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Modified Easley formula for elastic
critical global shear buckling
stress of corrugated steel webs
considering real boundary
conditions

Zhaojie Tong'™, Kongjian Shen?3, Yongjin Li%, Jucan Dong* & Bingqing Luo*

The real juncture between corrugated steel webs (CSWs) and flanges follows a multi-segmented line,
distinct from that of flat steel webs. Classic methods may yield significant deviations in predicting the
elastic global shear buckling capacity of CSWs of various scales due to their failure to consider real
boundary constraints. Therefore, a universally applicable formula for calculating the elastic critical
global shear buckling stress of CSWs, which accounts for real boundary conditions, is proposed. This
formula is pertinent to both large-scale engineering CSWs and small-scale testing CSWs. This study
commenced with a comprehensive reassessment of the elastic global shear buckling calculation
method. Subsequently, the influence of geometric parameter ratios on the elastic critical global
buckling stress was examined. The primary parameter was identified and employed to improve the
global buckling coefficient. The proposed calculation method was validated using different corrugation
configurations, including 1000-type, 1200-type, 1600-type, 1800-type, and 2000-type CSWs, as well
as other CSWs used in experimental settings. These results were compared with those obtained from
other reference methods. Findings indicate that the accuracy of the classic theoretical method is
affected by variations in both boundary conditions and geometric dimensions due to the constraint
effect of real boundary conditions. Under the real boundary conditions, the elastic critical global shear
buckling stress of CSWs with simply supported boundary conditions is close to that of CSWs with
consolidated boundary conditions. The ratio of web height to corrugation depth primarily affects the
elastic global shear buckling capacity, which decreases as the ratio increases. The Easley formula can be
modified based on the web height to corrugation depth ratio. Comparisons of numerous numerical and
theoretical results reveal that the proposed calculation method exhibits commendable computational
precision. In comparison to alternative formulas, the proposed method demonstrates enhanced
consistency for calculating CSWs with varying geometric dimensions and boundary conditions, thereby
demonstrating its favorable applicability. These conclusions provide valuable reference for the shear
design of CSWs.

Keywords Bridge engineering, Elastic global shear buckling, Finite element analysis, Corrugated steel web,
Space boundary condition, Improved Easley formula

Corrugated steel webs (CSWs) are extensively utilized in bridges!=, buildings*-%, and culverts”® due to their
superior shear buckling strength and out-of-plane stiffness. As the structural span increases, the height of
CSWs also increases, making global shear buckling a critical design consideration. Existing methods typically
rely on orthotropic plate theory to calculate the elastic critical global shear buckling stress of CSWs. However,
these methods do not account for the three-dimensional spatial constraint effects induced by the corrugation
configuration of CSWs. For certain specific parameters of CSWs, the traditional theoretical calculations may
be overly conservative, thereby diminishing the economic benefits of composite girder bridges with CSWs.
For instance, the Nanfeihe Bridge in China, which spans 153 m, employed thicker CSWs to avert global shear
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buckling failure. The maximum height of these CSWs is 6.35 m, and the maximum thickness is 34 mm. Further
increasing the thickness is not feasible due to economic and manufacturing constraints. A more accurate
calculation formula can help reduce costs and improve the span of composite beam bridges with CSWs.
Furthermore, existing methods fail to provide accurate calculations for both large-scale CSWs in engineering
applications and small-scale CSWs in laboratory settings, due to significant variations in geometric parameters.
Consequently, it is imperative to develop an elastic global buckling calculation method that incorporates the
effects of spatial boundary constraints and accommodates variations in geometric dimensions. Such a method
would significantly enhance the application of CSWs in long-span structures.

