhang et al.20 proposed a local-to-global remote 
sensing image segmentation framework, which completes the domain adaptation process in two stages. Li et al.21 
introduced a stepwise domain adaptation remote sensing image segmentation network with mitigated covariate 
shift to narrow the gap between the source domain and the target domain.

Generally, unsupervised domain adaptation methods offer an effective solution for semantically segmenting 
remote sensing images. By employing techniques like transfer learning and feature transformation, models can 
more effectively align with the target domain’s distribution, consequently enhancing semantic segmentation 
accuracy. Although existing methods have achieved some success, they are not yet perfect in handling cross-
domain segmentation from real remote sensing images to real scenes. At the same time, most existing methods 
learn from a single space, neglecting the importance of simultaneously extracting features in the frequency domain 
and spatial domain. Thus, we introduce DS-DWTGAN, a dual-branch generative network based on wavelet 
transform. This network aims to mitigate the potential loss of semantic information and diminish disparities in 
data distribution by integrating insights from both frequency and spatial domains. Such an approach offers novel 
perspectives and avenues for tackling the challenge of cross-domain semantic segmentation in remote sensing 
imagery.The research’s primary contributions are given below: 

	1.	� We propose a novel dual space generative network DS-DWTGAN to address the issue of excessive emphasis 
on style and neglect of semantic information, in order to achieve visual transformation from the source 
domain to the target domain and reduce the distribution differences between datasets. By applying discrete 
wavelet transform, a wider range of image features can be captured, while also enhancing the ability to map 
and model features between source and target domain images.

	2.	� To address the instability inherent in model training, an adaptive strategy for output features has been imple-
mented to facilitate the concurrent training of the segmentation model and output discriminator. This strate-
gy meticulously aligns the distribution of output features, minimizing disparities across feature distributions. 
Consequently, the model’s capacity to discern intricate image features is significantly augmented, leading to 
a notable enhancement in convergence speed and overall model stability.

	3.	� In order to effectively address the characteristics of remote sensing images, this study introduces a data 
augmentation training strategy. This strategy enables the model to better learn the rich color and texture in-
formation in remote sensing images, while reducing the influence of noise on the model during the transfer 
process, enhancing the robustness and generalization of the model. We conducted cross domain semantic 
segmentation experiments on open-source remote sensing datasets Potsdam and Vaihingen, verifying the 
superiority of the proposed method in handling cross domain semantic segmentation tasks.

Methods
Overview
To provide a more specific description of the problem of unsupervised domain adaptation, we denote the labeled 
source domain as IS = {(XS, YS)}nS  and unlabeled target domain datasets as and IT = {(XT )}nT . Where XS  
represents the source domain samples, and YS  its corresponding labels. XT  denote the target domain samples. 
nS  and nT  respectively denote the sample sizes of the source and target domains.

Our proposed methodology comprises two stages, depicted in Fig.  1. In the first stage, we utilize the 
proposed generation network to establish the mapping between the source domain and target domain image 
data distributions, and generate target-stylized source domain data to achieve image transformation between 
the source domain and target domain. In the second stage, by utilizing pseudo-target images with source 
domain labels obtained in the first stage to train the semantic segmentation network model in a supervised 
manner. Output adaptation modules and data augmentation functions were subsequently introduced in the 
subsequent training process to adjust and improve the segmentation results, thereby bolstering the robustness 
and generalization of the cross-domain segmentation model.

Image generation stage
The architectural design with dual-branch architecture has been effectively utilized in various fully-supervised 
tasks of semantic segmentation22–24. With this structure, each branch possesses its unique approach to processing 
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information and is capable of extracting feature information of varying dimensions from the same input. 
Integrating feature maps from both branches directly easily loses context information around detailed features. 
Therefore, we chose validated FFM feature fusion modules to complement each other. Fully utilizing diverse 
feature information, the disparity among images across domains is reduced, thereby enhancing performance 
in image style transfer. Based on the aforementioned idea, we designed a dual-space GAN that simultaneously 
learns in the frequency and spatial domains, as illustrated in Fig. 2.

