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The real juncture between corrugated steel webs (CSWs) and flanges follows a multi-segmented line, 
distinct from that of flat steel webs. Classic methods may yield significant deviations in predicting the 
elastic global shear buckling capacity of CSWs of various scales due to their failure to consider real 
boundary constraints. Therefore, a universally applicable formula for calculating the elastic critical 
global shear buckling stress of CSWs, which accounts for real boundary conditions, is proposed. This 
formula is pertinent to both large-scale engineering CSWs and small-scale testing CSWs. This study 
commenced with a comprehensive reassessment of the elastic global shear buckling calculation 
method. Subsequently, the influence of geometric parameter ratios on the elastic critical global 
buckling stress was examined. The primary parameter was identified and employed to improve the 
global buckling coefficient. The proposed calculation method was validated using different corrugation 
configurations, including 1000-type, 1200-type, 1600-type, 1800-type, and 2000-type CSWs, as well 
as other CSWs used in experimental settings. These results were compared with those obtained from 
other reference methods. Findings indicate that the accuracy of the classic theoretical method is 
affected by variations in both boundary conditions and geometric dimensions due to the constraint 
effect of real boundary conditions. Under the real boundary conditions, the elastic critical global shear 
buckling stress of CSWs with simply supported boundary conditions is close to that of CSWs with 
consolidated boundary conditions. The ratio of web height to corrugation depth primarily affects the 
elastic global shear buckling capacity, which decreases as the ratio increases. The Easley formula can be 
modified based on the web height to corrugation depth ratio. Comparisons of numerous numerical and 
theoretical results reveal that the proposed calculation method exhibits commendable computational 
precision. In comparison to alternative formulas, the proposed method demonstrates enhanced 
consistency for calculating CSWs with varying geometric dimensions and boundary conditions, thereby 
demonstrating its favorable applicability. These conclusions provide valuable reference for the shear 
design of CSWs.
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Corrugated steel webs (CSWs) are extensively utilized in bridges1–3, buildings4–6, and culverts7,8 due to their 
superior shear buckling strength and out-of-plane stiffness. As the structural span increases, the height of 
CSWs also increases, making global shear buckling a critical design consideration. Existing methods typically 
rely on orthotropic plate theory to calculate the elastic critical global shear buckling stress of CSWs. However, 
these methods do not account for the three-dimensional spatial constraint effects induced by the corrugation 
configuration of CSWs. For certain specific parameters of CSWs, the traditional theoretical calculations may 
be overly conservative, thereby diminishing the economic benefits of composite girder bridges with CSWs. 
For instance, the Nanfeihe Bridge in China, which spans 153 m, employed thicker CSWs to avert global shear 
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buckling failure. The maximum height of these CSWs is 6.35 m, and the maximum thickness is 34 mm. Further 
increasing the thickness is not feasible due to economic and manufacturing constraints. A more accurate 
calculation formula can help reduce costs and improve the span of composite beam bridges with CSWs. 
Furthermore, existing methods fail to provide accurate calculations for both large-scale CSWs in engineering 
applications and small-scale CSWs in laboratory settings, due to significant variations in geometric parameters. 
Consequently, it is imperative to develop an elastic global buckling calculation method that incorporates the 
effects of spatial boundary constraints and accommodates variations in geometric dimensions. Such a method 
would significantly enhance the application of CSWs in long-span structures.

