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This study integrates pharmacology databases with bulk RNA-seq and scRNA-seq to reveal the 
latent anti-PDAC capacities of BBR. Target genes of BBR were sifted through TargetNet, CTD, 
SwissTargetPrediction, and Binding Database. Based on the GSE183795 dataset, DEG analysis, 
GSEA, and WGCNA were sequentially run to build a disease network. Through sub-network filtration 
acquired PDAC-related hub genes. A PPI network was established using the shared genes. Degree 
algorithm from cytoHubba screened the key cluster in the network. Analysis of differential mRNA 
expression and ROC curves gauged the diagnostic performance of clustered genes. CYBERSORT 
uncovered the potential role of the key cluster on PDAC immunomodulation. ScRNA-seq analysis 
evaluated the distribution and expression profile of the key cluster at the single-cell level, assessing 
enrichment within annotated cell subpopulations to delineate the target distribution of BBR in PDAC. 
We identified 425 drug target genes and 771 disease target genes, using 57 intersecting genes to 
construct the PPI network. CytoHubba anchored the top 10 highest contributing genes to be the key 
cluster. mRNA expression levels and ROC curves confirmed that these genes showed good robustness 
for PDAC. CYBERSORT revealed that the key cluster influenced immune pathways predominantly 
associated with Macrophages M0, CD8 T cells, and naïve B cells. ScRNA-seq analysis clarified that 
BBR mainly acted on epithelial cells and macrophages in PDAC tissues. BBR potentially targets CDK1, 
CCNB1, CTNNB1, CDK2, TOP2A, MCM2, RUNX2, MYC, PLK1, and AURKA to exert therapeutic effects 
on PDAC. The mechanisms of action appear to significantly involve macrophage polarization-related 
immunological responses.
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Pancreatic cancer is one of the most fatal malignancies in human gastrointestinal and bilio-pancreatic tract. As 
reported in 2020 global cancer statistics, the number of new diagnoses of pancreatic cancer was 496,000, nearly 
equal to the number of deaths which was as high as 466,0001. Known as the main pathological type of pancreatic 
cancer, pancreatic ductal adenocarcinoma (PDAC) presented an overall 5-year survival rate dismally low at 
5–9%2. Insidious onset, high invasiveness, poor prognosis, lack of precise diagnosis and treatment have made 
PDAC a huge challenge to global public health. An ideal therapeutic option has far been elusive. The efficacy of 
gemcitabine, the first-line chemotherapeutic standard of care for PDAC, is heavily limited by drug resistance. 
Modification of existing regimens, identification of potential therapeutic targets, discovery and development of 
new agents remain urgent needs.

Coptidis Rhizoma is a traditional Chinese medicine with a time-honored history and rich clinical applications. 
Berberine (BBR) is an isoquinoline alkaloid extracted from Coptidis Rhizoma, and it has exhibited effects on 
glucolipid metabolism regulation, antimicrobial, anti-inflammatory, antioxidant stress, and anticancer. The 
curative effects of BBR in various pancreatic diseases have been widely documented, including severe acute 
pancreatitis3, chronic pancreatitis4, type-2 diabetes5, and its complications6. In addition, it has demonstrated 
promising anticancer potential in a range of malignant solid tumors7.
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Despite the paucity of extant researches, the abilities of both BBR and chemically modified analogs in 
inhibiting the proliferation and metastasis of PDAC cells have been uncovered8. It may be related to regulating 
mitochondrial citric acid cycle metabolites to block fatty acid synthesis9; intercalating DNA to increase DNA 
damage and repressing topoisomerase activity, jointly inducing DNA double-strand breaks10; preventing the 
abnormal production and secretion of extracellular vesicles11. Since a diverse spectrum of gene mutations 
provides PDAC with remarkable pathological heterogeneity, the anti-PDAC effect of BBR might also tend to be 
sophisticated, and a further elucidation of its detailed mechanisms is still required.

