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Mechanisms of Berberine in anti-
pancreatic ductal adenocarcinoma
revealed by integrated multi-omics
profiling

JiaYang?, Tingting Xu?, Hongwei Wang?, Lei Wang? & Yanmei Cheng3**

This study integrates pharmacology databases with bulk RNA-seq and scRNA-seq to reveal the

latent anti-PDAC capacities of BBR. Target genes of BBR were sifted through TargetNet, CTD,
SwissTargetPrediction, and Binding Database. Based on the GSE183795 dataset, DEG analysis,
GSEA, and WGCNA were sequentially run to build a disease network. Through sub-network filtration
acquired PDAC-related hub genes. A PPl network was established using the shared genes. Degree
algorithm from cytoHubba screened the key cluster in the network. Analysis of differential MRNA
expression and ROC curves gauged the diagnostic performance of clustered genes. CYBERSORT
uncovered the potential role of the key cluster on PDAC immunomodulation. SCRNA-seq analysis
evaluated the distribution and expression profile of the key cluster at the single-cell level, assessing
enrichment within annotated cell subpopulations to delineate the target distribution of BBR in PDAC.
We identified 425 drug target genes and 771 disease target genes, using 57 intersecting genes to
construct the PPI network. CytoHubba anchored the top 10 highest contributing genes to be the key
cluster. mRNA expression levels and ROC curves confirmed that these genes showed good robustness
for PDAC. CYBERSORT revealed that the key cluster influenced immune pathways predominantly
associated with Macrophages M0, CD8T cells, and naive B cells. ScCRNA-seq analysis clarified that
BBR mainly acted on epithelial cells and macrophages in PDAC tissues. BBR potentially targets CDK1,
CCNB1, CTNNB1, CDK2, TOP2A, MCM2, RUNX2, MYC, PLK1, and AURKA to exert therapeutic effects
on PDAC. The mechanisms of action appear to significantly involve macrophage polarization-related
immunological responses.

Keywords Berberine, Pancreatic ductal adenocarcinoma, Single-cell RNA sequencing, Bulk RNA
sequencing, Multi-omics analysis

Pancreatic cancer is one of the most fatal malignancies in human gastrointestinal and bilio-pancreatic tract. As
reported in 2020 global cancer statistics, the number of new diagnoses of pancreatic cancer was 496,000, nearly
equal to the number of deaths which was as high as 466,000'. Known as the main pathological type of pancreatic
cancer, pancreatic ductal adenocarcinoma (PDAC) presented an overall 5-year survival rate dismally low at
5-9%?. Insidious onset, high invasiveness, poor prognosis, lack of precise diagnosis and treatment have made
PDAC a huge challenge to global public health. An ideal therapeutic option has far been elusive. The efficacy of
gemcitabine, the first-line chemotherapeutic standard of care for PDAC, is heavily limited by drug resistance.
Modification of existing regimens, identification of potential therapeutic targets, discovery and development of
new agents remain urgent needs.

Coptidis Rhizoma is a traditional Chinese medicine with a time-honored history and rich clinical applications.
Berberine (BBR) is an isoquinoline alkaloid extracted from Coptidis Rhizoma, and it has exhibited effects on
glucolipid metabolism regulation, antimicrobial, anti-inflammatory, antioxidant stress, and anticancer. The
curative effects of BBR in various pancreatic diseases have been widely documented, including severe acute
pancreatitis®, chronic pancreatitis®, type-2 diabetes®, and its complications®. In addition, it has demonstrated

promising anticancer potential in a range of malignant solid tumors”.
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Despite the paucity of extant researches, the abilities of both BBR and chemically modified analogs in
inhibiting the proliferation and metastasis of PDAC cells have been uncovered®. It may be related to regulating
mitochondrial citric acid cycle metabolites to block fatty acid synthesis’; intercalating DNA to increase DNA
damage and repressing topoisomerase activity, jointly inducing DNA double-strand breaks!’; preventing the
abnormal production and secretion of extracellular vesicles!!. Since a diverse spectrum of gene mutations
provides PDAC with remarkable pathological heterogeneity, the anti-PDAC effect of BBR might also tend to be
sophisticated, and a further elucidation of its detailed mechanisms is still required.