In recent years, scholars have conducted extensive research on the static performance9–12, fatigue 
performance13,14, and fire performance15,16 of CSWs. Shear performance, a critical aspect of static performance, 
has been studied in various types of CSWs, including equal-section CSWs17–19, variable-section CSWs20,21, 
curved CSWs22,23 and stiffened CSWs24. These investigations cover a broad range of topics, from the mechanisms 
of shear failure to the effects of welding and corrosion damage on shear performance. The elastic shear buckling 
of CSWs includes local buckling25, global buckling26 and interactive buckling27, and is studied using both 
theoretical and numerical methods. For elastic global shear buckling, research has evolved from traditional 
theoretical formulas to methods that incorporate real boundary conditions. Easley and McFarland28 utilized 
orthotropic anisotropic plate theory to develop a formula for determining the elastic critical global buckling stress 
of CSWs. Nie et al.29 derived a formula for the elastic critical global buckling stress based on energy principles, 
demonstrating that the effect of constraints in the direction of weak bending stiffness of CSWs can be neglected. 
Hassanein and Kharoob30 utilized finite element models to analyze the elastic global buckling of CSWs under 
real boundary conditions. Their findings revealed that the elastic critical shear buckling stress of CSWs with 
consolidated boundaries is comparable to that of CSWs with simply supported boundaries. Furthermore, under 
real boundary conditions, the ratio of the critical buckling stress of CSWs with simply supported boundary 
conditions to that under consolidated boundary conditions is significantly higher than the ratio predicted by 
the orthotropic plate theory. Wang et al.31 developed an elastic shear buckling calculation formula tailored for 
four types of large-scale CSWs: the 1000-type, 1200-type, 1600-type, and 1800-type. This formula accounts for 
the real boundary constraints of large-scale CSWs and lacks validation for small-scale CSWs. It is noteworthy 
that the boundary constraints of CSWs differ from those of traditional flat steel webs. There is a paucity of elastic 
critical global shear buckling stress calculation formulas that consider real boundary conditions and are suitable 
for both large-scale CSWs used in engineering applications and small-scale CSWs used in testing.

The juncture between traditional flat steel webs and flanges is linear, whereas the juncture between CSWs 
and flanges follows a multi-segmented line. This corrugation configuration results in a spatial three-dimensional 
boundary for CSWs. Due to this difference, traditional plate theory cannot be directly applied to calculate the 
boundary constraint effects of CSWs. Existing orthotropic anisotropic plate theories are inadequate in accurately 
considering these real constraint effects. Finite element method-based fitting formulas are often used for specific 
types of CSWs but cannot be generalized to CSWs with varying parameter proportions.

To address these limitations and develop a widely applicable calculation method for elastic global shear buckling 
capacity, this study focuses on equal-section CSWs. Initially, the relationship between the ratio of geometric 
parameters and the elastic critical global shear buckling stress is analyzed using numerical methods, leading to the 
identification of the primary influencing parameters. Subsequently, the real boundary constraint effects and the 
accuracy of traditional orthotropic plate calculation methods are examined. Based on these findings, modifications 
are made to Easley’s elastic global shear buckling stress calculation formula. Finally, the modified formula is 
validated and compared with existing formulas by assessing the 1000-type, 1200-type, 1600-type, 1800-type, and 
2000-type CSWs used in engineering, as well as certain CSWs employed in laboratory settings.

Theoretical methods
The classic approach considers the CSW as an orthotropic anisotropic plate, utilizing orthotropic anisotropic 
plate theory to determine the elastic critical global shear buckling stress. The formula for elastic critical global 
shear buckling stress, established by Easley32, is extensively employed and effectively illustrates the mechanical 
relationship between the primary parameters influencing elastic global shear buckling capacity, as depicted in 
Eq. (1). In this equation, kG represents the global buckling coefficient, which is assigned 36 for simply supported 
boundary conditions and 68.4 for consolidated boundary conditions29,32. Nonetheless, this formula does not 
accurately account for the real boundary constraints imposed by the corrugation configuration. Consequently, 
more precise formulas need to be developed from Eq.  (1), incorporating spatial boundary constraints and 
accommodating various sizes of CSWs. Figure 1 presents a schematic diagram of CSWs.
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	 s = 2× (b + c)� (6)

where τ   is the elastic critical global shear buckling stress; kG is the global buckling coefficient; t is the thickness 
of CSWs; E is the elastic modulus of the steel; h is the height of the web; b is the parallel fold width; c is the 
inclined fold width; d is the horizontal projection of the inclined fold width; e is the corrugation depth; α is the 
corrugation angle.

In practice, CSWs experience spatial boundary constraints that are distinct from those of flat steel webs. Even 
under simply supported boundary conditions, these spatial constraints limit the free rotation of CSWs. Wang 
et al.31 has derived formulas for calculating the elastic critical buckling stress for large-scale CSWs of types 
1000, 1200, 1600, and 1800, based on extensive numerical analysis, as presented in Eq. (7). This equation takes 
into account the real boundary conditions. However, the applicability of this formula needs to be verified for 
small-scale CSWs in laboratory settings. The buckling coefficient limits are not specified. When the geometric 
parameter ratios deviate significantly from those typical of CSWs commonly used in engineering, excessively 
low buckling coefficients may result. To address this, the lower limits of the buckling coefficients in Eqs. (8) and 
(9) are set at 36, based on the buckling coefficients of a simply supported orthotropic anisotropic plate.
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where k′G is obtained by Eq. (8) for CSWs with simply supported boundary conditions, and is obtained by Eq. (9) 
for CSWs with consolidated boundary conditions.