For the past few years, advances in high-throughput transcriptome sequencing technology and the construction 
of comprehensive pharmacology databases have enabled insights into disease development and treatment to be 
gradually extended to the gene layer. The integrated analysis of multi-omics sequencing data and drug databases 
brings fresh ideas for therapeutic target mining, existing drug repurposing, new drug design and development, 
and is able to shed more light on the fundamental molecular mechanisms behind the pharmacological effects. 
Conventional bulk RNA sequencing (RNA-seq) focuses on averaged gene expression profiles and transcriptional 
regulatory properties in tissue-level, but fails to reveal cellular heterogeneity, whereas single-cell RNA sequencing 
(scRNA-seq) could fill this gap. By measuring the structure of transcriptomic landscape in individual cells, 
scRNA-seq offers an in-depth understanding of cell abundance and cell-type specific gene expression patterns. 
Therefore, this study aims to combine pharmacology databases with bulk RNA-seq and scRNA-seq, in order to 
reveal the latent anti-PDAC capacities of BBR through thorough bioinformatics methods.

Materials and methods
The flowchart of this study is illustrated in Fig. 1.

Target acquisition of BBR and enrichment analysis
Canonical SMILES of BBR was obtained from PubChem. The molecular targets and corresponding target genes 
of BBR were acquired from TargetNet, Comparative Toxicogenomics Database (CTD), SwissTargetPrediction, 
and Binding Database using the following search parameters: The search strategy in CTD employed the keyword 
“berberine”. For the remaining databases, the canonical SMILES of BBR was used as the search query. In Binding 
Database, the search type was set to similarity with a threshold of 0.85. In TargetNet, models with an AUC ≥ 0.70 
were included, and the fingerprint type was specified as ECFP4 fingerprints. All targets were integrated with 
duplicates removed, then annotated with disease ontology (DO) terms by using DOSE R package12, and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional annotations13–15 were 
performed by EnrichR16. The R package enrichplot visualized annotation results.

Target acquisition of PDAC and enrichment analysis
Expression matrix construction of PDAC and differential expression analysis
While available public PDAC RNA-seq datasets with sufficient matched tumor and adjacent normal tissue 
samples were lacking for comprehensive analysis, the GSE183795 dataset, which contains microarray-based 
gene expression profiles of 139 pancreatic tumor tissues and 102 adjacent non-tumor pancreatic tissues from 
PDAC patients, was chosen to ensure the reliability and comparability of the study results. The raw data were 
preprocessed in R language for standardization and normalization, probe re-annotation, construction of 
expression matrix. During this process, probes without matched gene symbols were removed and replicate probes 
were averaged. The matrix formed by clinical phenotypes and gene expression data was conducted differential 
expression analysis by limma package17 in R. P-values were corrected through Benjamin-Hochberg method to 
control the false discovery rate (FDR) below 5%, and only genes meet the criteria of |log2fold change| > 1 were 
screened. Identified differentially expressed genes (DEGs) with expression values were visualized according to 
clinical phenotypes. The volcano plot was drawn via ggplot218.

Gene Set Enrichment analysis of DEGs
Gene set enrichment analysis (GSEA)19 was utilized to find general tendencies in the defined set of DEGs, 
as well as statistically significant differences between the two clinical traits. DEGs were rank ordered in line 
with descending fold change. Through KEGG enrichment process, the markedly up- and down-regulated gene 
pathways were mapped, and the enrichplot package visualized the results. The following thresholds were applied 
in the analysis: normal p-value < 0.05, FDR-corrected p-value < 0.05, and |normalized enrichment score (NES) 
|>1.