For the past few years,advances in high-throughput transcriptome sequencing technology and the construction
of comprehensive pharmacology databases have enabled insights into disease development and treatment to be
gradually extended to the gene layer. The integrated analysis of multi-omics sequencing data and drug databases
brings fresh ideas for therapeutic target mining, existing drug repurposing, new drug design and development,
and is able to shed more light on the fundamental molecular mechanisms behind the pharmacological effects.
Conventional bulk RNA sequencing (RNA-seq) focuses on averaged gene expression profiles and transcriptional
regulatory properties in tissue-level, but fails to reveal cellular heterogeneity, whereas single-cell RNA sequencing
(scRNA-seq) could fill this gap. By measuring the structure of transcriptomic landscape in individual cells,
scRNA-seq offers an in-depth understanding of cell abundance and cell-type specific gene expression patterns.
Therefore, this study aims to combine pharmacology databases with bulk RNA-seq and scRNA-seq, in order to
reveal the latent anti-PDAC capacities of BBR through thorough bioinformatics methods.

Materials and methods
The flowchart of this study is illustrated in Fig. 1.

Target acquisition of BBR and enrichment analysis

Canonical SMILES of BBR was obtained from PubChem. The molecular targets and corresponding target genes
of BBR were acquired from TargetNet, Comparative Toxicogenomics Database (CTD), SwissTargetPrediction,
and Binding Database using the following search parameters: The search strategy in CTD employed the keyword
“berberine”. For the remaining databases, the canonical SMILES of BBR was used as the search query. In Binding
Database, the search type was set to similarity with a threshold of 0.85. In TargetNet, models with an AUC >0.70
were included, and the fingerprint type was specified as ECFP4 fingerprints. All targets were integrated with
duplicates removed, then annotated with disease ontology (DO) terms by using DOSE R package'?, and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional annotations!'*~!° were
performed by EnrichR!®. The R package enrichplot visualized annotation results.

Target acquisition of PDAC and enrichment analysis

Expression matrix construction of PDAC and differential expression analysis

While available public PDAC RNA-seq datasets with sufficient matched tumor and adjacent normal tissue
samples were lacking for comprehensive analysis, the GSE183795 dataset, which contains microarray-based
gene expression profiles of 139 pancreatic tumor tissues and 102 adjacent non-tumor pancreatic tissues from
PDAC patients, was chosen to ensure the reliability and comparability of the study results. The raw data were
preprocessed in R language for standardization and normalization, probe re-annotation, construction of
expression matrix. During this process, probes without matched gene symbols were removed and replicate probes
were averaged. The matrix formed by clinical phenotypes and gene expression data was conducted differential
expression analysis by limma package!” in R. P-values were corrected through Benjamin-Hochberg method to
control the false discovery rate (FDR) below 5%, and only genes meet the criteria of |log2fold change| > 1 were
screened. Identified differentially expressed genes (DEGs) with expression values were visualized according to
clinical phenotypes. The volcano plot was drawn via ggplot2'%.

Gene Set Enrichment analysis of DEGs

Gene set enrichment analysis (GSEA)'® was utilized to find general tendencies in the defined set of DEGs,
as well as statistically significant differences between the two clinical traits. DEGs were rank ordered in line
with descending fold change. Through KEGG enrichment process, the markedly up- and down-regulated gene
pathways were mapped, and the enrichplot package visualized the results. The following thresholds were applied
in the analysis: normal p-value < 0.05, FDR-corrected p-value < 0.05, and [normalized enrichment score (NES)
[>1.