In recent years, scholars have conducted extensive research on the static performanceg‘lz, fatigue
performance'®!4, and fire performance!>!® of CSWs. Shear performance, a critical aspect of static performance,
has been studied in various types of CSWs, including equal-section CSWs!7~1°, variable-section CSWs?*2!,
curved CSWs?>? and stiffened CSWs?*. These investigations cover a broad range of topics, from the mechanisms
of shear failure to the effects of welding and corrosion damage on shear performance. The elastic shear buckling
of CSWs includes local buckling®, global buckling®® and interactive buckling?’, and is studied using both
theoretical and numerical methods. For elastic global shear buckling, research has evolved from traditional
theoretical formulas to methods that incorporate real boundary conditions. Easley and McFarland?® utilized
orthotropic anisotropic plate theory to develop a formula for determining the elastic critical global buckling stress
of CSWs. Nie et al.” derived a formula for the elastic critical global buckling stress based on energy principles,
demonstrating that the effect of constraints in the direction of weak bending stiffness of CSWs can be neglected.
Hassanein and Kharoob® utilized finite element models to analyze the elastic global buckling of CSWs under
real boundary conditions. Their findings revealed that the elastic critical shear buckling stress of CSWs with
consolidated boundaries is comparable to that of CSW's with simply supported boundaries. Furthermore, under
real boundary conditions, the ratio of the critical buckling stress of CSWs with simply supported boundary
conditions to that under consolidated boundary conditions is significantly higher than the ratio predicted by
the orthotropic plate theory. Wang et al.>! developed an elastic shear buckling calculation formula tailored for
four types of large-scale CSWs: the 1000-type, 1200-type, 1600-type, and 1800-type. This formula accounts for
the real boundary constraints of large-scale CSW's and lacks validation for small-scale CSWs. It is noteworthy
that the boundary constraints of CSWs differ from those of traditional flat steel webs. There is a paucity of elastic
critical global shear buckling stress calculation formulas that consider real boundary conditions and are suitable
for both large-scale CSW's used in engineering applications and small-scale CSWs used in testing.

The juncture between traditional flat steel webs and flanges is linear, whereas the juncture between CSWs
and flanges follows a multi-segmented line. This corrugation configuration results in a spatial three-dimensional
boundary for CSWs. Due to this difference, traditional plate theory cannot be directly applied to calculate the
boundary constraint effects of CSWs. Existing orthotropic anisotropic plate theories are inadequate in accurately
considering these real constraint effects. Finite element method-based fitting formulas are often used for specific
types of CSWs but cannot be generalized to CSW's with varying parameter proportions.

To address these limitations and develop a widely applicable calculation method for elastic global shear buckling
capacity, this study focuses on equal-section CSWs. Initially, the relationship between the ratio of geometric
parameters and the elastic critical global shear buckling stress is analyzed using numerical methods, leading to the
identification of the primary influencing parameters. Subsequently, the real boundary constraint effects and the
accuracy of traditional orthotropic plate calculation methods are examined. Based on these findings, modifications
are made to Easley’s elastic global shear buckling stress calculation formula. Finally, the modified formula is
validated and compared with existing formulas by assessing the 1000-type, 1200-type, 1600-type, 1800-type, and
2000-type CSWs used in engineering, as well as certain CSWs employed in laboratory settings.

Theoretical methods

The classic approach considers the CSW as an orthotropic anisotropic plate, utilizing orthotropic anisotropic
plate theory to determine the elastic critical global shear buckling stress. The formula for elastic critical global
shear buckling stress, established by Easley™, is extensively employed and effectively illustrates the mechanical
relationship between the primary parameters influencing elastic global shear buckling capacity, as depicted in
Eq. (1). In this equation, k represents the global buckling coefficient, which is assigned 36 for simply supported
boundary conditions and 68.4 for consolidated boundary conditions***2. Nonetheless, this formula does not
accurately account for the real boundary constraints imposed by the corrugation configuration. Consequently,
more precise formulas need to be developed from Eq. (1), incorporating spatial boundary constraints and
accommodating various sizes of CSWs. Figure 1 presents a schematic diagram of CSWss.
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Fig. 1. Schematic diagram of CSWs.

s=2x(b+c) 6)

where 7 is the elastic critical global shear buckling stress; k, is the global buckling coefficient;  is the thickness
of CSWs; E is the elastic modulus of the steel; h is the height of the web; b is the parallel fold width; c is the
inclined fold width; d is the horizontal projection of the inclined fold width; e is the corrugation depth; « is the
corrugation angle.