Weighted correlation network analysis of PDAC
Weighted correlation network analysis (WGCNA) has the capability of discovering clustered modules of genes 
that are strongly correlated in terms of expression properties and demonstrating correlation networks among 
them, describing complex interrelationships between modular gene expression and clinical phenotypes of 
diseases, and is extensively employed for the identification of biomarkers and the search for potential therapeutic 
targets. The weighted correlation network was constructed by the WGCNA R package20. The pickSoftThreshold 
function obtained the optimal weighted parameter of adjacency matrix, also referred to as soft threshold, for 
network topology analysis. The adjacency matrix was calculated and subsequently transformed into a topological 
overlap matrix (TOM). Based on the hierarchical clustering of a dissimilarity measure (1-TOM) refined gene co-
expression modules. As the first principal component from each single module, module eigengenes summarized 
modular expression patterns. Module significance and gene significance within the module were computed to 
build gene module-trait relationships. Using Pearson’s product-moment correlation, the module with the highest 
correlation coefficient with PDAC was selected as the key module. To capture the broad spectrum of genes 
potentially relevant to the phenotype or pathology of PDAC, a Venn diagram was utilized to merge and illustrate 
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the integration of gene lists from the key WGCNA module and DEGs. These genes were further incorporated 
into a complex disease network via STRINGdb21. The edge betweenness algorithm of igraph22 screened out 
nodes with above-average betweenness centrality in the network to be disease targets. Enrichment analysis was 
performed the same as described in part 2.1.

Protein-protein interaction (PPI) network construction, key cluster identification and 
enrichment analysis
Drug targets and disease targets were imported into the STRING database, the minimum required interaction 
score was set at medium confidence (0.400), and the PPI network was constructed with isolated nodes removed. 
Degree topological analysis provided by cytoHubba in Cytoscape (v3.9.1) was conducted to extract the key 
cluster composed of the Top 10 tightly linked core genes in the network. Enrichment analysis was performed the 
same as described in part 2.1.

Receiver operating characteristic curve analysis
To assess the association of clustered genes with PDAC, an external disease-control validation model was 
constructed grounded on another cohort (GSE62452) which involved 69 PDAC samples and 61 adjacent non-

Fig. 1.  Flowchart.
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tumor samples. The mRNA level of critical genes was verified by the Wilcoxon rank-sum test. In the use of the 
mRNA expression data, the receiver operating characteristic (ROC) curves were plotted, and the area under 
the curve (AUC) was calculated with pROC package23. Genes with AUC > 0.6 have acquired the capacity to 
distinguish PDAC and non-tumor tissues, and those with AUC ≥ 0.75 would be considered more diagnostically 
discriminant24.

Immune infiltration analysis
Since PDAC is among the most immune-resistant tumor types, we adopted the CYBERSORT algorithm25 to 
transposed-convolutionally speculate on the cell types in bulk tissues in an attempt to uncover its immune 
micro-landscapes. The proportion of infiltrated immune cells in GSE183795 expression matrix was calculated 
and applied to study the relationship between immune cells and clinical phenotypes. To investigate the potential 
role of the key cluster in PDAC immunomodulation, Spearman correlation analysis was performed to clarify 
which immunity pathways might be regulated by the important targets.

ScRNA-seq data processing and analysis
The raw dataset GSE212966 which encompassed scRNA-seq data from the tumor biopsy specimens of 6 
PDAC patients was retrieved for analysis. For quality control, Seurat26 preprocessed the raw dataset by filtering 
low-quality cells, cell doublets, multiplets, and cells with high levels of mitochondrial contamination. Data 
normalization was processed in the method of global scaling normalization. Highly variable genes were detected 
by the FindVariableFeatures function, and a total of 3000 features were returned and scaled to run principle 
component analysis for linear dimensionality reduction. After the data integration by Harmony27, heatmaps of 
principal components (PCs) and the elbow plot, which displayed the variance percentage explained by each PC, 
were combined to determine the appropriate number of PCs for downstream analysis. The K-nearest neighbor 
Machine learning algorithm then classified clusters of cells based on similar characteristic expression patterns. 
Various resolutions were set to observe cellular clustering effects, and at the optimal resolution employed the 
t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce the dimensionality non-linearly. Cell type 
annotation was performed using SingleR28 to identify distinct cellular subpopulations. The enrichment of the 
key cluster, comprising crucial genes from prior topological network analysis, was assessed within the annotated 
subpopulations using irGSEA. Enrichment scores were calculated to determine specific cell types showing 
significant interactions with BBR, thereby clarifying the target distribution of BBR in the complex environment 
of PDAC.