Wavelet generation network
This branch focuses on learning the mapping of spectral information from source domain images to target domain 
images. We devised a Wavelet Generation Network structured upon the U-Net architecture25, depicted in Fig. 2 , 
comprising an encoder, a decoder, and interconnecting jump connections at every feature scale. Discrete wavelet 
transform is employed during the feature extraction stage, decomposing input features into high-frequency 
and low-frequency components. Low-frequency components and convolutional outputs are cascaded to form 
downsampled features, whereas high-frequency components are integrated into the upsampling module of the 
wavelet transform via skip connections. This enables our network to learn spatial information as well as rich 
frequency domain information. The up-sampling and down-sampling modules of the wavelet transform are 

Fig. 1.  Overall framework. Orange streamlines indicate source-domain sample transformations, green 
streamlines indicate target-domain sample transformations, L denotes the training loss.
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illustrated in Fig. 3a,b, respectively.Wavelet transform is a fundamentally time-frequency analysis method26–28, 
which decomposes the input signal into images of different frequencies through high-pass ( FLH,FHL,FHH) 
and low-pass FLL filters. DWT stands out for its ability to facilitate reversible downsampling. It achieves this by 
decomposing two-dimensional data into four discrete wavelet components: a low-frequency component ILL and 
three high-frequency components ( ILH, IHL, IHH) through filter convolution.

The low-frequency component, denoted as ILL = FLL ∗X  ,∗ is expressed through a convolution operation, 
while the high-frequency component shares a similar expression to the low-frequency one. Leveraging Discrete 
Wavelet Transform, we can capture detailed information in the wavelet domain of images across various scales, 
particularly from the ILH  , IHL and IHH  components. However, due to the limited size of the remote sensing 
dataset, achieving optimal performance solely through the DWT branch proves challenging. Consequently, we 
introduce a secondary branch to augment the learning process with additional information features, thereby 
enhancing the overall performance on the dataset.

Fig. 3.  Up and down sampling module. Where (a) and (b) denote the modules for downsampling and 
upsampling of wavelet transform, and (c) and (d) denote the modules for downsampling and upsampling of 
convolutional branching, respectively.

 

Fig. 2.  Dual space adversarial generative network.
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Convolutional manipulation module
The convolutional operation branches and the generation network, akin to prevalent models17,18,29, comprise 
the downsampling and upsampling of U-Net alongside skip connections. To accommodate the significant scale 
transformation of remote sensing images and the prevalence of small targets, we introduce a Spatial Channel 
Attention module. During the feature extraction stage, greater emphasis can be placed on small targets of interest 
to alleviate the issue of their neglect during the image learning process. Within an image, a correlation exists 
between the geographical positions of objects, like buildings and urban roads, where the pixels of cars and roads 
exhibit spatial connectivity. Convolution can extract long-distance contextual information to enhance model 
performance. Additionally, the relationship between feature mappings at various channel levels within the image 
is crucial for semantic segmentation. Consequently, we propose a Spatial Channel Attention module to augment 
image generation by leveraging spatial positions and channel relationships, as illustrated in Fig. 4.

Generative adversarial learning
In this paper, we first perform the image generation process to preserve the semantic information of the source 
domain image and learn the stylized representation of the target domain image. GAN based structure this 
paper uses two generators GS→T  and GT→S  and two discriminators DS  and DT  . With XS→T  representing the 
transformation from source domain image to target domain image, GS→T  denotes the target domain generator 
and GT→S  denotes the source domain generator. The source domain discriminator DS  distinguishes between 
the source domain image and the generated pseudo-target image, while the target domain discriminator DT  
distinguishes between the target domain image and the generated pseudo-source image. The generator contains 
a wavelet generation network GDWT  a convolutional generation network GConv (Fig. 2 shows), and the image 
generation process is illustrated in Eqs. (1) and 2.

	 XS→T =GS→T (XS) = GDWT (XS) +GConv(XS), � (1)

	 XT→S =GT→S(XT ) = GDWT (XT ) +GConv(XT ), � (2)

Through iterative processes, this study trains the generator to produce images that deceive the discriminator, 
which concurrently endeavors to discern whether an image is authentic or generated. The adversarial dynamic 
between the generator and discriminator is encapsulated in Eqs. (3) and (4).