Numerical methods
Geometric deviations and welding residual stresses can cause some variability in the experimental results of the 
global shear buckling of CSWs. Additionally, spatial geometric boundaries complicate theoretical derivations. 
Therefore, the elastic shear buckling capacity of CSWs considering the real boundary juncture between CSWs 
and flanges is typically studied using the finite element method. Refer to the finite element buckling analysis 
method of CSWs, the CSW is simulated using ANSYS finite element package31,33,34. The SHELL181 four-node 
shell element is used to simulate the CSW with an elastic modulus of 206 GPa and a Poisson’s ratio of 0.3, 
as shown in Fig.  2. For simply supported boundary conditions on all four edges, the translation degrees of 
freedom in the z-direction and the x-direction are constrained on the AB side and the DC side, the translation 
degrees of freedom in the z-direction and the y-direction are constrained on the AD side, and the translation 
degree of freedom in z-direction is constrained on the BC side. The translational constraint for fully consolidated 
boundary conditions on all four edges are the same as that for simply supported boundary conditions, with the 
exception that rotational constraints are additionally imposed. Specifically, rotational constraints about the x-
axis are applied at the edges AB and DC, while rotational constraints about the y-axis are applied at the edges 
AD and BC. For CSWs with simply supported or consolidated boundary conditions, a uniformly distributed 

Fig. 1.  Schematic diagram of CSWs.
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vertical load is applied on the BC edge. The effect of the loading point position on the critical buckling stress is 
negligible when the ratio of edge AB/edge BC is greater than 229. Moreover, after trial calculation, when there 
are six elements in the length of the straight section of CSWs, a more accurate numerical result can be obtained 
and the calculation efficiency can be taken into account. The typical global buckling failure mode of CSWs is 
shown in Fig. 3.

To validate the accuracy of the numerical model, the critical buckling stress derived from the aforementioned 
numerical modeling method was compared with the numerical results calculated by Hassanein and Kharoob30. 
Table 1 provides a comparison of the numerical results. It is noteworthy that the finite element calculation 
model utilized in Table 1 employs the material parameters provided by Hassanein and Kharoob30 to eliminate 
discrepancies in calculation results attributable to material differences. The average ratio is 1.00 and the standard 
deviation (SD) is 0.02. The numerical results predicted in the paper agree well with the results calculated by 
Hassanein and Kharoob30. In addition, the critical shear buckling stress of CSWs calculated using the above 
numerical method is similar to the finite element fitting formula results predicted by Wang et al.31. The mean and 
SD also closely match the results predicted by Wang et al.31, indicating the accuracy of the numerical method, 
as shown in Figs. 11b and 12b. Detailed analysis can be found in the verification of the proposed calculation 

No h b d t e τFE1 (MPa) τFE2 (MPa) τFE1/τFE2

1 2400 325 274 8 175 560 547 1.02

2 2400 325 274 10 175 760 753 1.01

3 2400 325 274 12 175 958 958 1.00

4 2400 325 274 14 175 1159 1168 0.99

5 2400 325 274 16 175 1365 1385 0.99

6 2400 325 274 18 175 1578 1610 0.98

Average 1.00

SD 0.02

Table 1.  Verification of CSW finite element model. τFE1 is the shear buckling stress under simply supported 
boundary condition calculated by the finite element model in this paper; τFE2 is the shear buckling stress 
under simply supported boundary condition by Hassanein and Kharoob30.

 

Fig. 3.  Typical global buckling failure mode.

 

Fig. 2.  Numerical model of CSWs.
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method section. The elastic buckling stress of CSWs can be predicted by the proposed finite element analysis 
method.

Finite element analysis
Parameter analysis
Geometric foundation design parameters of CSWs include web height (h), web thickness (t), corrugation depth 
(e), parallel fold width (b) and horizontal projection of inclined fold width (d). The elastic global buckling 
capacity of CSWs was investigated by varying the geometric foundation design parameters for the corrugation 
configurations30,35,36 of 1600-type, 2000-type and Hassanein-type CSWs. The geometric foundation design 
parameters of each model are detailed in Table 2. Each type of CSWs was divided into five groups based on the 
geometric foundation design parameters, with each group consisting of six models. The parameter groups of 
different types of CSWs are represented by A1-A5, B1-B5, and C1-C5. For example, the models in the first group 
of design parameters are labeled A1, B1, and C1.