In practice, CSW's experience spatial boundary constraints that are distinct from those of flat steel webs. Even
under simply supported boundary conditions, these spatial constraints limit the free rotation of CSWs. Wang
et al.3! has derived formulas for calculating the elastic critical buckling stress for large-scale CSWs of types
1000, 1200, 1600, and 1800, based on extensive numerical analysis, as presented in Eq. (7). This equation takes
into account the real boundary conditions. However, the applicability of this formula needs to be verified for
small-scale CSWs in laboratory settings. The buckling coefficient limits are not specified. When the geometric
parameter ratios deviate significantly from those typical of CSWs commonly used in engineering, excessively
low buckling coefficients may result. To address this, the lower limits of the buckling coefficients in Egs. (8) and
(9) are set at 36, based on the buckling coefficients of a simply supported orthotropic anisotropic plate.
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where ki, is obtained by Eq. (8) for CSWs with simply supported boundary conditions, and is obtained by Eq. (9)
for CSWs with consolidated boundary conditions.

Numerical methods

Geometric deviations and welding residual stresses can cause some variability in the experimental results of the
global shear buckling of CSWs. Additionally, spatial geometric boundaries complicate theoretical derivations.
Therefore, the elastic shear buckling capacity of CSWs considering the real boundary juncture between CSWs
and flanges is typically studied using the finite element method. Refer to the finite element buckling analysis
method of CSWs, the CSW is simulated using ANSYS finite element package®**34. The SHELL181 four-node
shell element is used to simulate the CSW with an elastic modulus of 206 GPa and a Poisson’s ratio of 0.3,
as shown in Fig. 2. For simply supported boundary conditions on all four edges, the translation degrees of
freedom in the z-direction and the x-direction are constrained on the AB side and the DC side, the translation
degrees of freedom in the z-direction and the y-direction are constrained on the AD side, and the translation
degree of freedom in z-direction is constrained on the BC side. The translational constraint for fully consolidated
boundary conditions on all four edges are the same as that for simply supported boundary conditions, with the
exception that rotational constraints are additionally imposed. Specifically, rotational constraints about the x-
axis are applied at the edges AB and DC, while rotational constraints about the y-axis are applied at the edges
AD and BC. For CSWs with simply supported or consolidated boundary conditions, a uniformly distributed
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Fig. 3. Typical global buckling failure mode.

No h b |d |t |e |Tppi(MPa)|Tpg2(MPa) | TFE1/TFE2
1 2400 | 325 | 274 |8 |175 | 560 547 1.02
2 2400 | 325 | 274 |10 | 175 | 760 753 1.01
3 2400 | 325 | 274 |12 | 175 | 958 958 1.00
4 2400 | 325 | 274 | 14 | 175 | 1159 1168 0.99
5 2400 | 325 | 274 |16 | 175 | 1365 1385 0.99
6 2400 | 325 | 274 |18 | 175 | 1578 1610 0.98
Average 1.00
SD 0.02

Table 1. Verification of CSW finite element model. 7 is the shear buckling stress under simply supported
boundary condition calculated by the finite element model in this paper; 772 is the shear buckling stress
under simply supported boundary condition by Hassanein and Kharoob®.

vertical load is applied on the BC edge. The effect of the loading point position on the critical buckling stress is
negligible when the ratio of edge AB/edge BC is greater than 2. Moreover, after trial calculation, when there
are six elements in the length of the straight section of CSWs, a more accurate numerical result can be obtained
and the calculation efficiency can be taken into account. The typical global buckling failure mode of CSWss is
shown in Fig. 3.