	 L S→T
adv (DT,GS→T ) = ExT∼lT [(DT (xT ))] + Exs∼lS [(DT (GS→T (xS)))] ,� (3)

	 L T→S
adv (DS,GT→S) = Exs∼IS

[(
DS(xS)

)]
+ ExT∼IT

[(
DS

(
GT→S(xT )

))]
,� (4)

To promote content preservation from the source domain image throughout the image transformation process, 
we integrated an image cycle consistency constraint . This constraint aims to minimize the error between the 
reconstructed and original images. The introduction of the L1 norm is utilized to regulate image consistency, as 
illustrated in Eq. (5).

	 Lcyc = Exs∼Is(∥GT→S(GS→T (xS))− xS∥1) + ExT∼IT (∥GS→T (GT→S(xT ))− xT∥1),� (5)

Fig. 4.  Space channel attention module. Spatial attention and channel attention work together to enhance the 
expression ability of small target features.
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Segmentation training
Our primary aim during the segmentation phase is to develop a semantic segmentation model denoted as 
fseg, capable of achieving optimal performance on unlabeled target domains . The semantic segmentation 
model undergoes training on labeled data from the source domain, stylized to resemble the target domain, 
and assimilates features transferred from the latter. Despite this, the features learned during training prove 
inadequate for direct application to authentic target data. Hence, to enhance the generalization performance 
across remote sensing images, we introduce an output adaptive module and a data enhancement function. These 
augmentations aim to refine the model’s capability to adapt to the intricacies of the target domain, thereby 
improving overall segmentation quality.

For our semantic segmentation model, we opted for DeepLabV3+3, and for expedited model inference, 
we selected ResNet3430 as the backbone of the DeepLabV3+ network. The coding structure employs null 
convolution for multi-scale feature extraction, while the decoding structure incorporates Dropout at the final 
layer to mitigate overfitting issues during training.

Output space adaptive (OSA)
Throughout the training phase of semantic segmentation, the feature encoder grapples with high-dimensional 
structural and textural data, rendering the inference process intricate and challenging for accomplishing 
domain adaptation tasks. Hence, this paper focuses on addressing domain adaptation in the output space.In the 
output space, specifically within the segmentation network’s softmax output, we propose utilizing a Generative 
Adversarial Network to align the distributions of both the Potsdam and Vaihingen datasets. While the images 
from both datasets manifest noteworthy dissimilarities in spectral and visual characteristics, they also manifest 
numerous congruences in their outputs. These include spatial layout, characterized by a prevalence of buildings 
in urban locales and a profusion of vegetation in rural settings, as well as local contextual features like the 
proximity of vehicles to buildings. Consequently, we argue that regardless of the dataset origin, its segmentation 
outcomes ought to exhibit specific resemblances.

When executing the output adaptive module, this paper treats the segmentation model fseg as a traditional 
GAN generator, which produces softmax predictive output probability maps for two inputs XS→T  and XT . The 
outputs of the segmentation model fseg are the same as those of the output adaptive module. At the same time, a 
discriminator Dout is used to distinguish the output of fseg from either XS→T  or XT . As in the traditional GAN 
approach, the discriminator is trained to distinguish the true from the false, and then the generator is trained 
to produce images that can deceive the discriminator. The discriminator training process is shown in Eq. (6) .

	 Lout = E (log2 (1−Dout(fseg(XT ))))− E (log2 (Dout(fseg(XS→T )))) ,� (6)

Data augmentation
Remote sensing images often possess abundant color and texture features. To mitigate noise interference during 
image feature transfer learning, we employ color jittering techniques to improve image quality and stability, 
facilitating segmentation algorithms in better identifying features and enhancing segmentation accuracy. 
Remote sensing images typically contain abundant color and texture information.

Color jitter is a method that boosts image contrast by leveraging alterations in color. Introducing variations 
in color within the original image’s color space enhances contrast. Such alterations may include adjusting pixel 
brightness, saturation, or hue to produce a visual effect that highlights the targets in the image. In practical 
applications, Color jitter introduces an offset to the grayscale value of the current pixel, determined by the error 
values of neighboring pixels within the color space distribution. The implementation of the algorithm involves 
the following steps: (1) randomly selecting a pixel from the original image; (2) randomly adjusting the color 
of the selected pixel, including altering brightness, hue, or saturation; (3) reintegrating the modified pixel into 
the original image; (4) iterating through these steps until either all pixels have undergone modification or a 
predetermined number of iterations has been achieved.