Results
Target genes of BBR
Canonical SMILES of BBR was derived from PubChem (Fig. 2A). Through TargetNet, CTD, SwissTargetPrediction, 
and Binding Database, 425 drug targets were obtained (Fig. 2B). DO enrichment analysis showed that the drug 
targets were mainly enriched in breast carcinoma, cell type benign neoplasm, ischemia, renal cell carcinoma, 
hepatitis, arteriosclerosis, myocardial infarction, stomach cancer, and colon cancer (Fig. 2C). GO enrichment 
analysis indicated that biological process (GOBP) of response to xenobiotic stimulus, cellular component 
(GOCC) of protein-DNA complex, and molecular function (GOMF) of protein heterodimerization activity 
were primary GO terms that drug targets enriched (Fig. 2E). KEGG analysis revealed major enriching pathways 
such as viral carcinogenesis, PI3K-Akt signaling pathway, neutrophil extracellular trap formation, lipid and 
atherosclerosis, and alcoholism (Fig. 2D).

Target genes of PDAC
Identification of DEGs in PDAC
After preprocessing the GSE183795 dataset with R (Fig.  3A), the expression profiles of 17,164 genes were 
obtained. Filtered by the thresholds of |log2fold change| > 1 and FDR < 0.05, 266 DEGs were finally acquired, 
of which 158 were up-regulated genes and 108 were down-regulated genes, and the results were displayed in a 
volcano plot (Fig. 3B).

GSEA
Pathway enrichment of DEGs using GSEA highlighted that 2-oxo carboxylic acid metabolism, fat digestion 
and absorption, maturity onset diabetes of the young, pancreatic secretion, protein export were probably most 
concerned with the development of PDAC (Fig. 3C, D; Supplementary Table S1).

WGCNA
Genes with mean FPKM values in the top 50% were selected to create gene co-expression modules. Taking 
the correlation coefficient R2 > 0.9 as the screening criterion, pickSoftThreshold function discerned that when 
the minimum candidate soft-thresholding power was picked β = 11 (Fig. 4A), the constructed gene expression 
network could be closer to a scale-free network on the premise of preserving the mean connectivity as much as 
possible. The adjacency matrix, topological overlap matrix, dissimilarity matrix and hierarchical clustering tree 
were calculated and built stepwise (Fig. 4B). Branches of the clustered dendrogram were defined as modules and 
merged similar ones. Among acquired 15 gene modules, the grey60 module had the highest correlation with 
PDAC (cor = 0.64, P = 5e-28) (Fig. 4C, D), and the correlation coefficient between gene significance and module 
membership within the module was calculated as 0.91 (P < 1e-200) (Fig. 4E), indicating that this group of genes 
was strongly correlated with not only the disease state but also the module itself. Thus, the MEGrey60 module 
was definitively identified as the centermost module associated with PDAC, containing a total of 2,849 genes 
(Supplementary Table S2).
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Combining the key module genes from WGCNA and DEGs (Fig.  5A), 3002 disease targets were gained 
to structure the protein-protein interaction network of disease. To simplify this extensive network, we filtered 
it based on the betweenness centrality, selecting a sub-network of 771 nodes that exceeded the average value 
(Fig. 5B). GO enrichment revealed that the 771 disease targets primarily participated in GOBP of mitotic cell 

Fig. 2.  Target acquisition of Berberine (BBR) and enrichment analysis. (A) Chemical structure of BBR. (B) 
Venn diagram of BBR-targeted genes. (C) Disease Ontology (DO) annotation of BBR targets. (D) Pathway 
enrichment analysis of BBR targets with the method of Kyoto Encyclopedia of Genes and Genomes (KEGG). 
(E) Gene Ontology (GO) annotation of BBR targets.
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Fig. 3.  Identification of differentially expressed genes (DEGs) in pancreatic ductal adenocarcinoma (PDAC) 
and gene set enrichment analysis (GSEA). (A) Before and after GSE183795 dataset standardization and 
normalization. (B) Volcano plot of DEGs. (C, D) Up- and down-regulated gene pathways mapped by GSEA.
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cycle phase transition, GOCC of chromosomal region, and GOMF of ATP hydrolysis activity (Fig. 5C). KEGG 
analysis indicated that the targets were predominantly enriched in pathways related to neurodegeneration-
multiple diseases, Cell cycle, Alzheimer disease, Amyotrophic lateral sclerosis, and Parkinson disease (Fig. 5D).