To validate the accuracy of the numerical model, the critical buckling stress derived from the aforementioned
numerical modeling method was compared with the numerical results calculated by Hassanein and Kharoob™.
Table 1 provides a comparison of the numerical results. It is noteworthy that the finite element calculation
model utilized in Table 1 employs the material parameters provided by Hassanein and Kharoob®® to eliminate
discrepancies in calculation results attributable to material differences. The average ratio is 1.00 and the standard
deviation (SD) is 0.02. The numerical results predicted in the paper agree well with the results calculated by
Hassanein and Kharoob®. In addition, the critical shear buckling stress of CSWs calculated using the above
numerical method is similar to the finite element fitting formula results predicted by Wang et al.>!. The mean and
SD also closely match the results predicted by Wang et al.*!, indicating the accuracy of the numerical method,
as shown in Figs. 11b and 12b. Detailed analysis can be found in the verification of the proposed calculation
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method section. The elastic buckling stress of CSWs can be predicted by the proposed finite element analysis
method.

Finite element analysis

Parameter analysis

Geometric foundation design parameters of CSWs include web height (), web thickness (#), corrugation depth
(e), parallel fold width (b) and horizontal projection of inclined fold width (d). The elastic global buckling
capacity of CSWs was investigated by varying the geometric foundation design parameters for the corrugation
configurations®®¥3 of 1600-type, 2000-type and Hassanein-type CSWs. The geometric foundation design
parameters of each model are detailed in Table 2. Each type of CSWs was divided into five groups based on the
geometric foundation design parameters, with each group consisting of six models. The parameter groups of
different types of CSWs are represented by A1-A5, B1-B5, and C1-C5. For example, the models in the first group
of design parameters are labeled A1, B1, and C1.

To ensure that the analysis results are applicable to both large-scale engineering CSWs and small-scale
laboratory CSWs, the design parameters were examined in terms of their ratios: web height to corrugation
depth (h/e), corrugation depth to web thickness (e/t), parallel fold width to inclined fold width (b/c), and
the corrugation angle («). Referring to the parameter ratio of CSWs in the engineering and CSWs in the
laboratory, the parameter variation range for the global shear buckling analysis is as follows: (1)0.5 < b/c < 2;
(2)27° < a < 45% (3)7 < e/t < 25; (4) 20 < h/e < 130. It is important to note that, to ensure the applicability
of the analysis results to various sizes of CSWs, the web height in Table 2 has been appropriately expanded. This
adjustment aims to guarantee that the parameter ratio analysis results are valid for both large-scale and small-
scale CSWs. The parameter ratios of CSW models in the subsequent calculation method validation are also
within the above range. In Table 2, the first, second, and fourth groups were used for analyzing the relationships
between h/e. e/t. blc, and the critical global shear buckling stress. For the third and fifth groups, alterations
in the basic parameters result in variations in multiple parameter ratios. The fifth group which exhibits less
parameter coupling, will be used to analyze the influence of parameter «. The third group, characterized by more
parameter ratio coupling, will be employed for subsequent statistical analysis.

Figure 4 illustrates the relationship between the parameter ratios and the critical global shear buckling stress
of CSWs with simply supported boundary conditions on all four edges. To facilitate the analysis of different
types of CSWs, the vertical axis represents the ratio of the critical global shear buckling stress (7;) to the average
critical global shear buckling stress (7.) of the six models in each group. The horizontal axis represents the
parameter ratios. For different types of CSWs, the relationship between these parameter ratios and the critical
global shear buckling stress is consistent: the critical shear buckling stress decreases with increasing h/e and e/t,
and increases with increasing b/c. Furthermore, variations in parameter « and the b/c ratio result in only slight
changes in the 7 /7, ratio, indicating that « and b/c exert minimal influence on the critical shear buckling stress.
Notably, when the h/e ratio changes the variation range of 71 /7. is between 0 and 3. This variation is substantially
higher compared to the influence exerted by other parameter ratios on the critical global shear buckling stress.