Experiments
Dataset
The Potsdam and Vaihingen Remote Sensing datasets represent prominent 2D semantic segmentation 
benchmarks within the International Society for Photogrammetry and Remote Sensing (http://www2.isprs.org/
commissions/comm3/wg4/2d-sem-label-potsdam.html, http://www2.isprs.org/commissions/comm3/wg4/2d-
sem-label-vaihingen.html), originating from aerial photography. The distinct geographic locations and spectral 
characteristics inherent to these datasets offer diverse experimental scenarios for cross-domain adaptation. 
Therefore, this study assesses the efficacy of our modeling framework across both datasets to comprehensively 
evaluate its performance.

These two datasets are widely utilized in remote sensing research, featuring consistent semantic annotation 
categories. These categories include impervious surfaces, buildings, low vegetation, trees, cars, and clutter. 
The Potsdam remote sensing dataset comprises aerial imagery captured over the city of Potsdam, Germany. 
It encompasses 38 high-resolution remote sensing images, each with dimensions of 6000× 6000 pixels and a 
ground sampling distance (GSD) of 5 cm. This dataset provides information across four bands: infrared, red, 
green, and blue (IRRGB), utilized for both IRRG and RGB band analyses, denoted as PotsdamIRRG and RGB, 
respectively. Conversely, the Vaihingen dataset was acquired over various regions of the city of Vaihingen, 
Germany. It comprises 33 high-resolution remote sensing images, each with dimensions of approximately 
2000× 2000 pixels and a GSD of 9 cm. This dataset includes information from three bands: infrared, red, and 
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green . To address computational constraints, this study preprocesses both datasets using an image cropping 
method to optimize memory usage.

Experimental detail
The entire model was implemented using the PyTorch framework. All experiments were conducted on a machine 
featuring an Intel Core i9-12900K CPU, 32 GB of RAM, and an NVIDIA GeForce RTX A4000 GPU with 16 GB 
of graphics memory.

In the experimental section, we evaluate the segmentation performance of cross-domain Very High 
Resolution remote sensing images using two key metrics: the mean Intersection over Union (mIoU) and the 
mean F1 score (mF1). These widely accepted statistical measures facilitate a comprehensive comparison between 
the performance of our proposed GAN architecture and existing methodologies. Specifically, we compute mF1 
and mIoU for five foreground classes :buildings, trees, low vegetation, car, and impervious surfaces, according 
to Eqs. (7) and (8), respectively.

	
mIoU =

1

N

N∑
n=1

TPn

TPn + FPn + FNn
, � (7)

	
F1 =2× precision× recall

precision + recall
� (8)

where precision = TP/(TP + FP ) and recall = TP/(TP + FN). TPn, FPn, TNn and FNn represent true 
positives, false positives, true negatives, and false negatives, respectively, for feature information indexed to 
category n.

Ablation experiment
We performed ablation experiments on the PotsdamIRRG, PotsdamRGB, and VaihingenIRRG datasets to 
ascertain the significance and impact of various modules on the task at hand, as delineated in Table  1. The 
PotsdamIRRG and VaihingenIRRG datasets differ in terms of category distribution, geographical coverage, and 
resolution. In comparison with PotsdamRGB and VaihingenIRRG, other than variations in category distribution, 
geographical coverage, and resolution, there are also differing factors related to image spectra.

This section utilizes the convolutional Unet generation network as the baseline model. For the cross-
domain segmentation task PotsdamIRRG → VaihingenIRRG, the mIoU and mF1 scores stand at 45.85% and 
58.90%, respectively. The Dwt_unet denotes the fusion of a wavelet generation network with a convolutional 
generation network. While Dwt_unet initially performs slightly less effectively than the baseline model in 
direct segmentation, the subsequent introduction of an output adaptive module and a data augmentation 
strategy significantly enhances segmentation accuracy. After the introduction of output adaptation and data 
augmentation methods into the baseline model, respective improvements of 5.69% and 9.06% in mIoU were 
observed. Importantly, within the Dwt_unet generation network, the integration of the OSA module and 
the utilized data augmentation strategy yielded mIoU and mF1 values of 56.04% and 67.28% respectively. In 

Unet Dwt_unet OSA aug mIoU (%) mF1 (%)