PPI network construction
Followed by painting the Venn diagram of the relationship between molecular drug targets and disease targets 
(Fig. 6A), 57 intersecting targets were imported into the STRING online database to construct a PPI network, and 

Fig. 4.  Weighted correlation network analysis (WGCNA) based on GSE18379. A Determination of the 
minimum candidate soft-thresholding power. B Heatmap of topological overlap matrix (TOM). C, D 
Relationships of module eigengenes and two clinical traits. E Correlation of eigengenes in grey60 modules with 
the normal and PDAC traits.
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imported into Cytoscape (v3.9.1) with the outlier protein nodes removed. In the network, the degree values of 
nodes were represented by varying shades of color, with darker colors signified higher degree values. The Degree 
algorithm from cytoHubba anchored a network formed by top 10 highest contributing genes, CDK1, CCNB1, 
CTNNB1, CDK2, TOP2A, MCM2, RUNX2, MYC, PLK1, and AURKA to be the key cluster (Fig. 6B, C). The 
results of DO enrichment analysis consisted predominantly of cancers with different systemic origins, as shown 
in Fig. 6D. GO terms were most notably related to mitotic cell cycle phase transition in GOBP; chromosomal 
region in GOCC; and protein serine kinase activity in GOMF (Fig. 6F). KEGG showed that DEGs were primarily 
enriched in cellular senescence, P13K-Akt signaling pathway, cell cycle, human T-cell leukemia virus 1 infection, 
as well as lipid and atherosclerosis (Fig. 6E).

ROC curve analysis
As demonstrated in the box plots, mRNA expression levels of the key cluster exhibited significant differences 
between the PDAC group and the control group (P < 0.001). ROC curves further confirmed that all genes showed 
good robustness for PDAC (AUC > 0.6). Among them, CDK1, PLK1, TOP2A, CTNNB1, CCNB1, RUNX2, and 
MYC proved to be highly diagnostically discriminant (AUC > 0.75) (Fig. 7A, B).

Immune infiltration analysis
CYBERSORT algorithm deconvolutionally calculated different infiltrating proportions of 22 immune cell types 
and showcased the immune landscape of GSE183795 dataset (Fig. 7C). Deviations of immune abundance in 
the distinct disease phenotypes were reflected by box plots (Fig. 7D). Notably, macrophages M0 (P < 0.001), 
macrophages M1, resting dendritic cells, activated dendritic cells, and regulatory T cells showed significantly 
increased infiltration in the tumor phenotype (P < 0.05). Conversely, neutrophils, naïve B cells, and CD8 T 

Fig. 5.  Disease network construction, sub-network filtration and enrichment analysis. (A) Venn diagram of 
PDAC-related genes combining DEGs and WGCNA results. (B) Construction of PDAC network and filtration 
of the most contributing sub-network. Targets above the average value of the betweenness centrality were 
colored red. (C) GO annotation of PDAC targets. (D) Pathway enrichment analysis of PDAC targets with 
KEGG method.
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cells showed significantly lower infiltration compared to the normal phenotype (P < 0.05). Immune heatmaps 
showed that the key cluster primarily influences the immune pathways of Macrophages M0, CD8 T cells, and 
naïve B cells, indicating these genes’s roles in regulating the immune function of PDAC (Fig. 7E). This finding 
corroborates results from previous studies29,30.