Weighted correlation network analysis of PDAC

Weighted correlation network analysis (WGCNA) has the capability of discovering clustered modules of genes
that are strongly correlated in terms of expression properties and demonstrating correlation networks among
them, describing complex interrelationships between modular gene expression and clinical phenotypes of
diseases, and is extensively employed for the identification of biomarkers and the search for potential therapeutic
targets. The weighted correlation network was constructed by the WGCNA R package?’. The pickSoftThreshold
function obtained the optimal weighted parameter of adjacency matrix, also referred to as soft threshold, for
network topology analysis. The adjacency matrix was calculated and subsequently transformed into a topological
overlap matrix (TOM). Based on the hierarchical clustering of a dissimilarity measure (1-TOM) refined gene co-
expression modules. As the first principal component from each single module, module eigengenes summarized
modular expression patterns. Module significance and gene significance within the module were computed to
build gene module-trait relationships. Using Pearson’s product-moment correlation, the module with the highest
correlation coefficient with PDAC was selected as the key module. To capture the broad spectrum of genes
potentially relevant to the phenotype or pathology of PDAC, a Venn diagram was utilized to merge and illustrate
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Fig. 1. Flowchart.

the integration of gene lists from the key WGCNA module and DEGs. These genes were further incorporated
into a complex disease network via STRINGdb?!. The edge betweenness algorithm of igraph?? screened out
nodes with above-average betweenness centrality in the network to be disease targets. Enrichment analysis was
performed the same as described in part 2.1.

Protein-protein interaction (PPI) network construction, key cluster identification and
enrichment analysis

Drug targets and disease targets were imported into the STRING database, the minimum required interaction
score was set at medium confidence (0.400), and the PPI network was constructed with isolated nodes removed.
Degree topological analysis provided by cytoHubba in Cytoscape (v3.9.1) was conducted to extract the key
cluster composed of the Top 10 tightly linked core genes in the network. Enrichment analysis was performed the
same as described in part 2.1.

Receiver operating characteristic curve analysis
To assess the association of clustered genes with PDAC, an external disease-control validation model was
constructed grounded on another cohort (GSE62452) which involved 69 PDAC samples and 61 adjacent non-
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tumor samples. The mRNA level of critical genes was verified by the Wilcoxon rank-sum test. In the use of the
mRNA expression data, the receiver operating characteristic (ROC) curves were plotted, and the area under
the curve (AUC) was calculated with pROC package?. Genes with AUC>0.6 have acquired the capacity to
distinguish PDAC and non-tumor tissues, and those with AUC > 0.75 would be considered more diagnostically
discriminant?.

Immune infiltration analysis

Since PDAC is among the most immune-resistant tumor types, we adopted the CYBERSORT algorithm? to
transposed-convolutionally speculate on the cell types in bulk tissues in an attempt to uncover its immune
micro-landscapes. The proportion of infiltrated immune cells in GSE183795 expression matrix was calculated
and applied to study the relationship between immune cells and clinical phenotypes. To investigate the potential
role of the key cluster in PDAC immunomodulation, Spearman correlation analysis was performed to clarify
which immunity pathways might be regulated by the important targets.

ScRNA-seq data processing and analysis

The raw dataset GSE212966 which encompassed scRNA-seq data from the tumor biopsy specimens of 6
PDAC patients was retrieved for analysis. For quality control, Seurat®® preprocessed the raw dataset by filtering
low-quality cells, cell doublets, multiplets, and cells with high levels of mitochondrial contamination. Data
normalization was processed in the method of global scaling normalization. Highly variable genes were detected
by the FindVariableFeatures function, and a total of 3000 features were returned and scaled to run principle
component analysis for linear dimensionality reduction. After the data integration by Harmony?’, heatmaps of
principal components (PCs) and the elbow plot, which displayed the variance percentage explained by each PC,
were combined to determine the appropriate number of PCs for downstream analysis. The K-nearest neighbor
Machine learning algorithm then classified clusters of cells based on similar characteristic expression patterns.
Various resolutions were set to observe cellular clustering effects, and at the optimal resolution employed the
t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce the dimensionality non-linearly. Cell type
annotation was performed using SingleR?® to identify distinct cellular subpopulations. The enrichment of the
key cluster, comprising crucial genes from prior topological network analysis, was assessed within the annotated
subpopulations using irGSEA. Enrichment scores were calculated to determine specific cell types showing
significant interactions with BBR, thereby clarifying the target distribution of BBR in the complex environment
of PDAC.