Additionally, for CSWs with fully consolidated boundary conditions on all four edges, the relationship
between the parameter ratios and the critical global buckling stress remains analogous to that observed in CSW's
with simply supported boundary conditions on all four edges. As illustrated in Fig. 5, the h/e ratio continues
to be the most significant influencing parameter under the condition as well. This consistency underscores the
critical role of the h/e ratio in determining the global shear buckling capacity of CSWs across different support
conditions.

Discussion on boundary constraint effect

Figure 6 examines the constraint effect of the real boundary conditions of CSWs. In Fig. 6, 7, represents the
elastic critical global shear buckling stress for the simply supported boundary condition, while 7 denotes the
elastic critical global shear buckling stress for the consolidated boundary condition. It is evident from Fig. 6
that the ratio of 7,/7p under the real boundary condition ranges between 0.8 and 1. This indicates that, due to
the spatial boundary constraint, the constraint effect of the simply supported boundary condition for CSWss is
comparable to that of the consolidated boundary condition. In contrast, the traditional orthotropic anisotropic
theory yields a ratio of 0.53, as it fails to account for the spatial constraint effect.

Improved Easley formula

The ratio of h/e significantly influences the elastic global shear buckling capacity. Figures 7 and 8 show the
relationship between the accuracy of the traditional calculation method and the ratio of h/e. In these figures, 7
denotes the numerical results, and 7 represents the theoretical results calculated using Eq. (1). For CSWs with
simply supported boundary conditions on all four edges, the theoretical results are generally lower than the
numerical results. As the h/e ratio increases, the theoretical results gradually approach the numerical results,
as illustrated in Fig. 7. Conversely, for CSWs with fully consolidated boundary conditions on all four edges,
the theoretical results are generally higher than the numerical results. As the h/e ratio decreases, the theoretical
results converge towards the numerical results, as shown in Fig. 8.