PotsdamIRRG
↓
VaihingenIRRG

✓ 45.85 58.9

✓ ✓ 51.54 63.68

✓ ✓ ✓ 54.91 66.53

✓ 45.29 58.22

✓ ✓ 53.23 65.20

✓ ✓ ✓ 56.04 67.28

VaihingenIRRG
↓
PotsdamRGB

✓ 43.45 56.50

✓ ✓ 51.16 62.28

✓ ✓ ✓ 53.54 64.43

✓ 43.56 56.27

✓ ✓ 49.6 61.61

✓ ✓ ✓ 53.94 64.67

PotsdamRGB
↓
VaihingenIRRG

✓ 40.81 52.85

✓ ✓ 42.39 54.69

✓ ✓ ✓ 49.4 61.29

✓ 43.42 55.49

✓ ✓ 50.15 62.61

✓ ✓ ✓ 51.03 63.20

Table 1.  Ablation studies of different modules of DU-DWTGAN on different tasks. Significant values are in 
bold.
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comparison to the baseline model, the experimental outcomes demonstrated a rise of 10.19% in mIoU and 8.38% 
in mF1. This enhancement serves as a comprehensive demonstration of the efficacy of the output adaptation 
module and data augmentation techniques in bolstering the stability of denoising and enhancing models, 
consequently enhancing the model’s generalization capability. In the cross-domain adaptation experiments from 
VaihingenIRRG to PotsdamRGB and from PotsdamRGB to VaihingenIRRG, the segmentation performance of 
the two domains improved after the addition of various modules. Specifically, the mIoU scores were 53.94% 
and 51.03%, and the mF1 scores were 64.67% and 63.20%, respectively. These significant enhancements in data 
substantiate the efficacy of the modules proposed by us for cross-domain segmentation tasks. Our approach 
effectively reduce differences in dataset distributions, thereby significantly enhancing the accuracy and reliability 
of model segmentation.

Comparison with other methods
In the experimental validation phase, the efficacy of the proposed method is substantiated by employing UAV 
Remote Sensing datasets from diverse domains as source datasets and conducting comparative experiments on 
three distinct UAV remote sensing datasets. The comparison encompasses several models, namely DualGAN, 
CycleGAN, FADA, MemoryAdaptNet31, MBATA-GAN32 and ResiDualGAN. The former two methods, along 
with ResiDualGAN, are specialized in image-to-image style transformations.MemoryAdaptNet is an output 
space adversarial learning method. MBATA-GAN is a domain adaptation model based on global attention 
transformation. FADA, on the other hand, focuses on fine-grained adversarial learning for cross-domain semantic 
segmentation tasks. The experimental findings are presented in Tables 2, 3, and 4. In this study, DeepLabv3+ 
with ResNet34 serving as the backbone network is adopted as the baseline model to assess the segmentation 
model’s real-world performance in the presence of domain disparities. The baseline model is trained on labeled 
datasets and evaluated on unlabeled datasets. As evident from the data presented in the subsequent tables, the 
segmentation outcomes post-domain adaptation notably surpass those of the baseline model, underscoring the 
efficacy of the domain-adapted segmentation approach in mitigating data distribution disparities and enhancing 
the segmentation of minute targets.

Tables 2 and 3 present the results of cross-domain segmentation tasks between the PotsdamIRRG and 
VaihingenIRRG datasets. In the cross-domain task PotsdamIRRG → VaihingenIRRG, the baseline model 
achieved segmentation results with an mIoU of 29.85% and an mF1 of 41.76%. In contrast, our proposed 
framework exhibits superior performance in remote sensing image semantic segmentation tasks. Specifically, 
our model achieved an mIoU of 56.04% and an mF1 of 67.28%, indicating a 26.19% increase in mIoU compared 
to the baseline model. Compared to the second-best model, our model showed further improvement, with an 
increase of 3.95% in mIoU and 3.03% in mF1 based on performance metrics.