To ensure that the analysis results are applicable to both large-scale engineering CSWs and small-scale 
laboratory CSWs, the design parameters were examined in terms of their ratios: web height to corrugation 
depth (h/e), corrugation depth to web thickness (e/t), parallel fold width to inclined fold width (b/c), and 
the corrugation angle (α). Referring to the parameter ratio of CSWs in the engineering and CSWs in the 
laboratory, the parameter variation range for the global shear buckling analysis is as follows: (1)0.5 ≤ b/c ≤ 2; 
(2)27◦ ≤ α ≤ 45◦; (3)7 ≤ e/t ≤ 25; (4) 20 ≤ h/e ≤ 130. It is important to note that, to ensure the applicability 
of the analysis results to various sizes of CSWs, the web height in Table 2 has been appropriately expanded. This 
adjustment aims to guarantee that the parameter ratio analysis results are valid for both large-scale and small-
scale CSWs. The parameter ratios of CSW models in the subsequent calculation method validation are also 
within the above range. In Table 2, the first, second, and fourth groups were used for analyzing the relationships 
between h/e、e/t、b/c, and the critical global shear buckling stress. For the third and fifth groups, alterations 
in the basic parameters result in variations in multiple parameter ratios. The fifth group which exhibits less 
parameter coupling, will be used to analyze the influence of parameter α. The third group, characterized by more 
parameter ratio coupling, will be employed for subsequent statistical analysis.

Figure 4 illustrates the relationship between the parameter ratios and the critical global shear buckling stress 
of CSWs with simply supported boundary conditions on all four edges. To facilitate the analysis of different 
types of CSWs, the vertical axis represents the ratio of the critical global shear buckling stress (τ1) to the average 
critical global shear buckling stress (τe) of the six models in each group. The horizontal axis represents the 
parameter ratios. For different types of CSWs, the relationship between these parameter ratios and the critical 
global shear buckling stress is consistent: the critical shear buckling stress decreases with increasing h/e and e/t, 
and increases with increasing b/c. Furthermore, variations in parameter α and the b/c ratio result in only slight 
changes in the τ1/τe ratio, indicating that α and b/c exert minimal influence on the critical shear buckling stress. 
Notably, when the h/e ratio changes the variation range of τ1/τe is between 0 and 3. This variation is substantially 
higher compared to the influence exerted by other parameter ratios on the critical global shear buckling stress.

Additionally, for CSWs with fully consolidated boundary conditions on all four edges, the relationship 
between the parameter ratios and the critical global buckling stress remains analogous to that observed in CSWs 
with simply supported boundary conditions on all four edges. As illustrated in Fig. 5, the h/e ratio continues 
to be the most significant influencing parameter under the condition as well. This consistency underscores the 
critical role of the h/e ratio in determining the global shear buckling capacity of CSWs across different support 
conditions.

Discussion on boundary constraint effect
Figure 6 examines the constraint effect of the real boundary conditions of CSWs. In Fig. 6, τs represents the 
elastic critical global shear buckling stress for the simply supported boundary condition, while τF denotes the 
elastic critical global shear buckling stress for the consolidated boundary condition. It is evident from Fig. 6 
that the ratio of τs/τF under the real boundary condition ranges between 0.8 and 1. This indicates that, due to 
the spatial boundary constraint, the constraint effect of the simply supported boundary condition for CSWs is 
comparable to that of the consolidated boundary condition. In contrast, the traditional orthotropic anisotropic 
theory yields a ratio of 0.53, as it fails to account for the spatial constraint effect.

Improved Easley formula
The ratio of h/e significantly influences the elastic global shear buckling capacity. Figures  7 and 8 show the 
relationship between the accuracy of the traditional calculation method and the ratio of h/e. In these figures, τ1 
denotes the numerical results, and τ2 represents the theoretical results calculated using Eq. (1). For CSWs with 
simply supported boundary conditions on all four edges, the theoretical results are generally lower than the 
numerical results. As the h/e ratio increases, the theoretical results gradually approach the numerical results, 
as illustrated in Fig. 7. Conversely, for CSWs with fully consolidated boundary conditions on all four edges, 
the theoretical results are generally higher than the numerical results. As the h/e ratio decreases, the theoretical 
results converge towards the numerical results, as shown in Fig. 8.