The discrepancy between theoretical and numerical results arises because Eq. (1) simplifies the CSW to an
orthotropic plate and the boundary condition to a two-dimensional plate boundary. In reality, the boundary of
CSWs is three-dimensional. The spatial boundary constraints imply that the rotation of CSWs under simply
supported boundary conditions is also restricted, a factor that the traditional formula fails to accurately account
for. Given that the influence of the h/e ratio on the elastic global buckling capacity is much more significant than
that of other parameter ratios, it is feasible to modify the existing theoretical calculation method by using the
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Model ‘t(mm) ‘h(mm) ‘e(mm) ‘b(mm) ‘d(mm) ‘Model ‘t(mm) ‘h(mm) ‘e(mm) ‘h(mm) ‘d(mm)
1600-type
Al-1 |30 6000 | 220 430 370 A3-4 |28 10,000 | 280 430 370
Al-2 |30 8000 | 220 430 370 A3-5 |28 10,000 | 300 430 370
Al-3 |30 10,000 | 220 430 370 A3-6 |28 10,000 | 320 430 370
Al-4 |30 12,000 | 220 430 370 A4-1 |25 12,000 | 220 300 370
Al-5 |30 14,000 | 220 430 370 A4-2 |25 12,000 | 220 360 370
Al-6 |30 16,000 | 220 430 370 A4-3 |25 12,000 | 220 420 370
A2-1 |29 8000 | 220 430 370 Ad4-4 |25 12,000 | 220 480 370
A2-2 |26 8000 | 220 430 370 A4-5 |25 12,000 | 220 540 370
A2-3 |23 8000 | 220 430 370 Ad4-6 |25 12,000 | 220 600 370
A2-4 |20 8000 | 220 430 370 A5-1 |22 14,000 | 220 430 240
A2-5 |17 8000 | 220 430 370 A5-2 |22 14,000 | 220 430 270
A2-6 |14 8000 | 220 430 370 A5-3 |22 14,000 | 220 430 300
A3-1 |28 10,000 | 220 430 370 A5-4 |22 14,000 | 220 430 330
A3-2 |28 10,000 | 240 430 370 A5-5 |22 14,000 | 220 430 360
A3-3 |28 10,000 | 260 430 370 A5-6 |22 14,000 | 220 430 390
2000-type
Bl-1 |25 8000 | 240 530 470 B3-4 |27 12,000 | 330 530 470
Bl-2 |25 10,000 | 240 530 470 B3-5 |27 12,000 | 360 530 470
B1-3 |25 12,000 | 240 530 470 B3-6 |27 12,000 | 390 530 470
Bl-4 |25 14,000 | 240 530 470 B4-1 |23 8000 | 240 300 470
Bl-5 |25 16,000 | 240 530 470 B42 |23 8000 | 240 380 470
Bl1-6 |25 18,000 | 240 530 470 B4-3 |23 8000 | 240 460 470
B2-1 |30 10,000 | 240 530 470 B4-4 |23 8000 | 240 540 470
B2-2 |28 10,000 | 240 530 470 B4-5 |23 8000 | 240 620 470
B2-3 |26 10,000 | 240 530 470 B4-6 |23 8000 | 240 700 470
B2-4 |24 10,000 | 240 530 470 B5-1 |28 14,000 | 240 530 250
B2-5 |22 10,000 | 240 530 470 B5-2 |28 14,000 | 240 530 290
B2-6 |20 10,000 | 240 530 470 B5-3 |28 14,000 | 240 530 330
B3-1 |27 12,000 | 240 530 470 B5-4 |28 14,000 | 240 530 370
B3-2 |27 12,000 | 270 530 470 B5-5 |28 14,000 | 240 530 410
B3-3 |27 12,000 | 300 530 470 B5-6 |28 14,000 | 240 530 450
Hassanein-type
Cl-1 |26 6000 | 175 325 274 C3-4 |24 8000 | 205 325 274
c12 |26 8000 | 175 325 274 C3-5 |24 8000 | 220 325 274
C1-3 |26 10,000 | 175 325 274 C3-6 |24 8000 | 235 325 274
Cl4 |26 12,000 | 175 325 274 C4-1 |21 12,000 | 175 250 274
Cl15 |26 14,000 | 175 325 274 Cc42 |21 12,000 | 175 300 274
Cl-6 |26 16,000 | 175 325 274 Cc4-3 |21 12,000 | 175 350 274
C2-1 |24 10,000 | 175 325 274 C4-4 |21 12,000 | 175 400 274
c22 |21 10,000 | 175 325 274 C4-5 |21 12,000 | 175 450 274
c23 |18 10,000 | 175 325 274 C4-6 |21 12,000 | 175 500 274
C24 |15 10,000 | 175 325 274 C5-1 |23 14,000 | 175 325 190
c2-5 |12 10,000 | 175 325 274 C5-2 |23 14,000 | 175 325 220
Cc2-6 |9 10,000 | 175 325 274 C5-3 |23 14,000 | 175 325 250
C3-1 |24 8000 175 325 274 C5-4 |23 14,000 | 175 325 280
C32 |24 8000 | 185 325 274 C5-5 |23 14,000 | 175 325 310
C3-3 |24 8000 195 325 274 C5-6 |23 14,000 | 175 325 340
Table 2. Details of CSW for parameter analysis.
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Fig. 4. Relationship between parameter ratios and critical buckling stress for simply supported boundary
conditions.
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h/e ratio as the primary parameter. By performing statistical regression on the data in Figs. 7 and 8, a correction
formula can be established, as shown in Eq. (10).

0.25 1)0.75
DY» Dy

th? (10
th

_ 1.1
T = kle‘,G

where k_,, is the boundary constraint correction factor.