ScRNA-seq analysis
ScRNA-seq of tumor tissue biopsy from 6 PDAC patients in GSE212966 dataset were preprocessed by the 
Seurat package to clarify the distribution and interrelationships of diversified cellular features. We found that 
the sum of all gene expressions detected in the cells was strongly and positively correlated with the number of 
unique genes detected in each cell, but not with the percentage of mitochondria (Fig. 8A, B). Based on these, 
the quality control filtering criteria were set to percent.mt < 20% and 200 < nFeature_RNA < 8000. PCA linear 
dimensionality reduction used a scaled matrix of 3000 highly variable genes, the relationships among the 
distinct PCs were displayed in Fig. 8C. Harmony’s soft clustering corrected batch effects (Fig. 8D). Combining 
the outcomes of elbow plot and principal component heatmap to select the 17 PCs that contributed most to 
cell clustering (Fig. 8E, F). Subsequently, the cluster tree was scaled to a resolution of 1.2, and 29 clusters were 
classified according to the clustering results (Fig. 9A, B). t-SNE reduced the data into a two-dimensional graph, 

Fig. 6.  PPI network construction, key cluster identification and enrichment analysis. (A) Venn diagram of 
BBR and PDAC targets. (B, C) Construction of PPI network and identification of key cluster formed by top 10 
highest contributing genes. (D-F) GO, KEGG, and DO annotations for enrichment analysis of the key cluster.
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which illustrates the distribution of cell expression, with cells colored by cluster (Fig. 9C). SingleR annotated 
the cell types, while the AUCell function calculated the enrichment scores of the key cluster, identifying BBR’s 
primary targets in PDAC as epithelial cells and macrophages (Fig. 9D, E). This finding aligns with the results of 
the immune infiltration analysis.

Discussion
PDAC has the highest mortality rate among any solid malignancy31 and is notorious as one of the most lethal 
cancers. A high degree of heterogeneity driven by genomic mutations is considered an essential feature of 
PDAC. This heterogeneity can either impair therapeutic targeting, leading to poor or no response to therapy, or 
define transcriptomic and phenotypic profiles that promote malignant progression by continuously remodeling 
the tumor microenvironment32. This is also the pivotal reason why the eventual clinical outcomes in a vast 
majority of malignant tumors are closely linked to drug resistance and metastasis. Therefore, deciphering the 
heterogeneity of PDAC and the cellular composition of its tumor microenvironment is pertinent. Although 
BULK genomics has largely established our fundamental comprehension of the transcriptome and epigenetic 
profiles of tumor tissues, it does not fully capture the inter- and intra-tumor heterogeneity, that is, the 
heterogeneity exists both amongst different patients and within a single tumor. In contrast, single-cell genomics 
allows for the reconstruction of intricate tumor ecosystems33, revealing hidden and previously unknown cellular 
components. Consequently, single-cell transcriptome analysis of biopsy tissues from different PDAC patients 
can more effectively reveal cell-type-specific gene regulatory programs obscured by BULK omics techniques34.

Curative-intent resection followed by adjuvant chemotherapy continues to be the front-line regimen for 
PDAC. Although surgical treatment provides a survival benefit of at least 6 months35, only about 15% of patients 
can undergo surgery because most are diagnosed at an unresectable stage due to local advancement or distant 
metastasis36. Even with surgical resection, more than 80% of patients may experience recurrence within 2 years37. 

Fig. 7.  Receiver operative characteristic curve (ROC) analysis and immune cell infiltration analysis of the key 
cluster. (A, B) Association assessment of clustered genes with PDAC in an external disease-control validation 
cohort (GSE62452). (C) The proportion of infiltrated immune cells in GSE183795 expression matrix. (D) 
Relationship between immune cells and two clinical phenotypes. (E) Relationship between the key cluster and 
immune cells.
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Given the limited therapeutic options, gemcitabine-based chemotherapy, either a single agent or in combination, 
will remain the optimal choice for most PDAC patients for the foreseeable future. Unfortunately, the insensitivity 
and resistance to gemcitabine in PDAC are not rare and hard to overcome38. Therefore, it is imperative to refine 
existing therapies or develop novel alternative approaches.