The discrepancy between theoretical and numerical results arises because Eq. (1) simplifies the CSW to an 
orthotropic plate and the boundary condition to a two-dimensional plate boundary. In reality, the boundary of 
CSWs is three-dimensional. The spatial boundary constraints imply that the rotation of CSWs under simply 
supported boundary conditions is also restricted, a factor that the traditional formula fails to accurately account 
for. Given that the influence of the h/e ratio on the elastic global buckling capacity is much more significant than 
that of other parameter ratios, it is feasible to modify the existing theoretical calculation method by using the 
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Model t (mm) h (mm) e (mm) b (mm) d (mm) Model t (mm) h (mm) e (mm) b (mm) d (mm)

1600-type

A1-1 30 6000 220 430 370 A3-4 28 10,000 280 430 370

A1-2 30 8000 220 430 370 A3-5 28 10,000 300 430 370

A1-3 30 10,000 220 430 370 A3-6 28 10,000 320 430 370

A1-4 30 12,000 220 430 370 A4-1 25 12,000 220 300 370

A1-5 30 14,000 220 430 370 A4-2 25 12,000 220 360 370

A1-6 30 16,000 220 430 370 A4-3 25 12,000 220 420 370

A2-1 29 8000 220 430 370 A4-4 25 12,000 220 480 370

A2-2 26 8000 220 430 370 A4-5 25 12,000 220 540 370

A2-3 23 8000 220 430 370 A4-6 25 12,000 220 600 370

A2-4 20 8000 220 430 370 A5-1 22 14,000 220 430 240

A2-5 17 8000 220 430 370 A5-2 22 14,000 220 430 270

A2-6 14 8000 220 430 370 A5-3 22 14,000 220 430 300

A3-1 28 10,000 220 430 370 A5-4 22 14,000 220 430 330

A3-2 28 10,000 240 430 370 A5-5 22 14,000 220 430 360

A3-3 28 10,000 260 430 370 A5-6 22 14,000 220 430 390

2000-type

B1-1 25 8000 240 530 470 B3-4 27 12,000 330 530 470

B1-2 25 10,000 240 530 470 B3-5 27 12,000 360 530 470

B1-3 25 12,000 240 530 470 B3-6 27 12,000 390 530 470

B1-4 25 14,000 240 530 470 B4-1 23 8000 240 300 470

B1-5 25 16,000 240 530 470 B4-2 23 8000 240 380 470

B1-6 25 18,000 240 530 470 B4-3 23 8000 240 460 470

B2-1 30 10,000 240 530 470 B4-4 23 8000 240 540 470

B2-2 28 10,000 240 530 470 B4-5 23 8000 240 620 470

B2-3 26 10,000 240 530 470 B4-6 23 8000 240 700 470

B2-4 24 10,000 240 530 470 B5-1 28 14,000 240 530 250

B2-5 22 10,000 240 530 470 B5-2 28 14,000 240 530 290

B2-6 20 10,000 240 530 470 B5-3 28 14,000 240 530 330

B3-1 27 12,000 240 530 470 B5-4 28 14,000 240 530 370

B3-2 27 12,000 270 530 470 B5-5 28 14,000 240 530 410

B3-3 27 12,000 300 530 470 B5-6 28 14,000 240 530 450

Hassanein-type

C1-1 26 6000 175 325 274 C3-4 24 8000 205 325 274

C1-2 26 8000 175 325 274 C3-5 24 8000 220 325 274

C1-3 26 10,000 175 325 274 C3-6 24 8000 235 325 274

C1-4 26 12,000 175 325 274 C4-1 21 12,000 175 250 274

C1-5 26 14,000 175 325 274 C4-2 21 12,000 175 300 274

C1-6 26 16,000 175 325 274 C4-3 21 12,000 175 350 274

C2-1 24 10,000 175 325 274 C4-4 21 12,000 175 400 274

C2-2 21 10,000 175 325 274 C4-5 21 12,000 175 450 274

C2-3 18 10,000 175 325 274 C4-6 21 12,000 175 500 274

C2-4 15 10,000 175 325 274 C5-1 23 14,000 175 325 190

C2-5 12 10,000 175 325 274 C5-2 23 14,000 175 325 220

C2-6 9 10,000 175 325 274 C5-3 23 14,000 175 325 250

C3-1 24 8000 175 325 274 C5-4 23 14,000 175 325 280

C3-2 24 8000 185 325 274 C5-5 23 14,000 175 325 310

C3-3 24 8000 195 325 274 C5-6 23 14,000 175 325 340

Table 2.  Details of CSW for parameter analysis.
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Fig. 4.  Relationship between parameter ratios and critical buckling stress for simply supported boundary 
conditions.