In the cross-domain segmentation task in Table 3, VaihingenIRRG is the source domain, while PotsdamIRRG 
is the target domain. The baseline model exhibited the poorest segmentation performance, with mIoU and 
mF1 values of 29.85% and 41.76% respectively. Following domain adaptation, both existing methods and our 
proposed model demonstrated enhanced performance in evaluation metrics. Specially, our proposed DS-
DWTGAN model outperformed others, achieving the highest mIoU and mF1 scores of 56.68% and 67.25% 
respectively. In comparison to the suboptimal ResidualGAN model, our model has shown enhancements of 
3.95% and 3.03% in terms of mIoU and mF1, respectively. Moreover, our proposed approach exhibits elevated 

Task Methods Clutter Imp. surfaces Car Tree Low vegetation Building Overall

PotsdamIRRG
↓
VaihingenIRRG

Source-Only
IOU% 1.83 30.48 17.93 52.46 16.63 59.76 29.85

F1% 3.23 46.15 26.79 68.61 28.22 74.57 41.76

CycleGAN
IOU% 3.11 43.73 9.85 58.44 33.28 49.54 32.99

F1% 4.80 60.3 17.25 73.58 49.49 65.9 45.22

DualGAN
IOU% 3.58 52.67 19.74 62.24 39.8 62.83 40.14

F1% 5.66 68.53 32.19 76.63 56.53 76.86 52.73

FADA
IOU% 10.83 62.26 39.82 64.13 43.22 72.22 48.75

F1% 19.54 76.74 56.96 78.18 60.35 83.87 62.6

ResidualGAN
IOU% 7.76 70.09 50.27 60.53 46.19 77.71 52.09

F1% 11.42 82.28 66.44 75.22 62.78 87.38 64.25

MemoryAdaptNet
IOU% 10.86 67.82 44.30 50.27 46.06 76.92 49.37

F1% 19.59 80.82 61.40 66.91 63.07 86.95 63.12

MBATA-GAN
IOU% 3.78 64.92 38.51 51.33 40.19 74.67 45.57

F1% 7.29 78.73 55.61 67.85 57.34 85.50 58.72

Ours
IOU% 7.95 72.64 56.67 65.63 49.92 83.42 56.04

F1% 11.15 84.05 72.05 79.16 66.33 90.92 67.28

Table 2.  PotsdamIRRG → VaihingenIRRG quantitative results for cross-domain segmentation. Significant 
values are in bold.
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precision and reliability in identifying and handling small target objects, such as those classified as ’car’ and ’tree’ 
pixels, with IOU enhancements reaching 71.69% and 53.57%, respectively. This unequivocally showcases the 
superiority of our model in fine object recognition. Furthermore, regarding the segmentation performance of 
other categories, our method has additionally achieved effective enhancements, thereby further augmenting the 
overall effectiveness of the segmentation task.

In conclusion, our method demonstrates superior semantic segmentation performance compared to other 
methods, while retaining a greater amount of semantic information, as evidenced by the experimental results 
presented in Tables 2 and 3. These findings robustly validate the efficacy of our proposed model in effectively 
addressing cross-domain segmentation tasks using the PotsdamIRRG and VaihingenIRRG datasets. It is worth 
noting that our model not only preserves a richer set of semantic details but also consistently delivers improved 
segmentation outcomes.

Task Methods Clutter Imp.surfaces Car Tree Low vegetation building overall

PotsdamRGB
↓
VaihingenIRRG

Source-Only
IOU% 1.81 33.41 13.59 55.48 12.51 55.40 28.70

F1% 3.11 49.38 23.39 71.2 22.08 71.06 40.04

CycleGAN
IOU% 2.22 43.44 14.69 54.22 13.72 52.53 30.14

F1% 3.75 60.03 24.67 70.12 23.77 68.54 41.82

DualGAN
IOU% 2.97 39.76 13.67 57.66 15.78 57.50 31.22

F1% 4.92 56.40 23.12 72.99 26.99 72.74 42.86

FADA
IOU% 12.01 49.83 35.22 46.91 29.54 73.64 41.19

F1% 21.45 66.51 52.10 63.86 45.61 84.81 55.73

ResidualGAN
IOU% 6.83 65.27 57.19 57.41 38.61 79.63 50.82

F1% 10.20 78.80 72.48 72.76 55.37 88.59 63.03

MemoryAdaptNet
IOU% 18.40 66.14 49.41 35.48 36.76 77.90 47.34

F1% 31.70 79.62 66.14 52.38 53.76 87.58 61.76

MBATA-GAN
IOU% 0.85 48.88 34.37 42.58 27.56 73.21 37.91

F1% 1.70 65.67 51.16 59.73 43.21 84.54 51.00

Ours
IOU% 7.44 64.07 55.59 57.66 40.19 81.20 51.03

F1% 10.81 77.88 71.00 73.00 56.96 89.57 63.20

Table 4.  PotsdamRGB→VaihingenIRRG quantitative results for cross-domain segmentation. Significant 
values are in bold.