Results

Target genes of BBR

Canonical SMILES of BBR was derived from PubChem (Fig. 2A). Through TargetNet, CTD, SwissTargetPrediction,
and Binding Database, 425 drug targets were obtained (Fig. 2B). DO enrichment analysis showed that the drug
targets were mainly enriched in breast carcinoma, cell type benign neoplasm, ischemia, renal cell carcinoma,
hepatitis, arteriosclerosis, myocardial infarction, stomach cancer, and colon cancer (Fig. 2C). GO enrichment
analysis indicated that biological process (GOBP) of response to xenobiotic stimulus, cellular component
(GOCC) of protein-DNA complex, and molecular function (GOMF) of protein heterodimerization activity
were primary GO terms that drug targets enriched (Fig. 2E). KEGG analysis revealed major enriching pathways
such as viral carcinogenesis, PI3K-Akt signaling pathway, neutrophil extracellular trap formation, lipid and
atherosclerosis, and alcoholism (Fig. 2D).

Target genes of PDAC

Identification of DEGs in PDAC

After preprocessing the GSE183795 dataset with R (Fig. 3A), the expression profiles of 17,164 genes were
obtained. Filtered by the thresholds of |log2fold change| > 1 and FDR <0.05, 266 DEGs were finally acquired,
of which 158 were up-regulated genes and 108 were down-regulated genes, and the results were displayed in a
volcano plot (Fig. 3B).

GSEA

Pathway enrichment of DEGs using GSEA highlighted that 2-oxo carboxylic acid metabolism, fat digestion
and absorption, maturity onset diabetes of the young, pancreatic secretion, protein export were probably most
concerned with the development of PDAC (Fig. 3C, D; Supplementary Table S1).

WGCNA

Genes with mean FPKM values in the top 50% were selected to create gene co-expression modules. Taking
the correlation coefficient R?> 0.9 as the screening criterion, pickSoftThreshold function discerned that when
the minimum candidate soft-thresholding power was picked p=11 (Fig. 4A), the constructed gene expression
network could be closer to a scale-free network on the premise of preserving the mean connectivity as much as
possible. The adjacency matrix, topological overlap matrix, dissimilarity matrix and hierarchical clustering tree
were calculated and built stepwise (Fig. 4B). Branches of the clustered dendrogram were defined as modules and
merged similar ones. Among acquired 15 gene modules, the grey60 module had the highest correlation with
PDAC (cor=0.64, P=>5e-28) (Fig. 4C, D), and the correlation coefficient between gene significance and module
membership within the module was calculated as 0.91 (P < 1e-200) (Fig. 4E), indicating that this group of genes
was strongly correlated with not only the disease state but also the module itself. Thus, the MEGrey60 module
was definitively identified as the centermost module associated with PDAC, containing a total of 2,849 genes
(Supplementary Table S2).
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Fig. 2. Target acquisition of Berberine (BBR) and enrichment analysis. (A) Chemical structure of BBR. (B)
Venn diagram of BBR-targeted genes. (C) Disease Ontology (DO) annotation of BBR targets. (D) Pathway
enrichment analysis of BBR targets with the method of Kyoto Encyclopedia of Genes and Genomes (KEGG).
(E) Gene Ontology (GO) annotation of BBR targets.