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Fig. 5.  Relationship between parameter ratios and critical buckling stress for consolidated boundary 
conditions.
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h/e ratio as the primary parameter. By performing statistical regression on the data in Figs. 7 and 8, a correction 
formula can be established, as shown in Eq. (10).

	
τ = k−1

G1kG
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where kG1 is the boundary constraint correction factor.

For CSWs with simply supported boundary conditions on all four edges, the boundary constraint correction 
factor can be obtained as:

	 KG1 = τ2/τ1 = 0.11852(h/e)0.4642� (11)

Fig. 8.  Relationship between τ2/τ1 and h/e for consolidated boundary conditions.

 

Fig. 7.  Relationship between τ2/τ1  and h/e for simply supported boundary conditions.

 

Fig. 6.  Comparison of critical buckling stress of CSWs under simply supported and consolidated boundary 
conditions.
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For CSWs with consolidated boundary conditions on all four edges, the boundary constraint correction factor 
can be obtained as:

	 KG1 = τ2/τ1 = 0.31218(h/e)0.3582� (12)

Verification of the proposed calculation method
To verify the accuracy of Eq.  (10), both engineering CSWs and certain testing CSWs were employed. The 
corrugation configurations31,35,36 for 1000-type, 1200-type, 1600-type, 1800-type and 2000-type CSWs were 
determined. The parameter range for CSWs in engineering is detailed in Table 3, which lists the common 
parameters used for bridges with CSWs that experience global shear buckling, with appropriate extensions. 
Generally, as the span of the bridge increases, a larger type of CSW and a higher web are utilized. Given that 
1800-type and 2000-type CSWs are relatively new with few engineering cases, the maximum height for these 
two types has been increased by 2 m compared to that of the 1600-type CSW. Most CSWs within this range 
exhibited global shear buckling failure. Moreover, only models that experienced global buckling failure were 
utilized for the calculation method verification. For CSWs in laboratory, the corrugation configurations33,37,38 
were analyzed. The thickness and height of the webs were adjusted to ensure the global shear buckling failure. 
The detailed parameters are provided in Table 4.

Equations  (1), (7) and (10) are employed to calculate the elastic global shear buckling capacity of CSW 
models for both engineering applications and experimental tests. These formulas are recommended by Easley32, 
Wang et al.31, and this paper respectively. Figures 9, 10, 11, and 12 show the comparison between the theoretical 
results and the numerical results. The average value and SD of the ratio between the theoretical results and the 
finite element results are shown in Table 5. When applying different formulas to calculate the elastic critical 
global shear buckling stress of CSWs of varying geometric dimensions and boundary conditions, differences 

Fig. 9.  Comparison of theoretical results and numerical results for CSWs with simply supported boundary 
condition in the laboratory.

 

CSW type
b
(mm)

d
(mm)

e
(mm)

t
(mm)

Increment
(mm)

h
(m)

Increment
(m)

V24120937 19.8 11.9 14.2 1 ~ 2 0.5 1.2 ~ 1.6 0.2

S133 20 16 12.1 0.5 ~ 1.5 0.5 1 ~ 1.4 0.2

S233 80 64 48 4 ~ 6 1 3 ~ 4 0.5

G138 25 20 15 1 ~ 2 0.5 1 ~ 1.4 0.2

L138 100 80 60 4 ~ 6 1 3.5 ~ 4.5 0.5

Table 4.  Testing CSWs parameter variation range.