 

Task Methods Clutter Imp.surfaces Car Tree Low vegetation building overall

VaihingenIRRG
↓
PotsdamIRRG

Source-Only
IOU % 5.82 48.44 37.12 12.03 37.71 49.48 31.77

F1% 7.73 64.48 52.63 20.63 53.63 65.43 44.09

CycleGAN
IOU% 7.53 52.65 38.89 39.27 39.25 48.98 37.76

F1% 10.42 68.37 54.94 55.68 55.51 64.87 51.63

DualGAN
IOU% 7.28 47.95 45.73 34.77 45.02 49.17 38.32

F1% 10.03 64.02 61.73 50.67 61.14 64.92 52.09

FADA
IOU% 17.40 57.53 66.55 35.85 45.22 61.25 47.30

F1% 29.64 73.04 79.92 52.78 62.28 75.97 62.27

ResidualGAN
IOU% 2.52 72.41 68.29 47.46 49.47 82.27 53.74

F1% 3.87 83.83 81.04 64.00 65.58 90.11 64.74

MemoryAdaptNet
IOU% 10.60 59.59 62.62 44.93 44.75 64.15 47.78

F1% 19.16 74.68 77.01 62.00 61.83 78.16 62.14

MBATA-GAN
IOU% 0.56 60.90 47.58 36.13 26.90 68.06 40.02

F1% 1.11 75.70 64.48 53.08 42.39 81.00 52.96

Ours
IOU% 3.44 72.64 71.69 53.57 55.61 83.13 56.68

F1% 5.12 84.00 83.38 69.44 70.89 90.66 67.25

Table 3.  VaihingenIRRG→PotsdamIRRG quantitative results for cross-domain segmentation. Significant 
values are in bold.
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Figure 5 displays the visualization results of the model’s inference on the cross-domain task PotsdamIRRG 
→ VaihingenIRRG, while Fig. 6 presents the corresponding outcomes for the VaihingenIRRG → PotsdamIRRG 
task. A clear observation from Figs.  5 and 6 reveals that the visualization effect of our proposed semantic 
segmentation method closely resembles the real labels. This outstanding performance stems from the model’s 
comprehensive acquisition of frequency domain information during the image generation phase, coupled with 
effective model optimization during the segmentation phase. Notably, our method demonstrates proficient 
performance even for smaller object categories, such as cars and low vegetation. The visualization outcomes 
underscore our proficiency in handling cross-domain segmentation tasks and affirm our method’s capability to 
accurately segment small objects in complex scenes, thereby validating the model’s effectiveness in both image 
generation and segmentation phases.

The cross-domain segmentation results for the PotsdamRGB→VaihingenIRRG task is shown in Table 4 , 
which shows that the domain offsets increase the band factor of the imaging compared to the cross-domain tasks 
between the PotsdamIRRG and VaihingenIRRG datasets.

In the cross-domain segmentation task involving PotsdamRGB as the source domain and VaihingenIRRG 
as the target domain, the baseline model demonstrates modest segmentation performance, yielding 28.70% and 
40.04% for mIoU and mF1, respectively. Notably, individual category predictions exhibit notable deficiencies, 
particularly in “clutter,” “car,” and “low vegetation,” with IOUs of only 1.81%, 13.59%, and 12.51%, respectively. 
Introducing the proposed DS-DWTGAN model results in improved performance, achieving 51.03% mIoU 
and 63.20% mF1. Although the enhancement over the baseline method is relatively marginal, the DS-
DWTGAN model exhibits significant progress with 22.33% increase in mIoU and 23.16% increase in mF1. 
In the PotsdamRGB→VaihingenIRRG task, the proposed method substantially improves segmentation across 
various categories, with “clutter,” “impervious surfaces,” “car,” “tree,” “low vegetation,” and “building” categories 
reaching IOU of 7.44%, 64.07%, 55.59%, 57.66%, 40.19%, and 81.20%, respectively. Comparing the results from 

Fig. 6.  Quantitative visualization of the VaihingenIRRG → PotsdamIRRG task.