Combining the key module genes from WGCNA and DEGs (Fig. 5A), 3002 disease targets were gained
to structure the protein-protein interaction network of disease. To simplify this extensive network, we filtered
it based on the betweenness centrality, selecting a sub-network of 771 nodes that exceeded the average value
(Fig. 5B). GO enrichment revealed that the 771 disease targets primarily participated in GOBP of mitotic cell
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Fig. 3. Identification of differentially expressed genes (DEGs) in pancreatic ductal adenocarcinoma (PDAC)
and gene set enrichment analysis (GSEA). (A) Before and after GSE183795 dataset standardization and
normalization. (B) Volcano plot of DEGs. (C, D) Up- and down-regulated gene pathways mapped by GSEA.
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cycle phase transition, GOCC of chromosomal region, and GOMF of ATP hydrolysis activity (Fig. 5C). KEGG
analysis indicated that the targets were predominantly enriched in pathways related to neurodegeneration-
multiple diseases, Cell cycle, Alzheimer disease, Amyotrophic lateral sclerosis, and Parkinson disease (Fig. 5D).
PPI network construction
Followed by painting the Venn diagram of the relationship between molecular drug targets and disease targets
(Fig. 6A), 57 intersecting targets were imported into the STRING online database to construct a PPI network, and
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Fig. 5. Disease network construction, sub-network filtration and enrichment analysis. (A) Venn diagram of
PDAC-related genes combining DEGs and WGCNA results. (B) Construction of PDAC network and filtration
of the most contributing sub-network. Targets above the average value of the betweenness centrality were
colored red. (C) GO annotation of PDAC targets. (D) Pathway enrichment analysis of PDAC targets with
KEGG method.

imported into Cytoscape (v3.9.1) with the outlier protein nodes removed. In the network, the degree values of
nodes were represented by varying shades of color, with darker colors signified higher degree values. The Degree
algorithm from cytoHubba anchored a network formed by top 10 highest contributing genes, CDK1, CCNBI,
CTNNBI, CDK2, TOP2A, MCM2, RUNX2, MYC, PLK1, and AURKA to be the key cluster (Fig. 6B, C). The
results of DO enrichment analysis consisted predominantly of cancers with different systemic origins, as shown
in Fig. 6D. GO terms were most notably related to mitotic cell cycle phase transition in GOBP; chromosomal
region in GOCC; and protein serine kinase activity in GOMF (Fig. 6F). KEGG showed that DEGs were primarily
enriched in cellular senescence, P13K-Akt signaling pathway, cell cycle, human T-cell leukemia virus 1 infection,
as well as lipid and atherosclerosis (Fig. 6E).

ROC curve analysis

As demonstrated in the box plots, mRNA expression levels of the key cluster exhibited significant differences
between the PDAC group and the control group (P <0.001). ROC curves further confirmed that all genes showed
good robustness for PDAC (AUC > 0.6). Among them, CDK1, PLK1, TOP2A, CTNNB1, CCNBI1, RUNX2, and
MYC proved to be highly diagnostically discriminant (AUC > 0.75) (Fig. 7A, B).

Immune infiltration analysis

CYBERSORT algorithm deconvolutionally calculated different infiltrating proportions of 22 immune cell types
and showcased the immune landscape of GSE183795 dataset (Fig. 7C). Deviations of immune abundance in
the distinct disease phenotypes were reflected by box plots (Fig. 7D). Notably, macrophages M0 (P<0.001),
macrophages M1, resting dendritic cells, activated dendritic cells, and regulatory T cells showed significantly
increased infiltration in the tumor phenotype (P<0.05). Conversely, neutrophils, naive B cells, and CD8 T
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Fig. 6. PPI network construction, key cluster identification and enrichment analysis. (A) Venn diagram of

BBR and PDAC targets. (B, C) Construction of PPI network and identification of key cluster formed by top 10
highest contributing genes. (D-F) GO, KEGG, and DO annotations for enrichment analysis of the key cluster.

cells showed significantly lower infiltration compared to the normal phenotype (P <0.05). Immune heatmaps
showed that the key cluster primarily influences the immune pathways of Macrophages M0, CD8 T cells, and
naive B cells, indicating these genes’s roles in regulating the immune function of PDAC (Fig. 7E). This finding
corroborates results from previous studies?*3C.