 

CSW type
b
(mm)

d
(mm)

e
(mm)

t
(mm)

Increment
(mm)

h
(m)

Increment
(m)

100035 280 220 160 9 ~ 12 1 5 ~ 6 1

120035 330 270 180 14 ~ 20 2 5 ~ 7 1

160035 430 370 220 18 ~ 30 2 6 ~ 10 2

180031 480 420 240 18 ~ 30 2 6 ~ 12 2

200036 530 470 240 18 ~ 30 2 6 ~ 12 2

Table 3.  Engineering CSWs parameter variation range.
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in accuracy and discrepancies are observed. The average ratio of theoretical results derived from the Easley 
formula to those obtained from finite element analysis ranges from 0.61 to 1.53, with a SD between 0.05 and 
0.09. Utilizing the formula proposed by Wang et al.31, the average ratio of theoretical results to numerical results 
lies between 0.83 and 1.05, with a SD ranging from 0.01 to 0.05. For the proposed formula, the average ratio of 
theoretical results to numerical results spans from 0.95 to 1.01, with an SD between 0.04 and 0.06.

For the engineering CSWs with consolidated boundary conditions and testing CSWs with simply supported 
boundary conditions, the theoretical results calculated by Eq.  (1) are in good agreement with the numerical 
results, as shown in Figs. 9a and 12a. However, for other cases of CSWs, the theoretical results calculated by 
Eq. (1) deviate from the numerical results. This discrepancy arises because the Easley formula’s accuracy varies 

Fig. 12.  Comparison of theoretical results and numerical results for CSWs with consolidated boundary 
condition in the engineering.

 

Fig. 11.  Comparison of theoretical results and numerical results for CSWs with simply supported boundary 
condition in the engineering.

 

Fig. 10.  Comparison of theoretical results and numerical results for CSWs with consolidated boundary 
condition in the laboratory.
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markedly with changes in boundary conditions and geometric dimensions, due to its inability to account for real 
spatial boundary constraint effects. The elastic global buckling capacity of large-sale CSWs in the engineering can 
be well predicted by the formula proposed by Wang et al.31. However, there is a certain deviation in predicting 
the critical shear buckling stress of CSWs in the laboratory, as shown in Figs. 9b and 10b. Since Eq. (7) is mainly 
used to calculate the large-scale CSWs in the engineering, its applicability is limited when the parameter ratios of 
testing CSWs differ significantly from those of engineering CSWs, resulting in an inability to accurately calculate 
elastic critical global shear buckling stress. The formula proposed in this paper provides similar calculation 
accuracy for both large-scale CSWs in the engineering and small-size CSWs in the laboratory. The accuracy is 
consistent regardless of changes in geometric parameters and boundary conditions, demonstrating the formula’s 
good applicability. Therefore, it can be used to predict the elastic global shear buckling capacity of CSWs. 
Additionally, when the parameter variation falls within the range specified in the parameter analysis section, the 
proposed formula can accurately calculate the elastic critical global shear buckling stress. For other, less common 
parameter ranges of CSWs, further verification of the formula’s accuracy is necessary.

In general, the elastic global buckling capacity of CSWs with different sizes and boundary conditions can 
be calculated using Eq. (1) for simply supported boundary conditions, providing a conservative estimate. The 
formula proposed by Wang et al.31 is suitable for large-scale CSWs in engineering. The formula presented in this 
paper effectively predicts the elastic global buckling capacity for both large-scale engineering CSWs and small-
scale testing CSWs.

Conclusions
Numerical models were employed to investigate the calculation method for the elastic critical global shear 
buckling stress of CSWs with varying geometric dimensions and boundary conditions. A modified Easley 
formula was proposed to predict this stress for both large-scale engineering CSWs and small-scale testing CSWs, 
taking real boundary conditions into account. The primary research conclusions are as follows:

	(1)	� Due to the spatial boundary constraint, the constraint effect of the simply supported boundary condition 
for CSWs is comparable to that of the consolidated boundary condition. The classic calculation method fails 
to accurately account for the real boundary constraint effect for CSWs with different sizes and boundary 
conditions.

	(2)	� The elastic critical global shear buckling stress of CSWs is influenced by the ratios of web height to corru-
gation depth, corrugation depth to web thickness, parallel fold width to inclined fold width, and the corru-
gation angle. Among these, the ratio of web height to corrugation depth is the most significant factor.

	(3)	� Using the ratio of web height to corrugation depth as the primary variable, the Easley formula has been 
modified. The proposed formula can be used to calculate the elastic critical global shear buckling stress of 
large-scale CSWs in engineering applications, as well as the elastic global shear buckling stress of small-
scale CSWs in laboratory settings. This formula demonstrates an improved level of accuracy and consisten-
cy.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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