 

Fig. 5.  Quantitative visualization of the PotsdamIRRG →VaihingenIRRG task.
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Tables 2 and 4 reveals a noteworthy impact on the cross-domain segmentation task despite PotsdamIRRG and 
PotsdamRGB datasets capturing images within the same geographical region but employing different bands.

Figure 7 depicts the visualization outcomes of several model inferences for the cross-domain tasks 
PotsdamRGB →VaihingenIRRG . The cross-domain tasks involving the PotsdamRGB and VaihingenIRRG 
datasets are relatively intricate, with the overall segmentation effect appearing slightly inferior when compared 
to the visualization results in Figs. 5 and 6. Figure 7 exhibits the predicted images obtained through testing 
methods, showcasing relatively high accuracy in the predicted pixel categories of our semantic segmentation. 
Despite slightly inferior performance in complex cross-domain tasks, our proposed DS-DWTGAN method 
exhibits significant potential and relatively high prediction accuracy in semantic segmentation.

In order to comprehensively demonstrate the advantages of our method, we have conducted experiments on 
the efficiency of the model algorithm. Table 5 compares the efficiency of different domain adaptation models. 
We compared the inference time, Params and FLOPS of each sample for the 7 different methods in the table. 
Due to the use of the same network and strategy in the segmentation stages of CycleGAN, DualGAN, and 
ResiDualGAN models, their performance in inference time, parameter count, and floating-point operations 
for each sample is consistent. In terms of inference time, MBATA-GAN is the fastest, reaching 1.24 seconds per 
sample, while our model’s inference time is in the middle position. In the comparison of Params, our model is the 
lightest, only 1.81M, while MBATA-GAN has the largest parameter quantity, reaching 143.91M. As for FLOPS, 
our model has the lowest complexity, only 11.10G, while MBATA-GAN’s FLOPS reaches 1393.13G, with the 
highest complexity, followed by the MemoryAdaptNet model. Based on the previous analysis of segmentation 
performance, it has been further confirmed that the model not only performs well in segmentation performance, 
but also has advantages in execution efficiency.

Discussion
This study introduces a novel unsupervised domain adaptation method, DS-DWTGAN, tailored for cross-
domain semantic segmentation of remote sensing images. DS-DWTGAN integrates discrete wavelet 
transform-based image transformation to address biases stemming from geographical variations and imaging 
modalities across Remote Sensing datasets. By incorporating wavelet transform and a spatial channel module 
within the generative network, the proposed method not only preserves semantic content from the source 
domain, often overlooked in traditional approaches, but also captures rich frequency domain information 
while mitigating domain discrepancies. During the segmentation process, we mitigate noise interference and 
enhance the reliability of image segmentation by optimizing the output space adaptive module and employing 
data augmentation techniques. DS-DWTGAN has been tested and validated with Remote Sensing datasets, 
demonstrating remarkable robustness and generalization capabilities. This model can effectively reduce domain 
shift and improve the cross-domain semantic segmentation of remote sensing images. While the method 
proposed in this paper has attained a degree of success in addressing the issue of semantic segmentation in cross-
domain remote sensing images, it still exhibits certain limitations. To accelerate the deployment of unmanned 

Method CycleGAN DualGAN FADA ResiDualGAN MemeoryAdaptNet MBATA-GAN Ours

Samples/second 2.11 2.11 3.38 2.11 2.82 1.24 2.34

Params (M) 22.44 22.44 42.94 22.44 58.63 143.91 1.81

Flops (G) 63.36 63.36 359.96 63.36 484.22 1393.13 11.10

Table 5.  Model efficiency of different methods.

 

Fig. 7.  Quantitative visualization of the PotsdamRGB→VaihingenIRRG task.
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aerial remote sensing images, unsupervised domain adaptation methods for remote sensing image semantic 
segmentation should maximize the utilization of multi-source data’s complementary characteristics, all while 
maintaining computational efficiency. This approach will enhance the model’s capability to comprehend and 
differentiate surface objects with similar features, thereby enhancing its generalization ability and segmentation 
accuracy across diverse domains.

Data availability
The datasets analysed during the current study are available in the website, http://www2.isprs.org/commissions/
comm3/wg4/2d-sem-label-potsdam.html.
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