ScRNA-seq analysis

ScRNA-seq of tumor tissue biopsy from 6 PDAC patients in GSE212966 dataset were preprocessed by the
Seurat package to clarify the distribution and interrelationships of diversified cellular features. We found that
the sum of all gene expressions detected in the cells was strongly and positively correlated with the number of
unique genes detected in each cell, but not with the percentage of mitochondria (Fig. 8A, B). Based on these,
the quality control filtering criteria were set to percent.mt <20% and 200 < nFeature_RNA <8000. PCA linear
dimensionality reduction used a scaled matrix of 3000 highly variable genes, the relationships among the
distinct PCs were displayed in Fig. 8C. Harmony’s soft clustering corrected batch effects (Fig. 8D). Combining
the outcomes of elbow plot and principal component heatmap to select the 17 PCs that contributed most to
cell clustering (Fig. 8E, F). Subsequently, the cluster tree was scaled to a resolution of 1.2, and 29 clusters were
classified according to the clustering results (Fig. 9A, B). t-SNE reduced the data into a two-dimensional graph,
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Fig. 7. Receiver operative characteristic curve (ROC) analysis and immune cell infiltration analysis of the key
cluster. (A, B) Association assessment of clustered genes with PDAC in an external disease-control validation
cohort (GSE62452). (C) The proportion of infiltrated immune cells in GSE183795 expression matrix. (D)
Relationship between immune cells and two clinical phenotypes. (E) Relationship between the key cluster and
immune cells.

which illustrates the distribution of cell expression, with cells colored by cluster (Fig. 9C). SingleR annotated
the cell types, while the AUCell function calculated the enrichment scores of the key cluster, identifying BBR’s
primary targets in PDAC as epithelial cells and macrophages (Fig. 9D, E). This finding aligns with the results of
the immune infiltration analysis.

Discussion
PDAC has the highest mortality rate among any solid malignancy®! and is notorious as one of the most lethal
cancers. A high degree of heterogeneity driven by genomic mutations is considered an essential feature of
PDAC. This heterogeneity can either impair therapeutic targeting, leading to poor or no response to therapy, or
define transcriptomic and phenotypic profiles that promote malignant progression by continuously remodeling
the tumor microenvironment®2. This is also the pivotal reason why the eventual clinical outcomes in a vast
majority of malignant tumors are closely linked to drug resistance and metastasis. Therefore, deciphering the
heterogeneity of PDAC and the cellular composition of its tumor microenvironment is pertinent. Although
BULK genomics has largely established our fundamental comprehension of the transcriptome and epigenetic
profiles of tumor tissues, it does not fully capture the inter- and intra-tumor heterogeneity, that is, the
heterogeneity exists both amongst different patients and within a single tumor. In contrast, single-cell genomics
allows for the reconstruction of intricate tumor ecosystems**, revealing hidden and previously unknown cellular
components. Consequently, single-cell transcriptome analysis of biopsy tissues from different PDAC patients
can more effectively reveal cell-type-specific gene regulatory programs obscured by BULK omics techniques®
Curative-intent resection followed by adjuvant chemotherapy continues to be the front-line regimen for
PDAC. Although surgical treatment provides a survival benefit of at least 6 months**, only about 15% of patients
can undergo surgery because most are diagnosed at an unresectable stage due to local advancement or distant
metastasis>. Even with surgical resection, more than 80% of patients may experience recurrence within 2 years®”
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Given the limited therapeutic options, gemcitabine-based chemotherapy, either a single agent or in combination,
will remain the optimal choice for most PDAC patients for the foreseeable future. Unfortunately, the insensitivity
and resistance to gemcitabine in PDAC are not rare and hard to overcome?®, Therefore, it is imperative to refine
existing therapies or develop novel alternative approaches.