For CSWs with simply supported boundary conditions on all four edges, the boundary constraint correction
factor can be obtained as:

K = 72/m = 0.11852(h/e) 4% an
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b d e t Increment | h Increment
CSW type | (mm) | (mm) | (mm) | (mm) | (mm) (m) (m)
1000% 280 220 160 9~12 1 5~6 1
1200% 330 | 270 180 14~20 |2 5~7 |1
1600 430 370 220 18~30 |2 6~10 |2
1800°! 480 420 240 18~30 |2 6~12 |2
20003 530 470 240 18~30 |2 6~12 |2

Table 3. Engineering CSWs parameter variation range.

b d e t Increment | h Increment
CSW type | (mm) | (mm) | (mm) | (mm) (mm) (m) (m)
V2412097 | 19.8 | 119 |142 |1~2 0.5 1.2~1.6 | 0.2
S13 20 16 121 | 05~15 0.5 1~14 |02
$23 80 64 48 4~6 1 3~4 0.5
G138 25 20 15 1~2 0.5 1~14 |02
L1 100 | 80 60 4~6 1 3.5~45 | 0.5
Table 4. Testing CSWs parameter variation range.
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Fig. 9. Comparison of theoretical results and numerical results for CSWs with simply supported boundary
condition in the laboratory.

For CSWs with consolidated boundary conditions on all four edges, the boundary constraint correction factor
can be obtained as:

Kai = /1 = 0.31218(h/e)"3% (12)
Verification of the proposed calculation method
To verify the accuracy of Eq. (10), both engineering CSWs and certain testing CSWs were employed. The
corrugation configurations®*>%* for 1000-type, 1200-type, 1600-type, 1800-type and 2000-type CSWs were
determined. The parameter range for CSWs in engineering is detailed in Table 3, which lists the common
parameters used for bridges with CSWs that experience global shear buckling, with appropriate extensions.
Generally, as the span of the bridge increases, a larger type of CSW and a higher web are utilized. Given that
1800-type and 2000-type CSWss are relatively new with few engineering cases, the maximum height for these
two types has been increased by 2 m compared to that of the 1600-type CSW. Most CSWs within this range
exhibited global shear buckling failure. Moreover, only models that experienced global buckling failure were
utilized for the calculation method verification. For CSWss in laboratory, the corrugation configurations®*3-3
were analyzed. The thickness and height of the webs were adjusted to ensure the global shear buckling failure.
The detailed parameters are provided in Table 4.

Equations (1), (7) and (10) are employed to calculate the elastic global shear buckling capacity of CSW
models for both engineering applications and experimental tests. These formulas are reccommended by Easley™?,
Wang et al.’!, and this paper respectively. Figures 9, 10, 11, and 12 show the comparison between the theoretical
results and the numerical results. The average value and SD of the ratio between the theoretical results and the
finite element results are shown in Table 5. When applying different formulas to calculate the elastic critical
global shear buckling stress of CSWs of varying geometric dimensions and boundary conditions, differences
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Fig. 10. Comparison of theoretical results and numerical results for CSWs with consolidated boundary
condition in the laboratory.
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Fig. 11. Comparison of theoretical results and numerical results for CSW's with simply supported boundary
condition in the engineering.
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Fig. 12. Comparison of theoretical results and numerical results for CSWs with consolidated boundary
condition in the engineering.

in accuracy and discrepancies are observed. The average ratio of theoretical results derived from the Easley
formula to those obtained from finite element analysis ranges from 0.61 to 1.53, with a SD between 0.05 and
0.09. Utilizing the formula proposed by Wang et al.’!, the average ratio of theoretical results to numerical results
lies between 0.83 and 1.05, with a SD ranging from 0.01 to 0.05. For the proposed formula, the average ratio of
theoretical results to numerical results spans from 0.95 to 1.01, with an SD between 0.04 and 0.06.