As a natural isoquinoline quaternary alkaloid, berberine possesses multiple pharmacological activities. In 
recent years, its antitumor effects have garnered increasing attention. BBR induces cancer cell death by activating 

Fig. 8.  Preprocessing of GSE212966 single-cell dataset. (A, B) Determination of quality control filtering 
criteria. (C) Principle Component Analysis for linear dimensionality reduction. (D) Harmony’s soft clustering 
to correct batch effects. (E, F) Combining the elbow plot and principal component (PC) heatmap to determine 
the optimum PCs for downstream analysis.
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autophagy, as well as intrinsic and extrinsic apoptosis. It prevents cancer cell proliferation by arresting cell cycle 
through suppressing the expression of cell cycle regulatory molecules. Additionally, it interferes with signaling 
in various oncogenic pathways39,40. In addition, studies have preliminarily revealed the anticancer or adjuvant 
anticancer potential of BBR in PDAC. BBR reduced the proportion of side population cells and down-regulated 
the expression of stem cell-related genes such as SOX2, POU5F1, and NANOG in PANC-1 and MIA-PaCa2 cell 
lines41. Both were able to induce cell cycle block, while gemcitabine focused mainly on the S phase, and BBR 
focused on the G1 phase42. In vivo studies showed that orthotopic PDAC-bearing mice orally administered with 
BBR had reduced tumor sizes, less invasive liver proliferation, and prolonged survival compared to the control 
group43. BBR-combined gemcitabine treatment promoted cytostasis and apoptosis in gemcitabine-tolerant 
PDAC cells via Rap1/PI3K/AKT axis, thereby mediating chemosensitization44. Synergizing BBR with the E3 
ubiquitin ligase MDM2 inhibitor, nutlin-3a, significantly enhanced its potency in suppressing proliferation in 
WT-P53-introduced PDAC cell lines45. However, up until now, the anti-PDAC effects of BBR remain in an 
exploratory stage, and the targets and mechanisms of action have yet to be fully elucidated.

Pharmacological databases are capable of mapping drugs in clinical trials, approved drugs, and active 
compounds to their targeted human proteins and coding genes, facilitating the validation of gene-drug and gene-
active compound interrelationships, as well as the expansion of indications for existing drugs46. Furthermore, 
Pharmacological databases act as a bridge between potential drug targets and disease transcriptomic information. 
This link allows for the identification of the distributional abundance of drug targets in pathological biopsy 
specimens, with precision down to single-cell resolution47.

In this study, the key therapeutic targets of BBR for the treatment of PDAC were identified, including CDK1, 
CCNB1, CTNNB1, CDK2, TOP2A, MCM2, RUNX2, MYC, PLK1, and AURKA. Hyperactivation of CDK1 and 
CDK2 drove the development of mutant KRAS-dependent PDAC48. Conversely, inactivation of both intercepted 
the immune escape in PDAC cells triggered by IFN-γ, through dual mechanisms of blocking immune checkpoint 
expression and propelling immunogenic cell death49. In particular, CDK1 inhibition specifically targeted the 
PDAC stem cell population50, and its expression level was proved to correlate with tumor size and histological 
grading in PDAC patients51, with the overexpression of CDK1 tending to portend a poor prognosis and a short 
survival period52. CCNB1, a B-type cyclin, is a master regulator of the cell cycle. It promoted the progression 