As a natural isoquinoline quaternary alkaloid, berberine possesses multiple pharmacological activities. In
recent years, its antitumor effects have garnered increasing attention. BBR induces cancer cell death by activating
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the cells by clusters. (D) Cell type annotation of different clusters. (E) Target distribution of BBR on cellular
subpopulations in PDAC.

autophagy, as well as intrinsic and extrinsic apoptosis. It prevents cancer cell proliferation by arresting cell cycle
through suppressing the expression of cell cycle regulatory molecules. Additionally, it interferes with signaling
in various oncogenic pathways>*. In addition, studies have preliminarily revealed the anticancer or adjuvant
anticancer potential of BBR in PDAC. BBR reduced the proportion of side population cells and down-regulated
the expression of stem cell-related genes such as SOX2, POU5F1, and NANOG in PANC-1 and MIA-PaCa2 cell
lines*!. Both were able to induce cell cycle block, while gemcitabine focused mainly on the S phase, and BBR
focused on the G1 phase*2. In vivo studies showed that orthotopic PDAC-bearing mice orally administered with
BBR had reduced tumor sizes, less invasive liver proliferation, and prolonged survival compared to the control
group®®. BBR-combined gemcitabine treatment promoted cytostasis and apoptosis in gemcitabine-tolerant
PDAC cells via Rap1/PI3K/AKT axis, thereby mediating chemosensitization*!. Synergizing BBR with the E3
ubiquitin ligase MDM2 inhibitor, nutlin-3a, significantly enhanced its potency in suppressing proliferation in
WT-P53-introduced PDAC cell lines*>. However, up until now, the anti-PDAC effects of BBR remain in an
exploratory stage, and the targets and mechanisms of action have yet to be fully elucidated.

Pharmacological databases are capable of mapping drugs in clinical trials, approved drugs, and active
compounds to their targeted human proteins and coding genes, facilitating the validation of gene-drug and gene-
active compound interrelationships, as well as the expansion of indications for existing drugs. Furthermore,
Pharmacological databases act as a bridge between potential drug targets and disease transcriptomic information.
This link allows for the identification of the distributional abundance of drug targets in pathological biopsy
specimens, with precision down to single-cell resolution®”.

In this study, the key therapeutic targets of BBR for the treatment of PDAC were identified, including CDK1,
CCNBI, CTNNBI, CDK2, TOP2A, MCM2, RUNX2, MYC, PLK1, and AURKA. Hyperactivation of CDK1 and
CDK2 drove the development of mutant KRAS-dependent PDAC*®. Conversely, inactivation of both intercepted
the immune escape in PDAC cells triggered by IFN-y, through dual mechanisms of blocking immune checkpoint
expression and propelling immunogenic cell death?’. In particular, CDK1 inhibition specifically targeted the
PDAC stem cell population®, and its expression level was proved to correlate with tumor size and histological
grading in PDAC patients®!, with the overexpression of CDK1 tending to portend a poor prognosis and a short
survival period®>. CCNBI, a B-type cyclin, is a master regulator of the cell cycle. It promoted the progression
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of PDAC cells from G2/S phase to G1/M phase by forming a complex with CDKI1 to turn on substrate
phosphorylation®***. When CCNB1 was silenced, the cell cycle period ratios exhibited a decrease in S phase and
anincrease in GO/G1 phase. Simultaneously, the activation of p53 signaling pathway drove proliferation inhibition
and induced senescence in PDAC cells*>. CTNNBI1 overexpression was considered a negative prognostic factor
for progression-free survival and recurrence-free survival in human PDAC cohorts, and its mechanism might
be associated with the regulation of cell-cell junctions dynamics to enhance the metastatic capacity of PDAC
circulating tumor cells with stem-like properties®®. Acting as a co-activator of B-cetanin, TOP2A engaged in
the miR-139/TOP2A/p-cetanin axis, accelerating the malignant progression of PDAC”. TOP2A, along with its
transcriptional activators SP1 and HMGB2, was overexpressed in human PDAC tissues, sensitizing PDAC cells
with knocked-down TOP2A to chemotherapy drugs®®. MCM2 assembles the hexameric helicase MCM complex,
which is crucial for initiating DNA replication. When MCM expression was suppressed under gemcitabine
exposure, it inhibited the restoration of DNA replication capacity in PDAC cell lines, demonstrating that MCM
inhibition can synergize with chemotherapeutic agents to mediate replication blockade®. RUNX2 ameliorated
the PDAC tumor microenvironment by regulating the extracellular matrix, affecting the transcription of SPARC
and MMP1%. Activation of the MYC signaling pathway and amplification of MYC expression supported PDAC
metastasis by fostering the reprogramming of glucose metabolism®'. Furthermore, and the clinical potential of
MYC as a therapeutic target for aerobic glycolysis in PDAC is currently under investigation®2. PLK1 depletion or
downregulation was able to stimulate anti-tumor immune responses, upregulating PD-L1 expression to sensitize
PDAC to immune checkpoint therapy®*. Targeted delivery of PLK1 inhibitors into PDAC cells effectively slowed
tumor growth by silencing PLK1%*. AURKA repression triggered necrosis-like apoptosis in PDAC cells by
reducing necrosome-induced phosphorylation of downstream proteins®.