For the engineering CSW's with consolidated boundary conditions and testing CSW's with simply supported
boundary conditions, the theoretical results calculated by Eq. (1) are in good agreement with the numerical
results, as shown in Figs. 9a and 12a. However, for other cases of CSWs, the theoretical results calculated by
Eq. (1) deviate from the numerical results. This discrepancy arises because the Easley formula’s accuracy varies
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CSWs in the laboratory CSWs in the engineering

Simply Simply

supported Consolidated | supported Consolidated

boundary boundary boundary boundary
Calculation method | Average | SD | Average | SD | Average | SD | Average | SD
Easley formula 0.90 0.05 | 1.53 0.07 | 0.61 0.06 | 1.09 0.09
S{’S‘;‘ﬂla by Wang | 45 0.05 | 0.83 0.04 | 1.02 0.02 | 1.05 0.01
Proposed formula 0.98 0.05 | 1.01 0.05 | 0.95 0.06 | 0.96 0.04

Table 5. Comparison of different calculation methods.

markedly with changes in boundary conditions and geometric dimensions, due to its inability to account for real
spatial boundary constraint effects. The elastic global buckling capacity of large-sale CSWs in the engineering can
be well predicted by the formula proposed by Wang et al.>l. However, there is a certain deviation in predicting
the critical shear buckling stress of CSWs in the laboratory, as shown in Figs. 9b and 10b. Since Eq. (7) is mainly
used to calculate the large-scale CSWs in the engineering, its applicability is limited when the parameter ratios of
testing CSWs differ significantly from those of engineering CSWs, resulting in an inability to accurately calculate
elastic critical global shear buckling stress. The formula proposed in this paper provides similar calculation
accuracy for both large-scale CSWss in the engineering and small-size CSWs in the laboratory. The accuracy is
consistent regardless of changes in geometric parameters and boundary conditions, demonstrating the formula’s
good applicability. Therefore, it can be used to predict the elastic global shear buckling capacity of CSWs.
Additionally, when the parameter variation falls within the range specified in the parameter analysis section, the
proposed formula can accurately calculate the elastic critical global shear buckling stress. For other, less common
parameter ranges of CSWs, further verification of the formula’s accuracy is necessary.

In general, the elastic global buckling capacity of CSWs with different sizes and boundary conditions can
be calculated using Eq. (1) for simply supported boundary conditions, providing a conservative estimate. The
formula proposed by Wang et al.?! is suitable for large-scale CSWs in engineering. The formula presented in this
paper effectively predicts the elastic global buckling capacity for both large-scale engineering CSWs and small-
scale testing CSWs.

Conclusions

Numerical models were employed to investigate the calculation method for the elastic critical global shear
buckling stress of CSWs with varying geometric dimensions and boundary conditions. A modified Easley
formula was proposed to predict this stress for both large-scale engineering CSWs and small-scale testing CSWs,
taking real boundary conditions into account. The primary research conclusions are as follows:

(1) Due to the spatial boundary constraint, the constraint effect of the simply supported boundary condition
for CSWs is comparable to that of the consolidated boundary condition. The classic calculation method fails
to accurately account for the real boundary constraint effect for CSWs with different sizes and boundary
conditions.

(2) The elastic critical global shear buckling stress of CSWs is influenced by the ratios of web height to corru-
gation depth, corrugation depth to web thickness, parallel fold width to inclined fold width, and the corru-
gation angle. Among these, the ratio of web height to corrugation depth is the most significant factor.

(3) Using the ratio of web height to corrugation depth as the primary variable, the Easley formula has been
modified. The proposed formula can be used to calculate the elastic critical global shear buckling stress of
large-scale CSWs in engineering applications, as well as the elastic global shear buckling stress of small-
scale CSWs in laboratory settings. This formula demonstrates an improved level of accuracy and consisten-

cy.
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