Fig. 9.  Clusters classification, annotation, and BBR action pathways prediction. (A) Cluster tree partitioned 
diversified resolutions and clusters. (B) Heatmap of 29 clusters. (C) t-distributed Stochastic Neighbor 
Embedding (t-SNE) for linear dimensionality reduction, demonstrating the cell distribution and coloring 
the cells by clusters. (D) Cell type annotation of different clusters. (E) Target distribution of BBR on cellular 
subpopulations in PDAC.
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of PDAC cells from G2/S phase to G1/M phase by forming a complex with CDK1 to turn on substrate 
phosphorylation53,54. When CCNB1 was silenced, the cell cycle period ratios exhibited a decrease in S phase and 
an increase in G0/G1 phase. Simultaneously, the activation of p53 signaling pathway drove proliferation inhibition 
and induced senescence in PDAC cells55. CTNNB1 overexpression was considered a negative prognostic factor 
for progression-free survival and recurrence-free survival in human PDAC cohorts, and its mechanism might 
be associated with the regulation of cell-cell junctions dynamics to enhance the metastatic capacity of PDAC 
circulating tumor cells with stem-like properties56. Acting as a co-activator of β-cetanin, TOP2A engaged in 
the miR-139/TOP2A/β-cetanin axis, accelerating the malignant progression of PDAC57. TOP2A, along with its 
transcriptional activators SP1 and HMGB2, was overexpressed in human PDAC tissues, sensitizing PDAC cells 
with knocked-down TOP2A to chemotherapy drugs58. MCM2 assembles the hexameric helicase MCM complex, 
which is crucial for initiating DNA replication. When MCM expression was suppressed under gemcitabine 
exposure, it inhibited the restoration of DNA replication capacity in PDAC cell lines, demonstrating that MCM 
inhibition can synergize with chemotherapeutic agents to mediate replication blockade59. RUNX2 ameliorated 
the PDAC tumor microenvironment by regulating the extracellular matrix, affecting the transcription of SPARC 
and MMP160. Activation of the MYC signaling pathway and amplification of MYC expression supported PDAC 
metastasis by fostering the reprogramming of glucose metabolism61. Furthermore, and the clinical potential of 
MYC as a therapeutic target for aerobic glycolysis in PDAC is currently under investigation62. PLK1 depletion or 
downregulation was able to stimulate anti-tumor immune responses, upregulating PD-L1 expression to sensitize 
PDAC to immune checkpoint therapy63. Targeted delivery of PLK1 inhibitors into PDAC cells effectively slowed 
tumor growth by silencing PLK164. AURKA repression triggered necrosis-like apoptosis in PDAC cells by 
reducing necrosome-induced phosphorylation of downstream proteins65.

CYBERSORT revealed the key cluster predominantly regulates the immune responses of Macrophages M0, 
CD8 T cells, and naïve B cells. Analysis of scRNA-seq suggested the epithelial cells and macrophages in PDAC 
were more responsive to the key cluster. Remarkably, the two co-emphasized the modulatory role of BBR on 
macrophages in PDAC. The PDAC stroma exhibits extensive macrophage infiltration, contributing not only 
to the immunosuppression of the tumor microenvironment66, but also to gemcitabine tolerance67. Moreover, 
macrophages are capable of shielding tumor cells from complement-dependent cytotoxicity68. However, 
inhibiting the upstream encoding gene, PI3Kγ, can reprogram macrophages to activate CD8 + T cells, interfering 
with metastasis and proliferation of tumor cells69. Early-stage M0 macrophages, which possess high plasticity, 
can promote anti-tumor activity through increased secretion of TNF-α70.

Previously, researchers have gleaned significant anticancer insights from medicinal plants, such as 
paclitaxel, vincristine, and camptothecin. The strength of this study lies in the fact that through deeply mining 
the bioinformatics data of pharmacological databases in conjunction with BULK and single-cell genomics, 
combined with the existing research base, we initially elucidated the potential targets and molecular mechanisms 
of the anti-PDAC action of BBR, which may elucidate potential strategies for the development of anticancer 
drugs derived from natural ingredients. The present study has its shortcomings. Firstly, it lacks experimental 
validation. Confirming the bioinformatic results with real-world evidence is crucial for establishing a more 
comprehensive research framework. Secondly, the clinical application of BBR was restricted by its low oral 
bioavailability, inadequate tumor site delivery, and non-specificity. Further exploration into the optimization of 
its chemical structure and the development of novel drug delivery systems is necessary.

Conclusion
This study explored the multiple bioinformatics mechanisms of BBR against PDAC through integrated multi-
omics profiling. BBR potentially targets CDK1, CCNB1, CTNNB1, CDK2, TOP2A, MCM2, RUNX2, MYC, 
PLK1, and AURKA to exert therapeutic effects on PDAC. CYBERSORT and scRNA-seq analyses collectively 
suggested that the process primarily involved macrophage polarization-related immunological responses. In 
subsequent research, we will thoroughly validate these findings through detailed molecular biology experiments.

Data availability
This study analyzed open-source data from publicly available databases, and all datasets could be retrieved from 
GEO, including GSE183795, GSE62452, and GSE212966.
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