CYBERSORT revealed the key cluster predominantly regulates the immune responses of Macrophages MO0,
CD8 T cells, and naive B cells. Analysis of scRNA-seq suggested the epithelial cells and macrophages in PDAC
were more responsive to the key cluster. Remarkably, the two co-emphasized the modulatory role of BBR on
macrophages in PDAC. The PDAC stroma exhibits extensive macrophage infiltration, contributing not only
to the immunosuppression of the tumor microenvironment®, but also to gemcitabine tolerance®’. Moreover,
macrophages are capable of shielding tumor cells from complement-dependent cytotoxicity®s. However,
inhibiting the upstream encoding gene, PI3Ky, can reprogram macrophages to activate CD8 + T cells, interfering
with metastasis and proliferation of tumor cells®. Early-stage MO macrophages, which possess high plasticity,
can promote anti-tumor activity through increased secretion of TNF-a’°.

Previously, researchers have gleaned significant anticancer insights from medicinal plants, such as
paclitaxel, vincristine, and camptothecin. The strength of this study lies in the fact that through deeply mining
the bioinformatics data of pharmacological databases in conjunction with BULK and single-cell genomics,
combined with the existing research base, we initially elucidated the potential targets and molecular mechanisms
of the anti-PDAC action of BBR, which may elucidate potential strategies for the development of anticancer
drugs derived from natural ingredients. The present study has its shortcomings. Firstly, it lacks experimental
validation. Confirming the bioinformatic results with real-world evidence is crucial for establishing a more
comprehensive research framework. Secondly, the clinical application of BBR was restricted by its low oral
bioavailability, inadequate tumor site delivery, and non-specificity. Further exploration into the optimization of
its chemical structure and the development of novel drug delivery systems is necessary.

Conclusion

This study explored the multiple bioinformatics mechanisms of BBR against PDAC through integrated multi-
omics profiling. BBR potentially targets CDK1, CCNB1, CTNNBI1, CDK2, TOP2A, MCM2, RUNX2, MYC,
PLK1, and AURKA to exert therapeutic effects on PDAC. CYBERSORT and scRNA-seq analyses collectively
suggested that the process primarily involved macrophage polarization-related immunological responses. In
subsequent research, we will thoroughly validate these findings through detailed molecular biology experiments.

Data availability
This study analyzed open-source data from publicly available databases, and all datasets could be retrieved from
GEO, including GSE183795, GSE62452, and GSE212966.
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